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SAMELSON PRODUCTS IN QUASI-p-REGULAR
EXCEPTIONAL LIE GROUPS
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Abstract

There is a product decomposition of a compact connected Lie
group G at the prime p, called the mod p decomposition, when G
has no p-torsion in homology. Then in studying the multiplica-
tive structure of the p-localization of GG, the Samelson products
of the factor space inclusions of the mod p decomposition are
fundamental. This paper determines the (non-)triviality of these
fundamental Samelson products in the p-localized exceptional
Lie groups when the factor spaces are of rank < 2, that is, G is
quasi-p-regular.

1. Introduction

Let G be a compact connected Lie group. Recall from [10] that if G has no p-torsion
in integral homology, then there is a p-local homotopy equivalence

G Z(P) Bl X X Bp—l (1)

such that B; is resolvable by spheres of dimension 2i — 1 mod 2(p — 1), where each
B; is indecomposable if G is simple except for type D. This is called the mod p
decomposition of G. For maps a: A — X,3: B — X into a homotopy associative
H-space with inverse X, the composite

AAB-Y L xAX X

is called the Samelson product of «, 5 and is denoted by («, ), where the last arrow is
the reduced commutator map. Then in studying the standard multiplication of the p-
localization G (), the Samelson products of the inclusions B; — G/, are fundamental,
and there are applications of these Samelson products as in [9, 5, 6]. In this paper,
we aim to determine (non-)triviality of these fundamental Samelson products in G/,
when G is the quasi-p-regular exceptional Lie group, which is a continuation of the
previous work [4] on p-regular exceptional Lie groups.
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Let us recall the result of the previous work [4]. We say that G is p-regular if
G is p-locally homotopy equivalent to a product of spheres. By the classical result
of Hopf, G is rationally homotopy equivalent to a product of spheres of dimension
2n1 —1,...,2np — 1 for n; < --- < ng. The sequence nq,...,ny is called the type of
G and is denoted by ¢(G). There is a list of types of simple Lie groups in [5]. It is
known that when G is simply connected, G is p-regular if and only if p is no less
than the maximum of ¢(G) (cf. [10]). Obviously, if G is p-regular, G is p-locally
homotopy equivalent to a product of spheres of dimension 2i — 1 for i € ¢(G). Let
€1 5771 = G(;) denote the inclusion for i € t(G) when G is p-regular.

Theorem 1.1 (Hasui, Kishimoto, and Ohsita [4]). Let G be a p-regular exceptional
Lie group. The Samelson product (;, ;) in Gy is non-trivial if and only if there is
ke t(Q) such thati+j=k+p—1.

Let B(2i —1,2i + 2p — 3) be the S*~!-bundle over S?2P=3 classified by an ele-
ment %al € Maiyap—-a(S*1) 2 Z/p as in [10, 11], where oy is a generator of the p-
component of ma;9,-4(S% 1) which is isomorphic with Z/p. Recall that G is quasi-p-
regular if G is p-locally homotopy equivalent to the product of B(2i — 1,2i + 2p — 3)’s
and spheres. When G is exceptional, it is shown in [11] that G is quasi-p-regular if
and only if p > 5 for G = Go,Fy4,Eg and p > 11 for G = E7, Eg. In these cases, the
specific mod p decomposition is:

G, p=5 B(3,11)
p>5 83 x Sl

F, p=5 B(3,11) x B(15,23)
p=7 B(3,15) x B(11,23)
p=11 B(3,23) x S x §1°
p>11  S3 x St x §15 x §23

E6 p= ) F4 X B(g, 17)
p>5  Fyux8?xs87

E; p=11 B(3,23) x B(15,35) x S x §19 x §27
p=13 B(3,27) x B(11,35) x S5 x §19 x §%3
p=17 B(3,35) x S x §15 x §19 x §23 x §27
p>17 83 x S x 815 x §19 x §23 x §27 x §35

Es p=11 B(3,23) x B(15,35) x B(27,47) x B(39,59)
p=13 B(3,27) x B(15,39) x B(23,47) x B(35,59)
p=17 B(3,35) x B(15, 47) X B(27 59) x §23 x §39
p=19 B(3,39) x B(23,59) x S x §27 x §35 x §47
p=23 B(3,47) x B(15,59) x S23 x §27 x §35 x §39
p=29 B(3,59) x 5’15 x 523 x §27 x §35 x §39 x §47

p>29 S%x S x 823 x §27 x S35 x §39 x §47 x §59

Let t,(G) be the subset of ¢(G) consisting of i € ¢(G) such that 2¢ — 1 is the dimen-
sion of the bottom cell of some B; in the mod p decomposition of G ), where ,(G)
is possibly not a subset of {1,...,p — 1}. Since there is a one-to-one correspondence
between B;’s and t,(G), we ambiguously denote the factor space of G, correspond-
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ing to ¢ € t,(G) by B;. In our case, the set ¢,(G) can easily be deduced from the
above table as:

tp(G2) p= 2 tp(E7) p=11 2,6,8,10,14
tp(F4) p=5 2,8 p=13 2,6,8,10,12
p=7 2,6 p=17 2,6,8,10,12,14
p=11 26,8 t,(Es) p=11 2,8,14,20
tp(Ee) p= 2,5,8 p=13 2,8,12,18
p= 2,5,6,9 p=17 2,812,14,20
p=11 2,5,6,8,9 p=19 2,812 14,18,24

p=23 2,812 14,18,20
p=29 2,812 14,18,20,24

We now state our main result, where we owe the p-regular case to Theorem 1.1.
Let €;: B; — G ;) denote the inclusion for i € ¢,(G), and put r; = rank B;.

Theorem 1.2. Let G be a quasi-p-regular exceptional Lie group. Then for i,j €
tp(G), the Samelson product (e;,e;) in G,y is trivial if and only if one of the fol-
lowing conditions holds:
1. there is no k € t,(G) such that i+j=k mod (p—1) and i+j+ (r; +7; —
Dp—=1)>k+re(p—1);
2. r;+r1; >3 and there is k € t,(G) such that k =i+ j+ (ri +1; —3)(p — 1);
3. i+j=p+landr,+r; =3;

4. (vaa {Z?J}) = (E67 7’ {27 6})7 (E7> 11, {27 8})7 (E77 11, {87 10})) (ESa 19, {27 12});
(Es, 19, {12,12}).

Remark 1.3. This theorem includes the result of McGibbon [9] that G2 at the prime 5
is homotopy commutative.

The proof of Theorem 1.2 consists of three parts. The first part shows trivial-
ity of the Samelson products by looking at the homotopy groups of G. The second
part applies a criterion for non-triviality of the Samelson products by the Steenrod
operations on the mod p cohomology of the classifying space of G which is a general-
ization of the criterion used to prove Theorem 1.1 in [4]. The third part determines
(non-)triviality of the remaining Samelson products by considering a homotopy fibra-
tion hofib(p) — G 2+ SU(o0) for a stabilized representation p, where the easiest case
that p is the inclusion of SU(n) is studied in [3]. Since SU(o0) is homotopy commu-
tative, Samelson products lift to hofib(p). Then the important point is to identify
the homotopy fiber hofib(p), and to this end, we decompose p with respect to the
mod p decompositions of G and SU(co), which is not needed in [3]. We then describe
lifts of the Samelson products through the identification of hofib(p) and to determine
(non-)triviality of the Samelson products.
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2. Triviality of Samelson products

Hereafter we localize everything at the prime p. Suppose that (G, p) is as in Table 1.

