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EXCELLENT RINGS IN TRANSCHROMATIC
HOMOTOPY THEORY
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(communicated by Emily Riehl)

Abstract
The purpose of this note is to verify that several basic rings

appearing in transchromatic homotopy theory are Noetherian
excellent normal domains and thus amenable to standard tech-
niques from commutative algebra. In particular, we show that
the coefficients of iterated localizations of Morava E-theory
at the Morava K-theories are normal domains and also that
the coefficients in the transchromatic character map for a fixed
group form a normal domain.

1. Introduction

Excellent rings were introduced by Grothendieck as a well-behaved class of commu-
tative Noetherian rings general enough for the purposes of arithmetic and algebraic
geometry, while excluding several pathological examples of Noetherian rings found
by Nagata. In particular, the collection of excellent rings is closed under localization
and completion.

These algebraic operations describe the effect on coefficient rings of the derived
localizations appearing in stable homotopy theory. Most prominently, such Bousfield
localizations occur when comparing different chromatic layers of the stable homotopy
category, a subject known as transchromatic homotopy theory. The main goal of this
note is to demonstrate that important rings appearing in transchromatic homotopy
theory are built from excellent rings, and hence surprisingly well-behaved. Specifically,
although these rings are rather complicated algebraically and in general not regular,
we prove that they are integral domains and thus regular in codimension 1. However,
establishing these fundamental properties directly turned out to be considerably more
difficult than anticipated, which led us to employ the theory of excellent rings instead.
We hope that the methods used here will prove useful in tackling similar problems in
related contexts.

Our first result concerns the rings Lt,n = π0LK(t)En obtained as the localization
of Morava E-theory En of height n at the Morava K-theory K(t) of height t < n.
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This is a fundamental example of a transchromatic ring, since the localization map

En
// LK(t)En

shifts chromatic height from n to t. The rings Lt,n were studied in detail by Mazel-Gee,
Peterson, and Stapleton in [MGPS15] using the theory of pipe rings. In particular,
Theorem 36 of [MGPS15] shows that π0En → Lt,n represents a natural moduli
problem. Technicalities aside, this moduli problem associates to a pair of (properly
topologized) rings R → S the groupoid of deformations of a fixed height n formal
group over a perfect field k to R with the property that the pullback to S has height
t up to an appropriate notion of ⋆-isomorphism.

We complement their work by showing that the Lt,n are well-behaved from the
point of view of commutative algebra.

Theorem (Proposition 3.2). The ring Lt,n is a Noetherian excellent normal domain.
More generally, the same conclusion holds for any iteration of localizations of En at
Morava K-theories.

As a consequence, Lt,n has the cancellation property, which is crucial in applica-
tions as, for example, in [BS15]. Moreover, this result about Lt,n forms the basis
for deducing similar properties of other prominent rings appearing in transchromatic
homotopy theory. Specifically, we study the completion at It of the transchromatic
character rings Ct,k

Ĉt,k = (Ct,k)
∧
It ,

that were first introduced in [Sta13]. For a fixed finite group G there exists a k ⩾ 0
so that Ĉt,k may be used to build a transchromatic character map

Ĉt,k ⊗E0
n
E0

n(BG)
∼=−→ Ĉt,k ⊗Lt,n

LK(t)E
0
n(BGBZn−t

p ).

Theorem (Corollary 3.8 and Corollary 3.9). The transchromatic character ring Ĉt,k

is a Noetherian excellent normal domain for all t and k. The colimit colimk Ĉt,k is
normal.

There are two key ingredients in the proof of this theorem: Firstly, a recent the-
orem of Gabber-Kurano-Shimomoto on the ideal-adic completion of excellent rings.
Secondly, we use an identification of Ĉt,k with a localization and completion of a
certain ring of Drinfeld level structure on the formal group associated to En, thereby
providing a new perspective on these transchromatic character rings.

Conventions and references

We rely heavily on a number of results from commutative algebra that cannot be
found in standard textbooks. Rather than locating the earliest published reference
for each of the facts used here, we will always refer to the stacks project [Sta15].
All rings in this note are assumed to be commutative and all ideals are taken to be
finitely generated.
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2. Excellent rings

We start this section with an example illustrating that localizations of complete
regular local Noetherian rings are more complicated than what one might expect.
This shows that, while the localization or completion of a regular local ring is again
regular, the class of regular local rings is not closed under these operations.

