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Abstract
There is a product decomposition of a compact connected Lie

groupG at the prime p, called the mod p decomposition, whenG
has no p-torsion in homology. Then in studying the multiplica-
tive structure of the p-localization of G, the Samelson products
of the factor space inclusions of the mod p decomposition are
fundamental. This paper determines the (non-)triviality of these
fundamental Samelson products in the p-localized exceptional
Lie groups when the factor spaces are of rank 6 2, that is, G is
quasi-p-regular.

1. Introduction

Let G be a compact connected Lie group. Recall from [10] that if G has no p-torsion
in integral homology, then there is a p-local homotopy equivalence

G ≃(p) B1 × · · · ×Bp−1 (1)

such that Bi is resolvable by spheres of dimension 2i− 1 mod 2(p− 1), where each
Bi is indecomposable if G is simple except for type D. This is called the mod p
decomposition of G. For maps α : A → X,β : B → X into a homotopy associative
H-space with inverse X, the composite

A ∧B
α∧β

−−−−→ X ∧X → X

is called the Samelson product of α, β and is denoted by 〈α, β〉, where the last arrow is
the reduced commutator map. Then in studying the standard multiplication of the p-
localization G(p), the Samelson products of the inclusions Bi → G(p) are fundamental,
and there are applications of these Samelson products as in [9, 5, 6]. In this paper,
we aim to determine (non-)triviality of these fundamental Samelson products in G(p)

when G is the quasi-p-regular exceptional Lie group, which is a continuation of the
previous work [4] on p-regular exceptional Lie groups.

The second author was supported in part by JSPS KAKENHI (No. 25400087).
Received May 4, 2017, revised September 21, 2017; published on January 24, 2018.
2010 Mathematics Subject Classification: 55P35, 57T10.
Key words and phrases: Samelson product, exceptional Lie group, quasi-p-regularity, mod p decom-
position.
Article available at http://dx.doi.org/10.4310/HHA.2018.v20.n1.a11
Copyright c© 2018, International Press. Permission to copy for private use granted.

http://intlpress.com/HHA/
http://intlpress.com/HHA/v20/
http://intlpress.com/HHA/v20/n1/


186 HASUI, KISHIMOTO, MIYAUCHI and OHSITA

Let us recall the result of the previous work [4]. We say that G is p-regular if
G is p-locally homotopy equivalent to a product of spheres. By the classical result
of Hopf, G is rationally homotopy equivalent to a product of spheres of dimension
2n1 − 1, . . . , 2nℓ − 1 for n1 6 · · · 6 nℓ. The sequence n1, . . . , nℓ is called the type of
G and is denoted by t(G). There is a list of types of simple Lie groups in [5]. It is
known that when G is simply connected, G is p-regular if and only if p is no less
than the maximum of t(G) (cf. [10]). Obviously, if G is p-regular, G is p-locally
homotopy equivalent to a product of spheres of dimension 2i− 1 for i ∈ t(G). Let
ǫi : S

2i−1 → G(p) denote the inclusion for i ∈ t(G) when G is p-regular.

Theorem 1.1 (Hasui, Kishimoto, and Ohsita [4]). Let G be a p-regular exceptional
Lie group. The Samelson product 〈ǫi, ǫj〉 in G(p) is non-trivial if and only if there is
k ∈ t(G) such that i+ j = k + p− 1.

Let B(2i− 1, 2i+ 2p− 3) be the S2i−1-bundle over S2i+2p−3 classified by an ele-
ment 1

2α1 ∈ π2i+2p−4(S
2i−1) ∼= Z/p as in [10, 11], where α1 is a generator of the p-

component of π2i+2p−4(S
2i−1) which is isomorphic with Z/p. Recall that G is quasi-p-

regular if G is p-locally homotopy equivalent to the product of B(2i− 1, 2i+ 2p− 3)’s
and spheres. When G is exceptional, it is shown in [11] that G is quasi-p-regular if
and only if p > 5 for G = G2,F4,E6 and p > 11 for G = E7,E8. In these cases, the
specific mod p decomposition is:

G2 p = 5 B(3, 11)

p > 5 S3 × S11

F4 p = 5 B(3, 11)×B(15, 23)

p = 7 B(3, 15)×B(11, 23)

p = 11 B(3, 23)× S11 × S15

p > 11 S3 × S11 × S15 × S23

E6 p = 5 F4 ×B(9, 17)

p > 5 F4 × S9 × S17

E7 p = 11 B(3, 23)×B(15, 35)× S11 × S19 × S27

p = 13 B(3, 27)×B(11, 35)× S15 × S19 × S23

p = 17 B(3, 35)× S11 × S15 × S19 × S23 × S27

p > 17 S3 × S11 × S15 × S19 × S23 × S27 × S35

E8 p = 11 B(3, 23)×B(15, 35)×B(27, 47)×B(39, 59)

p = 13 B(3, 27)×B(15, 39)×B(23, 47)×B(35, 59)

p = 17 B(3, 35)×B(15, 47)×B(27, 59)× S23 × S39

p = 19 B(3, 39)×B(23, 59)× S15 × S27 × S35 × S47

p = 23 B(3, 47)×B(15, 59)× S23 × S27 × S35 × S39

p = 29 B(3, 59)× S15 × S23 × S27 × S35 × S39 × S47

p > 29 S3 × S15 × S23 × S27 × S35 × S39 × S47 × S59

Let tp(G) be the subset of t(G) consisting of i ∈ t(G) such that 2i− 1 is the dimen-
sion of the bottom cell of some Bj in the mod p decomposition of G(p), where tp(G)
is possibly not a subset of {1, . . . , p− 1}. Since there is a one-to-one correspondence
between Bi’s and tp(G), we ambiguously denote the factor space of G(p) correspond-
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ing to i ∈ tp(G) by Bi. In our case, the set tp(G) can easily be deduced from the
above table as:

tp(G2) p = 5 2

tp(F4) p = 5 2, 8

p = 7 2, 6

p = 11 2, 6, 8

tp(E6) p = 5 2, 5, 8

p = 7 2, 5, 6, 9

p = 11 2, 5, 6, 8, 9

tp(E7) p = 11 2, 6, 8, 10, 14

p = 13 2, 6, 8, 10, 12

p = 17 2, 6, 8, 10, 12, 14

tp(E8) p = 11 2, 8, 14, 20

p = 13 2, 8, 12, 18

p = 17 2, 8, 12, 14, 20

p = 19 2, 8, 12, 14, 18, 24

p = 23 2, 8, 12, 14, 18, 20

p = 29 2, 8, 12, 14, 18, 20, 24

We now state our main result, where we owe the p-regular case to Theorem 1.1.
Let ǫi : Bi → G(p) denote the inclusion for i ∈ tp(G), and put ri = rankBi.

Theorem 1.2. Let G be a quasi-p-regular exceptional Lie group. Then for i, j ∈
tp(G), the Samelson product 〈ǫi, ǫj〉 in G(p) is trivial if and only if one of the fol-
lowing conditions holds:

1. there is no k ∈ tp(G) such that i+ j ≡ k mod (p− 1) and i+ j + (ri + rj −
1)(p− 1) > k + rk(p− 1);

2. ri + rj > 3 and there is k ∈ tp(G) such that k = i+ j + (ri + rj − 3)(p− 1);

3. i+ j = p+ 1 and ri + rj = 3;

4. (G, p, {i, j}) = (E6, 7, {2, 6}), (E7, 11, {2, 8}), (E7, 11, {8, 10}), (E8, 19, {2, 12}),
(E8, 19, {12, 12}).

Remark 1.3. This theorem includes the result of McGibbon [9] that G2 at the prime 5
is homotopy commutative.

The proof of Theorem 1.2 consists of three parts. The first part shows trivial-
ity of the Samelson products by looking at the homotopy groups of G. The second
part applies a criterion for non-triviality of the Samelson products by the Steenrod
operations on the mod p cohomology of the classifying space of G which is a general-
ization of the criterion used to prove Theorem 1.1 in [4]. The third part determines
(non-)triviality of the remaining Samelson products by considering a homotopy fibra-

tion hofib(ρ) → G
ρ

−−→ SU(∞) for a stabilized representation ρ, where the easiest case
that ρ is the inclusion of SU(n) is studied in [3]. Since SU(∞) is homotopy commu-
tative, Samelson products lift to hofib(ρ). Then the important point is to identify
the homotopy fiber hofib(ρ), and to this end, we decompose ρ with respect to the
mod p decompositions of G and SU(∞), which is not needed in [3]. We then describe
lifts of the Samelson products through the identification of hofib(ρ) and to determine
(non-)triviality of the Samelson products.
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2. Triviality of Samelson products

Hereafter we localize everything at the prime p. Suppose that (G, p) is as in Table 1.

