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INTERSECTING THE DIMENSION AND SLICE FILTRATIONS
FOR MOTIVES
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(communicated by Charles A. Weibel)

Abstract
In this note we prove that the intersections of the levels of

the dimension filtration on Voevodsky’s motivic complexes over
a field with the levels of the slice filtration are “as small as
possible”. This statement is applied to prove that a conjecture
of Ayoub is equivalent to a certain orthogonality assumption.

Introduction

The slice and the dimension filtrations for (various versions of) Voevodsky motives
are quite well-known (and easy to define); yet our understanding of motives of dimen-
sions > 1 is quite limited. In the current note we find out which Voevodsky (effec-
tive) motivic complexes of dimension at most m are divisible by the ith power
R⟨i⟩ = R(i)[2i] of the Lefschetz motif (and so, belong to the ith level of the slice
filtration; here R is the coefficient ring). Since R⟨i⟩ is a direct summand of the motif
MR(Pi) of Pi, the corresponding intersection of object classes certainly contains
motivic complexes of dimension at most m− i tensored by R⟨i⟩ (this class is zero if
m < i), and we prove that this inclusion is actually an equality. This result (Theo-
rem 2.2) is completely new. We use our result (for motives with rational coefficients)
to prove that Conjecture 4.22 of [Ayo15] is equivalent to several other assumptions.

Now we describe our results and methods in more detail. Our main object of study
is the (monoidal) triangulated category DM eff

R of (unbounded) R-linear motivic com-
plexes over a perfect field k, where R is any coefficient ring in which the characteristic
of k is invertible if it is positive. The category d⩽mDM eff

R is the localizing subcate-
gory of DM eff

R generated by the motives of (smooth) varieties of dimension at most
m. Since for any i ⩾ 0 the motif R⟨i⟩ is a direct summand of MR(Pi), the cat-
egory d⩽mDM eff

R contains d⩽m−iDM eff
R ⟨i⟩ = d⩽m−iDM eff

R ⊗DMeff
R

R⟨i⟩. Recall here
that the functor −⟨i⟩ = −⊗DMeff

R
R⟨i⟩ : M 7→ M⟨i⟩ is a full embedding of DM eff

R into

itself (see [BeV08, §6.1]); by convention, d⩽jDM eff
R = {0} if j < 0. The question is

whether the intersection of d⩽mDM eff
R with DM eff

R ⟨i⟩ (i.e., with the ith level of the
slice filtration for DM eff

R ) equals the “obvious candidate” d⩽m−iDM eff
R ⟨i⟩.
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Remark. In Voevodsky’s notation, our category d⩽m−iDM eff
R ⟨i⟩ is written as

d⩽m−iDM eff
R (i).

The starting point of our arguments is that these categories are endowed with
so-called Chow weight structures (that are closely related to Chow weight structures
introduced in [Bon10] and [Bon11]). Recall here that weight structures on trian-
gulated categories were introduced in [Bon10] (and independently in [Pau08]; one
may say that weight structures are certain “cousins” of t-structures), whereas Chow
weight structures on various triangulated categories of motives are closely related to
Deligne’s weights of their cohomology.

Combing this observation with the results of [Bon15] we prove that all Chow-
bounded below objects (i.e., those whose “weights” are bounded from below; here
we use the homological convention for the numeration of weights) of d⩽mDM eff

R ∩
DM eff

R ⟨i⟩ belong to d⩽m−iDM eff
R ⟨i⟩.

This statement is an application of the abstract Proposition 1.9. Moreover, the
argument described in Remark 2.3(2) demonstrates that the (“two-sided”) bounded
case of this statement can be proved using the properties of the weight complex func-
tor that were proved in [Bon10]. Furthermore, all objects of d⩽mDM eff

R ∩DM eff
R ⟨i⟩

become right weight-degenerate in the Verdier quotient DM eff
R /d⩽m−iDM eff

R ⟨i⟩ (i.e.,
“their weights are infinitely small” in this localization). We use the latter statement
to prove that

d⩽mDM eff
−,R ∩DM eff

−,R⟨i⟩ = d⩽m−iDM eff
−,R⟨i⟩,

where DM eff
−,R is the R-linear version of the category of bounded above motivic

complexes (so, this is the category that was originally considered by Voevodsky
in [Voe00] and [MVW06, §14], whereas the whole DM eff

R was only introduced in
[BeV08, Deg11, CiD15]).

Next we recall that in [Ayo15] Ayoub has introduced several interesting conjec-
tures relating the “slice functors” ν⩾i (and related ones) with the dimension filtration
(for R being a Q-algebra). In particular, his Conjecture 4.22 states that the functor
HomDMeff

R
(R⟨1⟩,−) sends d⩽mDM eff

R into d⩽m−1DM eff
R for any m ⩾ 0. Our results

easily yield that this statement is fulfilled if and only if the right adjoint ν⩾1 ∼=
HomDMeff

R
(R⟨1⟩,−)⟨1⟩ to the embedding DM eff

R ⟨1⟩ → DM eff
R sends d⩽mDM eff

R into

itself (see Proposition 2.4 for a more general formulation). We also prove that (both
of) these conjectures are equivalent to the non-existence of non-zero morphisms from
DM eff

gm,R⟨1⟩ into d⩽mDM eff
gm,R in the localization DM eff

gm,R/d⩽m−1DM eff
gm,R (so, in this

assumption it suffices to consider the categoryDM eff
gm,R ⊂ DM eff

R of effective geometric
motives only).