Example 2.1. Let k be a field and consider R = kJx, yK. The ring A= y−1R ∼= kJxK((y))
is not local and, in particular, it is not isomorphic to the regular local ring k((y))JxK.
Indeed, we claim that both (x) and (x− y) are different maximal ideals in A. The
ideal (x) is clearly maximal, so it remains to show that (x− y) is maximal as well.
To this end, note that

A/(x− y) ∼= k((x)),

which is a field, hence (x− y) ⊂ A is maximal as claimed. In contrast, (x− y) =
x(1− y/x) has formal inverse 1/x ·

∑∞
i=0(y/x)

i, so x− y is a unit in k((y))JxK.
After completion, this subtlety disappears: in fact,A∧

(x)
∼= k((y))JxK, see [MGPS15,

B.2].

The Auslander-Buchsbaum theorem asserts that regular local rings are unique
factorization domains, but in light of the previous example, we may not expect this
property to be preserved under the operations appearing in transchromatic theory.
Instead, we will study the larger class of normal rings, which corresponds to regularity
in codimension 1 via Serre’s criterion.

To this end, recall that a normal domain is a domain which is integrally closed in
its quotient field. A ring R is called normal if the localizations Rp are normal domains
for all primes ideals p ⊂ R. The following lemma collects the key properties of normal
rings that we will apply in this note.

Lemma 2.2. Let R be a commutative ring.

1. If R is regular, then R is normal.

2. If R is normal, then any of its localizations is normal.

3. Filtered colimits of normal rings are normal.

4. If R is Noetherian and normal, then it is a finite product of normal domains.

Proof. The first claim is [Sta15, Tag 0567], the second one is [Sta15, Tag 037C],
and the third one is [Sta15, Tag 037D]. To prove the last claim we apply [Sta15,
Tag 030C], so that we have to check that R is reduced and contains only finitely
many minimal primes. Because R is Noetherian, the second condition is satisfied. For
the first one, note that, since R is normal it is reduced, as being reduced is a local
property and R is locally a domain.
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The definition of an excellent ring is rather involved. For the convenience of the
reader, we give this definition; we will assume that the reader is familiar with the
definition of a regular local ring.

Definition 2.3. Recall the following definitions for a commutative ring R:

1. A ring R is a G-ring if for all prime ideals p ⊂ R, Rp is a local G-ring. A local
ring (R,m) is a local G-ring if the completion map R → R∧

m is a regular mor-
phism. This means that the map is flat and for all primes p ⊂ R, κ(p)⊗R R∧

m is
Noetherian and geometrically regular over κ(p). A k-algebra R is geometrically
regular over k if for every finite extension k ⊂ K, R⊗k K is regular, where a
ring is regular if it is locally regular.

2. A ring R is J-2 if for all finite type extensions R → S the ring S is J-1. A ring R
is J-1 if the subset of points of p ∈ Spec(R) with the property that Rp is regular
local is open.

3. A ring R is universally catenary if it is Noetherian and for every finite type
extension R → S, the ring S is catenary. A ring R is catenary if for all pairs
of primes ideals q ⊂ p ⊂ R, all maximal chains of prime ideals q = P0 ⊂ P1 ⊂
· · · ⊂ Pl = p have the same length.

Finally, a ring R is called excellent if it is Noetherian, a G-ring, J-2, and universally
catenary.

For example, fields, Dedekind domains with characteristic 0 quotient field, and all
complete local Noetherian rings are excellent, see [Sta15, Tag 07QW]. Moreover, the
same reference shows that any algebra of finite type over an excellent ring is excellent.

The next proposition essentially generalizes [Sta15, Tag 0C23] to non-local rings.
The purpose is to show that the collection of Noetherian excellent normal rings is
closed under the operations of localization at a multiplicatively closed set and com-
pletion at a prime ideal. The key point is that we do not assume that our rings are
local, as the rings that naturally arise in transchromatic homotopy theory are often
not local.

Proposition 2.4. Suppose R is a Noetherian excellent normal ring, p ⊂ R is a prime
ideal, and S ⊆ R \ p is multiplicatively closed, then A = (R[S−1])∧p is a Noetherian
excellent normal domain.

Proof. By [Sta15, Tag 07QU] and Part (2) of Lemma 2.2, R[S−1] is Noetherian,
excellent, and normal and pR[S−1] is prime, thus we may assume without loss of
generality that S = {1}. Consider the canonical map f : R → A = R∧

p . Since R is
excellent and thus a G-ring, the map f is regular by [Sta15, Tag 0AH2]. The com-
pletion of a Noetherian ring is Noetherian, so we may apply [Sta15, Tag 0C22] and
Part (1) of Lemma 2.2 to deduce that A is normal as desired. Since A is Noethe-
rian and normal, Part (4) of Lemma 2.2 implies that it is a product of finitely many
domains A1, . . . , Al. Also, pA is prime. Now we have canonical isomorphisms

A ∼= A∧
p
∼=

∏
i

(Ai)
∧
p .