Table 1:
SU(n) ( —1p-2)+1
Sp(n), Spin(2n + 1) <(@-1Dp-2)
Spin(2n) 2( -)<p-Dp-2)
Go,Fy, Eg p=5b
E7, Eg p=7

We first fix a homotopy equivalence (1). It is shown in [14] that there is a sub-
complex A; of B; such that the inclusion A; — B; induces an isomorphism

A(H,(A:)) = H.(B;),
where B; isasin (1). Put A=A4;v---VA, 1 and B=B; x--- X B,

Theorem 2.1 (Kishimoto [6] and Theriault [13, 14]). Suppose that (G,p) is in
Table 1. The subcomplex A has the following properties:

1. thereis a map j: A — G such that j has a left homotopy inverse, sayt: ¥G —
YA;

2. the inclusion XG — BG is homotopic to the composite
G - 24 - BG,
where 7': XA — BG is the adjoint of the map j: A — G.

Consider the composite

¢ Eyang o4 Ly g

which we denote by g, where 7 is the extension of the map j: A — G. Since g o j ~ j,
the map g is an isomorphism in cohomology since H*(G) is an exterior algebra and
j*: H*(G) — H*(A) is identified with the projection onto the module of indecom-
posables. Hence g is a homotopy equivalence by the J.H.C. Whitehead theorem.

Theorem 2.2 (Theriault [13, 14]). Suppose that (G,p) is in Table 1. There is a map
r: QXA — B satisfying the following properties:

1. the inclusion A — B is homotopic to the composite
AL 0n4 2 B
2. the composite
¢ L ove 20845 B

is a homotopy equivalence.

We denote the homotopy equivalence in Theorem 2.2 by h: G — B and put e =

incl

goh™'. Let ¢: B; — G be the composite B; —— B —— G and &: A; — G be its
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restriction. By Theorem 2.2, hoj ~ k, where k: A — B is the inclusion. Then we
have

€ =ciokla, =eok|a, 2goh tohojla, ~gojla, ~jla,-

Corollary 2.3 (Kishimoto [6]). Suppose that (G,p) is in Table 1. The Samelson
product (e;,€;) is trivial if and only if (&;,€;) is trivial.

We then consider (non-)triviality of the Samelson products (€;, €;) instead of (e;, €;).
We show triviality of the Samelson products by looking at the homotopy groups of
spheres and B;.

Proposition 2.4 (Toda [15]). Fori > 2 and * < 2i+ 2p(p — 1) — 4, we have

Ly *=2i—1,
Zjp *=2i—-2+4+2j(p—1) (j=1,...,p—1),
Z/p *:22'—3—1—2]'(])—1) (j:i,...,p—l),
0 otherwise.

7r*(SQifl) ~

Proposition 2.5 (Mimura and Toda [11], and Kishimoto [6]). For x < 2p(p — 1),
we have
L) *=3,3+2(p—1),
n (BB +1) 22 +=2p-1)+2 (G=2...p—1),
0 otherwise

and fori >3 and * < 2i — 44 2p(p — 1), we have

Ly *=20—1,2i—1+2(p—1),

Z/p* *=2i—2+2j(p—-1) (j=2,....,p—1),
Z/p *:2i—3+2j(p—1) (j:i,...,p—l),
0 otherwise.

Te(B(2i—1,2i—142(p—1))) =

When G is a quasi-p-regular simple Lie group except for Spin(4n), there is a one-
to-one correspondence between t,(G) and non-trivial B;, and we have

L[ =1,
i — S2i71 Ua, 627,'714»2(;071) r; =2

for i € t,(G).
Corollary 2.6. Let G be a quasi-p-regular simple Lie group except for Spin(4n). For

i, € t,(G), we have:
1. if there is no k € t,(G) such that i +j =k mod (p—1) andi+j+ (r; +r; —
1)(p—1) > k+ri(p— 1), then the homotopy set [A; A A;, G| is trivial;
2. if there is k € t,(G) such that i+ j=k mod (p—1) and 1+ j+ (ri+r; —
1)(p—1)>k+ri(p—1), then k is unique and [A; N A;,G] = [A; N A, Bg).

Proof. Since A; AN Aj for i,j € t,(G) has cells in dimension 2i+2j —2+2r(p — 1)
for 0 < r < 7 +7r; — 2, the corollary follows from Propositions 2.4 and 2.5. O
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Corollary 2.7. Let G be a quasi-p-reqular simple Lie group except for Spin(4n). If
fori,j € t,(G) there is no k € t,(G) such that

i+j=k mod(p—1) and i+j+(ri+r;—1)p—-1)>k+r(p—1),

then the Samelson product (€;, €;) is trivial.
We further prove triviality of the Samelson products (€;, €;) in the special cases.

Proposition 2.8. Suppose that G is a quasi-p-reqular simple Lie group except for
Spin(4n). If for i,j € t,(G), there is k € t,(G) such that

ri+r; 23 and k=i+j+(r;+r;—3)p—1),

then the Samelson product (€;, €;) is trivial.

Proof. By Corollary 2.6, we have [A; A A;, G] = [A; A Aj, By, so it is sufficient to
show that [A; A A;, S?*~1] is trivial since rj, = 1 for degree reasons. We first consider
the case r; +7; = 3. In this case, we have 4; A A; ~ S2(+i=D y, e2((45+P=2) ' where
i+ j = k. Then there is a homotopy cofibration S2(i+i+p=2)—1 2L, g2(i+i—1) _, A, A
A; which induces an exact sequence

a1 (S%7) s oo a(S%) = [Ai 4 Ag, SPY o a(87Y).

Since mag42p—a(S?*71) is generated by i, the second arrow is trivial, and so for
Tor—2(S?F1) =0, we get [4; A Aj, SPFT1] =«

We next consider the case r; = r; = 2. In this case, we have [A; A A;, 5?F~1]
[A; A A;/S20HT=1) G26=1] and A; A A;/S20HT=1) o~ §20Hi+p=2) v (§2(i45+p=2) |
e2+3+2=3)) "where k = i + j + p — 1. Then we get [4; A A;, S?*71] = % in the same
way as above. O

By Corollary 2.7 and Proposition 2.8, it remains to check (non-)triviality of the
Samelson products (&;, €;) for (G,p,{i,j}) in Table 2. Note that the Go case and the
p-regular case are done in the previous section and Theorem 1.1. Further, since the
inclusion Fy — Eg has a right homotopy inverse at the prime p > 3 as in the table of
the mod p decomposition, we only have to consider Eg, E7 and Eg.