The original motivation for studying these filtration questions comes from the
paper [BoS14], which gave various criteria ensuring that an object M of DM eff

gm,R

belongs to a given level of a certain filtration on motives (including dimension, slice,
weight, and connectivity filtrations). These criteria were formulated in terms of the
new Chow-weight homology and cohomology theories, and vastly generalize well-
known results about the decomposition of the diagonal. This motivated the author
to study the interaction between these filtrations, and it turned out that weight
structures yield convenient general methods for questions of this sort.
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1. Weight structures and “compactly purely generated”
intersections

This section is mostly dedicated to recollections; still most of the results of §1.3
are new.

In §1.1 we introduce some notation and conventions for (mostly, triangulated)
categories; we also recall some basics on compactly generated categories.

In §1.2 we recall some properties of weight structures.
In §1.3 we relate weight structures to localizations and prove Proposition 1.9 on

“intersections of purely compactly generated subcategories” (this is the basic abstract
result of this paper).

1.1. Notation and basics (on compactly generated categories)
Assume that C is an additive category and X,Y ∈ ObjC.

• For a category C and X,Y ∈ ObjC we will write C(X,Y ) for the set of mor-
phisms from X into Y in C.

• For a category C ′ we will write C ′ ⊂ C if C ′ is a full subcategory of C.

• We will say that X is a retract of Y if idX can be factored through Y (note
that if C is triangulated then X is a retract of Y if and only if X is its direct
summand).

• Let H be an additive subcategory of C. Then H is said to be retraction-closed
in C if it contains all retracts of its objects in C. The full subcategory KarC(H)
of C (here “Kar” is for Karoubi) whose objects are all C-retracts of objects H
will be called the retraction-closure of H in C.

• The idempotent completion Kar(H) (no lower index) of an additive category H
is the category of “formal images” of idempotents in H. So, its objects are the
pairs (A, p) for A ∈ ObjH, p ∈ H(A,A), p2 = p, and the morphisms are given
by the formula

Kar(H)((X, p), (X ′, p′)) = {f ∈ B(X,X ′) : p′ ◦ f = f ◦ p = f}.

The correspondence A 7→ (A, idA) (for A ∈ ObjH) fully embedsH into Kar(H).
Besides, Kar(H) is idempotent complete, i.e., any idempotent morphism in it
yields a direct sum decomposition.

• C below will always denote some triangulated category; usually it will be en-
dowed with a weight structure w.

• For any A,B,C ∈ ObjC we will say that C is an extension of B by A if there
exists a distinguished triangle A → C → B → A[1].

• A class B ⊂ ObjC is said to be extension-closed if it is closed with respect
to extensions and contains 0. The smallest extension-closed subclass of ObjC
containing a given D ⊂ ObjC is called the extension-closure of D.
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• Given a class D of objects of C we will write ⟨D⟩ for the smallest full retraction-
closed triangulated subcategory of C containing D. We will also call ⟨D⟩ the
subcategory densely generated by D.

• For X,Y ∈ ObjC we will write X ⊥ Y if C(X,Y ) = {0}. For D,E ⊂ ObjC we
write D ⊥ E if X ⊥ Y for all X ∈ D, Y ∈ E; sometimes we will also say that
D is (left) orthogonal to E.

• Given D ⊂ ObjC we will write D⊥ for the class

{Y ∈ ObjC : X ⊥ Y ∀X ∈ D}.

Dually, ⊥D is the class {Y ∈ ObjC : Y ⊥ X ∀X ∈ D}.
We will need the following simple properties of Verdier localizations.

Lemma 1.1. Let E ⊂ D ⊂ C be triangulated categories, M ∈ ObjC. Assume that
the Verdier quotient C ′ = C/E exists; denote the localization functor C → C/E by π
(and recall that it is the identity on objects). Then the following statements are valid:

1. The localization D′ = D/E exists also, and the restriction of π to D gives a full
embedding of D/E into C ′.

2. If ObjE ⊥ M then for any N ∈ ObjC the map C(N,M) → C ′(π(N), π(M)) is
a bijection.

3. Assume that a right adjoint F to the embedding D → C exists. Then F also
yields a (well-defined) functor C ′ → D′ that is right adjoint to the embedding
D′ → C ′ given by assertion 1. In particular, we have π(F (M)) = 0 if and only
if π(ObjD) ⊥ π(M).

Proof. 1, 2. Obvious from the description of morphisms in Verdier localizations (this
description can be found in §2.1 of [Nee01]).

3. The first part of the assertion is given by Lemma 9.1.5 of ibid.; to obtain its
second part one should just apply the definition of a right adjoint functor.

Now let us assume till the end of this subsection that C is a triangulated category
closed with respect to (small) coproducts; thus it is idempotent complete according
to Proposition 1.6.8 of [Nee01].

We recall a few notions related to this setting.
We will call a subcategory D ⊂ C the localizing subcategory generated by some

D ⊂ ObjD (or say that D generates D as a localizing subcategory of C) if D is the
smallest full strict triangulated subcategory of C containing D that is closed with
respect to coproducts.

Moreover, we will call the smallest strict subclass of ObjC that it closed with
respect to (small) coproducts, extensions, the shift [1], and contains D the pre-aisle
generated by D (this terminology was essentially introduced in [TLS03]).

An object M of C is said to be compact if the functor C(M,−) commutes with all
small coproducts. We will say that C is compactly generated if its full (triangulated)
subcategory Cc of compact objects is essentially small and ObjCc generates C as its
own localizing subcategory.

For a compactly generated C and H ⊂ Cc will say that C is compactly generated by
H if ObjH generates C as its own localizing subcategory (also). Recall that the latter
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condition is fulfilled if and only if Cc is densely generated by ObjH; see Lemma 4.4.5
of [Nee01].

The following well-known lemma will be applied several times throughout the
paper.

Lemma 1.2. Let D be a set of compact objects of C.
Then for D being the localizing subcategory generated by D the following statements

are valid:

1. The Verdier quotient category C ′ = C/D exists (i.e., its hom-classes are sets);
it is closed with respect to coproducts.

