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Abstract
We study perfect discrete Morse functions on closed, con-

nected, oriented n-dimensional manifolds. We show how to com-
pose such functions on connected sums of manifolds of arbitrary
dimensions and how to decompose them on connected sums of
closed oriented surfaces.

1. Introduction

Since it was introduced by Marston Morse in the 1920s, Morse theory has been a
powerful tool in the study of smooth manifolds. It allows to describe the topology of
a manifold in terms of the cellular decomposition generated by the critical points of
a smooth map defined on it. By analyzing the function’s critical points, it is possible
to construct a cell structure for the manifold.

In the 1990s Robin Forman developed a discrete version of Morse theory that
turned out to be an efficient method for the study of the topology of discrete objects,
such as regular cell complexes. As in the smooth setting, changes in the topology are
deeply related to the presence of critical cells of a discrete Morse function. The analysis
of the evolution of the homology of the cell complexes can be a very useful tool, for
example in computer vision to deal with shape recognition problems by means of
topological shape descriptors, and in topological data analysis, where new information
can be extracted from the data. It can also be used for efficient computation of
homology of the cell complex [6, 9]. Many of the familiar results from the smooth
theory apply in the discrete setting.

A discrete Morse function on a cell complex is an assignment of a real number
to each cell in such a way that the natural order given by the dimension of cells is
respected, except at most in one (co)face for each cell. A discrete Morse function on
a regular cell complex induces a partial pairing on the cells called a discrete vector
field. It consists of pairs of cells of two consecutive dimensions on which the function
reverses the order given by the dimension. Those cells that do not belong to any pair
are precisely the critical cells of the map. A gradient path is a connected sequence of
the pairs on which the function is non-increasing. The idea of discrete gradient path
plays a central role in Forman’s theory, due to the fact that the properties related to
the critical elements are more easily visualized. Moreover, the discrete gradient paths
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give us an easy and efficient method for getting examples of such functions verifying
certain initial conditions (for example, having a given number of critical cells) avoiding
rather complicated numerical assignments. On the other hand, since different discrete
Morse functions may induce the same discrete gradient field, working with a vector
field instead of a Morse function may lead to some disambiguities about values of a
function on cells. We will point out this fact again later in Section 3.

The discrete Morse functions that have as few critical cells as possible have been
widely studied in the literature (see [10, 14]). The number of critical n-cells of a
discrete Morse function is greater than or equal to the n-th Betti number of the cell
complex by Morse inequalities (given in more details on page 3) [6, Corollary 3.7]. For
a perfect discrete Morse function these two quantities are the same. Although there
are complexes which do not admit perfect discrete Morse functions, these functions
are the most suitable for combinatorial and computational purposes and they have
been studied greatly.

In this paper we study perfect discrete Morse functions on connected sums of tri-
angulated manifolds and consider the problem of (de)composing such maps as perfect
discrete Morse functions on the summands. We show that a perfect discrete Morse
function on a connected sum of triangulated manifolds of any dimension is obtained
by combining perfect discrete Morse functions on the summands, after possibly minor
subdivisons in a neighborhood of the connecting sphere (cf. Theorem 3.1). On decom-
posing a given perfect discrete Morse function, we consider only the 2-dimensional
case (cf. Theorem 4.6). For a triangulated connected sum M1#M2 of two closed
connected surfaces with a given perfect discrete Morse function we give an explicit
construction of a separating circle C such that the given perfect discrete vector field
restricts to a perfect discrete vector field on each summand (cf. Theorem 4.4). Such a
construction can be implemented in the form of an algorithm which could be useful in
applications of topological methods for example to data, since it enables a subdivision
of the data analyzed into smaller, simpler parts.

As we will show in a further paper [13], our proof generalizes to the 3-dimensional
case, but in higher dimensions new phenomena appear. One cannot extend the meth-
ods that we use in dimensions 2 and 3 to higher dimensional manifolds since in higher
dimensions homology groups and the Euler characteristic do not suffice to classify the
boundary manifold as a sphere (see Remark 4.7). Moreover, in dimensions greater
than 3 a connected sum decomposition of a manifold is not unique.

The paper is organized as follows: In section 2, we recall necessary basic notions of
discrete Morse theory for our proof. In section 3, we prove how to compose a perfect
discrete Morse function on a connected sum of triangulated n-dimensional manifolds.
In section 4, we show how to decompose a perfect discrete Morse function on surfaces
and give an example about decomposing a perfect discrete Morse function on genus
2 surface.
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2. Preliminaries

In this section we recall necessary basic notions of discrete Morse theory. For more
details we refer the reader to [6] and [7]. Throughout this section K denotes a finite
regular cell complex. We write τ > σ if σ ⊂ τ (closure of τ).