Table 2:
Es p=5 {2,8},{5,5},1{5,8},{8,8}
p= {2,6},{2,9},{5,6},{5,9},{6,6},{6,9},{9,9}
p=11 {6,9},{8,8},{9,9}
E; p=11 {2,8},{2,10},{2,14},{6,10},{6,14},{8,8},{8,10}, {8, 14},
{10,10}, {10, 14}, {14, 14}
p=13 {2,6},{2,12},{6,6}, {6, 8}, {6,12},{8,12},{10,10}, {10, 12},
{12,12}
p=17 {8,14},{10,12},{10,14},{12,12},{12,14}, {14, 14}
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Es p=11 {2,20},{8,14},{8,20},{14,14},{14,20},{20,20}
p=13 {2,12},{2,18},{8,12},{8,18}, {12,12}, {12, 18}, {18, 18}
p=17 {8,20},{14,14},{14,20}, {20, 20}
p=19 {2,12},{2,18},{2,24}, {8, 12}, {8,18}, {8, 24}, {12, 12}, {12, 14},
(12,18}, {12, 24}, {14, 18}, {14, 24}, {18, 18}, {18, 24}, {24, 24}
p=23 {14,20},{18,18},{20,20}
p=29 {1224}, {18,18},{18,24},{20,20}, {24, 24}

3. Cohomology of BG

The coefficient of cohomology will be Z,) unless otherwise specified. Suppose that
H.(G) has no p-torsion and ¢(G) = {n1,...,n¢}. Then the cohomology of the classi-
fying space BG is given by

H*(BG) :Z(p)[$2n1a---7l‘2nz]a ‘l‘z‘ = 1.
We recall from [17, 18, 4] a choice of generators x; when G is an exceptional Lie

group. As in [1], there is a commutative diagram of subgroup inclusions

Spin(9) — Spin(10) — > Spin(11) — 2= Spin(15)

F Lk

F4 ko E6 E7 Eg .

ko

The choice of generators x; is made through these inclusions. Recall that we have
H*(BSpin(2n + 1)) = Zy)[p1, ..., pn], H*(BSpin(2n)) = Zy)[p1, - - Pa—1,Cnl,

where p; and ¢, are the Pontrjagin class and the Euler class of the universal bundle
respectively. If a polynomial P is a sum of a polynomial () and other terms, then we
write P > Q.

Proposition 3.1. For p > 7, generators x; for Eg can be chosen such that
.75’: (1‘4) = P1,

. 18 1
J3(w16) = 12ps — = Psp1 +p5+ Topzpi

. )
4 (24) = 60ps — 5psp1 — Bpapa + 3p3 — papap1 + %pi’,
- 2 24 2 11 3 2
J4 (x28) = 480p7 + 40psp2 — 12paps — psps — 3papapr + = P3P + 3gP2P1 mod (p7),
. 2% 18 4
73 (x36) = 480p7p2 + T2pep3 — 30psps — - bspa+ Ipap3p2 — 5 Ps
1 3 9 1
—Zpspi’ — 42pepap + Ipspapr — §p4p§p1 + gpﬁpzpl + ﬂpfﬁpl mod (p?),
- — 2 2 25 2 2
Ja(x40) = 480p7p3 + 50pep; + 50pz — 10pspspe — 5 Pap2 + 9pap3
25 3 25
—%Pﬂ?g + ZP%P% + @pg mod (p1),
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‘ 25 25 5
3% (248) = —200p7ps — 60p7p3p2 + 3pep3 + —peps + —DPEP2 — —PsPaps

9 3 2
25 25 n n 25 3 4
24175273]72 48p4p2 p4p3p2 864p4p2 10 36p3p2
25 4
e d
6220872 mod (p1),
89

3 229 13
> 144 — 5p2 + =p2p: 3
J3 (3360) P7P5P3 Ps5 + 2]951?3]92 P5P4p2 16001?5]942?3 3202951?4]92

1440

29 2.2 29 43 4 n 1357 59
3840p5 3P3 + 13824p5p2 1920174])3 38400p4p3p2 3200p4p3p2
421 4 177 o 59 3 3

~ 15360077372 * 1000073 T T15200732

where j%(x40), 75 (xe0) do not include multiples ofp5p4p1,p$p1, respectively.
Proof. The choice of z; except for ¢ = 60 is made in [4], where we subtract a multiple
of zyx36 from x4 if necessary so that j*(z40) does not include a multiple of pspsp1,
and we can take zgy quite similarly. Further, by subtracting a multiple of x,z3g
if necessary, we can take wgg so that ji(weo) does not include a multiple of p2p;,
completing the proof. O
Proposition 3.2. For p > 7, generators x; for E; can be chosen such that:

1. k3(x;) =z (i=4,16,24,28,36) j3(w12) = —6ps +p2p1 j3(z20) = p5;

2. modulo H*(BE;)3

1 5
k3 (240) = —T12T28 + - T16T24 + H0T3,

24 24
1 ) 1
k;($48) 72x12I36 + 241’201’28 — Eaj’;b
§ 131
k3(260) = 144000 24736
Proof. (1) is proved in [4], and (2) is obtained by Proposition 3.1 and (1). O

Proposition 3.3. For p > 5, generators x; for Eg can be chosen such that

Ji(x4) = p1, Ji(w10) = cs,
Ji(x12) = —6p3 + pap1, 73 (z16) = 12ps — 3psp1 + p3,
Ji(w18) = pacs, 73 (x24) = —T2paps + 27papi + 27p3 — Ip3pap1 + 2p5.

Proof. The argument on the choice of z; (i =10, 18) for Eg in [4] works also for
p = 5, so we can choose z; (i = 10, 18) for Eg as in the statement. On the other hand,
Watanabe [17] chooses generators x; for F4 through the inclusion jo: Spin(9) — Fy.
Then since i§(p;) = p; (i =1,2,3,4) and i§(c5) = 0, a degree reason shows that the
choice of x; for F4 implies the choice of z; for Eg (i = 4,12, 16,24). O

Remark 3.4. We choose generators x; for Eg independently from E7, Eg since we have
to consider the primes 5, 7.
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4. Steenrod operations and Samelson products

Suppose that (G, p) is in Table 1 except for Spin(4n), where we exclude Spin(4n)
to make ¢(G) consist of distinct integers. Define yo;_1 € H¥1(A;) by (&)*(z2;) =
Yy9j_1 for j =i mod (p—1), where f': ¥X — Y denotes the adjoint of a map
f: X = QY. Then y;_: is non-trivial and satisfies

Yyok—1 k=1 d(p—1
(&) (zar) = Yok bome (=1,

0 k#i mod (p—1)
since t(G) consists of distinct integers. We detect non-triviality of the Samelson prod-
ucts (&;,€;) by the following criterion (cf. [8, Proof of Theorem 1.1], [7]).

Proposition 4.1. Suppose that (G,p) is in Table 1 except for Spin(4n) and that
fori,j € t,(G), there is k € t,(G) such that i+ j > k and P™*xay, includes the term
AT9i1 25, (p—1)T2j42s; (p—1) With A#0, s; <min{r; — 1,7, — 1}, s; <min{r; — 1,7, —1}.
Then (€;,€;) is non-trivial.