By the structure theory of prime ideals in products, only one of the factors will survive,
hence A ∼= Ai for some i. Finally, the completion of an excellent ring is excellent by
a recent theorem of Gabber-Kurano-Shimomoto [KS16].
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Remark 2.5. In virtue of [Sta15, Tag 07PW], the proof of the above proposition does
not obviously work if we assume that R is a Noetherian normal G-ring. We see that
the conditions on R all conspire to make the proof go through.

Proposition 2.6. Let R be a domain, let p = (r1, . . . , rl) ⊂ R be a prime ideal gen-
erated by a regular sequence, and let q = (r1, . . . , rm) for m < l, then q is a prime
ideal.

Proof. Since R is a domain, the localization map R → Rp is injective. The ring Rp

is regular local with system of parameters given by r1, . . . , rl. In such a situation
Rp/(r1, . . . , rm) is prime for any 1 ⩽ m ⩽ l. Now the preimage of (r1, . . . , rm) ⊂ Rp

is the ideal generated by (r1, . . . , rm) ⊂ R since the localization map R → Rp is injec-
tive.

3. Rings in transchromatic homotopy theory

Throughout this section, we fix a prime p and height n ⩾ 0. Recall that Morava
E-theory En is an even periodic E∞-ring spectrum with coefficients

E∗
n := π−∗En

∼= WkJu1, . . . , un−1K[u±1],

where Wk is the ring of Witt vectors on a perfect field k of characteristic p, the ui’s
are in degree 0 and u has degree 2. Note that π0En = E0

n is a complete regular local
Noetherian ring, so, in particular, an excellent domain. Furthermore, let K(n) be
Morava K-theory of height n with coefficients K(n)∗ ∼= k[u±1] and denote by LK(n)

the corresponding Bousfield localization functor. If m < n, then LK(n)LK(m) = 0,
but the composite LK(m)LK(n) is non-trivial and encodes much of the structure of
transchromatic homotopy theory, see, for example, [Hov95].

Since all spectra involved are even periodic, we will restrict attention to the degree
0 part of the homotopy groups. In particular, an even periodic module M over an
even periodic E1-ring spectrum A is said to be flat if π0M is flat as π0A-module. This
definition is compatible with the one given in [BF15].

Lemma 3.1. Given a sequence 0 ⩽ t1 ⩽ · · · ⩽ ti ⩽ n of integers, the canonical local-
ization map

M // LK(t1) · · ·LK(ti)M

is flat for any flat En-module M .

Proof. We will prove this by induction on the number i of integers in the sequence.
If i = 0, the claim is trivial, so suppose it is proven for all sequences of numbers t2 ⩽
· · · ⩽ ti and let t1 ⩽ t2; for simplicity, write N = LK(t2) · · ·LK(ti)M . By assumption,
π0N is a flat E0

n-module, so [BS16, Cor. 3.10] shows that

π0LK(t1)N
∼= (π0N [u−1

t1 ])∧It1 ,

where It denotes the ideal (p, u1, . . . , ut−1). Localization is exact, hence π0N [u−1
t1 ]

is flat over E0
n. Therefore, an unpublished theorem of Hovey, proven in [BF15,

Prop. A.15], implies that π0LK(t1)N is flat over E0
n as claimed.
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To simplify notation, we shall writeLK(T ) for the composite functorLK(t1) · · ·LK(ti)

for any sequence T = (t1, . . . , ti) of integers. Note that, if there is j with tj−1 > tj in
T , then LK(T ) ≃ 0.

Proposition 3.2. The ring π0LK(T )En is a Noetherian excellent normal domain for
all finite non-increasing sequences T of non-negative integers.

Proof. We proceed by induction, the base case being clear. Suppose that the claim
has been proven for all sequences of length at most i− 1 and consider a sequence
T = {t1 ∪ T ′} with T ′ = (t2, . . . , ti) of length i− 1. Write R = LK(T ′)En, so π0R
is a Noetherian excellent normal domain by hypothesis. As is shown in the proof
of Lemma 3.1, there is an isomorphism π0LK(t1)R

∼= (π0R[u−1
t1 ])∧It1

. The ideal It1 ⊂
It2 satisfies the condition of Proposition 2.6 and therefore is prime. Thus the triple
(π0R, {ut1 , u

2
t1 , . . .}, It1) satisfies the assumptions of Proposition 2.4, hence π0LK(t1)R

is a Noetherian excellent normal domain.

