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Abstract
Let R be a commutative Noetherian Cohen-Macaulay local ring

that has positive dimension and prime characteristic. Li proved
that the tensor product of a finitely generated non-free R-module
M with the Frobenius endomorphism ϕn

R is not maximal Cohen-
Macaulay provided thatM has rank and n≫ 0. We replace the rank
hypothesis with the weaker assumption that M is locally free on the
minimal prime ideals of R. As a consequence, we obtain, if R is a
one-dimensional non-regular complete reduced local ring that has
a perfect residue field and prime characteristic, then ϕn

R⊗R
ϕn

R
has torsion for all n≫ 0. This property of the Frobenius endomor-
phism came as a surprise to us since, over such rings R, there exist
non-free modules M such that M ⊗R M is torsion-free.

1. Introduction

Throughout the paper, R denotes a commutative Noetherian ring and modR
denotes the category of all finitely generated R-modules.

When R is of prime characteristic p and M is an R-module, ϕn

M denotes the
R-module obtained from M by restriction of scalars along ϕn, where ϕ : R −→ R is
the Frobenius endomorphism given by r 7→ rp. Therefore the action of R on ϕn

M is
given by r ·m = rp

n

m for r ∈ R and m ∈M . On the other hand, we agree that the
R-module structure of the tensor product M ⊗R

ϕn

R comes from the right (ordinary)
action of R on ϕn

R, i.e., r · (m⊗ s) = m⊗ (sr) for all r, s ∈ R and m ∈M . It follows
that M ⊗R

ϕn

R ∈ modR if M ∈ modR.
When (R,m) is local of prime characteristic p, following [14], we set:

drsp(R) = inf{pn | m[pn] ⊆ (x) for some system of parameters x of R},

where m[pn] of m denotes the ideal generated by the pnth powers of any set of gener-
ators of m.

In this paper we are concerned with the following result of Li [13]:

Theorem 1.1 (Li [13, 2.4]). Let (R,m) be a Cohen-Macaulay local ring of positive
dimension and prime characteristic p and let M ∈ modR. Assume n is an integer
such that pn > drsp(R) and M ⊗R

ϕn

R is maximal Cohen-Macaulay. If M has rank,
then M is free.
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Recall that a module M ∈ modR has (constant) rank if there is a nonnegative
integer r such that Mp

∼= (Rp)
⊕r for all associated prime ideals p of R. Li [13, 2.5]

points out that the following example from [14] shows that Theorem 1.1 could fail
without the constant rank hypothesis.

Example 1.2 ([14, 2.1.7]). Let R = k[[x, y]]/(x2), where k is a field of characteristic p,
and let M = R/(xy). Then drsp(R) = p and M ⊗R

ϕR ∼= R/(xpyp) ∼= R. Therefore
M ⊗R

ϕR is maximal Cohen-Macaulay but M is not free.

Our motivation comes from the fact that, in Example 1.2, for the minimal prime
p = (x) ∈ Spec(R), Mp is not free over Rp. Hence M is not locally free on the minimal
prime ideals of R, which implies thatM does not have rank. Using an entirely different
argument from [13], we are able to replace the rank hypothesis of Theorem 1.1 with
the weaker condition that M is locally free on the minimal primes of R, i.e., Mp is
free over Rp for all minimal prime ideals p of R. More precisely we prove:

Theorem 1.3. Let (R,m) be a Cohen-Macaulay local ring of positive dimension and
prime characteristic p and let M ∈ modR. Assume that n is an integer such that
pn > e(R) and M ⊗R

ϕn

R is maximal Cohen-Macaulay. If Mp is free over Rp for all
minimal prime ideals p of R, then M is free.

Let us remark that the condition M is locally free on the minimal prime ideals of
R holds, for example, when R is reduced, even if M does not have rank. Moreover,
Example 1.2 shows that the hypothesis of M being locally free on the minimal primes
in Theorem 1.3 cannot be removed.

In the next section we give a proof of Theorem 1.3. As an application of our argu-
ment, we obtain the following result; see Corollary 2.6 for a more general statement.

Corollary 1.4. Let R be a complete reduced non-regular Cohen-Macaulay local ring
of prime characteristic p that has a perfect residue field. Then for any M ∈ modR,
ϕn

M ⊗R
ϕn

R is not maximal Cohen-Macaulay for all n≫ 0. In particular, ϕn

R⊗R
ϕn

R is not maximal Cohen-Macaulay for all n≫ 0.

Prior to proceeding to our main argument, we discuss some results from the lit-
erature about tensor products of modules and compare them with Theorem 1.3 and
Corollary 1.4.