Proof. Assume that (€;,€;) is trivial. Then by the adjointness of Samelson prod-
ucts and Whitehead products, the Whitehead product [€], €] is trivial, implying
€V €:XA; VEA; — BG extends to u: ¥A; x X A; — BG up to homotopy. Let i be
the restriction of p to SARI—1+2(re=1(pP=1)) 5 33 427-1+2(x=1)(r=1))  Then we have
P (x9) = 0 since P* is trivial on the mod p cohomology of A(2n—1+2(rx—1)(p—1))
for n =4, j. On the other hand, we have

Pt (xor) = B (P ™ xos,)
= ﬁ*()‘in—&-Qsi (p—1)T2j+2s; (p—l)) = A2y2i+2$i(p—l) & 2y2j+23j (p—1)

since P"*xor has no linear part for a degree reason. This is a contradiction, so the
Samelson product (€;, €;) is non-trivial. O

In order to apply Proposition 4.1, we calculate the linear and the quadratic parts
of Plxgk.

Lemma 4.2. The linear and the quadratic parts of Plxz; for Eg are given by:

1 =4 1 =10 =12
1 =16 1 =18 =24
p=5 | —x12 —T18 0
X24 —Z10T16 x%g
p="T | —2x16 +5T4T12  T4T1s + 3T10T12  —2T24 — 4T,
—3T12%16 —T12718 -2z
p=11| —2z94 — 223, —T12718 —4x%,
622 0 0
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Proof. Recall from [12] that there is the mod p Wu formula

Plpn = Z

i1+2iz+ - +bis=n-+25E

(= 1)t it i (i1 +_' -+ ?5 —1)!

7,1!"'25!

. <2n_1_ Z;-";f(2n+p12j>ij> ;

1-.- /i5
I Prtps

in H*(BSpin(10);Z/p), where ps = c2. For example, consider the case i = 16 and
p = 11. Then by Proposition 3.3 we have

Ji(P'wi) = P'j* (16) > Tpspa + 2psps3,

so for a degree reason, we must have Plzg > 6x%8 + 7x16x%0. The remaining calcu-
lations are done in the same way. O

Lemma 4.3. The linear and the quadratic parts of Plxz; for Eg are given by:

1=4 1=16
=24 ;=28
1 =236 1 =40
1 =48 i =60
p= 11 21‘24 61‘36
0 31‘48
3x16T40 + 91‘%8 9260
53]2811740 5:13?10
p=13 | —xog + 8x4x24 8x40 — 214736 + 4x16T24
4x48 + 53y 524728
dxe0 + 2x24736 974T60 — T16T48 + T24T40 + 4T28T36
—To4Tys — Tig 8T24%e0 + TT367T48
p=17 | 4zsg 13348 + 223,
111716.1’40 + 71‘%8 121‘60 + 5$24:C36
0 —X24%48 + 103:%6
1323, 0
p=19 | dxy + 1lxg236 + 9T16724 10z 4248 + 11216236 + 17224228
10260 + T24736 —x4%e0 + 10216748 — 3T247T40 — 4728736
4xo4as + 403 dT16T60 1+ T36T40
11zo4x60 + 9736248 —3x36%60 — 2‘T42LS
p=23 | 10248 + 73, T60 + DT24T36
—9%281'40 81’241’48 - 101’\'256
13&?20 356245660 - 8$36$48
0 0
=29 | —2wg0 — T247T36 —To4T4g — HThg
11(&%0 173324:1:60 - 51’361'48
0 143660 + 13734
0 0

Proof. The proof is the same as Lemma 4.2. O
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Lemma 4.4. The linear and the quadratic parts of Plxz; for Er are given by:

1 =4 1 =12
1 =16 1 =20
=24 1= 28
i =36

p= 11 21’24 —3$4.’E28 — 5%125620 — 21’%6
6x36 —3x4T36 — DX12T28 + 10:1:%0
0 9x12T36 + 2x20T28 + 2.73%4
9:5%8

p=13 | —x28 + 8x4T24 —2x36 + TT12T24 + 2216T20
—2x4x36 — 4012098 — BT16T24 — 3T39  Tx16T2s + 4T20T24
5x12T36 + 3T20Tas + 613, DT24T28
—3T24%36

p=17 | 4dx3¢ 5T16T28 — 2T20T24
—Z12T36 + 2T20Tas + 623, TX24T28
Txg —322436
0

Proof. Plx; for i = 4,16,24,28,36 can be calculated by Proposition 3.2 and Lem-
ma 4.3, and Plz; for i = 12,20 can be calculated in the same way as Lemma 4.2. O

We now prove:

Proposition 4.5. The Samelson product (€;,€;) in G is non-trivial for (G,p,{i,j})
in the following table:

Es p=5 {5,8},{8, 8}
p="7 {2,9},{5,6},{6,6},{6,9},{9,9}
p=11 {6,9},{8,8},{9,9}
E; p=11 {2,14},{6,10},{6,14},{8,8},{10,10},{10,14}, {14, 14}
p=13 {8,12},{10,10}, {10, 12}, {12,12}
p=17 {8,14},{10,12},{10,14},{12,12}, {12,114}, {14, 14}
Es p=11 {8,20},{14,14}, {14, 20}, {20, 20}
p=13 {2,18},{8,12},{12,12},{12,18},{18,18}
p=17 {8,20},{14,14},{20,20}
p=19 {2,24},{8,12},{8,18},{8,24},{12,14}, {12, 18}, {12,24}, {14, 18},
{18,18}, {18, 24}, {24, 24}
p=23 {14,20},{18,18},{20,20}
p=29 {12,24},{18,18},{18,24},{20,20}, {24, 24}

Proof. We can verify the conditions of Proposition 4.1 by Lemmas 4.2, 4.3 and 4.4,
where we have P!P! = 2P2 by the Adem relation. Thus the result follows from Propo-
sition 4.1. 0
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5. Chern classes

In order to determine (non-)triviality of the Samelson products that are not detect-
ed in the previous sections, we will use representations of the exceptional Lie groups
and their Chern classes. Then we calculate these Chern classes. We refer to [1] for
basic materials of representations that we consider in this section. For the canonical
representation A, : Spin(n) — SU(n), we have

Cgifl()\n) = 07 Cgi(An) = (—1)ipi (’L = 2, e ,n), (2)

where poj, = i if n = 2k. Then by Girard’s formula on power sums and elementary
symmetric polynomials

nlch, = > (—1)rtrttin n(i T tin T 1)!0? eechn (3)
114214 tnin=n il !

we can calculate the Chern character of A\, where ch,, denotes the 2n-dimensional part
of the Chern character. Let a:: Spin(11) — SU(55) be the adjoint representation of
Spin(11), and let AT, A be the positive half spin representation of Spin(10) and the
spin representation of Spin(11). The weights of « are the roots of Spin(11) by defini-
tion. As in [1], the weights of AT are €1t1 + -+ - + €5t5 (€1 - - - €5 = 1) and the weights of
A are €1ty + -+ + €sts (€1 -+ - €5 = +1). Then one can calculate ch(a), ch(A), ch(A™)
with the assistance of a computer as follows.

Lemma 5.1.