A discrete Morse function f : K → R on K associates values to the cells of K
such that for any p-cell σ ∈ K each (p− 1)-face ν < σ except at most one has value
f(ν) < f(σ), and each (p+ 1)-coface τ > σ except at most one has value f(τ) > f(σ).
The cells of K are subdivided into critical and regular cells, where the critical cells
are cells where none of the above exceptions occur, and regular cells appear in disjoint
pairs which form the gradient vector field

V = {(σ, τ) | dimσ = dim τ − 1, σ < τ, f(σ) > f(τ)}.

We draw arrows to represent the vector field as follows: If τ (p+1) > σ(p) and f(σ) >
f(τ) then we draw an arrow from σ to τ as in Figure 1.

τσ

Figure 1: f(σ) > f(τ).

A cell is critical if and only if it is neither the tail nor the head of an arrow.
Critical cells are related with the topology of the complex as in the case of a

smooth manifold with a smooth Morse function, that is, a regular cell complex K
with a discrete Morse function f has the homotopy type of a CW complex with cells
that correspond to the critical cells of the function, and the number of critical cells
is bounded by the Betti numbers of K in terms of Morse inequalities:

1. mp(f)−mp−1(f) + · · · ±m0 > bp − bp−1 + · · · ± b0,

2. mp(f) > bp,

3. m0(f)−m1(f) + · · ·+ (−1)nmn(f) = b0 − b1 + · · ·+ (−1)nbn,

where bp is the p-th Betti number of K and mp(f) is the number of critical p-cells of
f for p = 0, 1, . . . , n where n is the dimension of K.

Pairs of regular cells connect into gradient paths along which function values of f
descend. A gradient path or a V -path of dimension (p+ 1) is a sequence of cells

σ
(p)
0 → τ

(p+1)
0 > σ

(p)
1 → τ

(p+1)
1 > · · · → τ (p+1)

r > σ
(p)
r+1,

such that (σ
(p)
i < τ

(p+1)
i ) ∈ V and σ

(p)
i 6= σ

(p)
i+1 < τ

(p+1)
i for each i = 0, 1, . . . , r.

Gradient paths are represented by a sequence of arrows. Since function values
descend along a gradient path, gradient paths do not form cycles. In fact, a discrete
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vector field, that is, a collection of disjoint pairs of cells (τ (p+1) > σ(p)), is the gradient
vector field of a discrete Morse function if and only if paths in the vector field do not
form cycles [7, Theorem 3.5].

In discrete Morse theory, gradient vector fields are often more useful than the
underlying discrete Morse functions for the combinatorial purposes. Let us define an
equivalence relation between discrete Morse functions.

Definition 2.1. Two discrete Morse function f and g are called equivalent if for
every pair of cells (τ (p) < σ(p+1)) in K,

f(σ) < f(τ) if and only if g(σ) < g(τ).

The following theorem gives us ground to work with the gradient vector fields
instead of the function values.

Theorem 2.2. ([2]) Two discrete Morse functions f and g defined on a simplicial
complex K are equivalent if and only if f and g have the same critical cells and induce
the same gradient vector field.

In this paper we study a special type of discrete Morse functions, where the Morse
inequalities are actually equalities. As in the smooth case, such Morse functions are
called perfect (with respect to the given coefficient ring, which is fixed throughout
most of this paper and suppressed in our notation).

Definition 2.3. ([1]) A discrete Morse function f : K → R and its discrete gradient
field are called perfect if for each p,

mp(f) = bp = rankHp(K).

Perfect discrete Morse functions have the least number of critical cells by means of
the Morse inequalities. Therefore, they are the most suitable functions for combina-
torial and computational purposes. Existence of such functions has both theoretical
and practical applications. An arbitrary CW-complex may not have a perfect discrete
Morse function defined on it. For example, any torsion in homology is an obstruction
to a Z-perfect discrete Morse function and any complex that is acyclic (homologically
trivial) and non-collapsible e.g. the dunce hat and Bing’s House cannot admit a per-
fect discrete Morse function see [1, section 4] and [3, page 16]. Also, every sphere of
dimension d > 4 has a triangulation which does not admit a perfect discrete Morse
function [5]. On the other hand, it is easy to see that every 1-dimensional complex
(i.e. graph) has a perfect discrete Morse function, and in dimension 2 it is known
that every closed, oriented surface has a Z-perfect discrete Morse function [14], every
closed surface has a Z2-perfect discrete Morse function [1], and every 2-dimensional
subcomplex of a 2-manifold has a Z2-perfect discrete Morse function [12]. Spheres are
characterized by the existence of a perfect discrete Morse function in the sense that
every triangulated manifold with exactly two critical cells is a sphere, and for every
sphere there exists a triangulation with exactly two critical cells [6]. Finding perfect
discrete Morse functions is a difficult problem, as Joswig and Pfetsch [11] have shown
it is NP-hard even on 2-dimensional complexes.