Table 1:

SU(n) n 6 (p− 1)(p− 2) + 1

Sp(n), Spin(2n+ 1) 2n 6 (p− 1)(p− 2)

Spin(2n) 2(n− 1) 6 (p− 1)(p− 2)

G2,F4,E6 p > 5

E7,E8 p > 7

We first fix a homotopy equivalence (1). It is shown in [14] that there is a sub-
complex Ai of Bi such that the inclusion Ai → Bi induces an isomorphism

Λ(H̃∗(Ai)) ∼= H∗(Bi),

where Bi is as in (1). Put A = A1 ∨ · · · ∨Ap−1 and B = B1 × · · · ×Bp−1.

Theorem 2.1 (Kishimoto [6] and Theriault [13, 14]). Suppose that (G, p) is in
Table 1. The subcomplex A has the following properties:

1. there is a map j : A → G such that Σj has a left homotopy inverse, say t : ΣG →
ΣA;

2. the inclusion ΣG → BG is homotopic to the composite

ΣG
t

−−→ ΣA
j′

−−→ BG,

where j′ : ΣA → BG is the adjoint of the map j : A → G.

Consider the composite

G
E

−−→ ΩΣG
Ωt

−−−→ ΩΣA
̄

−−→ G

which we denote by g, where ̄ is the extension of the map j : A → G. Since g ◦ j ≃ j,
the map g is an isomorphism in cohomology since H∗(G) is an exterior algebra and
j∗ : H∗(G) → H∗(A) is identified with the projection onto the module of indecom-
posables. Hence g is a homotopy equivalence by the J.H.C. Whitehead theorem.

Theorem 2.2 (Theriault [13, 14]). Suppose that (G, p) is in Table 1. There is a map
r : ΩΣA → B satisfying the following properties:

1. the inclusion A → B is homotopic to the composite

A
E

−−→ ΩΣA
r

−−→ B;

2. the composite

G
E

−−→ ΩΣG
Ωt

−−−→ ΩΣA
r

−−→ B

is a homotopy equivalence.

We denote the homotopy equivalence in Theorem 2.2 by h : G → B and put e =

g ◦ h−1. Let ǫi : Bi → G be the composite Bi
incl

−−−→ B
e

−−→ G and ǭi : Ai → G be its
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restriction. By Theorem 2.2, h ◦ j ≃ k, where k : A → B is the inclusion. Then we
have

ǭi = ǫi ◦ k|Ai
= e ◦ k|Ai

≃ g ◦ h−1 ◦ h ◦ j|Ai
≃ g ◦ j|Ai

≃ j|Ai
.

Corollary 2.3 (Kishimoto [6]). Suppose that (G, p) is in Table 1. The Samelson
product 〈ǫi, ǫj〉 is trivial if and only if 〈ǭi, ǭj〉 is trivial.

We then consider (non-)triviality of the Samelson products 〈ǭi, ǭj〉 instead of 〈ǫi, ǫj〉.
We show triviality of the Samelson products by looking at the homotopy groups of
spheres and Bi.

Proposition 2.4 (Toda [15]). For i > 2 and ∗ 6 2i+ 2p(p− 1)− 4, we have

π∗(S
2i−1) ∼=





Z(p) ∗ = 2i− 1,

Z/p ∗ = 2i− 2 + 2j(p− 1) (j = 1, . . . , p− 1),

Z/p ∗ = 2i− 3 + 2j(p− 1) (j = i, . . . , p− 1),

0 otherwise.

Proposition 2.5 (Mimura and Toda [11], and Kishimoto [6]). For ∗ 6 2p(p− 1),
we have

π∗(B(3, 2p+ 1)) ∼=





Z(p) ∗ = 3, 3 + 2(p− 1),

Z/p ∗ = 2j(p− 1) + 2 (j = 2, . . . , p− 1),

0 otherwise

and for i > 3 and ∗ 6 2i− 4 + 2p(p− 1), we have

π∗(B(2i− 1, 2i− 1 + 2(p− 1))) ∼=





Z(p) ∗ = 2i− 1, 2i− 1 + 2(p− 1),

Z/p2 ∗ = 2i− 2 + 2j(p− 1) (j = 2, . . . , p− 1),

Z/p ∗ = 2i− 3 + 2j(p− 1) (j = i, . . . , p− 1),

0 otherwise.

When G is a quasi-p-regular simple Lie group except for Spin(4n), there is a one-
to-one correspondence between tp(G) and non-trivial Bi, and we have

Ai ≃

{
S2i−1 ri = 1,

S2i−1 ∪α1
e2i−1+2(p−1) ri = 2

for i ∈ tp(G).

Corollary 2.6. Let G be a quasi-p-regular simple Lie group except for Spin(4n). For
i, j ∈ tp(G), we have:

1. if there is no k ∈ tp(G) such that i+ j ≡ k mod (p− 1) and i+ j + (ri + rj −
1)(p− 1) > k + rk(p− 1), then the homotopy set [Ai ∧Aj , G] is trivial;

2. if there is k ∈ tp(G) such that i+ j ≡ k mod (p− 1) and i+ j + (ri + rj −
1)(p− 1) > k + rk(p− 1), then k is unique and [Ai ∧Aj , G] ∼= [Ai ∧Aj , Bk].

Proof. Since Ai ∧Aj for i, j ∈ tp(G) has cells in dimension 2i+ 2j − 2 + 2r(p− 1)
for 0 6 r 6 ri + rj − 2, the corollary follows from Propositions 2.4 and 2.5.
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Corollary 2.7. Let G be a quasi-p-regular simple Lie group except for Spin(4n). If
for i, j ∈ tp(G) there is no k ∈ tp(G) such that

i+ j ≡ k mod (p− 1) and i+ j + (ri + rj − 1)(p− 1) > k + rk(p− 1),

then the Samelson product 〈ǭi, ǭj〉 is trivial.

We further prove triviality of the Samelson products 〈ǭi, ǭj〉 in the special cases.

Proposition 2.8. Suppose that G is a quasi-p-regular simple Lie group except for
Spin(4n). If for i, j ∈ tp(G), there is k ∈ tp(G) such that

ri + rj > 3 and k = i+ j + (ri + rj − 3)(p− 1),

then the Samelson product 〈ǭi, ǭj〉 is trivial.

Proof. By Corollary 2.6, we have [Ai ∧Aj , G] ∼= [Ai ∧Aj , Bk], so it is sufficient to
show that [Ai ∧Aj , S

2k−1] is trivial since rk = 1 for degree reasons. We first consider
the case ri + rj = 3. In this case, we have Ai ∧Aj ≃ S2(i+j−1) ∪α1

e2(i+j+p−2), where

i+ j = k. Then there is a homotopy cofibration S2(i+j+p−2)−1 α1−−−→ S2(i+j−1) → Ai ∧
Aj which induces an exact sequence

π2k−1(S
2k−1)

α∗

1−−−→ π2k+2p−4(S
2k−1) → [Ai ∧Aj , S

2k−1] → π2k−2(S
2k−1).

Since π2k+2p−4(S
2k−1) is generated by α1, the second arrow is trivial, and so for

π2k−2(S
2k−1) = 0, we get [Ai ∧Aj , S

2k−1] = ∗.

We next consider the case ri = rj = 2. In this case, we have [Ai ∧Aj , S
2k−1] ∼=

[Ai ∧Aj/S
2(i+j−1), S2k−1] and Ai ∧Aj/S

2(i+j−1) ≃ S2(i+j+p−2) ∨ (S2(i+j+p−2) ∪α1

e2(i+j+2p−3)), where k = i+ j + p− 1. Then we get [Ai ∧Aj , S
2k−1] = ∗ in the same

way as above.

By Corollary 2.7 and Proposition 2.8, it remains to check (non-)triviality of the
Samelson products 〈ǭi, ǭj〉 for (G, p, {i, j}) in Table 2. Note that the G2 case and the
p-regular case are done in the previous section and Theorem 1.1. Further, since the
inclusion F4 → E6 has a right homotopy inverse at the prime p > 3 as in the table of
the mod p decomposition, we only have to consider E6, E7 and E8.

