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E∞ OBSTRUCTION THEORY

ALAN ROBINSON

(communicated by J.F. Jardine)

Abstract
The space of E∞ structures on a simplicial operad C is the

limit of a tower of fibrations, so its homotopy is the abutment of
a Bousfield-Kan fringed spectral sequence. The spectral sequence
begins (under mild restrictions) with the stable cohomotopy of
the right Γ-module π∗C; the fringe contains an obstruction the-
ory for the existence of E∞ structures on C. This formulation is
very flexible: applications extend beyond structures on classical
ring spectra to examples in motivic homotopy theory.
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1. Introduction

This paper develops obstruction theory for E∞ operads in more detail than the
author’s brief account in §5 of [18]. Our aim is to investigate the homotopy classes
[K, C] from the commutative operad K into a general operad C, in the homotopy
category of simplicial (or topological) operads. To this end we replace K by a standard
cofibrant approximation, namely the E∞ operad of trees T which was introduced
in [21]. The space of maps from T to C is what we actually study: this is the space
of E∞ structures on C.

By applying our results to the case where C is the endomorphism operad of an
object V in a symmetric monoidal simplicial category, we can analyse E∞ multiplica-
tions on V . The advantage of our approach is that the theorems apply not only in the
categories of spaces or spectra, but also in a much broader context. An application to
motivic homotopy theory has been given by Naumann, Spitzweck and Østvær [13].

Sections 2 and 3 contain preliminary material on operads and Γ-module theory
respectively: the main results are proved in Section 4. Theorem 4.9 gives a Bousfield-
Kan type fringed spectral sequence for the homotopy groups of the space of E∞
structures on a simplicial (or topological) operad C with a given homotopy asso-
ciative and commutative pairing. The E2 page of the spectral sequence consists of
certain Ext groups which, by work of Pirashvili [15], may be interpreted as stable
cohomotopy groups of the Γ-module of homotopy groups π∗C, as described in §4.1.
Theorem 4.12 establishes the existence of a sequence of obstructions to the existence
of such an E∞ structure. The obstructions lie in stable cohomotopy groups πnπn−2 C
beyond the fringe of the aforementioned spectral sequence. Similar situations have
been investigated in [3, 6], and in unpublished work by the same authors.

The proof of Theorem 4.12 works by suitably filtering the tree operad T , and
comparing the resulting exact couple with a reduced algebraic bar resolution. This
gives an E2 page consisting of Ext groups. We then apply Pirashvili’s theorem.

Our techniques in §3.7 are to some extent comparable with the use by several
authors of Batanin’s pruned trees to analyse morphisms and homology of operads of
dg-algebras: see Fresse [5], Livernet and Richter [9], and Ziegenhagen [23].
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2. Operads

We work principally with operads of spaces. By the term space we here always
mean simplicial set, unless the context requires otherwise.
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Our operads may not have units, so we adapt the definition of Markl [11] to the
category of spaces. As in [21] we index the spaces in an operad C not by non-negative
integers, but by all finite sets S (in a suitable universe). This eliminates from our
proofs a host of spurious complexity which tends to arise because our main construc-
tions proceed by induction over the quotient sets of S, which have no sufficiently
standard enumeration.

If C is an operad and S happens to be the set {1, 2, . . . , n} then we write Cn for
C{1,2,...,n}. The operad C is determined up to isomorphism by its values Cn on this spine
and the compositions among them. The space CS has various right compositions ◦s
with CT corresponding to differently labelled inputs s ∈ S. The deleted disjoint union
(S \ {s}) ⊔ T is denoted by S ⊔s T . The formal definition is as follows.

Definition 2.1. An operad C prescribes:

1. For each finite set S a space CS , cofunctorial with respect to isomorphisms
ϕ : S1 → S2 of finite sets.

2. For each pair (S, T ) of finite sets and each s ∈ S a natural composition map
◦s : CS × CT −→ CS⊔sT , such that two conditions hold:

3. (Left-right associativity) if s ∈ S and t ∈ T we have

(x ◦s y) ◦t z = x ◦s (y ◦t z)

for all x ∈ CS , y ∈ CT , z ∈ CU .

4. (Right-right associativity) if s, s′ ∈ S we have

(x ◦s y) ◦s′ z = (x ◦s′ z) ◦s y

for x, y, z as above.

We now mention unit elements for operads. The space C{s} corresponding to a
singleton is determined up to unique isomorphism by clause (1) of the above definition,
so we may identify C1 with C{s} for any s. A unit for C is an element ε of C1 (or
equivalently of C{s}, where s ∈ S) such that for each finite set S

• left composition with ε ∈ C1 is the identity map on CS
• any right composition ◦s with ε ∈ C{s} is the identity map on CS

Strict units, when they exist, are unique. It often suffices to have only homotopy units,
which are defined by replacing “the identity map” by “homotopic to the identity map”
in the above.

In A∞ theory there is a standard operad A consisting of the Stasheff polytopes.
An action of A is an A∞ structure. We shall show that in E∞ theory there is likewise
a canonical example with a central rôle. This is the operad T of [21], defined as
the product P ×Q, where P is the partitions operad and Q is the Barratt-Eccles
operad [1].

2.1. The operad P of partitions
We define the partitions operad P in terms of trees, and explain the connection

with partitions later in the section. So we assign to a finite set S the space PS of
trees [20] with internal edges of lengths between 0 and 1, and with twigs labelled by
all elements of the set S. As we are using operads without unit, we shall define PS to
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be empty in the trivial cases |S| ⩽ 1. (The alternative would be to admit as unit the
unique tree with one twig.) We summarise the properties which we shall need, and
refer to [20] and [19] for proofs.

The composition map

◦+ : PM ×PN+ −→ PS where |M |, |N+| ⩾ 2

grafts the root of PM into the twig labelled + in PN+ , forming a new internal edge
of length 1. Thus a tree is a composite iff it has an internal edge of maximal length.
Such trees are also called decomposable or fully grown. Each space PS with |S| ⩾ 2
can be contracted, by shrinking edge lengths of trees, to the point consisting of the
star tree with twigs S.

Proposition 2.2. (Properties of the operad of partitions.)

1. Each composition map

PM × PN+ −→ PS

is injective: its image is the face of PS corresponding to the partition S =
M ⊔N of S.

2. Two different faces of PS are disjoint, or intersect in a common subface. Their
union is the boundary ∂PS, the subspace of all decomposable trees.

3. The space PS is a cone, with the star tree as vertex and the boundary ∂PS as
its base. 2

This type of face structure is the vital characteristic of cofibrant operads as defined
in [21]. The term “cofibrant” is used informally: we shall not need any model structure
on the category of operads.

The group of permutations of S acts on PS on the right, by permuting the labels
on the twigs. Yet the operad P fails to be an E∞ operad, because this action is not
free. We shall remedy this by constructing the operad T in §2.4.

Proposition 2.3. (Homotopy type of ∂PS .) Let n = |S|.
1. The boundary ∂PS (the union of all its faces) has the homotopy type of a wedge

of spheres: in fact,

∂PS ≃
∨

(n−1)!

Sn−3 and PS/∂PS ≃
∨

(n−1)!

Sn−2 .

2. Under the action of the symmetric group Σn, the cohomology H̃n−3(∂PS) is
a ZΣn-module isomorphic to ϵLien, the Lie representation twisted by the sign
character. 2

Definition 2.4. The representation εLien which occurs in Proposition 2.3 is called
the nth superlie representation Sn. Its restriction to the subgroup Σn−1 is the regular
representation. Its Z-dual, which is isomorphic to the homology group H̃n−3(∂PS),
is denoted S∗n.

The reason for the “superlie” terminology is explained in [19]; see also [12, 17].
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2.2. Trees and partitions
We now reinterpret the spaces of the operad P, first in terms of partitions of S,

and then in terms of a reduced nerve of a category of surjections under S.
The set of partitions of the finite set S is partially ordered. We reverse the usual

ordering by refinement, so that the discrete partition becomes the initial object, and
the indiscrete partition the final object. Let us assume |S| ⩾ 2. Partitions which are
neither discrete nor indiscrete are called non-trivial.