Before we finish this section, let us point out that along the process of (de)com-
posing discrete Morse functions one may need to subdivide some of the cells in the
complex. As in (cf. [15, 6]), a bisection of a cell will be a subdivision of a single cell
into two, as shown in Figure 2.
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Figure 2: A sequence of bisections.

3. Composing perfect discrete Morse functions on a connected

sum

In this section, we prove our first results. We show how to compose two per-
fect discrete Morse functions on triangulated manifolds. Our method is geometrically
straightforward. The construction of the perfect discrete Morse function is similar
to a method of Benedetti [5] to prove that perfect discrete Morse functions can be
combined into a perfect discrete Morse function on the disjoint union, which he then
used to show that a handlebody decomposition of a triangulated manifold gives a
discrete Morse function on it with critical cells exactly corresponding to the handles
in the decomposition, thus extending a similar result of Gallais [8] on 3-manifolds to
the general case.

Let M = M1#M2 be the connected sum of two closed, connected, oriented, trian-
gulated n-dimensional manifolds, and f1 and f2 be perfect discrete Morse functions on
M1 and M2 respectively. Since M1 is closed and oriented, Hn(M1) ∼= Z so since f1 is
perfect, mn(f1) = bn(M1) = 1, and also since M2 is connected, H0(M2) ∼= Z so since
also f2 is perfect, m0(f2) = b0(M2) = 1. We form the connected sum M = M1#M2

by removing an n-cell of M2 with minimal vertex in its boundary and the critical
n-cell of M1. The next result can be thought of as a generalization of [3, Theorem 6]
but the reader should note that the function that we are going to construct coincides
with f1 and f2 except where the connected sum is formed.

Theorem 3.1. Let M = M1#M2 be given as above. Then, there exists a polyhedral
subdivision M̃ of M and a perfect discrete Morse function f on M̃ that agrees, up
to a constant on each summand with f1 and f2, except on a neighborhood of the two
removed cells.

Proof. In order to prove the theorem, we will show that the gradient vector fields V1

and V2 of the functions f1 and f2 respectively, induce a discrete vector field V on the
connected sum which restricts to V1 and V2 on the two summands, and which has
the minimal possible number of critical cells and no loops. We may assume that the
connected sum M = M1#M2 is formed by removing a non-critical n-cell β of V2 with
the minimal vertex v in its boundary and the critical n-cell α of V1.

On M1 \ α, we attach a tube L = ∂α× [0, 1] with the natural product cell decom-
position along ∂α× {0} and extend the discrete vector field V1|M1−α to (M1 − α) ∪ L
so that each cell σ in ∂α× {1} is paired with the cell σ × (0, 1) (see Figure 3 for
n = 2). Also note that if ∂α contains any critical 1-cells that belong to M1, we may
do bisections to push these cells in M1 − α.

On M2, we subdivide the smallest simplicial complex J consisting of β and all its
faces in the following way. Let H : J × [0, 1] → J be a linear (deformation) retraction
of J onto the critical vertex v. Then, J ′ = H1/2(J) represents a smaller copy of J

and β
′

= H1/2(β). The closure J ′′ of the complement J − J ′ is a product of the link
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α

∂α× {1}

∂α× {0}

Figure 3: The discrete vector field on ∂α× {1}.

LkJ(v) of v in J (that is, the face of β opposite to v with all its faces) with the
interval [0, 1/2], and the simplices of J ′′ − J ′ are in bijective correspondence to the
simplices of J − v (see Figure 4 for n = 2).

β

v

β
′

β − β
′

v

Figure 4: Obtaining β
′

with discrete vector field on it.