Table 2:

E6 p = 5 {2, 8}, {5, 5}, {5, 8}, {8, 8}

p = 7 {2, 6}, {2, 9}, {5, 6}, {5, 9}, {6, 6}, {6, 9}, {9, 9}

p = 11 {6, 9}, {8, 8}, {9, 9}

E7 p = 11 {2, 8}, {2, 10}, {2, 14}, {6, 10}, {6, 14}, {8, 8}, {8, 10}, {8, 14},

{10, 10}, {10, 14}, {14, 14}

p = 13 {2, 6}, {2, 12}, {6, 6}, {6, 8}, {6, 12}, {8, 12}, {10, 10}, {10, 12},

{12, 12}

p = 17 {8, 14}, {10, 12}, {10, 14}, {12, 12}, {12, 14}, {14, 14}
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E8 p = 11 {2, 20}, {8, 14}, {8, 20}, {14, 14}, {14, 20}, {20, 20}

p = 13 {2, 12}, {2, 18}, {8, 12}, {8, 18}, {12, 12}, {12, 18}, {18, 18}

p = 17 {8, 20}, {14, 14}, {14, 20}, {20, 20}

p = 19 {2, 12}, {2, 18}, {2, 24}, {8, 12}, {8, 18}, {8, 24}, {12, 12}, {12, 14},

{12, 18}, {12, 24}, {14, 18}, {14, 24}, {18, 18}, {18, 24}, {24, 24}

p = 23 {14, 20}, {18, 18}, {20, 20}

p = 29 {12, 24}, {18, 18}, {18, 24}, {20, 20}, {24, 24}

3. Cohomology of BG

The coefficient of cohomology will be Z(p) unless otherwise specified. Suppose that
H∗(G) has no p-torsion and t(G) = {n1, . . . , nℓ}. Then the cohomology of the classi-
fying space BG is given by

H∗(BG) = Z(p)[x2n1
, . . . , x2nℓ

], |xi| = i.

We recall from [17, 18, 4] a choice of generators xi when G is an exceptional Lie
group. As in [1], there is a commutative diagram of subgroup inclusions

Spin(9)
i0

j0

Spin(10)
i1

j1

Spin(11)
i2

j2

Spin(15)

j3

F4
k0

E6
k1

E7
k2

E8.

The choice of generators xi is made through these inclusions. Recall that we have

H∗(BSpin(2n+ 1)) = Z(p)[p1, . . . , pn], H∗(BSpin(2n)) = Z(p)[p1, . . . , pn−1, cn],

where pi and cn are the Pontrjagin class and the Euler class of the universal bundle
respectively. If a polynomial P is a sum of a polynomial Q and other terms, then we
write P ⊲ Q.

Proposition 3.1. For p > 7, generators xi for E8 can be chosen such that

j∗3 (x4) = p1,

j∗3 (x16) = 12p4 −
18

5
p3p1 + p22 +

1

10
p2p

2
1,

j∗3 (x24) = 60p6 − 5p5p1 − 5p4p2 + 3p23 − p3p2p1 +
5

36
p32,

j∗3 (x28) ≡ 480p7 + 40p5p2 − 12p4p3 − p3p
2
2 − 3p4p2p1 +

24

5
p23p1 +

11

36
p32p1 mod (p21),

j∗3 (x36) ≡ 480p7p2 + 72p6p3 − 30p5p4 −
25

2
p5p

2
2 + 9p4p3p2 −

18

5
p33

−
1

4
p3p

3
2 − 42p6p2p1 + 9p5p3p1 −

3

2
p4p

2
2p1 +

9

5
p23p2p1 +

1

24
p42p1 mod (p21),

j∗3 (x40) ≡ 480p7p3 + 50p6p
2
2 + 50p25 − 10p5p3p2 −

25

2
p24p2 + 9p4p

2
3

−
25

36
p4p

3
2 +

3

4
p23p

2
2 +

25

864
p52 mod (p1),
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j∗3 (x48) ≡ −200p7p5 − 60p7p3p2 + 3p6p
2
3 +

25

9
p6p

3
2 +

25

3
p25p2 −

5

2
p5p4p3

−
25

24
p5p3p

2
2 −

25

48
p24p

2
2 + p4p

2
3p2 +

25

864
p4p

4
2 −

3

10
p43 −

1

36
p23p

3
2

−
25

62208
p62 mod (p1),

j∗3 (x60) ⊲ 144p7p5p3 − 5p35 +
3

2
p25p3p2 −

89

1440
p5p

2
4p2 −

229

1600
p5p4p

2
3 −

13

320
p5p4p

3
2

−
229

3840
p5p

2
3p

2
2 +

29

13824
p5p

5
2 −

43

1920
p34p3 +

1357

38400
p24p3p

2
2 −

59

3200
p4p

3
3p2

−
421

153600
p4p3p

4
2 +

177

40000
p53 +

59

115200
p33p

3
2,

where j∗3 (x40), j
∗

3 (x60) do not include multiples of p5p4p1, p
2
7p1, respectively.

Proof. The choice of xi except for i = 60 is made in [4], where we subtract a multiple
of x4x36 from x40 if necessary so that j∗(x40) does not include a multiple of p5p4p1,
and we can take x60 quite similarly. Further, by subtracting a multiple of x4x

2
28

if necessary, we can take x60 so that j∗3 (x60) does not include a multiple of p27p1,
completing the proof.

Proposition 3.2. For p > 7, generators xi for E7 can be chosen such that:

1. k∗2(xi) = xi (i = 4, 16, 24, 28, 36) j∗2 (x12) = −6p3 + p2p1 j∗2 (x20) = p5;

2. modulo H̃∗(BE7)
3

k∗2(x40) ≡
1

24
x12x28 +

5

24
x16x24 + 50x2

20,

k∗2(x48) ≡ −
1

72
x12x36 +

5

24
x20x28 −

1

48
x2
24,

k∗2(x60) ≡ −
131

144000
x24x36.

Proof. (1) is proved in [4], and (2) is obtained by Proposition 3.1 and (1).

Proposition 3.3. For p > 5, generators xi for E6 can be chosen such that

j∗1 (x4) = p1, j∗1 (x10) = c5,

j∗1 (x12) = −6p3 + p2p1, j∗1 (x16) = 12p4 − 3p3p1 + p22,

j∗1 (x18) = p2c5, j∗1 (x24) = −72p4p2 + 27p4p
2
1 + 27p23 − 9p3p2p1 + 2p32.

Proof. The argument on the choice of xi (i = 10, 18) for E6 in [4] works also for
p > 5, so we can choose xi (i = 10, 18) for E6 as in the statement. On the other hand,
Watanabe [17] chooses generators xi for F4 through the inclusion j0 : Spin(9) → F4.
Then since i∗0(pi) = pi (i = 1, 2, 3, 4) and i∗0(c5) = 0, a degree reason shows that the
choice of xi for F4 implies the choice of xi for E6 (i = 4, 12, 16, 24).

Remark 3.4. We choose generators xi for E6 independently from E7,E8 since we have
to consider the primes 5, 7.
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4. Steenrod operations and Samelson products

Suppose that (G, p) is in Table 1 except for Spin(4n), where we exclude Spin(4n)
to make t(G) consist of distinct integers. Define y2j−1 ∈ H2j−1(Ai) by (ǭ′i)

∗(x2j) =
Σy2j−1 for j ≡ i mod (p− 1), where f ′ : ΣX → Y denotes the adjoint of a map
f : X → ΩY . Then y2j−1 is non-trivial and satisfies

(ǭ′i)
∗(x2k) =

{
Σy2k−1 k ≡ i mod (p− 1),

0 k 6≡ i mod (p− 1)

since t(G) consists of distinct integers. We detect non-triviality of the Samelson prod-
ucts 〈ǭi, ǭj〉 by the following criterion (cf. [8, Proof of Theorem 1.1], [7]).

Proposition 4.1. Suppose that (G, p) is in Table 1 except for Spin(4n) and that
for i, j ∈ tp(G), there is k ∈ tp(G) such that i+ j > k and Prkx2k includes the term
λx2i+2si(p−1)x2j+2sj(p−1) with λ 6=0, si 6min{ri−1, rk−1}, sj 6min{rj −1, rk−1}.
Then 〈ǭi, ǭj〉 is non-trivial.