Lemma 2.5. ([19, Prop. 2.7].) The nerve of the partially ordered set of non-discrete
partitions of S is isomorphic to the space PS of S-trees. The nerve of the subset of
non-trivial partitions corresponds to the space ∂PS of decomposable trees. 2

The star-tree with twigs labelled by S is a vertex corresponding to the trivial
partition. We have seen that PS is a cone with this star-tree as vertex. The base of
the cone is ∂PS .

For the next stage, note that partitions of S correspond to equivalence relations,
and therefore to quotient sets. Taking a greater partition (in our ordering) corresponds
precisely to quotienting further.

Let Ω be the category of finite sets and surjective maps, and for n ⩾ 0 let n be the
object {1, 2, . . . , n} of Ω. We use the standard notation for over- and under-categories:
thus when S is a finite set, S/Ω denotes the slice category of surjections of finite sets
under S. Clearly S/Ω ≈ S/Ω/1 since 1 is a final object in S/Ω.

We also need some less standard notation for some full subcategories of the slice
categories. A surjection is strict if it is not an isomorphism.

Definition 2.6. Let S//Ω be the subcategory of surjections of finite sets strictly
under S, that is, the full subcategory of S/Ω whose objects are non-isomorphisms
S → X in Ω.

Let S//Ω//1 be the category of surjections of sets strictly under S and strictly over
the singleton object 1.

Notice that the category S//Ω is obtained from S//Ω//1 by adding a final object,
so that the nerve of S//Ω is the cone on the nerve of the subcategory.

Lemma 2.7. There is a natural weak homotopy equivalence of pairs

Φ:
(
N(S//Ω), N(S//Ω//1)

)
−→

(
PS , ∂PS

)
.

Proof. We map each object S → X of S/Ω to the corresponding partition of S by
inverse images of points of X. This maps the category S//Ω by an equivalence to the
category of partitions of S which are not discrete, and the subcategory S//Ω//1 by an
equivalence to the subcategory of partitions which are neither discrete nor indiscrete.
This gives a weak equivalence of pairs of nerves. Then we follow by the isomorphism
of Lemma 2.5 to the space of trees. This gives the required homotopy equivalence.

Notes
1. One can restate the proof above by noting that in S/Ω every endomorphism of

an object is an identity map. This implies that Φ is a map of nerves in which that
inverse image of each point is contractible. (Compare the last section of [14],
which in turn refers to previous work of W. Lück and of J. S lomińska.)
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2. We can extend the above to describe the spaces in the operad P in terms of
nerves, but the description of the operad composition in terms of trees is more
intuitive.

3. The triangulation of PS arising from partitions, which we use here throughout,
is finer than that used in [20].

4. Proposition 2.3 was proved in terms of partitions by M.L. Wachs after partial
results by several workers [22].

In the following related proposition, N denotes nerve, C is cone and Σ is suspen-
sion.

Proposition 2.8. (i) The nerve N(S/Ω/1) is weakly contractible.

(ii) Let ∂N(S/Ω/1) denote the subcomplex of N(S/Ω/1) consisting of all simplices
not having the 1-simplex S −→ 1 as a face. Then there is a natural weak equiv-
alence of pairs

(N, ∂N)(S/Ω/1) ≃
(
CΣ(∂PS), Σ(∂PS)

)
.

Proof. The category S/Ω/1 has an initial object S and a terminal object 1, so its
nerve is weakly contractible. Indeed the nerve can be regarded as a cone with either
of these objects as base. (Strictly speaking the initial object is 1S , etc., but we abuse
notation here for simplicity.)

The simplices of N(S/Ω/1) not having 1 as a vertex, form a subcone C+ with
vertex S and base N(S//Ω//1). The simplices of N(S/Ω/1) not having S as a vertex,
form a subcone C− with vertex 1 and the same base N(S//Ω//1). The cones C+ and
C− intersect only in their common base, so their union ∂N(S/Ω/1) is weakly equiv-
alent to the suspension Σ(N(S//Ω//1)) and therefore (by Lemma 2.7) to Σ(∂PS).

Since by the first part C+ ∪ C− is (cofibrantly) embedded in the weakly con-
tractible space N(S/Ω/1), we deduce the required weak equivalence of pairs.

2.3. The Barratt-Eccles operad Q
We now recall the Barratt-Eccles operad Q. In the original formulation [1] its

elements are the contractible free Σn-spaces EΣn. In our categorical situation operads
have spaces indexed by finite sets S. We define QS to be the nerve of the slice category
S/I of isomorphisms of finite sets under S. Composition in the operad is deleted sum:
the map

QS ×QT+ −→ QS⊔T

takes the disjoint union of sets under S with corresponding sets under T . (The points
which correspond under the isomorphisms to + are deleted.)

The essential property of Q is its freeness: different isomorphisms S′ → S in Ω
induce simplicial maps QS → QS′ which are everywhere different. (Equivalently, for
every n the symmetric group Σn acts freely on Qn.) Its disadvantage is that it is not
a cofibrant operad: the decomposable elements do not behave as in Proposition 2.2.
Indeed a typical element of Q is decomposable in many ways.

2.4. The tree operad T
This is our principal tool in investigating E∞ structures. Again, it is an operad

without unit in our formulation: the space TS is empty when |S| ⩽ 1. It is related to
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theories obtained by Boardman and Vogt’s W -construction [2, Ch. III].

Definition 2.9. The tree operad T is the product P ×Q of the Barratt-Eccles
operad and the partitions operad.

We can now investigate T by using Propositions 2.2 and 2.3.

Proposition 2.10. (Properties of the tree operad.)

1. The tree operad T is E∞.

2. Each composition map

TM × TN+ −→ TS
is injective: its image is the face of TS corresponding to the partition S = M ⊔N
of S.

3. Two different faces of TS are disjoint, or intersect in a common subface.

4. The union ∂TS of all the faces (the boundary of TS) has the homotopy type of
a wedge of spheres: in fact,

∂TS ≃
∨

(n−1)!

Sn−3 and TS/∂TS ≃
∨

(n−1)!

Sn−2 ,

where n = |S|.
5. Under the action of the symmetric group Σn, the cohomology H̃n−3(∂TS) is

a ZΣn-module isomorphic to ϵLien, the Lie representation twisted by the sign
character. Its restriction to the subgroup Σn−1 is the regular representation.

Proof. 1. The space PS is contractible to the star tree with twigs S, by shrinking
internal edges. The category S/I of isomorphisms of finite sets under S has an initial
object, so its nerveQS is contractible. Thus the product TS = PS ×QS is contractible
for every S. The freeness of the action of I on T follows from the freeness of the action
on Q. Therefore T is E∞.

2. The composition maps are injective both in the operad P and in the operad Q.
Hence they are injective in the product T = P ×Q.

3. We first show that a (bi)simplex (x, y) ∈ PS ×QS = TS lies on a face iff x
corresponds to a decomposable shape of S-tree, that is one with an internal edge of
maximal length. The necessity is obvious (from the definition of composition in P).
For sufficiency, suppose that the tree x can be decomposed as x1 ◦ x2, where ◦ denotes
grafting of trees. This gives a partition of S as M ⊔N , where M (resp. N+) labels
the twigs of x1 (resp. x2). Now we take the simplex

y = {S −→ S0 −→ S1 −→ · · · −→ Sk}

of isomorphisms of sets under S, we partition each set Si = Mi ⊔Ni and each iso-
morphism by transport from S = M ⊔N , thus obtaining simplices

y1 = {M −→M0 −→M1 −→ · · · −→Mk}

and (adjoining an extra input for grafting)

y2 = {N+ −→ N0
+ −→ N1

+ −→ · · · −→ Nk
+} ,

such that (x.y) is the composite (x1, y1) ◦ (x2, y2), and therefore lies on a face. We
have incidentally shown that ∂TS = ∂PS ×QS .
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Now suppose that (x, y) lies on two distinct faces F1 and F2. Then the tree x
has two maximal-length internal edges, along which it can be split into three parts.
Dissecting the label set S into three much as above, we can decompose y into three
correspondingly. We deduce that (x, y) is a double composite. Performing the com-
positions in two different orders, we deduce that (x, y) lies in a face of F1 which is
also a face of F2.

4, 5. The projection on the first factor

(TS , ∂TS) = (PS , ∂PS)×QS −→ (PS , ∂PS)

is a homotopy equivalence of pairs, since QS is contractible. The results therefore
follow immediately from Proposition 2.3. This completes the proof of Proposition 2.10.