We extend the vector field V2 on M2 − J to J ′′ − J ′ so that for any pair (σ, τ) ∈ V2

where σ ∈ J and either τ ∈ J or τ ∈ (M2 − J), there is a corresponding pair (σ′′, τ ′′)
where σ′′ ∈ J ′′ and either τ ′′ ∈ J ′′ or τ ′′ ∈ (M2 − J), and all simplices on ∂β′ are

unpaired. The connected sum(M̃) is formed by removing β′ and identifying ∂β
′

with
∂α× {1}. Since each cell σ ∈ ∂β′ ∼= ∂α× {1} was unpaired in V2, it can be without
conflicts paired according to V1 to the cell σ × [0, 1] in L. The vector fields on (M1 −

α) ∪ L and (M2 − β) ∪ β′′, where β′′ = β − β′, together form a vector field V on M̃
given by

V (γ) =





V1(γ); γ ∈ M1 − α,
γ × (0, 1); γ ∈ ∂α× {1} ∼= ∂β′,
V2(σ); γ = σ′′ ∈ J ′′,
V2(γ); γ ∈ M2 − J.

Since V1 and V2 do not contain loops and all the arrows on the boundary circle
point in the same direction (towards M1), there cannot be any closed V -paths, and

we have a discrete gradient vector field on M̃ . Since the maximum α ∈ M1 has been
removed and the minimum v ∈ M2 has been paired, the numbers of critical cells in V
are

m0 = 1 = b0(M),

mi = mi(f1) +mi(f2) = bi(M) for i = 1, . . . , n− 1,

mn = 1 = bn(M).
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For example, assuming there is no pairing between the faces of the critical n-cell
α of f1 and the values of f2 are greater than or equal to the values of f1, a perfect
discrete Morse function f can be given by

f(γ) =





f1(γ); γ ∈ M1 − α,
f1(τ) + C/2; γ = τ × (0, 1), γ = τ × {1} ∈ L, τ ∈ ∂α,
f2(γ) + C; γ ∈ M2 − J,
f2(τ) + C; γ = τ ′′ ∈ J ′′,

where C is a big enough constant (bigger than f1(α) + 1).

4. Decomposing perfect discrete Morse functions on surfaces

In this section we are going to prove the converse of Theorem 3.1 in the case of
surfaces. That is, any perfect discrete Morse function f on a closed triangulated sur-
face M that is a connected sum M1#M2 restricts to perfect discrete Morse functions
f1 and f2 on the two summands. Before we state our theorem let us first point out
an observation for a discrete Morse function on a particular boundary curve of an
oriented surface. Following [4] the cells in the boundary of a manifold with a discrete
Morse function f on it are called boundary critical cells if they are critical for f .

Lemma 4.1. Let M be a closed, oriented surface of genus g and f be a discrete Morse
function on M . Let D be an open disk in M which contains exactly one critical 0-cell
or one critical 2-cell and let C = ∂(M −D). Then the number of boundary critical
vertices and edges of f |M−D on C must be equal.

Proof. The Euler characteristic of the closed genus g-surface M is χ(M) = 2− 2g.
Removing a disk decreases Euler characteristic by one. So, we have

χ(M −D) = 2− 2g − 1

= 1− 2g. (1)

Assume that D contains only one critical 0-cell of f in M (the argument is similar
if D contains only one critical 2-cell). Assume also that f has m0 critical 0-cells, m1

critical 1-cells and m2 critical 2-cells. Let n be the number of the boundary critical
0-cells and m be the number of the boundary critical 1-cells on C. Note that these
0-cells and 1-cells are critical for f |M−D. Hence, f |M−D has (m0 + n) critical 0-cells,
(m1 +m) critical 1-cells and m2 critical 2-cells. Then, by the Morse inequalities,

χ(M) = m0 −m1 +m2 = 2− 2g, and

χ(M −D) = (m0 + n− 1)− (m1 +m) +m2

= (m0 −m1 +m2) + n−m− 1

= (2− 2g) + n−m− 1

= 1− 2g + (n−m). (2)

Equations (1) and (2) imply that n = m.

Indeed, f |C is a discrete Morse function in Lemma 4.1 and

χ(C) = 0 = m0(f |C)−m1(f |C)

implies that m0(f |C) = m1(f |C) where m0(f |C),m1(f |C) are the numbers of critical
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0-cells and critical 1-cells of f |C , respectively. However, our main goal in Lemma 4.1
is to show that if C bounds a surface which is M −D, then the numbers of the
boundary critical 0-cells and 1-cells are equal.

In the proof of the main theorem of this section we will also need the following
two well known results which we add for the sake of completeness of the paper.

Lemma 4.2. On any regular cell complex 1-paths can merge but cannot split. All
1-paths in the gradient field of a perfect discrete Morse function on a connected cell
complex thus form a tree with root at the minimal vertex.