2. The localization functor π : C → C ′ respects coproducts and converts compact
objects into compact ones.

3. The restriction of π to the triangulated subcategory Cc ⊂ C of compact objects
of C gives a full embedding of Cc/⟨D⟩ into C ′.

4. If some class C ⊂ ObjC generates C as its own localizing subcategory then π(C)
generates C ′ as its own localizing subcategory.

Proof. Assertions 1–3 easily follow from the results of [Nee01] (cf. Proposition 4.3.1.3
(III.1–2) of [BoS16] for closely related statements).

Indeed, Theorem 8.3.3 of [Nee01] implies that D satisfies the Brown representabil-
ity condition (see Definition 8.2.1 of ibid.). Hence Proposition 9.1.19 of ibid. yields
the existence of C ′. Moreover, π respects coproducts according to Corollary 3.2.11 of
ibid. The restriction of π to Cc is a full embedding according to Corollary 4.4.2 of
ibid.

To finish the proof of assertion 2 it remains to verify that π(M) is compact in C ′

for any compact object M of C. We fix M ; denote by D′ the localizing subcategory
of C generated by D ∪ {M}. Then the embedding D′ → C (also) possesses a right
adjoint F according to Theorem 8.4.4 of ibid. Obviously, ObjD′⊥ is closed with
respect to C-coproducts (cf. Proposition 1.2.6(III) of [Bon16a]); hence F respects
coproducts according to Proposition 1.3.4(4) of ibid. Next, there is an embedding
functor i : D′/D → C ′ that possesses a right adjoint F ′ according to Lemma 1.1(1,3).
F ′ respects coproducts also (here we invoke Corollary 3.2.11 of [Nee01] once again).
Thus i respects the compactness of objects (obvious from the adjunction of i with F ′).
Lastly, the localization l : D′ → D′/D respects the compactness of objects according
to Theorem 4.4.9 of ibid.; thus π(M) = i ◦ l(M) is compact indeed.

Assertions 4 is obvious since π respects coproducts (see assertion 2).

1.2. Weight structures: reminder

Definition 1.3. I. A pair of subclasses Cw⩽0, Cw⩾0 ⊂ ObjC will be said to define a
weight structure w for a triangulated category C if they satisfy the following condi-
tions:

(i) Cw⩽0 and Cw⩽0 are retraction-closed in C.

(ii) Semi-invariance with respect to translations. Cw⩽0 ⊂Cw⩽0[1], Cw⩾0[1] ⊂
Cw⩾0.

(iii) Orthogonality. Cw⩽0 ⊥ Cw⩾0[1].
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(iv) Weight decompositions. For any M ∈ ObjC there exists a distinguished tri-
angle

X → M → Y→X[1]

such that X ∈ Cw⩽0, Y ∈ Cw⩾0[1].

We will also need the following definitions.

Definition 1.4. Let i, j ∈ Z.
1. The full subcategory Hw ⊂ C whose object class is Cw=0 = Cw⩾0 ∩ Cw⩽0 is

called the heart of w.

2. Cw⩾i (resp. Cw⩽i, Cw=i) will denote the class Cw⩾0[i] (resp. Cw⩽0[i], Cw=0[i]).
We will call ∪i∈ZCw⩾i the class of w-bounded below objects.

3. The class Cw⩾i ∩ Cw⩽j will be denoted by C [i,j] (so, it equals {0} if i > j).

Cb ⊂ C will be the category whose object class is the class ∪i,j∈ZC [i,j] of w-
bounded objects.

4. We will call elements of ∩i∈ZCw⩽i right w-degenerate ones.
w will be called left non-degenerate if ∩l∈ZCw⩾l = {0}.

5. Let C and C ′ be triangulated categories endowed with weight structures w and
w′, respectively; let F : C → C ′ be an exact functor.
F is said to be right weight-exact (with respect to (w,w′)) if it maps Cw⩾0 into

C ′
w′⩾0. We will say that F is weight-exact if it is also left weight-exact, i.e., if

F (Cw⩽0) ⊂ C ′
w′⩽0.

6. Let H be a full additive subcategory of a triangulated category C.
We will say that H is negative (in C) if ObjH ⊥ (∪i>0 Obj(H[i])).

7. We will say that a weight structure w is generated by a class P ⊂ ObjC when-
ever Cw⩾0 = (∪i>0P[−i])⊥.

Remark 1.5. 1. A simple example of a weight structure comes from the stupid filtra-
tion on the homotopy category K(B) of cohomological complexes for an arbitrary
additive category B; see Remark 1.2.3(1) of [BoS18] for more detail.

2. In the current paper we use the “homological convention” for weight structures;
it was also used [Bon13, BoS14, Bon15, BoS16, BoS18], whereas in [Bon10] the
“cohomological convention” was used. In the latter convention the roles of Cw⩽0 and

Cw⩾0 are interchanged, i.e., one considers Cw⩽0 = Cw⩾0 and Cw⩾0 = Cw⩽0.
Besides, in [Bon10] both “halves” of w were required to be additive. Yet this

additional restriction is easily seen to follow from the remaining axioms; see Re-
mark 1.2.3(4) of [BoS18].

3. The orthogonality axiom (iii) in Definition 1.3 immediately yields that Hw is
negative in C. We will formulate a certain converse to this statement below.

4. The “right/left convention” for weight-exactness in part 5 of our definition is
coherent with the corresponding convention for t-structures (note that right or left
weight-exact functors are often right or left t-exact with respect to certain t-structures;
cf. Definition 2.1.2(6) of [Bon16a]). On the other hand, the convention used for
weight-degenerate objects in part 4 of the definition is somewhat more “natural”. So,
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there is a certain discrepancy between these two conventions: a right weight-exact
functor sends left weight-degenerate objects into left weight-degenerate ones.