Torsion properties of tensor products of modules over local rings were initially
studied by Auslander [1], and Huneke and Wiegand [9]. Although tensor products
tend to have torsion, it is not unnatural for a tensor product M ⊗R N to be torsion-
free, or maximal Cohen-Macaulay, for some non-free modules M and N . In fact, even
when M ⊗R N is maximal Cohen-Macaulay, it does not force M and N to be torsion-
free, or maximal Cohen-Macaulay, in general. For example, Huneke and Wiegand
[9, 4.7] proved that, over one-dimensional non-Gorenstein domains, there always exist
non-free modules M such that M ⊗R M is maximal Cohen-Macaulay. On the other
hand, over the domain R = k[[t3, t4, t5]], there exists a module M ∈ modR which
has torsion such that M ⊗R ω is maximal Cohen-Macaulay, where ω is the canonical
module of R; see [9, 4.8]. In the same direction, Constapel [6, 2.1] constructed modules
M and N over the ring R = k[[t8, t9, t10, t11, t12, t13]], both of which have torsion,
such that M ⊗R N is maximal Cohen-Macaulay. Let us also remark that whether or
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not there are such examples over complete intersection rings, mainly over those of
codimension at least two, is an open question; see, for example, [5, 2.10].

In general, torsion properties of a tensor productM ⊗R N are significantly different
when M has rank, and when M is locally free on the minimal primes. For example,
Huneke and Wiegand [9, 3.1] proved that, if M ⊗R N is maximal Cohen-Macaulay
over a hypersurface ringR, thenM orN is free (and hence bothM andN are maximal
Cohen-Macaulay) if and only ifM orN has rank. This result easily fails when modules
do not have rank: if R = k[[x, y]]/(xy) (where k is any field, e.g., k = Fp), M = R/(x)
and N = R/(x2), then M ⊗R M ∼= M ⊗R N ∼= M is maximal Cohen-Macaulay; the
modules M and N do not have rank but they are locally free on the minimal primes
of R (since R is reduced). Theorem 1.3 and Corollary 1.4 show that, for all n≫ 0,
there are no such examples for the case where M = ϕn

R.

2. Main result

In this section we give a proof of our main result, Theorem 1.3. In preparation we
prove two lemmas which seem to be of independent interest. First we recall:

2.1 ([2]). Let R be a local ring and let M ∈ modR be a module. For a positive integer
i, we denote by ΩiM the i-th syzygy of M, namely, the image of the i-th differential
map in a minimal free resolution of M . As a convention, we set Ω0M = M .

The transpose TrM of M is defined as the cokernel of the R-dual map ∂∗
1 =

HomR(∂1, R) of the first differential map ∂1 in a minimal free resolution of M . Hence
there is an exact sequence of the form 0→M∗ → P ∗

0 → P ∗
1 → TrM → 0. Note that

the modules ΩiM and TrM are uniquely determined up to isomorphism, since so is
a minimal free resolution of M , and there is a stable isomorphism Ω2 TrM ∼= M∗.

Lemma 2.2. Let (R,m) be a local ring and let M,N ∈ modR. Assume that n is a
positive integer and that the following conditions hold:

(i) Mp is free for all p ∈ SpecR− {m}.

(ii) depth(M ⊗R N) > n.

(iii) depth(N) > n− 1.

Then ExtiR(TrM,N) = 0 for all i = 1, . . . , n.

Proof. Note that, if r > 1 and ExtrR(TrM,N) 6= 0, then it follows from (i) that
ExtrR(TrM,N) has finite length and hence depth(ExtrR(TrM,N)) = 0.

We proceed by induction on n. Consider the following exact sequence from [2, 2.8]:

0 −→ Ext1R(TrM,N) −→M ⊗R N −→ HomR(M
∗, N) −→ Ext2R(TrM,N) −→ 0.

(1)
Assume n = 1. Suppose Ext1R(TrM,N) 6= 0. It follows from (1) that depth(M ⊗R

N) = 0, which contradicts (ii). Therefore Ext1R(TrM,N) = 0.
Now assume n=2 and consider the following short exact sequence induced from (1):

0 −→M ⊗R N −→ HomR(M
∗, N) −→ Ext2R(TrM,N) −→ 0. (2)

Suppose Ext2R(TrM,N) 6= 0. Since depth(N)> 1, we have depth(HomR(M
∗, N))> 1;

see, for example, [4, 1.2.28]. Hence the depth lemma and the exact sequence (2) imply
that depth(M ⊗R N) = 1, which contradicts (ii). Consequently, Ext2R(TrM,N) = 0.
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Now assume n > 3. Then the induction hypothesis yields ExtiR(TrM,N) = 0 for
all i = 1, . . . , n− 1. In particular, it follows from (1) that M ⊗R N ∼= HomR(M

∗, N).
So, by (ii), depth(HomR(M

∗, N)) > n. Therefore it follows from [8, 2.3.3] that
ExtiR(M

∗, N) = 0 for all i = 1, . . . , n− 2. Since M∗ ∼= Ω2 TrM , we conclude that
ExtiR(TrM, N) = 0 for all i = 1, . . . , n.