Let S = M ⊔N+ be any non-trivial partition of S, as above. We define the bound-
ary of the face TM × TN+ of TS as usual to be

∂(TM × TN+) = (∂TM × TN+) ∪ (TM × ∂TN+) .

Thus

(TM × TN+)/∂(TM × TN+) ≈ (TM/∂TM ) ∧ (TN+/∂TN+) .

We denote by ∂∂TS the union of the boundaries of all faces of TS . The next proposition
follows from this and from statements 2 and 3 of Proposition 2.10.

Proposition 2.11.

∂TS/∂∂TS ≈
∨

S=M⊔N

(TM × TN+)/∂(TM × TN+)

≈
∨

S=M⊔N

(
(TM/∂TM ) ∧ (TN+/∂TN+)

)
,

where the union is taken over all non-trivial partitions S = M ⊔N of S. 2

3. Homological algebra of Γ-modules and Ω-modules

3.1. Indexing categories
In the previous section we indexed the spaces in our operads by all finite sets (in

some universe). To handle the homology of our operads, we now develop some aspects
of the homological algebra of modules over categories of finite sets. Much of the theory
here is due to or developed from the ideas of Pirashvili [14, 15] and Richter [16], and
we refer to their original papers for some proofs.

Definition 3.1. We define two indexing categories as follows:

Γ is the category of finite based sets and basepoint preserving maps.

Ω is the category of finite unbased sets and surjective maps.

The basepoint in any based set is denoted by 0.
The category Γ has a spine (minimal full subcategory equivalent to the whole)

with objects [n] = {0, 1, 2, . . . , n} for n ⩾ 0. Likewise, Ω has a spine with objects
n = {1, 2, . . . , n} for n ⩾ 0. In appropriate situations, we frequently replace an index-
ing category by its spine and denote it by the same symbol Γ or Ω.
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3.2. Modules
Let K be any commutative ground ring. In our applications K will usually be the

ring Z of integers.
The functors from Γ to K-modules form an abelian category KΓ-mod which we

shall simply call the category of left Γ-modules (or left KΓ-modules, if we need to
make the ring K explicit). The cofunctors from Γ to K-modules form the category
mod -KΓ of right Γ-modules. (Alternatively, these module categories can be defined by
first forming the “ring with many objects” KΓ, which is the category whose objects
are those of Γ and whose morphism sets are the free K-modules KHomΓ(S, T ).)

The categories KΩ-mod and mod -KΩ of left and right Ω-modules are defined in
a way completely analogous to the above.

Replacing the categories Γ and Ω by their spines changes these module categories
only by an equivalence, and therefore for homological purposes makes no difference
at all.

3.3. The Pirashvili-Dold-Kan Theorem for Γ-modules
We now introduce the cross-effect functors of Eilenberg and Mac Lane, which

convert Γ-modules into Ω-modules [14, 15].
Let A be a finite set. We denote by A+ the based set A ⊔ {0}, and for each element

a ∈ A we denote byA+/{a} the quotient set obtained by identifying the single element
a to the basepoint. Let ra : A+ → A+/{a} be the projection map.

Definition 3.2. Let L be a left Γ-module. The cross-effect cr(L) is the left Ω-module
which is given on objects by

cr(L)(A) =
∩
a∈A

ker
(
L(ra) : L(A+)→ L(A+/{a})

)
= ker

( ∏
a∈A

L(ra) : L(A+)→
∏
a∈A

L(A+/{a})

)
;

its value on a morphism ϕ : A→ B of Ω is the restriction of L(ϕ+) : A+ → B+.
If M is a right Γ-module, we define the right Ω-module cr(M) on objects by the

dual formula

cr(M)(A) = coker

(⊕
a∈A

M(ra) :
⊕
a∈A

M(A+/{a})→M(A+)

)
;

for a morphism ϕ : A→ B of Ω we define cr(ϕ) to be the map cr(M)(A)← cr(M)(B)
induced by M(A+)←M(B+).

The surjectivity of ϕ ensures that cr(L)(ϕ) and cr(M)(ϕ) are well defined [14].
These functors give a Morita equivalence between the categories KΓ-mod and

KΩ-mod ; similarly for right modules.

Proposition 3.3. (Pirashvili [14, 15].) The cross-effect functors

cr : KΓ-mod
∼−−→ KΩ-mod ,

cr : mod-KΓ
∼−−→ mod-KΩ

are Morita equivalences of abelian categories. 2
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The inverse Morita equivalences

cr♯ : KΩ-mod
∼−−→ KΓ-mod ,

cr♯ : mod -KΩ
∼−−→ mod -KΓ

can be described explicitly. For a left Ω-module L there is an isomorphism

cr♯(L)(A+) ≈
⊕
X⊂A

L(X) .

When ψ : A+ → B+ is a map in Γ, its image cr♯(L)(ψ) maps the component labelled
X by L(ψ) to the component labelled ψ(X) if 0 /∈ ψ(X), and to zero otherwise. The
analogous formula holds for right modules.

In this direct sum decomposition for cr♯(L)(A+) we may take the component cor-
responding to X = A. This gives a natural embedding of Ω-modules

θ(L) : L→ cr♯(L)

where the Γ-module cr♯(L) is regarded as an Ω-module by restriction along the functor
A 7→ A+. For a right Ω-module M there is likewise a natural projection of Ω-modules

θ(M) : cr♯(M)→M .

3.4. Stable homotopy and cohomotopy of Γ-modules
Let T be a right Γ-module. The cofunctor T converts any based simplicial set X

into a cosimplicial module TX: we denote the cohomology of the associated cochain
complex by π∗(TX). When X is a sphere, the cohomotopy group πn+r(TSr) is inde-
pendent of r for r ⩾ n+ 2 and the common value is called the nth stable cohomotopy
group πnT of T .

If F is a left Γ-module, then we write πnF for the nth stable homotopy group of F .
This is the value of πn+r(FSr) for r ⩾ n+ 2.

One particularly important right Γ-module is the linear functor t, whose value at
a set S is the module of based maps from S to K (where K has basepoint 0). The
right Ω-module corresponding to t under the Pirashvili-Dold-Kan isomorphism of §3.3
is ϖ, where

ϖ(n) =

{
K if n = 1,

0 if n ̸= 1.

In topological terms, t is the based K-cochain functor.

Theorem 3.4. Let T be a right Γ-module. Then there are natural isomorphisms

π∗F ≈ TorΓ∗ (t, F ) ≈ TorΩ∗ (ϖ, cr(F )) ,

π∗T ≈ Ext∗Γ(t, T ) ≈ Ext∗Ω(ϖ, cr(T )) .

Proof. We refer to [14, 15] for the proof of this basic result.

3.5. Deconstructing the bar construction
After Theorem 3.4 we can calculate stable homotopy π∗F and cohomotopy π∗T

from the bar construction over Ω. Let us write F̃ = cr(F ), T̃ = cr(T ) for typical left
and right Ω-modules, and NΩ for the nerve of the category Ω.
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The module of q-chains Bq(ϖ,Ω, F̃ ) of the bar construction is the direct sum of
modules

ϖ(S0)⊗KNΩq(Sq, S0)⊗ F̃ (Sq)

taken over all q-simplices [f1|f2| · · · |fq] of the nerve NΩ, where

S0
f1←−− S1

f2←−− · · · fq←−− Sq .

Since ϖ(S0) = 0 unless |S0| = 1, and all one-element sets are uniquely isomorphic,
we need only retain terms where S0 = 1. Normalizing by omitting degenerate sim-
plices, we may also assume |S1| > 1. The face homomorphisms are defined as usual:
∂0 = ϖ(f1)⊗ 1, whilst ∂1, . . . , ∂q−1 compose adjacent morphisms in [f1|f2| · · · |fq],

and ∂q = 1⊗ F̃ (fq).