As a special case of Proposition 3.2, we immediately obtain the following corollary,
which was used in the proof of [BS15, Lem. 4.4] and provided the original motivation
for this note:

Corollary 3.3. The ring Lt = π0LK(t)En is an excellent domain for all t and n. In
particular, Lt has the cancellation property.

In [BS15], we also studied a variant Ft = LK(t)((En)It) of Lt, where the localiza-
tion (−)It is understood in the ring-theoretic sense, i.e., as inverting the complement
of It.

Corollary 3.4. The ring π0Ft is an excellent domain.

Proof. We see as in the proof of Proposition 3.2 that the (degree 0) coefficients of Ft

are given by ((E0
n)It)

∧
It
, to which we can apply Proposition 2.4.

We now turn to the rings that feature prominently in the transchromatic char-
acter theory of Hopkins, Kuhn, and Ravenel [HKR00], as well as its generaliza-
tions [Sta13] and [BS16]. To this end, we quickly review the definition and role of
the coefficient ring for transchromatic character theory. For any integer 0 ⩽ t ⩽ n, let
GLK(t)En be the formal group associated to the natural map MU → En → LK(t)En,
viewed as a p-divisible group. In [Sta13], an Lt-algebra called Ct is defined which
carries the universal isomorphism of p-divisible groups

Ct ⊗GEn
∼= (Ct ⊗GLK(t)En)⊕ (Qp/Zp)

n−t.

Note that both Lt and Ct also depend on n. From the perspective of stable homotopy
theory, Ct is useful because there is a canonical isomorphism (the character map)

Ct ⊗E0
n
E0

n(BG)
∼= // Ct ⊗π0LK(t)En LK(t)E

0
n(Ln−tBG),

where L denotes the (p-adic) free loop space. The ring Ct is a colimit of smaller
rings Ct = colimk Ct,k. With p and n fixed implicitly, denote the finite abelian group
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(Z/pk)n−t by Λk,t. The ring Ct,k is a localization of Lt ⊗E0
n
E0

n(BΛ∗
k,t). The ring

E0
n(BΛ∗

k,t) carries the universal homomorphism

Λk,t
// GEn

.

Recall from [Sta13, Section 2] that the p-divisible group Lt ⊗E0
n
GEn is the middle

term in a short exact sequence

0 // GLt
// Lt ⊗E0

n
GEn

// Get
// 0,

where Get is a height n− t étale p-divisible group.
Let Tt,k ⊂ E0

n(BΛ∗
k,t) be the multiplicative subset generated by the nonzero image

of the canonical map

Λk,t
// GEn(E

0
n(BΛ∗

k,t)).

The nonzero image of this map has an explicit description in terms of a coordinate, as
we shall explain now. After fixing an isomorphism OGEn

∼= E0
nJxK, there is an induced

isomorphism

E0
n(BΛ∗

k,t)
∼= E0

nJx1, . . . , xtK/([pk](x1), . . . , [p
k](xt)),

where [pk](x) is the pk-series of the formal group law determined by the coordinate.
The nonzero image of Λk,t can be described as the set of nonzero sums

[i1](x1) +GEn
· · ·+GEn

[it](xt).

Of course, we may view Tk,t as a subset of Lt ⊗E0
n
E0

n(BΛ∗
k,t).

Let St,k ⊂ Lt ⊗E0
n
E0

n(BΛ∗
k,t) be the multiplicative subset generated by the nonzero

image of the canonical map

Λk,t
// (Lt ⊗E0

n
GEn)(Lt ⊗E0

n
E0

n(BΛ∗
k,t))

// Get(Lt ⊗E0
n
E0

n(BΛ∗
k,t)).

The ring Ct,k is defined to be S−1
t,k (Lt ⊗E0

n
E0

n(BΛ∗
k,t)). Instead of working with

this ring, we will work with the mild variation obtained by completing at It

Ĉt,k = (Ct,k)
∧
It = (S−1

t,k (Lt ⊗E0
n
E0

n(BΛ∗
k,t)))

∧
It .

This ring is an Lt-algebra in a canonical way and it corepresents a certain functor
on the category of continuous (with respect to the It-adic topology) Lt-algebras.
The functor associates to a continuous Lt-algebra R the set of isomorphisms under
R⊗GLt [p

k] of the form

R⊗GLt [p
k]⊕ Λk,t

∼= // R⊗GEn [p
k].