1. idlch; (Ao + AT + 1) dncludes the following terms:

i=2 06py 1=5  60cs
i=6  18ps i=8  60ps + 24pspr
i=9  126pacs i=10 135p4p1 + 630c2
i=12 135psps + 18p3 i=14 231psps + B papopr + 2233pact
i=20 98853y,
2. ilch;(2A11 + A + 2) includes the following terms:
i=2  12p
1=06  36p;3

1=28 120p4 + 48psp1

1 =10 1260p5 + 270pyp1

i=12 270psps + 36p3

i=14 4466psps + 462psps + 2 papapr

i=18 39672psps + 6993psp3 + 1134pap3pa

i =20 151300p2 + 189190pspap1 + 37570psp3pa + 228 psp3p, + SE85p2p,
i =22 179949pspaps + T2 psp3

i =24 950400pZp; + 390390pspaps + 1936%2 + 43287194192

i =30 Mpzp Do & 3907395p pap? + 2450295p p2p2

3. ilch;(a + 4A + 65) includes the following terms:
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1=2 60p1
i=8  1440p,
i=10 0-ps

1 =12 —7560p4p2

i=14 92400psps — 40110p4papr

i =18 —982800psp4

i =20 4600200p2 — 1748790p3ps

i =22 34950300p%p; — 6715170p3ps

i=24 —69872880p2p, + 20077794p] + 22511031 2,2

i=26 —219540750p5p3 — 41441400p4p3 — 697554000pZpap1

i =30 —2289787500p3 + 10986291625, p,2,, 24790815753,

i=132 —26808164160pip; — 29632951680p2paps 4+ 1801812456p2p3
—1601056128p5p3ps

i =34  66371012400p2p,

i =38 —952563046800p2p, — 949011128850p2p3 — 46394357586p2p3

i=42 —1030173212250p3p3

i=50 —914425331875000p2

i =60 —340771201982677620p2psps — 12363661137209454345p2 p2ps

+776927112035890410p§p4p§ _ 204642097727645659655p§p4p§

4154188924169320995, 4,2 2 _ 15713809488581615145 .4 5
+ 1 PsP3p3 — 16 PsDP2

12852298085402204835, 3, . 3 44662086886161465 3, 5
- S D5PapP3p2 + =5 DsP3

_ 1521234653421088595405])?]):3])% I 162850846785436347155pgpi

n 63472606886948356739815 pepipd — 22681249753025304105395 Pepip2ps

I 14936490093827340422405 p2piph + 5425603983540815815 p2p2pd

_ 658004024?32760076975 pep2p2pd + 227646297;4113518937585 P2pRpS

I 166577275(1)2432381165p§p4p§p% . 236740660313585333865 P2papdnd

- 19109045218262101365 2, 8 — 39085165434973420p2pSps

i 10050849717228724723655 p2piph — 126872100(53?;409424425 plps
561833719261457328105, 6,3 _ 417106897597216552845 5, 5

- 2048 P4P3 3192 Pip3

Remark 5.2. For (i,£) = (60, 8), the twenty-four terms in the above list are chosen so
that the following condition holds. For a monomial m € H'?°(BSpin(11))/(p1), let ay,
be the vector consisting of the coefficients of m in the monomials of H*2°(BEg)/(z4).
Then a,, for the above monomials form a square matrix, which is invertible. Note
that aps and Apfpsp, ATE linearly dependent.

Let pg be the irreducible 27, 56, 248 dimensional representation of E, for £ = 6,7, 8
respectively. Then we have

peoj1 =XAo+AT+1, projo=2X\1+A+2, pgojzois=a+4A+065.

Thus by Propositions 3.1, 3.2, 3.3 and Lemma 5.1, we can determine the linear and
the quadratic parts of ch;(pe) except for the coefficient of 236248 in chga(ps). Then by
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the inductive use of (3), we obtain the following proposition, which gives the linear
and the quadratic parts of ¢;(p¢) in each case except for (i,¢) = (42,8).
Proposition 5.3.

1. The linear and the quadratic parts of the Chern classes ¢;(pg) are:

1=2 —3x4 1=29 12219

. 1 s 5 11

1=06 51‘12 1 =8 _§$16 — ELL‘4,’E12

i=9 ldrg i=10 34116 + 923,

s 5 13 ,.2 P 19 17 1

1 =12 §$24 — @1‘12 1 =14 —@$4$24 + 71'101718 - ﬁ$12$16

i =20 r5T16T24
2. The linear and the quadratic parts of the Chern classes ¢;(p7) are:
i=2 —6xy
1=06 12
i=8 —Swy— 17I4IL’12
i=10 —126@0 + 2l ryz16
1 =12 21‘24 + £L'4{E2() + 241'%2

t=14 34109-’1728 — 6§730496‘24 + 036123016

=18 12391‘36 — gégmgxm + $16$20

1 =20 1gj3x4:c36 478101’121328 — %IEM;Z'Q;; + 373%%0
i =22 —FBlwiewas + 52 wa0was

i=24 —1yirs+ szoxzs + 40472,

1 =30 %$Z4$36
3. The linear and the quadratic parts of the Chern classes ¢;(ps) are:
1=2 730.%4
1=28 —15x14
1=12 —126x94
1 =14 —165x98 + 330624224
1 =18 —1820z36

1 =20 —23(53&5640 + 40?819.% I36 + 27 211'161'24

1 =22 1062334240 + 1'16.”[:28

i=o4 lTAos22, 4 120512 2,

i— 926 92275 48085 0 s

1 =30 *152652501’60 - %1’241'36

i =32 1By 60 — T2 gayg + 28802 a0y + 250 005056
i=34 —2T0MS0 2

1 =38 —%xmxeo + %7&83348 + %l‘%xm

1 =42 68678214150224760

1 =950 —2930823500z 4060
—60 — 2301812(8)805225 22,

Since we are computing ¢;(p¢) via Spin(10) and Spin(11) whose ranks are less than
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Ey, ¢;(pe) might not be determined in some cases by the above direct computation.
In these cases, we determine ¢;(pe) mod p by an indirect way as follows.

Proposition 5.4. The quadratic parts of ¢;(p;) mod p are given by:
(i,0,p) = (28,7,11)  3woox3s — 2735 (i,0,p) = (36,7,13)  —dais

Proof. We only calculate cag(p7) mod 11 since the other case can be similarly cal-
culated. Recall from [12] that there is the mod p Wu formula

Pley = E (_1)“+M+Z"_1 (@ +- ] - ?nl &
11Uy
i1+ 2ig+nin=k+p—1 ! "

. (k_l_zfié(kwlj)ij)

in
" " C --.c
i+ Fi,—1 ! "

in H*(BU(n);Z/p). Then we get Plcig > 6cog + c1oc1s. On the other hand, we
have 6cag(p7) + c10(p7)c1s(pr) = 6cag(pr) — 820136 mod H*(BE;;Z/11)2 by Prop-
osition 5.3. On the other hand, by Lemma 4.4 and Proposition 5.3, we have
Plclg(p7) = 'Pl(%xgﬁ —|— %$16$20) = —37%8 — X20T36 1’I10d H*(BE'y,Z/ll)g Then
we obtain the desired result. O

6. Decomposition of representations

In order to calculate the Samelson products, we will need to identify the homo-
topy fiber of a stabilized representation of GG. To this end, we decompose stabilized
representations with respect to the mod p decomposition of G.