Proof. Assume that 〈ǭi, ǭj〉 is trivial. Then by the adjointness of Samelson prod-
ucts and Whitehead products, the Whitehead product [ǭ′i, ǭ

′

j ] is trivial, implying
ǭ′i ∨ ǭ′j : ΣAi ∨ ΣAj → BG extends to µ : ΣAi × ΣAj → BG up to homotopy. Let µ̄ be

the restriction of µ to ΣA(2i−1+2(rk−1)(p−1)) × ΣA(2j−1+2(rk−1)(p−1)). Then we have
Prk µ̄∗(x2k) = 0 since Prk is trivial on the mod p cohomology of A(2n−1+2(rk−1)(p−1))

for n = i, j. On the other hand, we have

Prk µ̄∗(x2k) = µ̄∗(Prkx2k)

= µ̄∗(λx2i+2si(p−1)x2j+2sj(p−1)) = λΣy2i+2si(p−1) ⊗ Σy2j+2sj(p−1)

since Prkx2k has no linear part for a degree reason. This is a contradiction, so the
Samelson product 〈ǭi, ǭj〉 is non-trivial.

In order to apply Proposition 4.1, we calculate the linear and the quadratic parts
of P1x2k.

Lemma 4.2. The linear and the quadratic parts of P1xi for E6 are given by:

i = 4 i = 10 i = 12

i = 16 i = 18 i = 24

p = 5 −x12 −x18 0

x24 −x10x16 x2
16

p = 7 −2x16 + 5x4x12 x4x18 + 3x10x12 −2x24 − 4x2
12

−3x12x16 −x12x18 −2x2
18

p = 11 −2x24 − 2x2
12 −x12x18 −4x2

16

6x2
18 0 0
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Proof. Recall from [12] that there is the mod p Wu formula

P1pn =
∑

i1+2i2+···+5i5=n+ p−1
2

(−1)i1+···+i5+
p+1
2

(i1 + · · ·+ i5 − 1)!

i1! · · · i5!

×

(
2n− 1−

∑n−1
j=1 (2n+ p− 1− 2j)ij

i1 + · · ·+ i5 − 1

)
pi11 · · · pi55

in H∗(BSpin(10);Z/p), where p5 = c25. For example, consider the case i = 16 and
p = 11. Then by Proposition 3.3 we have

j∗1 (P
1x16) = P1j∗(x16) ⊲ 7p5p4 + 2p5p

2
2,

so for a degree reason, we must have P1x16 ⊲ 6x2
18 + 7x16x

2
10. The remaining calcu-

lations are done in the same way.

Lemma 4.3. The linear and the quadratic parts of P1xi for E8 are given by:

i = 4 i = 16

i = 24 i = 28

i = 36 i = 40

i = 48 i = 60

p = 11 2x24 6x36

0 3x48

3x16x40 + 9x2
28 9x60

5x28x40 5x2
40

p = 13 −x28 + 8x4x24 8x40 − 2x4x36 + 4x16x24

4x48 + 5x2
24 5x24x28

5x60 + 2x24x36 9x4x60 − x16x48 + x24x40 + 4x28x36

−x24x48 − x2
36 8x24x60 + 7x36x48

p = 17 4x36 13x48 + 2x2
24

11x16x40 + 7x2
28 12x60 + 5x24x36

0 −x24x48 + 10x2
36

13x2
40 0

p = 19 4x40 + 11x4x36 + 9x16x24 10x4x48 + 11x16x36 + 17x24x28

10x60 + x24x36 −x4x60 + 10x16x48 − 3x24x40 − 4x28x36

4x24x48 + 4x2
36 5x16x60 + x36x40

11x24x60 + 9x36x48 −3x36x60 − 2x2
48

p = 23 10x48 + x2
24 x60 + 5x24x36

−9x28x40 8x24x48 − 10x2
36

13x2
40 3x24x60 − 8x36x48

0 0

p = 29 −2x60 − x24x36 −x24x48 − 5x2
36

11x2
40 17x24x60 − 5x36x48

0 14x36x60 + 13x2
48

0 0

Proof. The proof is the same as Lemma 4.2.
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Lemma 4.4. The linear and the quadratic parts of P1xi for E7 are given by:

i = 4 i = 12

i = 16 i = 20

i = 24 i = 28

i = 36

p = 11 2x24 −3x4x28 − 5x12x20 − 2x2
16

6x36 −3x4x36 − 5x12x28 + 10x2
20

0 5x12x36 + 2x20x28 + 2x2
24

9x2
28

p = 13 −x28 + 8x4x24 −2x36 + 7x12x24 + 2x16x20

−2x4x36 − 4x12x28 − 3x16x24 − 3x2
20 7x16x28 + 4x20x24

5x12x36 + 3x20x28 + 6x2
24 5x24x28

−3x24x36

p = 17 4x36 5x16x28 − 2x20x24

−x12x36 + 2x20x28 + 6x2
24 7x24x28

7x2
28 −3x24x36

0

Proof. P1xi for i = 4, 16, 24, 28, 36 can be calculated by Proposition 3.2 and Lem-
ma 4.3, and P1xi for i = 12, 20 can be calculated in the same way as Lemma 4.2.

We now prove:

Proposition 4.5. The Samelson product 〈ǭi, ǭj〉 in G is non-trivial for (G, p, {i, j})
in the following table:

E6 p = 5 {5, 8}, {8, 8}

p = 7 {2, 9}, {5, 6}, {6, 6}, {6, 9}, {9, 9}

p = 11 {6, 9}, {8, 8}, {9, 9}

E7 p = 11 {2, 14}, {6, 10}, {6, 14}, {8, 8}, {10, 10}, {10, 14}, {14, 14}

p = 13 {8, 12}, {10, 10}, {10, 12}, {12, 12}

p = 17 {8, 14}, {10, 12}, {10, 14}, {12, 12}, {12, 14}, {14, 14}

E8 p = 11 {8, 20}, {14, 14}, {14, 20}, {20, 20}

p = 13 {2, 18}, {8, 12}, {12, 12}, {12, 18}, {18, 18}

p = 17 {8, 20}, {14, 14}, {20, 20}

p = 19 {2, 24}, {8, 12}, {8, 18}, {8, 24}, {12, 14}, {12, 18}, {12, 24}, {14, 18},

{18, 18}, {18, 24}, {24, 24}

p = 23 {14, 20}, {18, 18}, {20, 20}

p = 29 {12, 24}, {18, 18}, {18, 24}, {20, 20}, {24, 24}

Proof. We can verify the conditions of Proposition 4.1 by Lemmas 4.2, 4.3 and 4.4,
where we have P1P1 = 2P2 by the Adem relation. Thus the result follows from Propo-
sition 4.1.
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5. Chern classes

In order to determine (non-)triviality of the Samelson products that are not detect-
ed in the previous sections, we will use representations of the exceptional Lie groups
and their Chern classes. Then we calculate these Chern classes. We refer to [1] for
basic materials of representations that we consider in this section. For the canonical
representation λn : Spin(n) → SU(n), we have

c2i−1(λn) = 0, c2i(λn) = (−1)ipi (i = 2, . . . , n), (2)

where p2k = c2k if n = 2k. Then by Girard’s formula on power sums and elementary
symmetric polynomials

n!chn =
∑

i1+2i1+···+nin=n

(−1)n+i1+···+in
n(i1 + · · ·+ in − 1)!

i1! · · · in!
ci11 · · · cinn , (3)

we can calculate the Chern character of λ, where chn denotes the 2n-dimensional part
of the Chern character. Let α : Spin(11) → SU(55) be the adjoint representation of
Spin(11), and let ∆+,∆ be the positive half spin representation of Spin(10) and the
spin representation of Spin(11). The weights of α are the roots of Spin(11) by defini-
tion. As in [1], the weights of ∆+ are ǫ1t1 + · · ·+ ǫ5t5 (ǫ1 · · · ǫ5 = 1) and the weights of
∆ are ǫ1t1 + · · ·+ ǫ5t5 (ǫ1 · · · ǫ5 = ±1). Then one can calculate ch(α), ch(∆), ch(∆+)
with the assistance of a computer as follows.

Lemma 5.1.