Proof. If a 1-path would split at some vertex, this would imply that the vertex is
paired with two different edges which is clearly not possible. Every 1-path ends in
a critical vertex. A connected cell complex has b0 = 1 so a perfect discrete Morse
function on it has one critical vertex which is the root of a tree formed by all 1-
paths.

Lemma 4.3. For n > 2, the n-paths in the gradient field of a discrete Morse function
on a closed triangulated n-dimensional manifold can split but not merge. Moreover,
for any n > 1, and every n-dimensional cell σ of a triangulated n-manifold with a
perfect discrete Morse function, with the exception of the unique critical n-cell, there
exists a unique n-path beginning in the boundary of the critical n-cell and ending in σ.

Proof. In a closed triangulated n-manifold, every (n− 1)-cell is the common face of
exactly two n-cells. If two n-paths would merge at some (n− 1)-cell τ , then τ would
be the common face of its n-dimensional pair as well as at least two other n-cells
which is not possible. If σ is an n-cell in an n-path, then its pair is an (n− 1)-cell
which has precisely one other n-coface. If this is not critical, it is the only possible
previous n-cell in the path. Repeating this argument we eventually trace out a unique
n-path starting in a critical n-cell.

Next we prove that a given perfect discrete Morse function on an oriented surface
can be decomposed easily into two perfect discrete Morse functions if the separating
curve is nice enough. Then in Theorem 4.6 we prove that one can always find a nice
enough separating curve.

Let Mi be a closed, oriented, triangulated genus gi surface and Di ⊂ Mi be an
embedded disk for i = 1, 2. Also let M = M1#CM2 along the circle C. This circle
separates M into two parts, M − (M1 − Int(D1)) and M − (M2 − Int(D2)), which
we will denote by abuse of notation as M −M1 and M −M2 i.e., C ≈ ∂(M −M1) ≈
∂(M −M2) (how we form these regions and the naming will become clear throughout
the proof of Theorem 4.6). Let f be a perfect discrete Morse function on M and V
be the gradient vector field induced by f such that the restriction of V to M −M2

has one critical 0-cell and 2g1 critical 1-cells and the restriction of V to M −M1 has
one critical 2-cell and 2g2 critical 1-cells. Further, assume that there are no arrows
on the vertices and edges of C pointing into M −M1 (later in Theorem 4.6 we are
going to show that one can always find such a separating circle).

Theorem 4.4. Under the above conditions, we can extend V |M−M2
to M1 and

V |M−M1
to M2 as perfect gradient vector fields induced by perfect discrete Morse

functions which agree with f on M −M1 and M −M2.
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Proof. Each cell on the boundary curve C is paired either with a cell on C or a cell in
M −M2. Assume that there are k pairs of cells on C. Our aim is to obtain a perfect
gradient vector field on M2 after attaching a disk D2 to M −M1 in the following
way. We triangulate the disk D2 as a cone over C. That is, we choose an interior
point, called v, in D2 and connect v with the vertices on C via straight line segments.
We pair each boundary critical cell of M −M1 (each is paired in M with a cell in
M −M2) with its coface in the cone. For each pair (σ, τ) ∈ V of a 0-cell σ and a 1-cell
τ in C, the corresponding pair (σ′, τ ′) inside the cone, where σ′ and τ ′ are cofaces of
σ and τ respectively, is formed. The vertex v of the cone will be the critical vertex
(see Figure 5 for k = 2). The vector field V has no non-trivial closed path in M , and
hence V |M−M1

has no non-trivial closed path. Additionally, we pair all boundary
critical cells on C with their cofaces in D2, and hence, the extended vector field on
(M −M1) ∪C D2

∼= M2, called V2, has no non-trivial closed path. Therefore, V2 is
the gradient vector field of a discrete Morse function [7, Theorem 3.5], say f2, on M2

with the following numbers of critical cells which tells that V2 is a perfect gradient
vector field:

m0 = 1 = b0(M2),

m1 = m1(f2) = b1(M2),

m2 = 1 = b2(M2).

We can also obtain f2 specifically by assigning values to the cells in D2 so that
they descend along the gradient paths, and the minimum is at the critical vertex v.

v
σ

τ

σ′

τ ′

Figure 5: The discrete vector field on the disk with the critical 0-cell in the center.