The following universality of the space B is proved by Theriault [13].

Theorem 6.1 (Theriault [13]). If (G,p) is in Table 1, then B is a homotopy asso-
ciative and homotopy commutative H-space satisfying the following properties:

1. the map r: QXA — B in Theorem 2.2 is the H-map extending the inclusion
A — B;

2. for any map f: A — Z into a homotopy associative, homotopy commutative
H-space Z, there is a unique, up to homotopy, H-map f': B — Z such that

fllax=f.
We compare the H-structure of B in Theorem 6.1 and the H-structure of G.

Lemma 6.2. Suppose that (G,p) is in Table 1. Given any H-map f: G — Z into a
homotopy associative and homotopy commutative H-space Z, the map foe: B — Z
is too an H-map.

Proof. Let 7: QXA — G be the extension of j: A — G. Then since both 7 and f are
H-maps, the composite f o7: QXA — Z is an H-map. There is an H-map f': B — Z
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satisfying f’|4 ~ f o 7 and a homotopy commutative diagram

O Ay
p—r .z

Indeed, by Theorem 6.1, there is an H-map f': B — Z such that f'|4 ~ f o j, imply-
ing (f'or)|a ~ foj.Since f’ or is an H-map, the universality of the loop-suspension
guarantees that f’ o r is homotopic to f o 7.

Next we prove the statement of the lemma. By the definition of the homotopy
equivalences g: G — G and h: G — B, we have

fog=fojotoE~foroQtoE~ f oh.
Thus for e = g o A1, the proof is completed. U

Let SU(c0) >~ Cy % -+ x Cp_1 be the mod p decomposition such that m.(C) =0
for x £ 2k +1 mod 2(p — 1). Let Cf and SU(oo) be the 3-connective covers of Cy
and SU(o0), respectively. Then we have SU(c0) >~ Cy x --- x Cp_1 and there is a

homotopy equivalence SU(0o0) — Q25U (o) which is a loop map. We now decom-
pose an H-map p: G — SU(c0) with respect to the mod p decompositions of G and
SU(c0). Define a map p*: B; — Q2C}, by the composite

Bj, —%5 G 25 SU(00) - 02STU(c0) 2205 026,

Lemma 6.3. Suppose that (G,p) is in Table 1. For an H-map p: G — SU(c0), the
composite

1oy p—1 ~ ~
B:Bl Xoee XBp_l %QQC& Xoee XQQCp_l ZSU(OO)
1s an H-map too.

Proof. By Lemma 6.2, the map poe: B — SU(c0) is an H-map. Asin [13, 14], the H-
structure of B is the product of certain H-structures of B;, so the map p* x --- x pP~!
is an H-map. Thus the proof is done. O

Theorem 6.4. Suppose that (G,p) is in Table 1. If p: G — SU(0) is an H-map,
then poe~ pt x --- x pP~ L,

Proof. By Lemmas 6.2 and 6.3, the maps po e and p' x --- x pP~! are H-maps. Then
for (poe)la = (p'a,) V-V (PP a4, ,) = (p* x -+ x pP~1)| 4, the proof is done by
Theorem 6.1. O
Corollary 6.5. Suppose that (G,p) is in Table 1. If p: G — SU(oc0) is an H-map,
then

hofib(p) ~ hofib(p') x - - - x hofib(pP~1).

Put dy =k —1+1ri(p—1) for k € t,(G). Similarly to By, we denote the factors
of 22SU(00) and p corresponding to k € t,(G) by Q2C) and p*, respectively. The
following is immediate from the Serre spectral sequence for the homotopy fibration

k ~
hofib(p*) — By, £— Q2C.
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Proposition 6.6. Suppose that p*: By, — Qzék is an isomorphism in cohomology of
dimension < 2k — 1+ 2rx(p — 1), then the cohomology of hofib(p¥) is given by

j‘j* (hOﬁb(pk)) = <a2dk,a2dk+2(p,1)> fOT * << Qdk + 4(p — 1)
such that asy, transgresses to the suspension of ¢,+1 modulo decomposables.

Define a map
D, = asa, @ Agay 4o(p—1): [X,hofib(p")] — H?¥ (X) @ H+20=1 (x).

Corollary 6.7. Assume the condition of Proposition 6.6. If dim X < 2d;, +4(p — 1)
and [X,hofib(p*)] is a free Z,)-module, then the map @y, is an injective homomor-
phism.

Proof. By Proposition 6.6, the map asa, X aaqy2(p—1: hofib(pF) = K (Z,, 2dy) x
K(Zyy,2dy, +2(p — 1)) is a rational (2d, + 4(p — 1))-equivalence. Then by dim X <
2dy, + 4(p — 1), @y is an isomorphism after tensoring with @, so since [X,hofib(p*)]
is a free Z)-module, the proof is completed. O

Suppose G is a quasi-p-regular exceptional Lie group. Then by Table 2 and Propo-
sition 4.5, it remains to calculate the Samelson products (;, €;) in G for (G, p, {,7})
in Table 3.

Table 3:
E¢ p=5 {2,8},{5,5} p=7 {2,6},{5,9}
Er p=11 {2,8}{2,10},{8,10}, p=13 {2,6},{2,12},{6,6},{6,8},
{8,14} {6,12}
Es p=11 {2,20},{8,14} p=13 {2,12},{8,18}
p=17 {14,20} p=19 {2,12},{2,18},{12,12},

{14,24}

We denote the composite of the representation p, and the inclusion
SU(Ng) — SU(o0) by the same symbol pg, where N, = 27,56,248 for £ = 6,7,8. For
(G,p,{i,j}) = (Es, 19,{12,12}), it follows from Proposition 5.3 that the condition of
Proposition 6.6 does not hold if k = 24. However, there is ag;_2 € H?*~2?(hofib(p3?);
Z(py) which transgresses to the suspension of ¢; for i = 42,60. Then we define

bPyy = ago P aqis: [X, hOﬁb(p§4)] — HSQ(X; Z(p)) D HllS(X;Z(p)).

Proposition 6.8. Fori,j € t,(G), let X be the (2dy; ;) + 2(p — 1))-skeleton of A; A
A;, where k(i,7) is the integer k in Corollary 2.6. If (G,p,{i,j}) is in Table 3, then
the map ®y; 5y is an injective homomorphism.