5. Recall also that Pauksztello has introduced weight structures independently in
[Pau08]; he called them co-t-structures.

Let us recall some basic properties of weight structures.

Proposition 1.6. Let C be a triangulated category endowed with a weight struc-
ture w. Then the following statements are valid:

1. Cw⩾0 = (Cw⩽−1)
⊥ and Cw⩽−1 = ⊥Cw⩾0.

2. For any i ⩽ j ∈ Z the class C [i,j] equals the extension-closure of ∪i⩽m⩽jCw=m.

Moreover, Cb equals the subcategory of C densely generated by Cw=0.

3. Let M ∈ Cw⩽0, N ∈ Cw⩾0, and fix some weight decompositions X1[1]→M [1]
f [1]→

Y1[1] and X2
g→ N → Y of M [1] and N , respectively. Then Y1, X2 ∈ Cw=0 and

any morphism from M into N can be presented as g ◦ h ◦ f for some h ∈
C(Y1, X2).

4. Assume that w is generated by a class P ⊂ ObjC; let w′ be a weight structure
on a triangulated category C ′, and let F : C ⇆ C ′ : G be an adjoint pair of exact
functors. Then the following conditions are equivalent:
(i) F is left weight-exact.
(ii) F (P) ⊂ C ′

w′⩽0.
(iii) G is right weight-exact.

5. There is at most one weight structure wP generated by a given P ⊂ ObjC, and
P ⊂ CwP⩽0 if wP exists.

Proof. The first two assertions were established in [Bon10] (yet pay attention to
Remark 1.5(2)!). Assertion 3 is precisely Proposition 1.2.3(9) of [Bon15] (and easily
follows from the results of [Bon10] also).

Assertion 4 easily follows from assertion 1; see Remark 2.1.5(3) of [Bon16a] for
more detail.

Assertion 5 follows from assertion 1 easily also; cf. [Bon16a, Remark 2.1.5(1)].

We also recall some properties of weight structures that may be called compactly
generated ones (recall, however, that weight structures described in Proposition 1.7(1)
were called strongly ℵ0-generated ones in Remark 4.4.4(1) of [Bon16a], whereas the
term “compactly generated” was reserved for a wider class of weight structures; more-
over, this weight structure w is said to be class-generated by H in [BoS17]).

Proposition 1.7. Assume that C is compactly generated by its full negative additive
subcategory H.

1. Then C possesses a (unique) weight structure w generated by ObjH. More-
over, w is left non-degenerate, whereas Hw equals the retraction-closure of the
category of all coproducts of objects of H (in C).
Furthermore, Cw⩾0 equals the pre-aisle C+ generated by ObjH.

2. Assume that a couple (C ′,H ′) satisfies our assumptions on (C,H) also. Then
any exact functor F : C ′ → C that respects coproducts and sends ObjH ′ into
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ObjH is weight-exact with respect to the weight structure w′ generated by ObjH ′

and w.

Proof. 1. w exists according to Theorem 4.5.2(I) of [Bon10] (cf. also the proof of
[Bon10, Theorem 4.3.2(III)] where the corresponding description of Cw⩾0 is written
down explicitly; weight structures of this type are treated in more detail in [BoS17]).
w is easily seen to be left non-degenerate; this fact follows from (the categorical
dual to) Corollary 5.4.1(8) of [Bon16a]. Hw is calculated in Theorem 4.5.2(II.1) of
[Bon10].

Next, Proposition 1.6(1) implies that Cw⩾0 is closed with respect to extensions
and the shift [1]; it is closed with respect to coproducts since objects of H are com-
pact. Thus Cw⩾0 contains C+, and the converse inclusion easily follows from Theo-
rem 4.3.2(V.1) of ibid. combined with Proposition 1.6(2).

2. The left weight-exactness of F follows from Proposition 1.6(4). Its right weight-
exactness is immediate from (the “furthermore” part of) the previous assertion.

1.3. On intersections of “purely compactly generated” subcategories

We call a category A
B the factor of an additive category A by its full additive

subcategory B if Obj
(
A
B

)
= ObjA and (AB )(X,Y ) = A(X,Y )/(

∑
Z∈ObjB A(Z, Y ) ◦

A(X,Z)).

Proposition 1.8. Let D be a triangulated subcategory of C.

I. Suppose that w induces a weight structure wD on D (i.e., ObjD ∩ Cw⩽0 and
ObjD ∩ Cw⩾0 give a weight structure for D). Assume that the Verdier quotient of C
by D exists and denote by π the localization functor C → C/D.

Then the following statements are valid:

1. w induces a weight structure on C/D, i.e., the C/D-retraction-closures of
π(Cw⩽0) and π(Cw⩾0) give a weight structure wC/D on C/D (and so, π is
weight-exact with respect to w and wC/D).

2. The heart HwC/D of wC/D is the retraction-closure of (the natural image of)
Hw
HwD

in C/D. In particular, for any M0, N0 ∈ Cw=0 the homomorphism

C(M0, N0) → C/D(π(M0), π(N0)) is surjective.

3. For any M ∈ Cw⩽0 and N ∈ Cw⩾0 the map C(M,N) → C/D(π(M), π(N)) is
surjective.

II. Assume that C and H ⊂ C are as in Proposition 1.7(1), and D is the localizing sub-
category of C generated by an additive subcategory H ′ of H (cf. Proposition 1.7(2)).

1. Then the weight structure w on C given by Proposition 1.7(1) restricts to D.

2. The localization C/D exists and is closed with respect to coproducts, the local-
ization functor π : C → C/D respects coproducts, and π(ObjH) compactly gen-
erates C/D.