1. i!chi(λ10 +∆+ + 1) includes the following terms:

i = 2 6p1 i = 5 60c5

i = 6 18p3 i = 8 60p4 + 24p3p1

i = 9 126p2c5 i = 10 135p4p1 + 630c25
i = 12 135p4p2 + 18p23 i = 14 231p4p3 +

1337
4 p4p2p1 + 2233p2c

2
5

i = 20 6885
4 p24p2

2. i!chi(2λ11 +∆+ 2) includes the following terms:

i = 2 12p1

i = 6 36p3

i = 8 120p4 + 48p3p1

i = 10 1260p5 + 270p4p1

i = 12 270p4p2 + 36p23
i = 14 4466p5p2 + 462p4p3 +

1337
2 p4p2p1

i = 18 39672p5p4 + 6993p5p
2
2 + 1134p4p3p2

i = 20 151300p25 + 189190p5p4p1 + 37570p5p3p2 +
50785

2 p5p
2
2p1 +

6885
2 p24p2

i = 22 179949p5p4p2 +
27797

4 p5p
3
2

i = 24 950400p25p2 + 390390p5p4p3 +
19569

2 p34 +
43887

8 p24p
2
2

i = 30 27047655
2 p25p3p2 +

3907395
2 p5p4p

2
3 +

2450295
8 p5p

2
3p

2
2

3. i!chi(α+ 4∆+ 65) includes the following terms:
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i = 2 60p1

i = 8 1440p4

i = 10 0 · p5

i = 12 −7560p4p2

i = 14 92400p5p2 − 40110p4p2p1

i = 18 −982800p5p4

i = 20 4600200p25 − 1748790p24p2

i = 22 34950300p25p1 − 6715170p24p3

i = 24 −69872880p25p2 + 20077794p34 +
22514031

2 p24p
2
2

i = 26 −219540750p5p
2
4 − 41441400p4p

3
3 − 697554000p25p2p1

i = 30 −2289787500p35 +
10586291625

2 p5p
2
4p2 −

2479051575
2 p34p3

i = 32 −26808164160p35p1 − 29632951680p25p4p2 + 1801812456p25p
2
3

−1601056128p5p
3
3p2

i = 34 66371012400p35p2

i = 38 −952563046800p35p4 − 949011128850p35p
2
2 − 46394357586p25p

3
3

i = 42 −1030173212250p23p
3
5

i = 50 −914425331875000p55
i = 60 −340771201982677620p55p3p2 − 12363661137209454345p45p

2
4p2

+776927112035890410p45p4p
2
3 −

20464209777645659655
2 p45p4p

3
2

+ 4154188924169320995
4 p45p

2
3p

2
2 −

15713809488581615145
16 p45p

5
2

− 12852298085402204835
8 p35p4p

3
3p2 +

44662086886161465
2 p35p

5
3

− 15212346544088595405
32 p35p

3
3p

3
2 +

16285084675436347155
8 p25p

5
4

+ 634726068898356739815
64 p25p

4
4p

2
2 −

226812497505304105395
32 p25p

3
4p

2
3p2

+ 149364900987340422405
32 p25p

3
4p

4
2 +

5425603982540815815
8 p25p

2
4p

4
3

− 658004024293760076975
128 p25p

2
4p

2
3p

3
2 +

227646297744518937585
512 p25p

2
4p

6
2

+ 16657727505432381165
16 p25p4p

4
3p

2
2 −

236740660412585333865
512 p25p4p

2
3p

5
2

+ 19109048218262101365
2048 p25p4p

8
2 − 32085165434973420p25p

6
3p2

+ 10050849772724723655
128 p25p

4
3p

4
2 −

126872100695409424425
512 p74p2

− 561833719261457328105
2048 p64p

3
2 −

417106897597216552845
8192 p54p

5
2

Remark 5.2. For (i, ℓ) = (60, 8), the twenty-four terms in the above list are chosen so
that the following condition holds. For a monomialm ∈ H120(BSpin(11))/(p1), let am
be the vector consisting of the coefficients of m in the monomials of H120(BE8)/(x4).
Then am for the above monomials form a square matrix, which is invertible. Note
that ap6

5
and ap5

5p3p2
are linearly dependent.

Let ρℓ be the irreducible 27, 56, 248 dimensional representation of Eℓ for ℓ = 6, 7, 8
respectively. Then we have

ρ6 ◦ j1 = λ10 +∆+ + 1, ρ7 ◦ j2 = 2λ11 +∆+ 2, ρ8 ◦ j3 ◦ i2 = α+ 4∆+ 65.

Thus by Propositions 3.1, 3.2, 3.3 and Lemma 5.1, we can determine the linear and
the quadratic parts of chi(ρℓ) except for the coefficient of x36x48 in ch42(ρ8). Then by
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the inductive use of (3), we obtain the following proposition, which gives the linear
and the quadratic parts of ci(ρℓ) in each case except for (i, ℓ) = (42, 8).

Proposition 5.3.

1. The linear and the quadratic parts of the Chern classes ci(ρ6) are:

i = 2 −3x4 i = 5 12x10

i = 6 1
2x12 i = 8 − 5

8x16 −
11
16x4x12

i = 9 14x18 i = 10 3
4x4x16 + 9x2

10

i = 12 5
32x24 −

13
384x

2
12 i = 14 − 19

192x4x24 +
17
2 x10x18 −

1
12x12x16

i = 20 1
512x16x24

2. The linear and the quadratic parts of the Chern classes ci(ρ7) are:

i = 2 −6x4

i = 6 x12

i = 8 − 5
4x16 −

17
4 x4x12

i = 10 −126x20 +
21
4 x4x16

i = 12 9
2x24 +

907
2 x4x20 +

1
24x

2
12

i = 14 − 319
40 x28 −

67
8 x4x24 +

43
80x12x16

i = 18 1229
60 x36 −

749
200x12x24 +

601
24 x16x20

i = 20 − 1043
24 x4x36 −

71
480x12x28 −

441
160x16x24 + 373x2

20

i = 22 − 137
640x16x28 +

1827
20 x20x24

i = 24 − 1711
1440x12x36 +

297
20 x20x28 +

4047
800 x2

24

i = 30 963
400x24x36

3. The linear and the quadratic parts of the Chern classes ci(ρ8) are:

i = 2 −30x4

i = 8 −15x16

i = 12 −126x24

i = 14 −165x28 + 3306x4x24

i = 18 −1820x36

i = 20 − 23001
5 x40 +

408519
10 x4x36 +

27821
20 x16x24

i = 22 106233x4x40 +
5685
16 x16x28

i = 24 1746822
5 x48 +

120512
25 x2

24

i = 26 −7648542x4x48 +
92275
24 x16x36 +

18645
4 x24x28

i = 30 −15265250x60 −
24568999

576 x24x36

i = 32 1236701415
4 x4x60 −

747928
5 x16x48 +

40849521
200 x24x40 +

29810159
960 x28x36

i = 34 − 2170113
10 x28x40

i = 38 − 230904475
12 x16x60 +

16714837
20 x28x48 +

95373791
60 x36x40

i = 42 68678214150x24x60

i = 50 −2930823500x40x60

i = 60 − 23018190805225
48 x2

60

Since we are computing ci(ρℓ) via Spin(10) and Spin(11) whose ranks are less than
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Eℓ, ci(ρℓ) might not be determined in some cases by the above direct computation.
In these cases, we determine ci(ρℓ) mod p by an indirect way as follows.

Proposition 5.4. The quadratic parts of ci(ρℓ) mod p are given by:

(i, ℓ, p) = (28, 7, 11) 3x20x36 − 2x2
28 (i, ℓ, p) = (36, 7, 13) −4x2

36

Proof. We only calculate c28(ρ7) mod 11 since the other case can be similarly cal-
culated. Recall from [12] that there is the mod p Wu formula

P1ck =
∑

i1+2i2+···+nin=k+p−1

(−1)i1+···+in−1 (i1 + · · ·+ in − 1)!

i1! · · · in!

×

(
k − 1−

∑k−1
j=2 (k + p− 1− j)ij

i1 + · · ·+ in − 1

)
ci11 · · · cinn

in H∗(BU(n);Z/p). Then we get P1c18 ⊲ 6c28 + c10c18. On the other hand, we

have 6c28(ρ7) + c10(ρ7)c18(ρ7) ≡ 6c28(ρ7)− 8x20x36 mod H̃∗(BE7;Z/11)
3 by Prop-

osition 5.3. On the other hand, by Lemma 4.4 and Proposition 5.3, we have
P1c18(ρ7) ≡ P1( 122960 x36 +

601
24 x16x20) ≡ −x2

28 − x20x36 mod H̃∗(BE7;Z/11)
3. Then

we obtain the desired result.