We can organise B∗(ϖ,Ω, F̃ ) into a bicomplex as follows. If fq−t is the last mor-
phism in the sequence f1, f2, . . . , fq which is not an isomorphism (so t ⩾ 0), then we
assign bidegree (t, q − t) to the chain x⊗ [f1|f2| · · · |fq]⊗ κ. Then [fq−t+1| · · · |fq−1|fq]
is a t-simplex of the nerve of the subcategory Iso(Ω) of isomorphisms. Further-
more [f1|f2| · · · |fq−t] is a (q − t)-simplex of NΩ(Sq−t, 1), and actually a (q − t− 2)-
simplex of N(Sq−t//Ω//1), which space is isomorphic to N(Sq//Ω//1) through right-
composition with the isomorphism fq−t−1 · · · fq−1fq. On such a (t, q − t)-chain we
define bicomplex differentials by

∂′ =

q∑
i=q−t

(−1)i∂i and ∂′′ =

q−t−1∑
i=0

(−1)i∂i .

Then ∂′ and ∂′′ have degrees (−1, 0) and (0,−1) respectively; they anticommute, both
square to zero, and their sum is the standard differential. Thus we have a bicomplex,
and therefore a spectral sequence

E2
t,s ≈ H ′

tH
′′
s =⇒ Ht+s ≈ πt+sF .

Now we calculate the E1 and E2 pages. To simplify notation, we cut down the cat-
egory Ω to the spine with objects n = {1, 2, . . . , n}, n ⩾ 0. This does not prejudice
the calculation. The E0 page is the chain bicomplex. Since the category Iso(Ω) now
reduces to the disjoint union of the symmetric groups Σn, and ϖ(1) ≈ K, we have
by the above

E0
t,s =

⊕
n⩾2

C̃s−2(N(n//Ω//1)⊗ Ct(Σn; F̃ (n)) .

The E1 page is the ∂′′-homology of E0. Since ∂0 = 0 under our normalization, the dif-
ferential ∂′′ is exactly the differential in the augmented chain group C̃s−2(N(n//Ω//1).
The homology of this is, by Lemma 2.7 and Proposition 2.3, non-trivial only when
s− 2 = n− 3, and then it is isomorphic as a right Σn-module to the dual superlie
representation S∗n of Definition 2.4. This means that (E1, d1) is the two-sided bar
construction over Iso(Ω)

E1
s,t ≈ Bt(S∗s+1,Σs+1, F̃ (s+ 1))

and E2
s,t ≈ Tor

Σs+1

t (Ss+1, F̃ (s+ 1)). We have proved the first statement in the fol-
lowing theorem. The second part is proved analogously.
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Theorem 3.5. Let F be any left Γ-module, and F̃ = cr(F ). Then there is a conver-
gent spectral sequence

E2
s,t ≈ Tor

Σs+1

t (S∗s+1, F̃ (s+ 1)) =⇒ πs+tF ,

where S∗s+1 is the dual superlie representation. If T is a right Γ-module, and

T̃ = cr(T ), then there is a convergent spectral sequence

Es,t
2 ≈ ExttΣs+1

(S∗s+1, T̃ (s+ 1)) =⇒ πs+tT . 2

Corollary 3.6. If F̃ (i) = 0 for all i except for a single value i = n then

πk(F ) ≈ TorΣn

k−n+1(S∗n, F̃ (n)) for all k.

If T̃ (i) = 0 for all i except for i = n, then

πkT ≈ Extk−n+1
Σn

(S∗n, F̃ (n)) for all k.

Proof. The spectral sequence of Theorem 3.5 collapses to one line.

Indeed all simple Ω-modules are of the type described in Corollary 3.6: see [15].
The following further corollaries will be useful in the proof of Theorem 3.8 in the

next section. We consider the situation where the only non-zero value F̃ (n) of the
Ω-module F̃ is an induced module IndΣn

Σn−1
M for some Σn−1-module M .

Corollary 3.7. If M a Σn−1-module, and F is a left Γ-module with the property

cr(F )(i) = F̃ (i) =

{
IndΣn

Σn−1
M (as a Σn-module) when i = n,

0 when i ̸= n,

then πn−1(F ) ≈M , and πk(F ) ≈ 0 for all k ̸= n− 1.
If M is a right Σn−1-module, and T is a right Γ-module with the property

cr(T )(i) = T̃ (i) =

{
IndΣn

Σn−1
M (as a Σn-module) when i = n,

0 when i ̸= n,

then πn−1(T ) ≈M , and πk(T ) ≈ 0 for all k ̸= n− 1.

Proof. In the case of left modules, Corollary 3.6 and a standard induction formula
give

πk(F ) ≈ TorΣn

k−n+1(S∗n, F̃ (n))

≈ TorΣn

k−n+1(S∗n, IndΣn

Σn−1
M)

≈ Tor
Σn−1

k−n+1(ResΣn

Σn−1
S∗n,M)

≈ Tor
Σn−1

k−n+1(KΣn−1,M)

≈

{
M if k = n− 1,

0 if k ̸= n− 1,

since S∗n restricts to the regular representation of Σn−1 by Proposition 2.3. The case
of right modules is completely analogous.
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3.6. The complexes CΓ
∗ (F ), C∗

Γ(T )

The stable homotopy and cohomotopy groups of Γ-modules will arise geometri-
cally in our operadic obstruction theory as the Tor and Ext groups of Theorem 3.4.
The geometry of operads does not directly give the bar construction, however, but
rather a significant variant of this, namely a reduced version R∗

Γ(T ) of the Robinson-
Whitehouse complex C∗

Γ(T ) of [21, 16]. We therefore require the main theorem of
[16], which shows that this complex does indeed represent stable homotopy and coho-
motopy.

We begin with the case of left modules and homotopy, for which we adapt the
definition given in [16]. For any left Γ-module F we define a chain complex CΓ

∗ (F ) as
follows. We regard Ω as embedded in Γ by the basepoint-adjunction functor S 7→ S+.
Just as in the bar construction of §3.5, for each unbased finite set S let NΩq(S, 1) be
the set of q-simplices [f1|f2| · · · |fq] of the nerve of Ω

1 ≈ S0
f1←−− S1

f2←−− · · · fq←−− Sq = S ,

which have first source S, and have final target a set with one element which we may
take to be 1. For n ⩾ 2, NΩq(S, 1) is therefore just the set of (q − 2)-simplices of the
slice category S/Ω/1. Let KNΩq(S, 1) be the free K-module generated by NΩq(S, 1),
and let

CΓ
q (F ) =

⊕
S

KNΩq(S, 1)⊗ F (S+) .

Face operators ∂i : CΓ
q (F )→ CΓ

q−1(F ) are defined as follows.

∂q([f1|f2| · · · |fq]⊗ x) = [f1|f2| · · · |fq−1]⊗ F (f+q )(x) ,

∂i([f1|f2| · · · |fq]⊗ x) = [f1| · · · |fifi+1| · · · |fq]⊗ x ,

for 0 < i < q. Note that our embedding of Ω in Γ takes fq into a morphism f+q ,
and F (f+q ) is the value of F on this. To define ∂0, partition the source S1 of f1 into

singleton sets {s}. Taking inverse images induces partitions Sj =
⊔

s∈S1
S
(s)
j of the sets

S2, . . . , Sq, where S
(s)
j = (f2f3 · · · fj)−1{s}. Let f

(s)
j : S

(s)
j → S

(s)
j−1 be the restriction

of fj , and let rs : S+
q → S

(s)+
q be the pointed map which is the identity on S

(s)
q and

maps its complement to the basepoint. We set

∂0([f1|f2| · · · |fq]⊗ x) =
∑
s∈S1

[f
(s)
2 | · · · |f (s)q ]⊗ F (rs)(x) .

It is straightforward to verify that, for any left Γ-module F , the ∂i satisfy the usual
identities for face operators, giving a simplicial K-module. The associated chain com-
plex, with boundary

∑
(−1)i∂i, is the Robinson-Whitehouse complex CΓ

∗ (F ). Its
homotopy type is unchanged when the category Γ is replaced by a spine, so we
may always do this when computing its homology, which we denote by HΓ

∗ (F ).

We may now choose F to be the Γ-bimodule KΓ. Then CΓ
∗ (KΓ) is a complex

of right Γ-modules. The definition 3.4 of the right Γ-module t gives an isomorphism
HΓ

0 (KΓ) ≈ t.
We define the Robinson-Whitehouse cochain complex C∗

Γ(T ) of a right Γ-module T
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by

C∗
Γ(T ) ≈ HomΓ(CΓ(KΓ), T ) .