Our next result uses some techniques of Koh-Lee [11].

Lemma 2.3. Let (R,m, k) be a Cohen-Macaulay local ring of positive dimension d
and prime characteristic p, and let M ∈ modR. Assume that n is an integer such
that pn > drsp(R) and pn > drsp(Rp) for all minimal primes p of R. If t is a pos-
itive integer and ExtiR(M, ϕ

n

R) = 0 for all i = t, . . . , t+ d− 1, then pd(M) < t. In
particular, if t = 1, i.e., if ExtiR(M, ϕ

n

R) = 0 for all i = 1, . . . , d, then M is free.

Proof. By [16, Theorem A], for every minimal prime ideal p of R, we have
pdRp

(Mp) <∞, which then implies that Mp is free over Rp.

To prove by contradiction, we assume pd(M) > t. Consider a minimal free resolu-
tion of M over R:

F = · · · → Ft+d
At+d

−−−→ Ft+d−1
At+d−1

−−−−−→ · · ·
At+1

−−−→ Ft
At−−→ Ft−1 −→ · · · .

Then Ft 6= 0 and At 6= 0. Since R is Cohen-Macaulay, all associated primes of R
are minimal. Thus there exists a minimal prime p of R such that (At)p 6= 0, in which
(At)p denotes the matrix over Rp naturally derived from At via localization at p. This
localization process also gives rise to the following free resolution of Mp over Rp:

Fp = · · · → (Ft+d)p
(At+d)p
−−−−−→ (Ft+d−1)p

(At+d−1)p
−−−−−−−→ · · ·

(At+1)p
−−−−−→ (Ft)p

(At)p
−−−−→ (Ft−1)p −→ · · · .

As Mp is free over Rp, the above resolution Fp is split exact. Thus the image of
(At)p is a non-zero Rp-free direct summand of (Ft−1)p. This further implies that
ϕn((At)p) is non-zero. (Indeed, applying the Frobenius functor to Fp affects neither
its split exactness nor the ranks of the images of the differential maps.) In particular,
ϕn(At) 6= 0. Hence ϕn(AT

t ) 6= 0, in which AT
t denotes the transpose of the matrix At.

Applying HomR(−,
ϕn

R) to F and using our assumption, we get the exact sequence:

0←− C ←− Ft+d

ϕn(AT

t+d
)

←−−−−−− Ft+d−1

ϕn(AT

t+d−1)
←−−−−−−−− · · ·

ϕn(AT

t+1)
←−−−−−− Ft

ϕn(AT

t
)

←−−−−− Ft−1
B
←− G

in which C is the cokernel of the map ϕn(AT
t+d) and G is just a free R-module such

that the above is a free resolution of C. Notice that all the entries of ϕn(AT
i ) are in

m[pn]. Moreover, by a property of free resolutions over a local ring, we see that, after
a proper basis change, B can be represented as

(
I 0
0 B′

)
in block form, in which I is

an identity matrix and all the entries of B′ are in m.

Next we claim that the row number of B′ is positive. Indeed, if B = ( I 0 ) in block
form, then the image of B is Ft−1 and hence ϕn(AT

t ) = 0, which is not the case.

As pn > drsp(R), there exists a system of parameters x := x1, . . . , xd (hence
a maximal R-regular sequence) such that m[pn] ⊆ (x). Let E = ER/(x)(k) ∼=

HomR(R/(x), ER(k)). It follows that idR(E) = d = dim(R) and m[pn]E = 0. (Indeed,
applying HomR(−, ER(k)) to a minimal free resolution of R/(x) over R, we get a
minimal injective resolution of E over R.)
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Applying HomR(−, E) to the above resolution of C, we get

0 −→ Et+d
ϕn(At+d)
−−−−−−→ · · ·

ϕn(At+1)
−−−−−−→ Et

ϕn(At)
−−−−→ Et−1

BT

−−→ HomR(G,E)

in which both Ei = HomR(Fi, E) and HomR(G,E) are direct sums of E. Since
Extd+1

R (C,E) vanishes, the above sequence must be exact at Et−1. This is a con-
tradiction, as the map BT is not injective (because of socle elements of Et−1 and the

presence of
(

0
(B′)T

)
as a non-trivial part of columns in BT ) while the map ϕn(At)

is 0 (because m[pn]Et = 0). (Alternatively, apply −⊗R R/(x) to the above resolution
of C. The map ϕn(AT

t )⊗ 1R/(x) vanishes while the map B ⊗ 1R/(x) fails to be onto,

which contradicts TorRd+1(C,R/(x)) = 0.)

Before giving our proof of Theorem 1.3, we need the following observation. Note
that part of 2.4 has already been observed in the proof of [7, 2.2].