6. Decomposition of representations

In order to calculate the Samelson products, we will need to identify the homo-
topy fiber of a stabilized representation of G. To this end, we decompose stabilized
representations with respect to the mod p decomposition of G.

The following universality of the space B is proved by Theriault [13].

Theorem 6.1 (Theriault [13]). If (G, p) is in Table 1, then B is a homotopy asso-
ciative and homotopy commutative H-space satisfying the following properties:

1. the map r : ΩΣA → B in Theorem 2.2 is the H-map extending the inclusion
A → B;

2. for any map f : A → Z into a homotopy associative, homotopy commutative
H-space Z, there is a unique, up to homotopy, H-map f ′ : B → Z such that
f ′|A ≃ f .

We compare the H-structure of B in Theorem 6.1 and the H-structure of G.

Lemma 6.2. Suppose that (G, p) is in Table 1. Given any H-map f : G → Z into a
homotopy associative and homotopy commutative H-space Z, the map f ◦ e : B → Z
is too an H-map.

Proof. Let ̄ : ΩΣA → G be the extension of j : A → G. Then since both ̄ and f are
H-maps, the composite f ◦ ̄ : ΩΣA → Z is an H-map. There is an H-map f ′ : B → Z
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satisfying f ′|A ≃ f ◦ j and a homotopy commutative diagram

ΩΣA
f◦̄

r

Z

B
f ′

Z.

Indeed, by Theorem 6.1, there is an H-map f ′ : B → Z such that f ′|A ≃ f ◦ j, imply-
ing (f ′ ◦ r)|A ≃ f ◦ j. Since f ′ ◦ r is an H-map, the universality of the loop-suspension
guarantees that f ′ ◦ r is homotopic to f ◦ ̄.

Next we prove the statement of the lemma. By the definition of the homotopy
equivalences g : G → G and h : G → B, we have

f ◦ g = f ◦ ̄ ◦ Ωt ◦ E ≃ f ′ ◦ r ◦ Ωt ◦ E ≃ f ′ ◦ h.

Thus for e = g ◦ h−1, the proof is completed.

Let SU(∞) ≃ C1 × · · · × Cp−1 be the mod p decomposition such that π∗(Ck) = 0

for ∗ 6≡ 2k + 1 mod 2(p− 1). Let C̃k and S̃U(∞) be the 3-connective covers of Ck

and SU(∞), respectively. Then we have S̃U(∞) ≃ C̃1 × · · · × C̃p−1 and there is a

homotopy equivalence SU(∞)
≃

−−→ Ω2S̃U(∞) which is a loop map. We now decom-
pose an H-map ρ : G → SU(∞) with respect to the mod p decompositions of G and

SU(∞). Define a map ρk : Bi → Ω2C̃k by the composite

Bk
ǫk−−→ G

ρ
−−→ SU(∞)

≃

−−→ Ω2S̃U(∞)
proj

−−−−→ Ω2C̃k.

Lemma 6.3. Suppose that (G, p) is in Table 1. For an H-map ρ : G → SU(∞), the
composite

B = B1 × · · · ×Bp−1
ρ1

×···×ρp−1

−−−−−−−−−→ Ω2C̃1 × · · · × Ω2C̃p−1 ≃ SU(∞)

is an H-map too.

Proof. By Lemma 6.2, the map ρ ◦ e : B → SU(∞) is an H-map. As in [13, 14], the H-
structure of B is the product of certain H-structures of Bi, so the map ρ1 × · · · × ρp−1

is an H-map. Thus the proof is done.

Theorem 6.4. Suppose that (G, p) is in Table 1. If ρ : G → SU(∞) is an H-map,
then ρ ◦ e ≃ ρ1 × · · · × ρp−1.

Proof. By Lemmas 6.2 and 6.3, the maps ρ ◦ e and ρ1 × · · · × ρp−1 are H-maps. Then
for (ρ ◦ e)|A ≃ (ρ1|A1

) ∨ · · · ∨ (ρp−1|Ap−1
) ≃ (ρ1 × · · · × ρp−1)|A, the proof is done by

Theorem 6.1.

Corollary 6.5. Suppose that (G, p) is in Table 1. If ρ : G → SU(∞) is an H-map,
then

hofib(ρ) ≃ hofib(ρ1)× · · · × hofib(ρp−1).

Put dk = k − 1 + rk(p− 1) for k ∈ tp(G). Similarly to Bk, we denote the factors

of Ω2S̃U(∞) and ρ corresponding to k ∈ tp(G) by Ω2C̃k and ρk, respectively. The
following is immediate from the Serre spectral sequence for the homotopy fibration

hofib(ρk) → Bk
ρk

−−−→ Ω2C̃k.
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Proposition 6.6. Suppose that ρk : Bk → Ω2C̃k is an isomorphism in cohomology of
dimension < 2k − 1 + 2rk(p− 1), then the cohomology of hofib(ρk) is given by

H̃∗(hofib(ρk)) = 〈a2dk
, a2dk+2(p−1)〉 for ∗ < 2dk + 4(p− 1)

such that a2n transgresses to the suspension of cn+1 modulo decomposables.

Define a map

Φk = a2dk
⊕ a2dk+2(p−1) : [X, hofib(ρk)] → H2dk(X)⊕H2dk+2(p−1)(X).

Corollary 6.7. Assume the condition of Proposition 6.6. If dimX < 2dk + 4(p− 1)
and [X, hofib(ρk)] is a free Z(p)-module, then the map Φk is an injective homomor-
phism.

Proof. By Proposition 6.6, the map a2dk
× a2dk+2(p−1) : hofib(ρ

k) → K(Z(p), 2dk)×
K(Z(p), 2dk + 2(p− 1)) is a rational (2dk + 4(p− 1))-equivalence. Then by dimX <

2dk + 4(p− 1), Φk is an isomorphism after tensoring with Q, so since [X, hofib(ρk)]
is a free Z(p)-module, the proof is completed.

Suppose G is a quasi-p-regular exceptional Lie group. Then by Table 2 and Propo-
sition 4.5, it remains to calculate the Samelson products 〈ǭi, ǭj〉 in G for (G, p, {i, j})
in Table 3.

Table 3:

E6 p = 5 {2, 8}, {5, 5} p = 7 {2, 6}, {5, 9}

E7 p = 11 {2, 8}, {2, 10}, {8, 10}, p = 13 {2, 6}, {2, 12}, {6, 6}, {6, 8},

{8, 14} {6, 12}

E8 p = 11 {2, 20}, {8, 14} p = 13 {2, 12}, {8, 18}

p = 17 {14, 20} p = 19 {2, 12}, {2, 18}, {12, 12},

{14, 24}

We denote the composite of the representation ρℓ and the inclusion
SU(Nℓ) → SU(∞) by the same symbol ρℓ, where Nℓ = 27, 56, 248 for ℓ = 6, 7, 8. For
(G, p, {i, j}) = (E8, 19, {12, 12}), it follows from Proposition 5.3 that the condition of
Proposition 6.6 does not hold if k = 24. However, there is a2i−2 ∈ H2i−2(hofib(ρ248 );
Z(p)) which transgresses to the suspension of ci for i = 42, 60. Then we define

Φ24 = a82 ⊕ a118 : [X, hofib(ρ248 )] → H82(X;Z(p))⊕H118(X;Z(p)).

Proposition 6.8. For i, j ∈ tp(G), let X be the (2dk(i,j) + 2(p− 1))-skeleton of Ai ∧
Aj, where k(i, j) is the integer k in Corollary 2.6. If (G, p, {i, j}) is in Table 3, then
the map Φk(i,j) is an injective homomorphism.