Now, we construct a perfect gradient vector field on M1 after attaching a disk D1

to M −M2. In this case, there are no boundary critical cells on C since each cell
on C is paired either to a cell on C or to a cell in M −M2. Again, we triangulate
the disk D1 as a cone over C. Let ti be the triangle and ei, ei+1 the faces of ti for
i = 1, 2, 3, . . . , n, which are ordered in counterclockwise direction in the interior of D1.
We pair ei’s with ti’s where i = 1, 2, 3, . . . , n− 1 and pair v with en. At the end, one
unpaired triangle, tn, will remain in D1 since the number of edges and triangles in
D1 equal (see Figure 6 for k = 2 and n = 4).

We obtain a discrete vector field on D1 with a critical 2-cell (see Figure 6). We
do not get any non-trivial closed paths in M1 after attaching D1, since there is not
any non-trivial closed path in M −M2 and there is no i-path, i = 1, 2, which begins
in boundary of a cell in D1 and comes back to D1. Hence, we obtain a gradient
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v

e1

t1e2
t2

e3

t3
e4 t4

.

Figure 6: The discrete vector field on the disk with the critical 2-cell.

vector field V1 induced by a discrete Morse function f1 on (M −M2) ∪C D1
∼= M1

[7, Theorem 3.5]. In addition, V1 is the perfect gradient vector field of f1 with the
number of critical cells:

m0 = 1 = b0(M1),

m1 = m1(f1) = b1(M1),

m2 = 1 = b2(M1).

Similarly, we can define f1 specifically by assigning a value big enough to the
critical triangle tn and descending values along the V1-paths in D1 keeping in mind
that the values should all be bigger than the values on the circle C.

Remark 4.5. An alternative way to see that the discrete Morse function f |M−M2

extends to M1 as a perfect discrete Morse function is as follows: We triangulate the
disc D1 as a cone with a single interior vertex v. We choose one of the triangles in D1,
called T . Clearly, (D1 − int(T )) ց C (for the definition of collapse, see for example [7,
pp. 11–12]). Indeed, (M −M2) ∪C D1

∼= M1 and (M1 − int(T )) ց (M −M2). Hence,
f |M−M2

can be extended to M1 − T as a discrete Morse function without obtaining
any new critical cells by following the inverse of the collapse steps of (D1 − int(T )) ց
C [6, Lemma 4.3]. Let g be the extension of f |M−M2

to (M1 − T ). Then, we define a
discrete Morse function on M1 as in the following way:

g′(σ) =

{
g(σ); σ ∈ M1 − T,
max {g(∂σ)}+ c; σ = T.

Therefore, g′ is a perfect discrete Morse function with a unique critical 2-cell T .

Now, let M = M1#M2 be the connected sum of two closed oriented triangulated
surfaces of genus g1 and g2 respectively. Let f be a perfect discrete Morse function
on M such that the critical 2-cell of f is in M −M1 and the critical 0-cell of f is in
M −M2. In addition, assume that the critical cells of f are separated in the sense
that the star of a critical cell contains no other critical cells. This can always be
achieved after a suitable subdivision of M . Let V be the gradient vector field induced
by f . In the following theorem, we look for a suitable boundary curve C, such as in
Theorem 4.4, so that one can decompose f accordingly, and thus one can decompose
M along the boundary curve (separating circle) C.
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The first thing one needs to do is to decide which critical cells belong to the same
component. Note that M is a genus g surface for some g. We may take {α1, β1, . . . ,
αg, βg} as a basis for H1(M), where αi’s and βi’s are given by the critical 1-cells
of f . These homology classes are obtained by our perfect discrete Morse function
following the 1-paths emanating from the critical 1-cells. Note that in any basis
for the first homology group of a closed, connected, orientable surface of genus g,
homology generators come as pairs. That is for any α in a basis for H1(M), there
should be a class β such that the number of transverse intersections is odd between
any representatives of α and β. This follows from the fact that H2(M) ∼= Z and a
generator is given by the cup product of two 1-dimensional cohomology generators,
say a and b, such that (a ∪ b)[M ] = 1. In other words, a([M ] ∩ b) = 1. In terms of
homology, this can be explained as the cohomology classes a and b have Poincare
duals intersecting transversally at an odd number of points (i.e. these classes should
have an odd geometric intersection and their algebraic intersection should be 1). One
cannot count these intersection numbers by considering the 1-paths from the critical
cells. Because these paths do not intersect transversally but instead they may merge
together. To get the correct pairing we are going to work with the dual homology
generators obtained from the 2-paths from the critical 2-cell to the critical 1-cells.

Theorem 4.6. Let M = M1#M2 be as above. Then we can find a circle C on M
such that M = M1#CM2 and the cells on C are paired with either the cells on C or
the cells in M −M2 or both.