3. The corresponding category π(H) ⊂ C/D is negative in C/D, and the weight
structure wC/D given by assertion I.1 coincides with the weight structure w′

on C/D generated by π(ObjH) (the existence of the latter weight structure is
guaranteed by Proposition 1.7(1) provided that π(H) is negative).
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Proof. I. Assertions 1 and 2 are contained in Proposition 8.1.1 of [Bon10].

Assertion 3 is an easy consequence of the (“in particular” part of the) previous
assertion combined with Proposition 1.6(3).

II.1. Proposition 1.7(1) gives a weight structure on D and part 2 of that propo-
sition (applied to the embedding F : D → C) ensures that this weight structure is a
restriction of w.

2. Immediate from Lemma 1.2(1,2,4).

3. According to assertion I.1, π(ObjH) is contained in the heart of wC/D; hence
it is negative (in C/D; see Remark 1.5(3)). Next, π is weight-exact with respect to
(w,w′) according to Proposition 1.7(2). Applying Proposition 1.6(1) to w′ we easily
obtain that w′ = wC/D.

Now we combine this statement with a result from [Bon15].

Proposition 1.9. Let C and H be as in Proposition 1.7(1); let H1,H2, and H3

be full additive subcategories of H. Denote by Ci the localizing subcategories of C
generated by Hi (for i = 1, 2, 3) and assume that any morphism from (an object of)
H1 into H2 vanishes in the Verdier quotient C ′ of C by C3 (note that this quotient
exists according to Lemma 1.2(1)).

Then all elements of ObjC1 ∩ObjC2 become right degenerate in C ′ (with respect
to the weight structure w′ given by Proposition 1.8(I.1)).

Moreover, w-bounded below elements of ObjC1 ∩ObjC2 belong to ObjC3.

Proof. Denote the localization functor C → C ′ by π, and denote the weight structures
on C1 and C2 generated by ObjH1 and ObjH2, respectively (see Proposition 1.7(1))
by w1 and w2. According to Remark 3.1.6(1) of [Bon15], to prove our assertions it
suffices to verify that the functor π kills all C-morphisms from C1,w1=0 into C2,w2=0.
Since π respects coproducts (see Lemma 1.2(2)), it remains to recall that π kills all
C-morphisms from H1 into H2.

Remark 1.10. It certainly suffices to assume that any morphism from an object of H1

into H2 factors through some object of C3 (instead of being killed by π). Actually,
these two vanishing conditions are equivalent according to Proposition 1.8(I.2).

2. Intersecting motivic filtrations and a conjecture of Ayoub

In this section we intersect the levels of the slice filtration on motives over a perfect
field k with that of the dimension filtration.

In §2.1 we study the intersection of the levels of slice filtration with that of the
dimension one.

In §2.2 we relate our results to Conjecture 4.22 of [Ayo15] to obtain several
assumptions equivalent to it (we actually prove a more general result of this sort).

In §2.3 we prove that our results yield a complete calculation of the intersections
in question in the subcategory DM eff

−,R ⊂ DM eff
R of homotopy t-structure bounded

above motivic complexes (that was considered in [MVW06]).
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2.1. Intersecting the dimension and the slice filtrations on unbounded
motivic complexes

We start with some preliminaries and notation for motivic complexes.
In this section k will denote a fixed perfect base field of characteristic p, and we

set Z[ 1p ] = Z if p = 0.
The set of smooth projective varieties over k will be denoted by SmPrVar.

• For R being a fixed unital commutative Z[ 1p ]-algebra we consider the R-linear

motivic categories DM eff
gm,R ⊂ DM eff

R . So, DM eff
R is the category of unbounded

R-motivic complexes over k (see Proposition 1.3.1 of [BoK17]). It is closed with
respect to small coproducts (and so, idempotent complete); it is compactly gen-
erated by its triangulated subcategory DM eff

gm,R of effective geometric motives.
Moreover, the R-linear motif MR(X) belongs to Obj⟨MR(SmPrVar)⟩ for any
X ∈ SmVar (since it suffices to verify this statement in the case R = Z[ 1p ];
hence one can apply Corollary 3.5.5 of [Voe00] in the case p = 0 and Theo-
rem 2.2.1(1) of [Bon11] in the case p > 0); thus DM eff

gm,R is densely generated by

MR(SmPrVar). Therefore the set MR(SmPrVar) compactly generates DM eff
R

also.

• MR(SmPrVar) is a negative subcategory of DM eff
R (according to Corollary 6.7.3

of [BeV08]; cf. also Theorem 5.23 of [Deg08]), and the idempotent completion
of MR(SmPrVar) is the category Choweff

R of effective R-linear Chow motives
that is also negative in DM eff

R . We will use the symbol wChow to denote the

weight structure on DM eff
R generated by Choweff

R (see Proposition 1.7(1)).

• We also introduce the following notation: R⟨1⟩ will denote the R-linear Lefschetz
object; so, it equals R(1)[2] in the notation of [Voe00]. For i ⩾ 0 and M ∈
ObjDM eff

R we will write M⟨i⟩ for the object M ⊗DMeff
R

(R⟨1⟩)⊗i.

Recall that the functor −⟨i⟩ = −⊗DMeff
R

R⟨i⟩ is a full embedding of DM eff
R into

itself; thus the essential image DM eff
R (i) = DM eff

R ⟨i⟩ of this functor is a full
subcategory of DM eff

R that is equivalent to DM eff
R .

• Note thatR⟨i⟩ is a retract ofMR(Pi) (for any i⩾ 0); thus Choweff
R ⟨i⟩ ⊂ Choweff

R .

• Now we define two filtrations for DM eff
R . The so-called slice (or the effectivity)

filtration on DM eff
R is given by DM eff

R ⟨i⟩ (recall that DM eff
R ⟨i⟩ = DM eff

R (i)) for
i ⩾ 0.