Proof. We first consider the case (G, p, {i, j}) 6= (E8, 19, {12, 12}). By Proposition 2.4
and 6.6, we see that πi(hofib(ρ

k
ℓ ))

∼= Z(p) and πi+1(hofib(ρ
k
ℓ )) = 0 for i = 2dk, 2dk +

2(p− 1), where k = k(i, j), since they are in the stable range. Then since X consists
of cells in dimension 2dk mod 2(p− 1) and dimX 6 2dk + 2(p− 1) by definition, we
see that [X, hofib(ρkℓ )] is a free Z(p)-module by skeletal induction. Thus the proof is
done by Corollary 6.7.
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We next consider the case (G, p, {i, j}) = (E8, 19, {12, 12}). Since c24(ρ8) =
19λx48 + · · · for λ ∈ Z×

(p), we have

H∗(hofib(ρ248 );Z/p) = Z/p[a10,P
1a10,P

2a10,P
3a10]⊗ Λ(βP1a10), |a10| = 10

for ∗ < 154. Let F be the 10-connective cover of hofib(ρ248 ). Then by the Serre spec-
tral sequence of the homotopy fibration K(Z(p), 9) → F → hofib(ρ248 ) and the Adem
relation P1βP2 = 2βP3 + P3β, we get

H∗(F ;Z/p) = 〈b82,P
1b82〉

for ∗ < 154. Then quite similarly to the above, we see that [X,F ] is a free Z(p)-module.
Thus as in the proof of Corollary 6.7, we see that the map

Φ′ = b′82 ⊕ b′118 : [X,F ] → H82(X;Z(p))⊕H118(X;Z(p))

is injective, where b′82, b
′

118 are mapped to non-zero multiples of b82,P
1b82 respectively

by the mod p reduction. Now by [16, Lemma 2.1], we may choose b′82, b
′

118 such that
the diagram

[X,F ]
Φ′

H82(X;Z(p))⊕H118(X;Z(p))

×19

[X, hofib(ρ248 )]
Φ24

H82(X;Z(p))⊕H118(X;Z(p))

commutes. Obviously, the left vertical arrow is an isomorphism. Then we obtain that
the map Φ24 is injective, completing the proof.

7. Representations and Samelson products

Consider an H-map ρ : G → SU(∞). Then there is an exact sequence

K̃(X) ∼= [X,ΩSU(∞)]
δ

−−→ [X, hofib(ρ)] → [X,G]
ρ∗

−−−→ [X, SU(∞)].

Suppose that X = A ∧B and consider the Samelson product 〈α, β〉 in G of maps
α : A → G, β : B → G. Since SU(∞) is homotopy commutative we have ρ∗(〈α, β〉) =
0, so there is γ ∈ [X, hofib(ρ)] which maps to 〈α, β〉. Then we get:

Lemma 7.1. The Samelson product 〈α, β〉 is trivial if and only if γ ∈ Im δ.

This simple criterion is considered by Hamanaka and Kono [3] in the case that ρ is
the inclusion SU(n)→ SU(∞) for which hofib(ρ) is explicitly given by ΩSU(∞)/SU(n).
We apply Lemma 7.1 to determine (non-)triviality of the remaining Samelson prod-
ucts. Assume that (G, p, {i, j}) is in Table 3. PutX to be the (2dk + 2(p− 1))-skeleton
of Ai ∧Aj . Then by Corollary 2.6, there is only one k(i, j) such that

[X, hofib(ρℓ)] ∼= [X, hofib(ρ
k(i,j)
ℓ )]

and by Corollary 6.7 and Proposition 6.8, we have identified the homotopy set on the
right hand side. Quite similarly to [3, Proposition 3.1], we can prove the following.

Proposition 7.2. In the situation of Proposition 6.8, we have

Φk(i,j) ◦ δ = dk(i,j)!chdk(i,j)
⊕ (dk(i,j) + p− 1)!chdk(i,j)+p−1.
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Let us calculate the image of Φk(i,j) ◦ δ explicitly. To choose generators of K̃(ΣAi),
we calculate the Chern character of the restriction ρ̄ℓ : ΣA → BSU(∞) of Bρℓ : BG →
BSU(∞). Note that

chn(ρ̄ℓ) =
(−1)n−1

(n− 1)!
ι∗(cn(ρℓ))

by (3) where ι : ΣA → BG denotes the inclusion. Then by Proposition 5.3, we have:

ch(ρ̄6) = 3Σy3 +
12

4!
Σy9 −

1

2 · 5!
Σy11 +

5

8 · 7!
Σy15 +

14

8!
Σy17 −

5

32 · 11!
Σy23,

ch(ρ̄7) = 6Σy3 −
1

5!
Σy11 +

5

4 · 7!
Σy15 +

126

9!
Σy19 −

9

2 · 11!
Σy23 +

319

40 · 13!
Σy27

−
1229

60 · 17!
Σy35,

ch(ρ̄8) = 30Σy3 +
15

7!
Σy15 +

126

11!
Σy23 +

165

13!
Σy27 +

1820

17!
Σy35 +

23001

5 · 19!
Σy39

−
1746822

5 · 23!
Σy47 +

15265250

29!
Σy59.

Remark 7.3. Our expression of the Chern character of ρ̄6 differs from that of [18]
since our choice of generators of H∗(BE6) differs from that of [18].

We now choose generators of K̃(ΣAi). If ri = 1, then ΣAi = S2i, implying K̃(ΣAi)
is a free Z(p)-module generated by a single generator ηi such that

ch(ηi) = u2i,

where um is a generator of Hm(Sm) ∼= Z(p). If ri = 2, then ΣAi = S2i ∪ e2i+2p−2, so
there is a short exact sequence

0 → K̃(S2i+2p−2) → K̃(ΣAi) → K̃(S2i) → 0, (4)

where K̃(S2n) ∼= Z(p). If we put ξi = ρ̄ℓ|ΣAi
for i in Table 3, then it is easily verified

that

ch(ξi) = au2i + · · · (a ∈ Z×

(p)).

So it follows from (4) that K̃(ΣAi) is a free Z(p)-module generated by ξi and ηi such
that

ch(ηi) = u2i+2(p−1),

where ηi is explicitly given by the composite of the pinch map to the top cell ΣAi →
S2i+2p−2 and a generator of π2i+2p−2(BSU(∞)) ∼= Z(p).

Since K̃(Ai) is torsion free, we have

K̃(Ai ∧Aj) ∼= Σ−2K̃(ΣAi)⊗ K̃(ΣAj).

Thus we obtain the following by Proposition 7.2.

Lemma 7.4.

1. The map Φk(i,j) ◦ δ is surjective for (G, p, {i, j}) = (E7, 11, {2, 10}), (E7, 13,
{2, 12}), (E7, 13, {6, 8}), (E8, 19, {2, 18}).
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2. For (G,p, (i, j)) = (E6,7,{2,6}), (E7,11,{2,8}), (E7,11,{8,10}), (E8,19,{2,12}),
we have

ImΦk(i,j) ◦ δ ⊃ p · (H2i+2j+2p−4(Ai ∧Aj ;Z(p))⊕H2i+2j+4p−6(Ai ∧Aj ;Z(p))).

3. ImΦk(i,j) ◦ δ mod p is generated by:

(i, j)

E6 p = 5 (2, 8) (0, 0)

(5, 5) (0, ∗)

p = 7 (2, 6) (3y3 ⊗ y23 − y15 ⊗ y11, 4y15 ⊗ y23)

(5, 9) (0, 0)

E7 p = 11 (2, 8) (5y3 ⊗ y35 − 2y23 ⊗ y15, 8y23 ⊗ y35)

(8, 14) (0, ∗)

p = 13 (2, 6) (5y3 ⊗ y35 − 3y27 ⊗ y11, ∗)

(6, 6) (4y11 ⊗ y35 + 4y35 ⊗ y11,−3y35 ⊗ y35)

(6, 12) (0, 0)

E8 p = 11 (2, 20) (0, 0)

(8, 14) (0, 0)

p = 13 (2, 12) (−y3 ⊗ y47 − 3y27 ⊗ y23, ∗)

(8, 18) (0, 0)

p = 17 (14, 20) (0, ∗)

p = 19 (2, 12) (13y3 ⊗ y59 + 9y39 ⊗ y23, 15y39 ⊗ y59)

(14, 24) (0, 0)

Corollary 7.5. If i+ j = p+ 1 and ri + rj = 3 for i, j ∈ tp(G), the Samelson prod-
uct 〈ǭi, ǭj〉 is trivial.

Proof. For i, j ∈ tp(G), i+ j = p+ 1, ri + rj = 3 if and only if (G, p, {i, j}) is one
of (E7, 11, {2, 10}), (E7, 13, {2, 12}), (E7, 13, {6, 8}), (E8, 19, {2, 18}). In these cases, we
see from Lemma 7.4 that Φk(i,j)(γ) must be in ImΦk(i,j) ◦ δ, where γ is a lift of 〈ǭi, ǭj〉.
Thus by Lemma 7.1, we obtain that the Samelson product 〈ǭi, ǭj〉 is trivial.