Proof. To find the separating circle C as mentioned above, we follow the flow induced
by f (the direction along which f is non-increasing) from the critical 2-cell to the
critical 1-cells which belong to M −M1. We consider the 2-paths that begin from
a face of the critical 2-cell and end at these critical 1-cells. Each critical 1-cell has
precisely two 2-cofaces, and according to Lemma 4.3 each one of these is the end of
precisely one 2-path that begins in a face of the critical 2-cell. If the critical 2-cell is
removed, we may collapse along these paths, starting at a free edge in the boundary of
the critical 2-cell. These collapses produce tunnels with cells in the boundary that are
paired either to cells in the boundary or to cells in the remaining part of the manifold.
The critical 2-cell together with these tunnels and the critical 1-cells at their ends will
represent the core of M −M1. The boundary of this region is a curve C ′. If this curve
is a circle, we have achieved our goal since this circle separates the region that has
been removed and represents M −M1 and the arrows along the curve point either
along the curve or into the remaining part M −M2.

Note that C ′ might not be a circle due to the fact that the triangulation on M
might be too coarse to allow the construction of such a circle. The problem is that
two different tunnels, that is, two paths from the critical 2-cell to critical 1-cells in
M −M1 come too close together and meet in a vertex or are separated only by an
edge, or more generally, by a 1-path. As a result of this, the curve C ′ is a union of
wedges of several circles possibly with additional paths in the interior of M −M1

that connecting the wedges. In order to obtain a separating curve that is a circle, we
have to do some subdivisions. For instance, in Example 4.9, the resulting boundary
of several 2-paths meet at the vertex 3, so the curve C ′ is a disjoint union a wedge of
circles meeting at this vertex and a circle, and the 1-path a represents an additional
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edge (arc) joining these disjoint boundary components, since two 2-paths meet in this
edge.

Case 1: Assume first that the curve C ′ is a wedge of n circles at a single vertex v.
First, we bisect all the 1-cells in the open star of v in the tunnel (see Figure 7 for
n = 2). We always pair all the new vertices with their cofaces in the new star of

v v

Figure 7: From left to right: The 2-paths meeting at the vertex ν and the bisections
done in the open star of ν.

v obtained after bisections if v is not paired with a 1-cell on the boundary of the
tunnel. But, if v is paired with a 1-cell α on the boundary, we pair the new vertex
bisecting α with its unpaired coface, and we pair the remaining unpaired vertices
with their cofaces containing v. Next, we bisect all the 2-cells in the open star of v in
the tunnel. Then we pair all the unpaired 1-cells with their cofaces in the new star of
v, which is obtained after the last bisections in M , by using the method given in [6,
Theorem 12.1] (e.g. see Figure 8). Hence we extend the vector field to the subdivided

v

Figure 8: The separation of the 2-paths and extension of the vector field to the bisected
cells.

cells without creating any non-trivial closed paths.
In this case, after the above process is completed, we collapse along the 2-paths,
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which are in the locally subdivided M above, up to the critical 1-cells that belong
to M −M1. Since we separate the 2-paths meeting in the vertex v, the resulting
boundary is a circle which is our boundary curve C ′ (see Figure 8).

In Figures 7 and 8, the gray regions represent a part of the interior of the tunnel
while the white ones are a part of the outside of the tunnel, and the dotted edges
represent the boundary curves.

Case 2: The curve C ′ might be a union of wedges of several circles with additional
arcs connecting them. Note that the resulting boundary of C ′ is disconnected, i.e.,
it is the disjoint union of curves such that these curves are connected via interior
additional arcs (1-paths) in the tunnel. Firstly, we will obtain a connected boundary
curve via connecting disjoint boundary components by pushing the interior arcs of
the tunnel outside after doing some subdivisions as in the following explanation.