• For m ∈ Z we will write d⩽mDM eff
R for the localizing subcategory of DM eff

R

generated by {MR(X)} for X running through smooth k-varieties of dimension
at most m (so, this category is zero for m < 0). We note that d⩽mDM eff

R is
compactly generated by {MR(P )} for P running through smooth projective
k-varieties of dimension ⩽ m (see Remark 2.2.3 of [BoS14]).

Remark 2.1. In some papers on the subject (in particular, in [Deg11, §4]) only the
case R = Z is considered; one can easily pass to the case R = Z[ 1p ] or R being a

localization of Z[ 1p ] (say, R = Q) using the more-or-less standard “localization of

coefficients” techniques (cf. Proposition 5.6.2 of [Bon16a]). The reader may cer-
tainly restrict himself to these cases (that are quite interesting and non-trivial for
themselves). One can also reduce our results for an arbitrary R to that for the
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case R = Z[ 1p ]; yet this requires some work on the properties of the “forgetful”

functor DM eff
R → DM eff

Z[ 1p ]
. So we prefer to treat the case of a general R; the most

detailed account on DM eff
R in this setting is (probably) [BeV08, §6] (cf. also [CiD15,

MVW06, BoK17]).

Now we are able to prove the central result of this paper.

Theorem 2.2. For any i,m ⩾ 0 any element of ObjDM eff
R ⟨i⟩ ∩Obj d⩽mDM eff

R

becomes right weight-degenerate (with respect to the weight structure provided by
Proposition 1.8) in the localization DM eff

R /d⩽m−iDM eff
R ⟨i⟩.

Moreover, any wChow-bounded below element of ObjDM eff
R ⟨i⟩ ∩Obj d⩽mDM eff

R

belongs to Obj d⩽m−iDM eff
R ⟨i⟩.

Proof. The proof is an easy application of Proposition 1.9. We take C = DM eff
R ,

H = Choweff
R , H1 ⊂ H being the category of motives of smooth projective varieties

of dimension at most m, H2 = Choweff
R ⟨i⟩; H3 is the category of motives of smooth

projective varieties of dimension at most m− i twisted by ⟨i⟩ (note that H contains
Hi for i = 1, 2, 3).

By the virtue of the aforementioned proposition (cf. also Remark 1.10), it suffices
to verify that any morphism from H1 into H2 factors through H3. The latter fact is
precisely Proposition 2.2.6(2) of [BoS14] (moreover, in the case char k = 0 the proof
of [GoG13, Lemma 3] generalizes to give this statement immediately).

Remark 2.3. 1. Since R⟨i⟩ is a retract of MR(Pi), we obviously have H3 ⊂ H2 and
H3 ⊂ H1. Hence our theorem describes completely the class of wChow-bounded below
elements of ObjDM eff

R ⟨i⟩ ∩Obj d⩽mDM eff
R .

2. Recall that any compact object of DM eff
R is wChow-bounded; hence one can

apply the “moreover” part of our proposition to the calculation of ObjDM eff
gm,R⟨i⟩ ∩

Obj d⩽mDM eff
gm,R.

The latter calculation has found important applications in [BoS14]. For this reason
we explain how to avoid using (Remark 3.1.6(1) of) [Bon15] in its proof (however,
our argument is rather similar to that in loc. cit.). So, we verify under the assumptions
of Proposition 1.9 that any w-bounded object of ObjC1 ∩ObjC2 belongs to ObjC3.

This argument relies on the theory of weight complexes as introduced in §3 of
[Bon10] (whereas in §2.2 of [Bon16a] some parts of the theory were exposed more
carefully). We recall that to any object M of C ′ (for C ′ = C/C3) there is associated
its weight complex t(M) ∈ ObjK(Hw′); t(M) is well-defined up to homotopy equiva-
lence. The definition of t(−) easily implies that for i = 1 or 2 and M ∈ π(ObjCi) the
complex t(M) is homotopy equivalent to a complex whose terms belong to π(Ciwi=0).
Since π(C1w1=0) ⊥ π(C2w2=0) (see Remark 1.10), for any N ∈ ObjC1 ∩ObjC2 the
morphism idt(π(N)) is zero in K(Hw′). Applying Theorem 3.3.1(V) of [Bon10] we
conclude that π(N) = 0.

3. Note that in our theorem one cannot replace DM eff
R ⊂ DMR by the correspond-

ing version of the motivic stable homotopy category SH(k) (say, for R equal to Z
or to Z[S−1] for S being a set of primes; then one can define the R-linear version of
SH(k) as a certain localization). One of the reasons for this is that there is no Chow
weight structure on SHc(k) ⊂ SH(k) (and on SHc(k)[S−1] if 2 /∈ S; see Remark 3.1.2
of [Bon16b] and Remark 6.3.1(3) of [Bon13]).
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Moreover, even the “compact version” of Theorem 2.2 does not carry over to
the SH(k)-setting. There probably exist plenty of examples illustrating the latter
statement. Here we will only note that for k being any formally real field the corre-
sponding category d⩽1SH

eff(k) contains a non-zero compact infinitely effective object
(i.e., an element of ∩i⩾0 ObjSHeff(k)⟨i⟩). Indeed, for the object C constructed in
Remark 2.1.2(3) of [Bon16b] we surely have C⟨1⟩ ∈ Obj d⩽1SH

eff(k) and C ̸= 0 in
SHeff(k)[S−1] unless 3 ∈ S (and 3 may be replaced by any other odd prime here). Yet
the associated motif Mk(C) of C is zero according to loc. cit.; hence C is infinitely
effective in SHeff(k) by Theorem 3.1.1 of ibid.

2.2. An application to a conjecture of Ayoub

We recall some basics on “slice” functors.