We denote its cohomology by H∗
Γ(T ). The following result contains the main result

of [16] and its cohomological dual.

Theorem 3.8. The complex CΓ
∗ (KΓ) is a projective resolution of the right Γ-mod-

ule t. There are natural isomorphisms

HΓ
∗ (F ) ≈ TorΓ∗ (t, F ) ≈ π∗(F ) ,

H∗
Γ(T ) ≈ Ext∗Γ(t, T ) ≈ π∗(T ) ,

for all left Γ-modules F and right Γ-modules T .

Following Lemma 3.9 below, we shall prove Theorem 3.8 by reducing it to Theo-
rem 3.4.

Notes
1. The definition of the complexes CΓ

∗ (F ) and C∗
Γ(T ) uses only the Θ-structure of

F or T , where Θ ⊂ Γ is the subcategory of morphisms f : S → S′ in Γ which
are surjections of based sets. (Thus Θ is generated by the embedded copy of
Ω together with the morphisms rα of §3.3.) In fact, the complexes are defined
for every Θ-module. We shall require this fact just once, in the proof of the
following lemma.

2. The complexes CΓ
∗ (F ) and C∗

Γ(T ) are exact functors of F and T respectively,
and so HΓ

∗ (F ) and H∗
Γ(T ) are connected sequences of (co)homological functors.

Lemma 3.9. If F is a left Γ-module there is a natural spectral sequence

E1
p,q ≈ TorΣp+1

q (S∗p+1, F [p+ 1]) =⇒ HΓ
p+q(F ) .

If T is a right Γ-module there is a natural spectral sequence

Ep,q
1 ≈ ExtqΣp+1

(S∗p+1, T [p+ 1]) =⇒ Hp+q
Γ (T ) .

Proof. We take the case of a left module F . We can filter F by Θ-submodules Fn,
where

Fn[j] =

{
F [j] if j ⩽ n,

0 if j > n

and form the quotient Θ-modules F j/F i for j ⩽ i. In view of the Notes above, this
gives a convergent spectral sequence

E1
p,q ≈ HΓ

p+q(F p+1/F p) =⇒ HΓ
p+q(F ) .

Since F p+1/F p is concentrated in the single degree p+ 1, the chain complex
CΓ

∗ (F p+1/F p) has ∂0 = 0 for non-degenerate chains, and is isomorphic with the bar
resolution B(ϖ,Ω, F p+1/F p) of §3.5. We can therefore read off the E1 term from
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Corollary 3.6:

E1
p,q ≈ HΓ

p+q(F p+1/F p)

≈ TorΩp+q(ϖ, (F p+1/F p))

≈ TorΣp+1
q (S∗p+1, F [p+ 1]) .

The differential d1p,q : E1
p,q → E1

p−1,q is a sum over principal faces of the operad space
Tp+1. In algebraic terms it is a composite

TorΣp+1
q (S∗p+1, F [p+ 1]) −→ TorΣp−1×Σ2

q (S∗p+1, F [p+ 1]) −→ TorΣp
q (S∗p , F [p]) ,

where the first homomorphism is the homology transfer. The second homomorphism
combines a boundary map in the homology of Sp+1, and F [p+ 1]→ F [p] induced by
a surjection [p+ 1]→ [p].

The spectral sequence for a right module T is established similarly.

Proof of Theorem 3.8. We first prove that for left Γ-modules F there is a natural
isomorphism θ(F ) : TorΩ∗ (ϖ, F̃ )→ HΓ

∗ (F ), where again F̃ = cr(F ) is the Ω-module
corresponding to F . After Theorem 3.4, this will establish one main statement of
Theorem 3.8.

As usual we embed Ω into Γ by adding a basepoint. The inclusion of F̃ into F
induces an inclusion B(ϖ,Ω, F̃ ) −→ CΓ(F ). This commutes with the face operator ∂0
because F̃ lies in the kernel of each projector rα of §3.3; it commutes with other face
operators for trivial reasons. Therefore it is a chain map, and induces homomorphisms
of connected sequences of homology functors θ(F ) : TorΩ∗ (ϖ, F̃ )→ HΓ

∗ (F ). We show
that θ(F ) is an isomorphism.

Case 1. The module F̃ is concentrated in a single degree n.

In this case, B(ϖ,Ω, F̃ ) maps isomorphically onto CΓ(Fn), where Fn is the first
non-trivial truncation of F (as a Θ-module, in Lemma 3.9). Therefore it is enough
to show that HΓ(F/Fn) is zero. We use the spectral sequence of Lemma 3.9) for the
module F/Fn. If F [n] is the Σn-module M , then the formula for the inverse Morita
equivalence (following Proposition 3.3) shows that F [n+ k] ≈ IndΣn+k

Σn M . Thus all
the modules in F/Fn are induced representations, and it follows exactly as in Corol-
lary 3.7 that all the higher Tor-groups vanish in our spectral sequence

E1
p,q ≈ TorΣp+1

q (S∗p+1, (F/F
n)[p+ 1]) =⇒ HΓ

p+q(F/Fn) ,

which therefore collapses to the edge q = 0. Further, this edge has groups non-zero
only when p ⩾ n. These are

E1
p,0 ≈ S∗p+1 ⊗Σp+1 Ind

Σp+1

Σn
M

≈ Ind
Σp

Σn
M .

This (E1, d1) is a cone. It has a contracting homotopy, given by inclusion homomor-

phisms Ind
Σp

Σn
M → Ind

Σp+1

Σn
M . Therefore HΓ(F/Fn) is zero, and θ(F ) is an isomor-

phism.

Case 2. The Ω-module F̃ has finite length. Since simple Ω-modules are concentrated
in a single degree, this follows from Case 1 by exactness, the five-lemma and finite
induction.
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Case 3. The module F̃ is a general left Ω-module. This follows from Case 2 by
taking an inductive limit.

It follows as usual that CΓ(KΓ) is a projective resolution of ϖ.
The cohomological statement in Theorem 3.8 is equivalent to

H∗
Γ(T ) ≈ Ext∗Ω(ϖ, T̃ )

functorially in the right Γ-module T . The proof is dual to that above. There is no
extra problem in the final stage, as mapping from the locally finite object CΓ(Γ)
commutes with taking a filtered inductive limit in the target variable T .

This completes the proof of Theorem 3.8.

The original proof of Theorem 3.8, due to Pirashvili and Richter [16], relates the
complex CΓ

∗ (F ) directly to stable homotopy.

3.7. The normalized complexes RΓ
∗ (F ), R∗

Γ(T )

The complex CΓ
∗ (F ) in §3.6 is that of [16, 21]. It does not exactly match the

obstruction theory which we develop in §4, because it has no diagonal filtration by
subcomplexes (see Definition 3.14 below). We therefore introduce a normalized sub-
complex RΓ

∗ (F ). Whereas

CΓ
q (F ) =

⊕
S

KNΩq(S, 1)⊗ F (S+) ,

in RΓ
∗ (F ) we require only those indexing simplices [f1|f2| · · · |fq] of NΩq(S, 1) in which

isomorphisms precede strict epimorphisms.
As the object 1 is terminal in Ω, we have N(S/Ω) ≈ N(S/Ω/1). We now define

the width of a (q − 1)-simplex [f1|f2| · · · |fq]ε of N(S/Ω).

Definition 3.10. We say the simplex

1
f1←−− S1

f2←−− · · · fq←−− Sq = S

has width p if all of fq, fq−1, . . . , fq−p+1 are isomorphisms in Ω, but fq−p is not an
isomorphism.

This gives a filtration on KNΩ(S, 1): we defineWpKNΩ(S, 1) to be the submodule
generated by all simplices of width less than or equal to p.

Definition 3.11. The reduced nerve Ñ(S/Ω) is the subspace of N(S/Ω) consisting
of those simplices [f1|f2| · · · |fq] as above in which isomorphisms always precede non-
isomorphisms: that is, if the simplex has width p, then fq−p, fq−p−1, . . . , f2, f1 are all
strict epimorphisms.

We use the notation ÑΩq(S, 1) for the set of such simplices.

We define RΓ
q (F ) to be the submodule

⊕
S KÑΩq(S, 1)⊗ F (S+) of CΓ

q (F ).