2.4. Let (R,m, k) be a Cohen-Macaulay local ring with an infinite residue field k.
Then, for all p ∈ SpecR, it follows that

e(R) > e(Rp) = lengthRp
(Rp/(x(p))) and

⌈logp(lengthRp
(Rp/(x(p))))⌉ > logp(drsp(Rp)),

(3)

where e(R) is the multiplicity of R, x(p) denotes a minimal reduction of pRp in
(Rp, pRp), and ⌈−⌉ denotes the ceiling function. Note that such a reduction exists
since k(p) is infinite for each p ∈ Spec(R).

In (3) the first inequality and the equality are well-known; see [12] and [4, 4.6.8],
respectively (see also the proof of [7, 2.2]). The second inequality is due to the fact
that nlength(S/J) ⊆ J for any n-primary ideal J of a local ring (S, n).

We can now give our proof of Theorem 1.3. Recall that a local ring R of prime
characteristic p is called F-finite if ϕR, viewed as a module via the Frobenius endo-
morphism ϕ, is finitely generated; see, for example, [4, page 398].

A proof of Theorem 1.3. We can, if necessary, find a local ring extension (S, n) of
(R,m) such that S is F-finite, faithfully flat over R, with an infinite residue field,

and mS = n. (For example, letting R̂ ∼= k[[x1, . . . , xm]]/I and using k to denote the
algebraic closure of k, we can pick S = k[[x1, . . . , xm]]/Ik[[x1, . . . , xm]].) Then S is a
Cohen-Macaulay local ring, e(R) = e(S), and dim(S) = dim(R).

By going-down, all minimal prime ideals of S contract to minimal primes of R.
Thus M ⊗R Sp is free for all minimal prime ideals p of S. Moreover,

(M ⊗R S)⊗S
ϕn

S ∼= (M ⊗R
ϕn

R)⊗R S

is maximal Cohen-Macaulay over S; see [15, 23.3]. Note also that, M ⊗R S is free
over S if and only if M is free over R. Therefore it suffices to prove the case where
R is F-finite and with an infinite residue field. By (3), we have pn > drsp(Rp) for all
p ∈ Spec(R).

We now proceed by induction on d = dim(R). Let d = 1 and let M ⊗R
ϕn

R be
maximal Cohen-Macaulay. By Lemma 2.2, Ext1R(TrM, ϕ

n

R) = 0 and so TrM is free
by Lemma 2.3. Hence M is free. Now assume that d > 1. By the induction hypothesis,
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Mp is free for all non-maximal prime ideals p. Since M ⊗R
ϕn

R is a maximal Cohen-
Macaulay R-module, by Lemma 2.2, we have:

ExtiR(TrM, ϕ
n

R) = 0 for all i = 1, . . . , d.

Now the assertion follows from Lemma 2.3.

We finish this section with an application of Theorem 1.3 and give a proof of
Corollary 1.4. We start by recording a few preliminary results, the first one being a
special case of a result of Avramov, Hochster, Iyengar and Yao [3]: it is a strengthening
of a classical result of Kunz [10] which considers the case where M = R.

2.5 ([3, 1.1]). Let R be a local ring of prime characteristic p and let 0 6= M ∈ modR.

If R is not regular, then pdR(
ϕi

M) =∞ for all i > 1.

Let n > 0 be an integer. Recall that a moduleM ∈ modR satisfies Serre’s condition
(Sn) if depthRp

(Mp) > min{n, dim(Rp)} for all p ∈ Supp(M).
Note that every complete local ring of prime characteristic p with a perfect residue

field is F-finite; see [4, page 398]. Thus we reach a result that, in particular, establishes
Corollary 1.4 advertised in the introduction.

Corollary 2.6. Let (R,m) be a reduced, F-finite Cohen-Macaulay local ring of posi-
tive dimension and prime characteristic p, and let 0 6= M ∈ modR. Assume that s, n
and t are positive integers such that pn > e(R). If ϕs

M ⊗R
ϕn

R satisfies Serre’s con-
dition (St), then Rq is regular for all q ∈ Supp(M) with dim(Rq) 6 t. In particular,
if ϕs

M ⊗R
ϕn

R is maximal Cohen-Macaulay, then R is regular.

Proof. Suppose that ϕs

M ⊗R
ϕn

R satisfies Serre’s condition (St) and let q ∈ Supp(M)
with dim(Rq) 6 t. As Rq is clearly regular when dim(Rq) = 0, we further assume
dim(Rq) > 0. By (3), we have that pn > e(Rq). Moreover, since ϕs

M ⊗R
ϕn

R satisfies
Serre’s condition (St), it follows that

ϕs

Mq ⊗R q
ϕn

Rq is a maximal Cohen-Macaulay
Rq-module. Hence we conclude from Theorem 1.3 that ϕs

Mq is free over Rq. So the
conclusion follows from 2.5.
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