For any i ⩾ 0 the right adjoint to the functor −⟨i⟩ : DM eff
R → DM eff

R can certainly
be described as HomDMeff

R
(R⟨i⟩,−); this functor respects small coproducts. Next,

the composition ν⩾i = ⟨i⟩ ◦HomDMeff
R
(R⟨i⟩,−) : DM eff

R → DM eff
R equals the compo-

sition of the embedding DM eff
R ⟨i⟩ → DM eff

R with the right adjoint to it (immediately
from Proposition 4.11 of [Ayo15]).

Now we establish some new properties of the slice functors.

Proposition 2.4. Fix i,m ⩾ 0 (along with R). Then the following statements are
valid:

I. ν⩾i is right wChow-exact.

II. The following conditions are equivalent:

1. ν⩾i sends d⩽mDM eff
R into itself.

2. HomDMeff
R
(R⟨i⟩,−) sends d⩽mDM eff

R into d⩽m−iDM eff
R .

3. ObjDM eff
R ⟨i⟩ becomes orthogonal to Obj d⩽mDM eff

R in DM eff
R /d⩽m−iDM eff

R ⟨i⟩.
4. For any smooth projective P,Q/k and n ∈ Z with dimQ ⩽ m the image of

MR(P )⟨i⟩ in DM eff
R /d⩽m−iDM eff

R ⟨i⟩ is orthogonal to (the image of) MR(Q)[n].

5. For any P,Q, n as above the image of MR(P )⟨i⟩ in DM eff
gm,R/d⩽m−iDM eff

gm,R⟨i⟩
is orthogonal to (the image of) MR(Q)[n].

Proof. I. Recall that Choweff
R ⟨i⟩ ⊂ Choweff

R (see §2.1); hence the twist functor
−⟨i⟩ : DM eff

R → DM eff
R is weight-exact according to Proposition 1.7(2). Applying

Proposition 1.6(4) to the adjunction −⟨i⟩ ⊣ HomDMeff
R
(R⟨i⟩,−) we obtain that the

functor HomDMeff
R
(R⟨i⟩,−) is right wChow-exact. It remains to note that the compo-

sition of right weight-exact functors is right weight-exact also.

II. Condition II.2 implies condition II.1 due to the weight-exactness of −⟨i⟩ : DM eff
R

→ DM eff
R ; cf. the proof of assertion I.

Next, recall that d⩽mDM eff
R is generated by {MR(P )} for P running through

smooth projective k-varieties of dimension ⩽ m, as a localizing subcategory of DM eff
R .

Hence to verify the converse implication it suffices to check whether condition II.1
implies that HomDMeff

R
(R⟨i⟩,MR(P )) ∈ d⩽m−iDM eff

R if P is smooth projective of

dimension at most m. Now, ν⩾i(MR(P )) ∈ DM eff
R wChow⩾0 according to assertion I.

It remains to apply (the “moreover” part of) Theorem 2.2.
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So, the first two conditions are equivalent to the assumption that ν⩾i(d⩽mDM eff
R )⊂

d⩽m−iDM eff
R ⟨i⟩. The latter assertion is equivalent to condition II.3 according to

Lemma 1.1(3).
Next, Lemma 1.2(2) allows us to verify the orthogonality in condition II.3 only

for the images π(MR(P )⟨i⟩) and π(MR(Q)[n]) for P,Q, and n as in condition II.4.
Hence condition II.3 is equivalent to II.4 according to Lemma 1.2(3). This (part of
the) lemma also implies that condition II.4 is equivalent to condition II.5.

Remark 2.5. Note that in the case where R is a Q-algebra and i = 1 our condition II.2
is exactly Conjecture 4.22 of [Ayo15]. Certainly (for any fixed R) if condition II.2 is
fulfilled for i = 1 and all m ⩾ 0 then it is also fulfilled for all (i,m).

Recall also that certain cases of our condition II.2 were verified in Proposition 4.25
of ibid.

2.3. Computing intersections inside Voevodsky’s DM eff
−,R

Now we extend the “moreover” part Theorem 2.2 to a wider class of objects. We
start from a few remarks.

Remark 2.6. 1. The problem with our arguments is that weight structures do not
say much on (right) weight-degenerate objects. Note here that non-zero right wChow-
degenerate objects in DM eff

R do exist (at least) whenever k is a big enough field and
R is not a torsion ring (see Remark 2.3.5(3) of [Bon15] that relies on Lemma 2.4 of
[Ayo15]).

We also note that this Ayoub’s motif belongs to DM eff
R

thom⩽0 (see below), is
infinitely effective (i.e., belongs to ObjDM eff

R ⟨r⟩ for all r ⩾ 0), and its Betti real-
ization vanishes (as proved in loc. cit.).

The author suspects that all wChow-degenerate objects of DM eff
R are infinitely

effective.
2. Starting from the first motivic papers of Voevodsky one of the main tools of

working with motivic complexes was the so-called homotopy t-structure thom. Actu-
ally, instead of the unbounded category DM eff

R he essentially considered (see §14 of
[MVW06]; the case R = Z was treated in [Voe00]) its thom-bounded above sub-
category DM eff

−,R whose objects are ∪i∈ZDM eff
R

thom⩽i (so, we use the cohomological
convention for t-structures here; cf. [Bon10, §4.1] or [Bon15, §1.4] for more detail
on it). Thus the intersection result that we will prove below is completely satisfactory
from this older point of view.

Now we recall a description of thom that will be convenient for our purposes.
According to Theorem 2.4.3 and Example 2.3.5(1) of [BoD17] (where the assump-
tions on R are the same as in this paper, but the convention for t-structures is the
homological one), DM eff

R
thom⩽0 is the pre-aisle generated by ∪i⩾0 ObjChoweff

R ⟨i⟩[−i].
Certainly, DM eff

R
thom⩾0 can be recovered from DM eff

R
thom⩽0 using the orthogonality

condition (still we will not use this fact below).