The face operators in CΓ
∗ (F ) respect this submodule, so that RΓ

∗ (F ) is a chain
subcomplex.

Proposition 3.12. The inclusion RΓ
∗ (F )→ CΓ

∗ (F ) induces isomorphisms of homol-
ogy for every left Γ-module F . In particular, RΓ

∗ (KΓ) is a projective resolution of the
right Γ-module t.
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Proof. Here we filter both complexes RΓ
∗ (F ) and CΓ

∗ (F ) by height; that is, by the
cardinality of the initial set S in the simplex of the nerve of Ω. This gives strongly
convergent spectral sequences for the homology of each complex. In the filtration
quotients, the anomalous face operator ∂0 of §3.6 reduces to the usual ∂0 of the bar
construction. Thus again we can apply the bicomplex deconstruction of §3.5 and find
that for each complex the E2-term is (compare Theorem 3.5)

E2
p,q ≈ TorΣp+1

q (S∗p+1, F̃ (p+ 1)) .

The difference is that the same homology S∗p+1 of N(p+ 1//Ω//1) is calculated in

RΓ
∗ (F ) from the normalized chain complex, and in CΓ

∗ (F ) from the full chain com-
plex. The inclusion map induces the indicated isomorphism on E2, and therefore an
isomorphism on E∞ and on the abutment.

Theorem 3.8 now has the following corollary, in whichR∗
Γ(T ) = HomΓ(RΓ

∗ (KΓ), T ).

Corollary 3.13. There are natural isomorphisms:

H∗(RΓ
∗ (F )) ≈ TorΓ∗ (t, F ) ≈ π∗(F ) ,

H∗(R∗
Γ(T )) ≈ Ext∗Γ(t, T ) ≈ π∗(T ) ,

for all left Γ-modules F and right Γ-modules T .

We now use the width filtration of Definition 3.10 to construct another filtration
of RΓ

∗ (F ) by diagonal subcomplexes.

Definition 3.14. The nth stage in the diagonal filtration of RΓ
∗ (F ) is the submodule

∆nRΓ
q (F ) =

⊕
p+|S|⩽n

WpKÑΩq(S, 1)⊗ F (S+) .

The dual complexR∗
Γ(T ) of a right Γ-module T has a dual filtration in which ∆nR

q
Γ(T )

consists of those cochains ϕ : RΓ
q (KΓ)→ T which annihilate ∆n−1RΓ

q (KΓ).

Lemma 3.15. The diagonal filtration of RΓ
∗ (F ) is a filtration by subcomplexes.

Proof. We show that ∆nRΓ
∗ (F ) is closed under every face operator of RΓ

∗ (F ), what-
ever the left Γ-module F . This is clearly true for the operators ∂i when i > 0, since
these are non-increasing on both width p and height |S|. There remains ∂0. We recall
(see §3.6) that ∂0 maps a generator of width p

1
f1←−− S1

f2←−− · · · fv←−−− Sv = S

to a sum of terms obtained by taking inverse images of the various elements of S1. Any
of these terms, such as that corresponding to a component S(s) say of S, may have
width p+ i > p, if i strict epimorphisms restrict to isomorphisms on the s-component.
But then these would restrict to i strict epimorphisms on the union of the other
components, which implies the increased-width term has height at most |S| − i− 1.

The analogue for the full complex CΓ
∗ (F ) of the above lemma is false. That is the

reason for using the reduced version. The principal property of the above algebraic
diagonal filtration is the following.
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Proposition 3.16. Let F be any left Γ-module. The spectral sequence for π∗(F ) aris-
ing from the diagonal filtration ∆∗RΓ

∗ (F ) collapses from the E2-term onwards, and
the filtration on the abutment is trivial in each degree.

For a right Γ-module T the corresponding statements hold: the spectral sequence
converging to π∗(T ) arising from the filtration ∆∗R

∗
Γ(T ) is likewise trivial.

Proof. For any left Γ-module F the E0 page splits as a sum over values of the height k.
If we reduce Ω to its spine, we can write it in terms of the bar construction over Σk

as

E0
p,q ≈ ∆p(RΓ

p+q(F ))/∆p−1(RΓ
p+q(F ))

≈
p⊕

k=1

Bp−k

(
C̃k+q−2

(
N(k//Ω//1)

)
, Σk, F [k]

)
and d0p,q : E0

p,q → E0
p,q−1 is the differential in C̃∗(N(k//Ω//1)). By Lemma 2.7 and

Proposition 2.3 this has just one non-trivial homology group, namely the module S∗k
in degree k − 3. Therefore the non-trivial E1 groups are confined to the single line
q = −1, where we have

E1
p,−1 ≈

p⊕
k=1

Bp−k(S∗k ,Σk, F [k]) .

Hence the only possible non-zero differential is d1: all differentials from d2 onwards
must be zero, and the spectral sequence collapses, with no extension problems.

The analogous argument works in the spectral sequence for the cohomotopy of a
right Γ-module T .

Corollary 3.17. If F is a left Γ-module, then the stable homotopy πn(F ) is the
homology ker d1n+1,−1/ im d1n+2,−1 of the complex

−→
n+2⊕
k=1

Bn+2−k(S∗k ,Σk, F [k])
d1
n+2,−1−−−−−−→

n+1⊕
k=1

Bn+1−k(S∗k ,Σk, F [k]) −→

d1
n+1,−1−−−−−−→

n⊕
k=1

Bn−k(S∗k ,Σk, F [k]) −→,

where d1∗∗ is induced by the differential in RΓ
∗ (F ).

If L is any right Γ-module, then the stable cohomotopy πn(L) is the cohomology
ker dn+2,−1

1 / im dn+1,−1
1 of the complex

←−
n+2⊕
k=1

Bn+2−k(S∗k ,Σk, L[k])
dn+2,−1
1←−−−−−−

n+1⊕
k=1

Bn+1−k(S∗k ,Σk, L[k]) ←−

dn+1,−1
1←−−−−−−

n⊕
k=1

Bn−k(S∗k ,Σk, L[k])←−,

where d∗∗1 is induced by the differential in the complex R∗
Γ(L). 2

We recall the notation used in the above: Br(S∗k ,Σk, F [k]) denotes the bar reso-
lution module S∗k ⊗ (ZΣk)⊗r ⊗ F [k], whilst Br(S∗k , Σk, L[k]) denotes Hom(S∗k ⊗
(ZΣk)⊗r, L[k]).
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The chain complex in Corollary 3.17 is equivalent to the total Ξ-complex of [18],
and the above result is equivalent to Corollary 3.7 of that paper.

4. Obstruction theory for operads

4.1. A Γ-module structure on the homotopy of an operad
From now on (unless otherwise stated) our commutative ground ring K will be

either the ring Z of integers, or a suitable localization or completion of Z. In the
complete case all modules are assumed formally complete.

We now introduce the basic product structure in an operad C which we shall hope
to refine to an E∞ structure. The following definition sets out space-level data which
determine a morphism of operads from the commutative operad K into the discrete
operad π0C. We require C to satisfy a fibrancy condition which will be needed later.

Definition 4.1. Let C be an Kan operad; that is, each CS is a Kan complex. An
h-monoid in C is a pair (µ, η) where

1. µ is a point in C2, and

2. η is a point in C0, such that

3. µ ◦1 µ and µ ◦2 µ are in the same path-component of C3;

4. µ and σ(µ) are in the same path-component of C2, where σ generates Σ2; and

5. the element ι = µ ◦2 η ∈ C1 is a homotopy unit: any left or right composition
with ι is homotopic to the identity map on any CS .

In (5) above, by abuse of notation ι ∈ C1 has been identified with its canonical
image in C{s} for any s ∈ S. In following sections we shall continue to elide isomor-
phisms by calling them relabellings.

Definition 4.2. We say that (µ, η) is a loop h-monoid in C if each space Cn is homo-
topy equivalent to a loop space, and each composition with µ or η is homotopic to a
loop map.

Lemma 4.3. Let C be an Kan operad, and (µ, η) a loop h-monoid in C.
Then (µ, η) induces a right Γ-module structure on πkC for all k ⩾ 1.

Proof. Since Cn is a loop space, it is a simple space, and its homotopy groups are inde-
pendent of basepoint (up to unique isomorphism). Its fundamental group is abelian,
and any unbased map Sk → Cn gives a well-defined element of πkCn.