Proof. We first consider the case (G, p, {i,j}) # (Es, 19,{12,12}). By Proposition 2.4
and 6.6, we see that m;(hofib(p})) = Z,) and w41 (hofib(p})) = 0 for i = 2dy, 2dj, +
2(p — 1), where k = k(4, j), since they are in the stable range. Then since X consists
of cells in dimension 2dy mod 2(p — 1) and dim X < 2dj, + 2(p — 1) by definition, we
see that [X, hofib(pf)] is a free Z,)-module by skeletal induction. Thus the proof is
done by Corollary 6.7.
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We next consider the case (G, p, {i,7}) = (Es, 19, {12,12}). Since caa(ps) =

19348 + - -+ for A € Z(Xp), we have

H* (hoﬁb(p§4); Z/p) = Z/p[alo, Plalo, P2a10, 7)3(110] (39 A(ﬁ?’lalo), |a10| =10

for * < 154. Let F be the 10-connective cover of hofib(pg?). Then by the Serre spec-
tral sequence of the homotopy fibration K (Z,),9) — F — hofib(p3*) and the Adem
relation PAP? = 28P3 + P33, we get

H*(F;Z/p) = (bs2, P bsa)

for ¥ < 154. Then quite similarly to the above, we see that [X, F] is a free Z,)-module.
Thus as in the proof of Corollary 6.7, we see that the map

' = by, g0 [X,F] = H¥(X;Z) & H'B(X;Z )

is injective, where b}, b5 are mapped to non-zero multiples of bga, Plbga respectively
by the mod p reduction. Now by [16, Lemma 2.1}, we may choose bg,, b]15 such that
the diagram

(b/
[X, F] _— HSQ(X;Z(p)) %) HllS(X;Z(p))

| -

D
(X, hofib(p3*)] —* H®2(X; Z,)) ® H'8(X; Zy)

commutes. Obviously, the left vertical arrow is an isomorphism. Then we obtain that
the map P24 is injective, completing the proof. O

7. Representations and Samelson products
Consider an H-map p: G — SU(oc0). Then there is an exact sequence
K(X) = [X,QSU(c0)] - [X, hofib(p)] — [X, G] = [X,SU(c0)].

Suppose that X = AA B and consider the Samelson product {(«, ) in G of maps
a: A— G, [: B— G. Since SU(00) is homotopy commutative we have p,({«, 8)) =
0, so there is v € [X, hofib(p)] which maps to («, ). Then we get:

Lemma 7.1. The Samelson product {c, B) is trivial if and only if v € Im 4.

This simple criterion is considered by Hamanaka and Kono [3] in the case that p is
the inclusion SU(n) — SU(c0) for which hofib(p) is explicitly given by QSU(c0)/SU(n).
We apply Lemma 7.1 to determine (non-)triviality of the remaining Samelson prod-
ucts. Assume that (G, p, {,7}) is in Table 3. Put X to be the (2d) + 2(p — 1))-skeleton
of A; AN A;. Then by Corollary 2.6, there is only one k(¢, j) such that

[X, hofib(pe)] 2 [X, hofib(py )]
and by Corollary 6.7 and Proposition 6.8, we have identified the homotopy set on the
right hand side. Quite similarly to [3, Proposition 3.1], we can prove the following.
Proposition 7.2. In the situation of Proposition 6.8, we have

Prig) © 0 = diig)lcha,; ;) ® (digig) +p — Dlcha,,  +p-1-
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Let us calculate the image of @, ;) o d explicitly. To choose generators of K (XA)),
we calculate the Chern character of the restriction p,: ¥A — BSU(o0) of Bp,: BG —
BSU(o0). Note that

_1\n—1
ey () = U

mb*(cn(w))

by (3) where ¢: XA — BG denotes the inclusion. Then by Proposition 5.3, we have:

12 14 5
h(pg) = 32 —YYyg — —— — — —
ch(ps) Ys + ] Yo 5.5l Y11+ s 371 Y15 + 57 N Yi7 — 32110 Y23,
1 5 126 9 319
h(p7) = 62 -3 —> — — —
ch(pr) Ys — 5l Y11+ ——= 17 Y15 + — ol Y19 — 2110 Y23 + 10131 Yar
B 1229 >
60 17! Yss,
15 126 165 1820 23001
h(pg) = 302 — — — — —
ch(ps) = 30Xy + = 7 215 + st ogp 131 Yor + — T 2Yss + — 519139
B 1746822 > 15265250 Sy
5.3l “YT T T s

Remark 7.3. Our expression of the Chern character of pg differs from that of [18]
since our choice of generators of H*(BEg) differs from that of [18].

We now choose generators of K (XA;). If r; = 1, then $4; = $2 implying K (S A,)
is a free Z(y)-module generated by a single generator 7; such that
ch(n;) = ua,

where w,, is a generator of H™(S™) & Z,. If r; = 2, then $A; = §* Ue*2P72 50
there is a short exact sequence

0 — K(S*+72) 5 K(S4;) — K(8%) =0, (4)
where K ($27) = Zypy- If we put & = pe|sa, for 7 in Table 3, then it is easily verified
that

ch(§) = augi +--- (a €Z(,).
So it follows from (4) that K(XA4;) is a free Zp-module generated by &; and n; such
that
ch(n;) = U2i+2(p—1)»
where 7); is explicitly given by the composite of the pinch map to the top cell X A; —
S2+2P=2 and a generator of ma;42,—2(BSU(00)) = Z,).
Since K (A;) is torsion free, we have
K(A; AA;) = Y 2K(SA) @ K(SA;).
Thus we obtain the following by Proposition 7.2.

Lemma 7.4.

1. The map Py ;)00 is surjective for (G,p,{i,j}) = (Er,11,{2,10}), (E7,13,
{2,12}), (E7,13,{6,8}), (Es, 19, {2,18}).
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2. For (Gapa (Za.])) = (E6777 {2a6})7 (E77 ]-]-7 {278})7 (E7a 1]-7 {87 10})) (E8a ]-97 {27 12}))
we have

Im (pk(i,j) (e] 5 D p- (H2i+2j+2p74(Ai AN Aj; Z(p)) D H2i+2j+4p76(Ai N Aj; Z(p)))

3. Im®y(; jy 00 mod p is generated by:

(4,)
E¢s | p=5 (27 8) (0, 0)
(5,5) (0, %)
p=7 (2,6) (Bys ® Y23 — Y15 @ Y11, 4Y15 @ Y23)
(5,9) (0,0)
Er | p=11 (2,8) (5Y3 ® Y35 — 2y23 @ Y15, 8Y23 @ Y3s5)
(87 14) (0, *)
p=13 (2,6) (5y3 ® Y35 — 3y27 @ Y11, *)
(6,6) (4y11 ® Y35 + 4yss @ Y11, —3Y35 @ Yss)
(6,12)  (0,0)
Es | p=11 (2, 20) (0, 0)
(8,14)  (0,0)
p=13 (2,12)  (—y3 ® yar — 3yor @ Yo3, *)
(8,18)  (0,0)
p=17 (14, 20) (0, *)
p=19 (2,12)  (13y3 ® ys0 + Y39 @ Y23, 15y39 ® Ys59)
(14, 24) (0, 0)

Corollary 7.5. Ifi+j=p+1 and r; +r; =3 fori,j € t,(G), the Samelson prod-
uct (&, €;) is trivial.