We will need the following statement.

Lemma 2.7. For any m ⩾ 0 we have ObjDM eff
R ⟨m+ 1⟩ ⊥ Obj d⩽mDM eff

R .

Proof. In the case where R is a Q-algebra this statement is essentially contained in
Proposition 4.25 of [Ayo15]. Moreover, most of the arguments used in the proof of
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loc. cit. can be easily carried over to the case of a general (Z[ 1p ]-algebra) R; this yields
a reduction of our assertion to the case m = 0.

Thus it remains to prove that ObjDM eff
R ⟨1⟩ ⊥ Obj d⩽0DM eff

R . It certainly suf-
fices to check that MR(X)⟨1⟩ ⊥ MR(Y )[i] for any i ∈ Z and smooth X,Y/k with
Y of dimension zero. Since Y is also proper, the object MR(Y ) is self-dual in
the tensor category DM eff

R (immediately from the duality statement given by
Proposition 6.7.1 of [BeV08]). Hence the orthogonality in question reduces to
MR(X × Y )⟨1⟩ ⊥ MR(Spec k)[i]; thus it follows from the vanishing mentioned in
[BeV08, Corollary 6.1].

Now we are able to prove the following version of Theorem 2.2.

Proposition 2.8. For any i,m ⩾ 0 the class ObjDM eff
−,R⟨i⟩ ∩Obj d⩽mDM eff

R equals

(ObjDM eff
−,R ∩Obj d⩽m−iDM eff

R )⟨i⟩.

Proof. Certainly, if N⟨i⟩ ∈ ObjDM eff
−,R for N ∈ ObjDM eff

R then N is also thom-
bounded above also: this is a consequence of the t-exactness of the endofunctor
HomDMeff

R
(R⟨i⟩[−i],−) (cf. the beginning of §2.2) that is given by Example 1.3.1(6)

and Corollary 3.3.7(3) of [BoD17]. Thus it suffices to prove that any M ∈
DM eff

R
thom⩽0 ∩ObjDM eff

R ⟨i⟩ ∩Obj d⩽mDM eff
R belongs to Obj d⩽m−iDM eff

R ⟨i⟩.
Now we apply Lemma 1.1(2). We take C = DM eff

R , E = DM eff
R ⟨m+ 1⟩, C ′ = C/E.

By Lemma 2.7, ObjE ⊥ Obj d⩽mDM eff
R . Hence the localization functor π : C → C ′

restricts to a full embedding of d⩽mDM eff
R into C ′. Since d⩽m−iDM eff

R ⟨i⟩⊂d⩽mDM eff
R ,

it suffices to verify that π(M) belongs to π(Obj d⩽m−iDM eff
R ⟨i⟩).

Now, the description of DM eff
R

thom⩽0 given in Remark 2.6(2) yields that π(M)

belongs to the pre-aisle generated by ∪0⩽i⩽mπ(ObjChoweff
R ⟨i⟩[−i]). Thus π(M) is

bounded below with respect to theweight structure forC ′ generated by π(ObjChoweff
R )

(see Proposition 1.8(II)). Hence the image M ′ of π(M) in C ′/π(d⩽m−iDM eff
R ⟨i⟩)

(actually, M ′ is just M considered as an object of C ′/π(d⩽m−iDM eff
R ⟨i⟩)) is also

bounded below with respect to the corresponding weight structure provided by Propo-
sition 1.8 (here we apply parts II.(2–3) of the proposition). On the other hand, M ′

is also right wChow-degenerate since the image of M in C/(d⩽m−iDM eff
R ⟨i⟩) is so

according to Theorem 2.2 (here we invoke Proposition 1.8(II.3) once again). Thus
M ′ ⊥ M ′ by the orthogonality axiom of weight structures; hence M ′ = 0. Therefore
π(M) does belong to π(d⩽m−iDM eff

R ⟨i⟩).

Remark 2.9. 1. Formally (the formulation of) our proposition “depends on DM eff
R ”

since it treats intersections of certain localizing subcategories of DM eff
R with

ObjDM eff
−,R. However, the natural DM eff

−,R-version of our result (stated in terms

the corresponding “localizing” classes of objects in DM eff
−,R; those are closed only

with respect to those coproducts that exist in DM eff
−,R) is also true. Indeed, for any

j ⩾ 0 there exists an (exact) right adjoint to the embeddings d⩽jDM eff
R → DM eff

R

(see Lemma 1.2(1)). Since this functor also respects coproducts (see part 2 of the
lemma), it suffices to check that it restricts to an endofunctor of DM eff

−,R. The latter
assertion was mentioned in the beginning of [Voe00, §3.4] (in the case R = Z that
does not differ from the general one in this matter); respectively, it can also be easily
established using the methods of the proof of [BoD17, Corollary 3.7].
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2. Note that the Chow weight structure on DM eff
R can be restricted to DM eff

−,R

(since the arguments of [Bon10, §7.1] carry over to our more general setting without
any problems). Yet the author was not able to apply this fact for the purposes of the
current paper.

3. The main subject of [BoK17] is an interesting candidate for the Chow weight
structure on DM eff

R that is defined independently from the assumption that p is
invertible in R. It is proven that this weight structure satisfies several important
properties of wChow (in particular, it coincides with wChow whenever R is a Z[ 1p ]-
algebra). Yet it is not clear whether this weight structure may be restricted to the
subcategories d⩽mDM eff

R (unless it coincides with wChow); so the methods of the
current paper cannot be used for the study of ObjDM eff

R ⟨i⟩ ∩Obj d⩽mDM eff
R in this

greater generality.
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