We choose a lift γ explicitly and calculate Φk(i,j)(γ) by generalizing a calculation
in [3]. We may set the map Bρℓ : BG → BSU(∞) to be a fibration such that its fiber
is Bhofib(ρℓ). Let γ̂ be the composite

ΣAi × ΣAj

ǭ′i×ǭ′j
−−−−−→ BG×BG

Bρℓ×Bρℓ
−−−−−−−→ BSU(∞)×BSU(∞) → BSU(∞),

where the last arrow is the Whitney sum. Then we have

(γ̂∗(cn)) =
∑

s+t=n

(ǭ′i)
∗ ◦Bρ∗ℓ (cs)⊗ (ǭ′j)

∗ ◦Bρ∗ℓ (ct). (5)

Put n = dk + 1, dk + p where k = k(i, j). By Proposition 5.3, there exists d0 > 0 such
that pd0xi ∈ ImBρ∗ℓ for each generator xi of H∗(BG). Since Bρ∗ℓ (cn) has no linear

part for degree reasons, there are a quadratic polynomial Q ∈ H̃∗(BSU(∞))2 and a

higher degree polynomial R ∈ H̃∗(BSU(∞))3 such that Bρ∗ℓ (p
dcn −Q+R) = 0 for



SAMELSON PRODUCTS IN QUASI-p-REGULAR EXCEPTIONAL LIE GROUPS 205

some d. Note that

γ̂∗(pdcn −Q+R) = γ̂∗(pdcn −Q) ∈ π∗(H∗(ΣAi ∧ ΣAj)),

where π : ΣAi × ΣAj → ΣAi ∧ ΣAj is the pinch map which has the canonical right
inverse in cohomology.

By definition, there is a strictly commutative diagram

ΣAi ∨ ΣAj

ǭ′i∨ǭ′j

ΣAi × ΣAj

γ̂

BG
Bρℓ

BSU(∞).

Let ω : ΣAi ∧Aj → ΣAi ∨ ΣAj be the Whitehead product. Since Iω ≃ ΣAi ∨ ΣAj

for the mapping cylinder Iω of ω, we can apply a homotopy lifting property of the
fibration Bρℓ to get a commutative diagram

Iω ΣAi × ΣAj

γ̂

BG
Bρℓ

BSU(∞),

where the left and the upper arrows are equivalent to those of the above diagram
and the upper one factors the pinch map Iω → Cω to the mapping cone. Then since
Bhofib(ρℓ) is a fiber of Bρℓ, we get a strictly commutative diagram

ΣAi ∧Aj
incl

Iω ΣAi × ΣAj

γ̂

Bhofib(ρℓ) BG
Bρℓ

BSU(∞).

By adjointness of Whitehead products and Samelson products, we see that the adjoint
of the left arrow is a lift of 〈ǭi, ǭj〉, so we fix γ to be this map.

The last commutative diagram induces a commutative diagram

H2n−1(ΣAi ∧Aj)
∂

H2n(Iω,ΣAi ∧Aj) H2n(ΣAi × ΣAj)
∼=

H2n−1(Bhofib(ρℓ))
∂

γ̄∗

H2n(BG,Bhofib(ρℓ)) H2n(BSU(∞)),

γ̂∗

Bρ∗

ℓ

where the upper ∂ is identified with the composite

H2n−1(ΣAi ∧Aj)
∼=

−−→ H2n(Σ2Ai ∧Aj)
π∗

−−−→ H2n(ΣAi × ΣAj)

for the projection π : ΣAi ×ΣAj → Σ2Ai ∧Aj . Since there is en ∈ H2n−1(Bhofib(ρℓ))
which transgresses to pdcn −Q+R, we have

γ̄∗(en) = Σ−1 ◦ (π∗)−1(γ̂∗(pdcn −Q+R)) = Σ−1 ◦ (π∗)−1(γ̂∗(pdcn −Q)).

Consider the Serre spectral sequence of the path-loop fibration of BSU(∞). We have
that the restriction of en transgresses to pdcn by naturality. Since the transgression
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induces an isomorphism between the modules of indecomposables of H2n−1(SU(∞))
and H2n(BSU(∞)), the restriction of en coincides with pdσ(cn) where σ(cn) denotes
the suspension of cn. Thus we see that, in the Serre spectral sequence of the path-
loop fibration of Bhofib(ρℓ), the suspension of en is equal to the pullback of pda2n−2

through the projection hofib(ρℓ) → hofib(ρkℓ ). Since H2n−2(Ai ∧Aj) is a free Z(p)-
module, we have the following:

γ∗(a2n−2) = Σ−2 ◦ (π∗)−1(γ̂∗(pdcn −Q))/pd.

Thus by combining this equation with (5), we obtain an explicit description of
γ∗(a2n−2).

We here give an example calculation of γ∗(a2n−2) for (G, p, {i, j}) = (E6, 5, {5, 5})
and n = 10. By Proposition 5.3, we have Q = 1

16c
2
5, d = 0, and then

(π∗)−1(γ̂∗(c10 −Q)) = (π∗)−1((1− 1
8 )(ǫ5)

∗ ◦ ρ∗6(c5)⊗ (ǫ′5)
∗ ◦ ρ∗6(c5)) = 126Σ2y9 ⊗ y9,

so we get γ∗(a18) = 126y9 ⊗ y9. Quite similarly to this calculation, we obtain:

Lemma 7.6. Φk(i,j)(γ) mod p for (G, p, (i, j)) is given by:

(i, j)

E6 p = 5 (2, 8) (3y3 ⊗ y15, 2y3 ⊗ y23 + 3y11 ⊗ y15)

(5, 5) (y9 ⊗ y9, ∗)

p = 7 (2, 6) (2y3 ⊗ y23 + 4y15 ⊗ y11, 5y15 ⊗ y23)

(5, 9) (2y9 ⊗ y17, 0)

E7 p = 11 (2, 8) (7y3 ⊗ y35 + 6y23 ⊗ y15, 9y23 ⊗ y35)

(8, 10) (0, 0)

(8, 14) (−3y15 ⊗ y27, ∗)

p = 13 (2, 6) (3y3 ⊗ y35, ∗)

(6, 6) (2y11 ⊗ y35 + 2y35 ⊗ y11,−2y35 ⊗ y35)

(6, 12) (4y35 ⊗ y23, 0)

E8 p = 11 (2, 20) (5y3 ⊗ y39,−y3 ⊗ y59 + y23 ⊗ y39)

(8, 14) (7y15 ⊗ y27, y15 ⊗ y47 + 2y35 ⊗ y27)

p = 13 (2, 12) (−2y3 ⊗ y47 − y27 ⊗ y23, ∗)

(8, 18) (−6y15 ⊗ y35,−9y15 ⊗ y59 − 4y39 ⊗ y35)

p = 17 (14, 20) (−9y27 ⊗ y39, ∗)

p = 19 (2, 12) (10y3 ⊗ y59 + 4y39 ⊗ y23, 13y39 ⊗ y59)

(14, 24) (−5y27 ⊗ y47, ∗)

Proposition 7.7.

1. The Samelson product 〈ǭi, ǭj〉 is trivial for (G, p, {i, j}) = (E6, 7, {2, 6}), (E7, 11,
{2, 8}), (E7, 11, {8, 10}), (E8, 19, {2, 12}).

2. For the other (G, p, {i, j}) in the table of Lemma 7.6, 〈ǭi, ǭj〉 is non-trivial.

Proof. By Lemma 7.4 and 7.6, we see that Φk(i,j)(γ) ∈ ImΦk(i,j) ◦ δ in the case of
(1) and that Φk(i,j)(γ) 6∈ ImΦk(i,j) ◦ δ in the case of (2). Then by Proposition 6.8, the
proof is completed.
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Proposition 7.8. The Samelson product 〈ǭ12, ǭ12〉 in E8 at p = 19 is trivial.

Proof. As above, we see that

Φ24 ◦ δ(ξ12 ⊗ ξ12) ≡ 57(y23 ⊗ y59 + y59 ⊗ y23) + 209y59 ⊗ y59,

Φ24(γ) ≡ 228(y23 ⊗ y59 + y59 ⊗ y23) + 114y59 ⊗ y59

modulo 192. Similarly to Lemma 7.4, we see that ImΦ24 ◦ δ includes 192y23 ⊗ y59,
192y59 ⊗ y23, 19

2y59 ⊗ y59, so Φ24(γ) ∈ ImΦ24 ◦ δ. Thus the proof is completed by
Proposition 6.8.

Proof of Theorem 1.2. Combine Corollary 2.7 and Propositions 2.8, 4.5, Corollary 7.5,
Propositions 7.7 and 7.8.
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