Proof. For i,j €t,(G), i+j=p+ 1,7 +r; =3 if and only if (G,p,{i,j}) is one
of (E7,11,{2,10}), (E7, 13,{2,12}), (E7, 13,{6,8}), (Es, 19, {2, 18}). In these cases, we
see from Lemma 7.4 that ®;; ;)(v) must be in Im ®;,; ;) o §, where « is a lift of (€;, €;).
Thus by Lemma 7.1, we obtain that the Samelson product (€;, €;) is trivial. O

We choose a lift v explicitly and calculate ®; jy(7) by generalizing a calculation
in [3]. We may set the map Bp,: BG — BSU(c0) to be a fibration such that its fiber
is Bhofib(py). Let 4 be the composite

i

YA; X ZAj ﬁ) BG x BG Bp¢xBpg

BSU(o0) x BSU(00) — BSU(c0),

where the last arrow is the Whitney sum. Then we have

(3" (cn)) = > (&)" 0 Bpj(cs) ® (€))* © Bpj(cy). (5)

s+t=n
Put n =dg + 1,dg + p where k = k(4, ). By Proposition 5.3, there exists dg > 0 such
that plox; € Im Bp} for each generator z; of H*(BG). Since Bpj(c,) has no linear
part for degree reasons, there are a quadratic polynomial Q@ € H*(BSU(00))? and a
higher degree polynomial R € H*(BSU(cc))? such that Bp}(plc, —Q + R) =0 for
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some d. Note that
A*(plen — Q + R) = 4*(pe, — Q) € m* (H* (ZA; A TA;)),

where m: ¥A; x ¥A; — ¥A; AXA; is the pinch map which has the canonical right
inverse in cohomology.
By definition, there is a strictly commutative diagram

EAZ \Y ZA] E—— 2A1 X EAJ

\Lei\/e_/j l@
B

BG . BSU(x).

Let w: ¥A; NA; — ¥ A; VEA; be the Whitehead product. Since I, ~ ¥ A4; V XA,
for the mapping cylinder I, of w, we can apply a homotopy lifting property of the
fibration Bp, to get a commutative diagram

Iw —_— EAZ X ZAJ

l l&
Bpe
BG —— BSU(0),
where the left and the upper arrows are equivalent to those of the above diagram

and the upper one factors the pinch map I, — C,, to the mapping cone. Then since
Bhofib(p,) is a fiber of Bpy, we get a strictly commutative diagram

EAZ A Aj incl Iw EAZ X ZA]
l | X
Bhofib(py) BG — 2P BSU(c0).

By adjointness of Whitehead products and Samelson products, we see that the adjoint
of the left arrow is a lift of (€;, €;), so we fix v to be this map.
The last commutative diagram induces a commutative diagram

o

H2=1(SA4; A A)) _ 0 _ H?>(I,,SA; A Aj) H?™($A; x $A4;)

- | -

Bp;

H2"=1(Bhofib(p,)) —2= H2"(BG, Bhofib(p,)) =<~ H?"(BSU(0)),
where the upper 0 is identified with the composite
H2 L (SA; A A;) — HP (524, A Aj) = H™(A; x DA;)
for the projection 7: $A; x ¥ A; — X2A4; A A;. Since there is e, € H*"~!(Bhofib(py))
which transgresses to p%c, — @ + R, we have
F(en) =27 o (1) T F (len — Q+ R) =57 o (1) THE (en — Q).

Consider the Serre spectral sequence of the path-loop fibration of BSU(c0). We have
that the restriction of e, transgresses to p?c, by naturality. Since the transgression
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induces an isomorphism between the modules of indecomposables of H2"~1(SU(c0))
and H2"(BSU(00)), the restriction of e,, coincides with p?c(c,,) where o(c,,) denotes
the suspension of ¢,. Thus we see that, in the Serre spectral sequence of the path-
loop fibration of Bhofib(p), the suspension of e,, is equal to the pullback of pZag, o
through the projection hofib(pg) — hofib(p}). Since H?"72(A; A A;) is a free Z,)-
module, we have the following:

7 (azn—2) = X0 (1) (7" (p%en — Q) /.
Thus by combining this equation with (5), we obtain an explicit description of

v (az2n—2)-
We here give an example calculation of v*(ag,—2) for (G,p,{%,j}) = (Eg, 5,{5,5})
and n = 10. By Proposition 5.3, we have () = %cg, d =0, and then

(T) T (3 (c10 = Q) = (7*) (1 = §)(e5)" 0 pg(cs) @ (e5)" 0 pg(cs)) = 1265%yo @ yo,
so we get v*(a1s) = 126y9 ® y9. Quite similarly to this calculation, we obtain:

Lemma 7.6. ®;(; jy(y) mod p for (G,p, (i,7)) is given by:

(4,5)
E¢ | p=5 (2,8) (3y3 ® Y15, 2y3 ® Yo3 + 3y11 @ Y15)
(5,5) (Yo @ Yo, *)
p=T7 (2,6) (2y3 @ Y23 + 4y15 @ Y11, 5Y15 @ Y23)
(5,9) (2y9 ® y17,0)
Er [p=11 (2,8) (Tys @ Y35 + 6y23 @ Y15, My23 @ Y35)
(8,10) (0,0)
(8,14) (—3y15 ® Yoy, *)
p=13 (2,6) (3ys ® yss, *)
(6,6) (2y11 ® Y35 + 235 @ Y11, —2¥35 @ Y35)
(6,12) (4yzs @ Y23, 0)
Eg | p=11 (2,20) (5y3 @ Y39, —Y3 @ Ys9 + Y23 @ Y39)
(8,14) (Ty15 @ Yo7, Y15 @ Yar + 2y35 @ Ya2r)
p=13 (2,12) (—2y3 ® yar — Yor @ Y23, *)
(8,18) (—6y15 @ Y35, =15 @ Y59 — 4Y39 @ Y35)
p=17 (14,20)  (—9y27 ® Y39, *)
p=19 (2,12 (10y3 ® ys9 + 4yz9 @ Y23, 13y39 @ Ys9)
( (-

5Y27 @ Yar, *)

Proposition 7.7.
1. The Samelson product (€;, €;) is trivial for (G,p,{i,j}) = (E¢,7,{2,6}), (E7, 11,
{27 8})> (E7a 11, {87 10}); (E87 19, {2a 12})'
2. For the other (G,p,{i,7}) in the table of Lemma 7.6, (€;,€;) is non-trivial.

Proof. By Lemma 7.4 and 7.6, we see that ®j; ;y(7) € Im ®(; j) 00 in the case of
(1) and that ®(; ;) () & Im ®y(; ;) 0  in the case of (2). Then by Proposition 6.8, the
proof is completed. O
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Proposition 7.8. The Samelson product (€12, €12) in Eg at p =19 is trivial.

Proof. As above, we see that
Doy 00(E12 ® &12) = 57(y23 @ Ys9 + Ys0 @ Y23) + 20959 @ Y50,
Doy () = 228(y23 @ Ys9 + Ys0 @ y23) + 114ys50 @ Y59

modulo 192. Similarly to Lemma 7.4, we see that Im ®4 o § includes 192y23 ® ys9,
19%y50 @ o3, 19%y59 @ Y59, 50 Poy(7y) € Im o4 0 5. Thus the proof is completed by

Proposition 6.8. O
Proof of Theorem 1.2. Combine Corollary 2.7 and Propositions 2.8, 4.5, Corollary 7.5,
Propositions 7.7 and 7.8. O
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