Let a be the additional arc (1-path) connecting disjoint boundary components of
C ′, and S be the star of a in the tunnel (see Figure 9). We first bisect all the 1-cells

a

v′

a

v′

Figure 9: From left to right: The 2-paths separated by the 1-path a and the bisections
done in the star of a.

in S − a which have non-trivial intersection with a. Then we pair all the new vertices
with their cofaces in the new star of a, which obtained after the bisections on the
1-cells, if the terminal point v′ of a on C ′ is not paired with a 1-cell on C ′. But, if
v′ is paired with a 1-cell β on C ′, then we pair the new vertex bisecting β with its
unpaired coface, and we pair the remaining vertices with their cofaces in the star of
v′ (see Figure 9). Next, we bisect all the 2-cells in S by connecting the new vertices
bisecting the 1-cells above. We pair all the unpaired 1-cells, which is obtained after
the last bisections in M , with their cofaces in the new star of v′. For all the bisections
and parings here, we use the method given in [6, Theorem 12.1], and thus we extend
the vector field to the subdivided cells without creating any cycles.
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After eliminating all such additional arcs (1-paths) by using the process above,
and collapsing along the 2-paths, which are in the lastly subdivided M in the above
process, up to the critical 1-cells in M −M1, the resulting boundary of the tunnel
is connected since we separate the paths which are separated by a 1-path a. It is
either a circle, a wedges of circles or several wedges of circles. If it is a circle, then
we have succeed our aim. But, if it contains a union of wedges of circles, then we use
the method given in Case 1 to get rid of all wedge points and obtain a single circle
as boundary curve C ′.

Remark 4.7. Note that in Theorem 4.6, we need to do subdivisions to obtain the
boundary as a manifold. The boundary of the 2-manifolds we get should be a circle
after the subdivisions (the boundary will be a closed 1-dimensional manifold).

The following is an immediate corollary of Theorems 4.4 and 4.6.

Corollary 4.8. Let M = M1#M2 be the connected sum of two closed oriented tri-
angulated surfaces of genus g1 and g2 respectively and f be a perfect discrete Morse
function defined on M . Then we can extend f|M−M2

to M1 and f|M−M1

to M2 as
perfect discrete Morse functions.

To clear up the process described in Theorem 4.6, we work it out in the following
example.

Example 4.9. Let M be the triangulated genus 2 orientable surface with a perfect
discrete Morse function which induces the gradient vector field depicted in Figure 10.

b

d

c

e

w

3

3

3 3

3

3

33

1

2

4 5

2

1

6

7

8

9

76

9

8

5

4

Figure 10: A gradient vector field on genus 2 orientable surface.

The black triangle is the critical 2-cell and the vertex w is the critical 0-cell. The
edges b, c, d and e are the critical 1-cells. By Theorem 4.6, the critical 1-cells b and c
belong to M −M1, d and e belong to M −M2. Because of our construction (see also
the proof of Theorem 4.4) we do not want to see any critical cells on the resulting
boundary. If a 2-path from the boundary of the critical 2-cell to a critical 1-cell
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passes through other critical cells, then we need to perturb the vector field by doing
subdivision (bisection or barycentric subdivision) in the star of the critical cell.

The critical 1-cells b and c have a common vertex. Thus we separate them by using
bisections (see Figure 11).
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Figure 11: Separation of the critical edges.

The gray triangles show the 2-paths that end at the critical edges in Figure 12.
First, we delete the interior of the critical 2-cell and then begin to collapse free edges
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Figure 12: The 2-paths end at the critical edges.

and triangles that paired together in these 2-paths up to the critical 1-cells b and c.
The gray colored region is M −M1, while the white region is M −M2. The dotted
curve is the boundary curve and the edge a is the connecting 1-path (additional edge)
between two disjoint boundary components. Note that the connecting edge a does
not belong to the boundary curve, that is, a ∈ Int(M −M1). Note also that the edges
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2− 1, 10− 11 are not boundary components. They are interior edges of M −M1. In
addition, the critical 1-cells b and c are the interior edges of M −M1. Therefore, the
boundary curve is a disjoint union of a circle and a wedge of three circle at the point 3
as on the figure left in Figure 13. These disjoint curves are connected in M −M1 via
the edge a.

3
5

1

11

a

3
5

1

11

Figure 13: The boundary curve.

v′

a

v′

a

Figure 14: Extension of the vector field to the bisected cells in the star of a.

In Figure 13, the figure on the left is the boundary curve obtained after collapsing
free edges and triangles up to critical edges, and the figure on the right denote the
connecting edge between disjoint boundary components of the boundary curve. Then,
we use the methods given in Figures 9, 14 (see Figure 15) to get rid of the connecting
edge and connect the disjoint boundary components.
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Figure 15: A separation of the 2-paths meeting along the 1-path a.

Now, the dotted curve is a wedge of three circles at the point 3. We get rid of this
wedge point by using the method in Figures 7 and 8 (see Figure 16). We pair all the
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Figure 16: A separation of the 2-paths meeting in the vertex numbered 3.

cells on the new boundary components as we mention in the proof of Theorem 4.6.
At the end, the boundary curve is a separating circle on M as we want.
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