This follows immediately from Proposition 2.17 in [Sta13].
For a finite abelian group A, the scheme of A-level structures in the formal group

GEn
of Morava E-theory is represented by a ring DA:

Level(A,GEn)
∼= Spf(DA).

This ring was introduced by Drinfeld [Dri74]. It was also studied further by Strickland
in [Str97] and first applied to the study of Morava E-theory in [And95].
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Lemma 3.5. The ring DΛk,t
is a Noetherian excellent normal domain.

Proof. The ring DΛk,t
is a module-finite extension of E0

n. This immediately implies
that it is Noetherian and excellent. Drinfeld proves that it is regular local and this
implies that it is a normal domain.

Let A∗ be the Pontryagin dual of A. The rings E0
n(BΛ∗

k,t) and DΛk,t
are closely

related. There is a canonical surjective map

π : E0
n(BΛ∗

k,t)
// // DΛk,t

and the kernel is understood by the proof of Proposition 4.3 in [Dri74]. It is generated
by power series fi(x1, . . . , xi) for 1 ⩽ i ⩽ n− t, where

fi(x1, . . . , xi) =
[pk](xi)

gi(x1, . . . , xi)

and

gi(x1, . . . , xi) =
∏

(j1,...,ji−1)∈Λk,i−1

(
xi − ([j1](x1) +GEn

· · ·+GEn
[ji−1](xi−1))

)
.

Proposition 3.6. There is a canonical isomorphism

Ĉt,k
∼= (T−1

t,k (Lt ⊗E0
n
DΛk,t

))∧It .

Proof. This will be proved in two steps. First, inverting Tt,k and inverting St,k in
Lt ⊗E0

n
E0

n(BΛ∗
k,t) give the same ring after It-completion. Secondly, we show that

inverting Tt,k in E0
n(BΛ∗

k,t) kills the kernel of π.
It suffices to prove the first claim after taking the quotient by It. By [Sta13, proof

of Proposition 2.5], after taking the quotient, the ring of functions applied to the
quotient

Lt ⊗E0
n
GEn

[pk] // Get[p
k]

sends the coordinate y of Get[p
k] to the function xpkt

on Lt ⊗E0
n
GEn [p

k]. Thus the

set Tt,k is the pkt powers of the elements in St,k. Inverting an element is equivalent
to inverting any of its powers.

Since a−GEn
b is a unit multiple of a− b (for any elements a, b in the maximal

ideal of a complete local ring), it follows from Drinfeld’s description of the kernel of
π that inverting Tt,k in E0

n(BΛ∗
k,t) kills the kernel of π. Since DΛk,t

is a quotient of

E0
n(BΛ∗

k,t), there is an isomorphism

T−1
t,k E

0
n(BΛ∗

k,t)
∼= T−1

t,k DΛk,t
.

Remark 3.7. Theorem 36 of [MGPS15] gives a moduli description of the map
π0En → Lt. It would be satisfying to give a similar interpretation of DΛk,t

→ Ĉt

using the theory of pipe rings. Recall that the Drinfeld ring DΛk,t
classifies deforma-

tions equipped with Λk,t-level structures up to compatible ⋆-isomorphisms. A moduli

interpretation of the map DΛk,t
→ Ĉt would likely associate to a (properly topolo-

gized) pair R → S the groupoid with objects deformations of our fixed height n formal
group over k to R equipped with Λk,t-level structures and such that the pullback as
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p-divisible groups to S induces an isomorphism of Λk,t with the étale [pk]-torsion
of the étale part and morphisms compatible ⋆-isomorphisms. In order to make this
precise, one would need to develop the theory of p-divisible groups over pipe rings,
but this is beyond the scope of the present paper.

Corollary 3.8. For all k, the rings Ĉt,k are Noetherian excellent normal domains.

Proof. Since DΛk,t
is a Noetherian excellent normal domain and Ĉt,k can be con-

structed from DΛk,t
by iterated localization and completion, Proposition 2.4 applies.

Corollary 3.9. The ring colimk Ĉt,k, which receives a canonical map from Ct, is
normal.

Proof. This is an immediate consequence of Corollary 3.8 and Part (3) of Lemma 2.2.

For more many purposes in transchromatic homotopy theory (e.g., [BS16]), it is
more convenient to work with the completion of colimk Ĉt,k, so we end this note with
the following question.

Question 3.10. What can be said about (colimk Ĉt,k)
∧
It
?
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