We use the h-monoid (µ, η) to define the map ϕ∗ : πkCn → πkCm for each morphism
ϕ : [m]→ [n] in Γ, and to show that (ϕψ)∗ = ψ∗ϕ∗.

For an isomorphism σ ∈ Σn ⊂ Γ, we define the action σ∗ on πkCn to be that induced
by the right action of Σn on Cn in the operad C. Every other morphism ϕ in Γ can
be written as λ ◦ ω ◦ τ , where

λ is injective,

ω is surjective and satisfies ω−1(0) = {0},
τ is surjective, and bijective away from τ−1(0) ;

and this factorization is unique up to isomorphisms. Therefore, Γ is generated, modulo
isomorphisms, by the following elements, the action of each of which we specify.
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1. The inclusion λ : [n]→ [n+ 1]. We define λ∗ : πkCn+1 → πkCn to be the mor-
phism induced by composition with η in the (n+ 1)st place

( ◦n+1 η) : Cn+1 → Cn.

2. The surjection ω : [n+ 1]→ [n] which maps n+ 1 to n, and is elsewhere the
identity map. We define ω∗ : πkCn → πkCn+1 to be the morphism induced by
right composition with µ in the nth place

( ◦n µ) : Cn → Cn+1

the inputs to µ being relabelled n and n+ 1.

3. The surjection τ : [n+ 1]→ [n] which maps n+ 1 to the basepoint 0, and is
elsewhere the identity map. We define τ∗ : πkCn → πkCn+1 to be the morphism
induced by left composition with µ

(µ ◦2 ) : Cn → Cn+1

the other input of µ being relabelled n+ 1.

We assumed that the operad C consists of loop spaces. The isomorphisms between
homotopy groups of different components of a loop space are induced by loop com-
position. Therefore the hypothesis that compositions with µ and η are loop maps,
implies that each of these induced homomorphisms of πk is independent of basepoint.

In order that these constructions make πkC into a right Γ-module, they must
respect the relations among λ, ω, τ and the permutations in Γ. All of these follow from
the associativity laws for an operad (Def. 2.1, clauses 3, 4) together with the relations
in an h-monoid (Def. 4.1, clauses 3, 4, 5). For instance, as τλ = 1 in Γ, we need
that λ∗τ∗ = 1; but this follows from right-right associativity in C (Def. 2.1, clause 4)
together with the homotopy unit condition for an h-monoid (Def. 4.1, clause 5).

4.2. Spaces of E∞ structures on an operad
We investigate the problem of mapping the universal E∞ operad T into a general

operad C.

Definition 4.4. Let C be a Kan operad which has an h-monoid (µ, η) in the sense
of Definition 4.1. An E∞ structure on (C, µ) is a map of operads T → C which maps
the generating 2-tree σ in T2 to µ.

There is a space E∞(C, µ) of E∞ structures on (C, µ). This is a Kan complex in
which an k-simplex is a map of operads

(∆[k]× T ,∆[k]× σ)→ (C, µ) .

The homotopy unit η plays no formal rôle, but its existence is needed so that Lem-
ma 4.3 can be applied.

4.3. Stages for an E∞ structure
We build up an E∞ structure stage by stage. First we define some filtrations on

the operad T .
There are two straightforward ways of filtering T . (They are filtrations by sub-

spaces, not by suboperads.) The first is the height filtration: at level n, this consists
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of the spaces TS with |S| ⩽ n. The other filtration is the bar filtration, which is inher-
ited from the filtration of the nerve of Iso Ω. The nth stage here is BnT = P × sknQ,
where sknQ is the n-skeleton of the Barratt-Eccles operad.

Attempting to construct E∞ structures by induction on the height filtration leads
to difficulties, as is explained in the introduction of [6]. We use instead a filtration
which combines the two defined above.

Definition 4.5. The diagonal filtration on T is defined as the sum of the height
filtration and the bar filtration. Thus, for n ⩾ 0, the nth level in the diagonal filtration
of T consists of the spaces BpTS for p+ |S| ⩽ n.

Definition 4.6. An n-stage ϕ for an E∞ structure on (C, µ) is a family of maps
ϕS : BpTS → CS for all p and S such that p+ |S| = n, subject to the following condi-
tions:

1. Equivariance: ϕS commutes with maps induced by isomorphisms of S.

2. Coherence: the following diagram commutes for every partition S = M ⊔N
(with |M |, |N+| ⩾ 2)

BpTM × BpTN+

◦+ //

ϕM×ϕN+

��

BpTS

ϕS

��
CM × CN+

◦+ // CS ,

where ◦+ is operad composition.

3. If σ2 is the star tree in T2, then ϕ2(σ2) = µ.

An n-stage defines an (n− 1)-stage by restriction. A 1-stage specifies a commu-
tativity homotopy and an associativity homotopy for the monoid structure µ. The
horizontal maps in the above diagram are the restrictions of the composition maps
in the operads T and C respectively. The coherence condition asserts that the ϕS
form a map of operads insofar as this condition is defined. Indeed, the values of
ϕS on any face of BpTS are determined by the (n− 1)-stage underlying ϕ, because
|M |, |N | < |S|. This is the basis for the inductive procedure for analysing E∞(C, µ).

4.4. A tower for E∞(C, µ)
We denote by Stn(C, µ) the space of n-stages for E∞ structures on (C, µ, η). (This

space is defined by analogy with the space of E∞ structures described after Defi-
nition 4.4 above: a k-simplex of this space consists of maps ϕS : ∆[k]× BpTS → CS
satisfying a ∆[k]-parametrized version of the conditions in Definition 4.6.)

Proposition 4.7. If C is a Kan operad, then each restriction map

Stn(C, µ) −→ Stn−1(C, µ)

is a Kan fibration, and its fibre Stnn−1 has the homotopy type of a finite product of
copies of (n− 2)-fold loop spaces Ωn−2Ck for various k. Thus there is a tower of Kan
fibrations

· · · −→ Stn(C, µ) −→ Stn−1(C, µ) −→ · · · −→ St0(C, µ) ≈ {∗}

with limit E∞(C, µ).
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Proof. Let us consider the map Stn(C, µ) −→ Stn−1(C, µ). To extend an (n− 1)-stage
to an n-stage, we must extend given maps Bp−1TS → CS over BpTS , naturally with
respect to isomorphisms of S, for all p and S such that p+ |S| = n. The extension is
in each case already given over Bp∂TS by the coherence condition in Definition 4.6.
Reducing Ω to a spine, it suffices to find a Σk-equivariant extension when S = k =
{1, 2, . . . , k} for k = 2, . . . , n. This implies that the fibre Stnn−1 of the restriction map

Stn(C, µ) −→ Stn−1(C, µ) is

Stnn−1 =
n∏

k=2

MapΣk

(
Bn−kTk/(Bn−k∂Tk ∪ Bn−k−1Tk), Ck

)
.

(Since the inclusion of Bn−k∂Tk ∪ Bn−k−1Tk into Bn−kTk is a cofibration, and Ck
is a Kan complex, it follows that this restriction map is a fibration: the equivari-
ance condition is not a problem, because the symmetric group Σk acts freely on the
domain.)

On unravelling the definitions of Tk and ∂Tk, our fibre becomes

n∏
k=2

MapΣk

(
(Pk/∂Pk) ∧ (skn−kQk/ skn−k−1Qk), Ck

)
.

By Proposition 2.3 the space (Pk/∂Pk) has the homotopy type of a wedge of (k − 2)-
spheres: its non-trivial homology group is S∗k . Further, in Qk the quotient of skeleta
skn−kQk/ skn−k−1Qk is a wedge of (n− k)-spheres, indexed by (n− k)-tuples of ele-
ments of Σk. The action of Σk on this wedge is free. It follows that the fibre Stnn−1 is
a product of copies of Ωn−2Ck for various k with 2 ⩽ k ⩽ n.

Since the base of the tower

· · · −→ Stn(C, µ) −→ Stn−1(C, µ) −→ · · · −→ St0(C, µ) ≈ {∗}

is a point, and all the maps are fibrations, it follows by recursion that all spaces in
the tower are Kan complexes. The limit of the tower is evidently the space E∞(C, µ)
of E∞ structures.

4.5. The homotopy spectral sequence

The homotopy exact sequences of the fibrations

Stpp−1 −→ Stp(C, µ) −→ Stp−1(C, µ)

in the tower of §4.4 yield an unwound exact couple and therefore a homotopy spectral
sequence for π∗E∞(C, µ) in the form

Ep,q
1 ≈ πq−p Stpp−1 =⇒ πq−p E∞(C, µ) .

The properties of the homotopy spectral sequence of a tower of fibrations are
treated comprehensively in [7, Ch. VI], which is our principal reference on this topic.
Two particular problems arise.

The minor problem is that the exact sequences above end in maps π0 Stp(C, µ) −→
π0 Stp−1(C, µ) which need not be surjective. This means that the spectral sequence
has a fringe at total degree 0 rather than an edge, and a separate investigation is
needed to determine which elements on the fringe actually arise from elements of
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π0E∞(C, µ). We shall associate an obstruction theory with this fringe, like the one
developed in detail for an analogous situation by [3].

The major problem with the spectral sequence is that convergence is not automatic,
and requires separate arguments. We discuss this further in §4.7.

4.6. The E1 and E2 pages of the spectral sequence

We shall usually assume that (µ, η) is a loop h-monoid in C in the sense of Defini-
tion 4.2.

We know from §4.4 and §4.5 that

Ep,q
1 ≈ πq−p Stpp−1

≈ πq−p

( p∏
k=2

MapΣk

(
Bp−kTk/(Bp−k∂Tk ∪ Bp−k−1Tk), Ck

))
.

Since Bp−kTk/(Bp−k∂Tk ∪ Bp−k−1Tk) is equivariantly homotopy equivalent to some
wedge of (p− 2)-spheres with free Σk-action, this implies that

Ep,q
1 ≈

p⊕
k=2

HomΣk

(
H̃p−2(Bp−kTk/(Bp−k∂Tk ∪ Bp−k−1Tk)), πq−2 Ck

)
≈

p⊕
k=2

H̃p−2
Σk

(
Bp−kTk/(Bp−k∂Tk ∪ Bp−k−1Tk); πq−2 Ck

)
.

This description of Ep,q
1 in terms of equivariant cohomology arises from Proposi-

tion 2.3. In order to calculate dp,q1 , however, we need to look at a chain-level descrip-
tion: we must write elements of Ep,q

1 as relative cocycles of pairs (Bp−kTk,Bp−k∂Tk ∪
Bp−k−1Tk) and calculate the connecting coboundaries.

The operad space TS = PS ×QS has a cellular structure in which the cells are
products κ× ψ, where κ is a simplex of the partitions operad space PS and ψ a
simplex of QS . By using the chain complex C∗(TS) of this prismatic cell structure,
we avoid the Eilenberg-Zilber theorem: we have an isomorphism

C∗(TS) ≈ C∗(PS)⊗ C∗(QS) .

We compare C∗(TS) with the chains on the nerve Ñ(S/Ω). Suppose that [f1|f2| · · · |fq]

is a simplex of Ñ(S/Ω) having width p ⩾ 0. Then the face

Sq−p
fq−p+1←−−−−−− · · · fq←−− Sq

≈←−− S

is a p-simplex of the Barratt-Eccles space QS , and the face

S0
f1←−− S1

f2←−− · · · fq−p−1←−−−−−− Sq−p−1
η←−− S

(where η is the composite map) is a non-degenerate (q − p− 1)-simplex of the nerve
N(S//Ω), which by Lemma 2.7 of §2.2 is related to PS by a homotopy equivalence of
pairs under which N(S//Ω//1) corresponds to ∂PS . The chain map

[f1|f2|f3| · · · |fq] 7→ [f1|f2| · · · |fq−p−1]⊗ [fq−p+1| · · · |fq]
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is now a chain isomorphism of degree −1

C∗(Ñ(S/Ω), Ñ(S/Ω//1)) ≈ C∗(PS , ∂PS)⊗ C∗(QS)

≈ C∗(TS , ∂TS) .

(The map fq−p, having become structural in Ñ(S//Ω), no longer appears.) The result-
ing equivalence of pairs is an equivalence of filtered pairs, since the width filtration
on the left corresponds precisely to the bar filtration (on QS and TS) on the right.
We may therefore pass to filtration quotients. Denoting as before by Wp the pth
width-filtration stage, and by Wp/Wp−1 the pth quotient, we obtain S-natural iso-
morphisms

C̃∗
(
(Wp/Wp−1)(Ñ(S/Ω, S/Ω//1)

)
≈ C̃∗

(
(Bp/Bp−1)(TS , ∂TS)

)
= C̃∗

(
BpTS/(Bp∂TS ∪ Bp−1TS)

)
.

When we restrict to the spine of Ω and set S = k, the S-naturality becomes Σk-
equivariance, and the isomorphisms in Ñ(S/Ω) become the elements of Σk. Therefore,
we can write equivariant cochains on BpTk as a bar construction module over Σk

C̃∗
Σk

(
BpTk/(Bp∂Tk ∪ Bp−1Tk); π∗ Ck

)
≈ Bp

(
C∗
(
N(k//Ω), N(k//Ω//1)

)
, Σk, π∗ Ck

)
,

where on the right Bp(−,Σk, π∗Ck) denotes Hom(−⊗ (ZΣk)⊗p, π∗Ck). The differen-
tial in the relative cochains on the left corresponds to that in C∗(N(k//Ω)) on the
right, so by Lemma 2.7 and Proposition 2.3

H̃p+k−2
Σk

(
BpTk/(Bp∂Tk ∪ Bp−1Tk); π∗ Ck

)
≈ Bp(S∗k ,Σk, π∗Ck) ,

where as before S∗k is the superlie representation of Definition 2.4; and the groups

H̃j
Σk

are zero for all j ̸= p+ k − 2. Using our formula for Ep,q
1 in terms of equivariant

homology, we therefore have

Ep,q
1 ≈

p⊕
k=2

H̃p−2
Σk

(
Bp−kTk/(Bp−k∂Tk ∪ Bp−k−1Tk); πq−2 Ck

)
≈

p⊕
k=2

Bp−k(S∗k ,Σk, πq−2Ck) .

Now we need to calculate dp,q1 in these terms.

Lemma 4.8. Commutativity holds in the diagram

Ep,q
1

dp,q
1

��

≈
⊕p

k=2 Bp−k(S∗k ,Σk, πq−2Ck)

dp,−1
1

��
Ep+1,q

1 ≈
⊕p+1

k=2 Bp+1−k(S∗k ,Σk, πq−2Ck)

in which the horizontal isomorphisms are those constructed above. On the left, dp,q1 is
the differential in the homotopy spectral sequence; on the right, dp,−1

1 is the algebra-
ically-defined morphism in Corollary 3.17.



E∞ OBSTRUCTION THEORY 179

Proof. On the left, we have the geometry of operads: the differential dp,q1 arises from
the face structure in the tree operad T . On the right, we have the algebra of the
diagonally-filtered complex R∗

Γ(π∗C): the differential dp,−1
1 is defined in terms of the

face operators in the nerve Ñ(S/Ω). The connection between the modules on the left
and right arises through the isomorphism of degree 1 proved above

C∗(TS) = C∗(PS)⊗ C∗(QS) ≈ C∗(Ñ(S/Ω)) .

Consider a cochain γ in a single summand Bp−k(S∗k ,Σk, πq−2Ck) in the top right. The

image (or coboundary) dp,−1
1 (γ) in the lower right can take non-trivial values only on

linear combinations of simplices

S1
f2←−− · · · fq−p←−−−− · · · fq←−− Sq

≈←−− S

having width p− k or p− k + 1. The coboundary dp,−1
1 (γ) is the alternating sum of

coface operators δi dual to the face operators in RΓ
∗ (π∗C). The sum

∑k−1
i=1 (−1)iδi(γ)

is zero, because γ has survived to the E1 term of the algebraic spectral sequence.
There remain δ0(γ), which is dual to the face ∂0 in RΓ

∗ (π∗C); the cofaces δi(γ) for
k ⩽ i ⩽ q, which are the usual cofaces in the bar construction over Σk; and δq+1(γ),
which is the external final coface.

Now we look at the element γ ∈ E1
p,q which corresponds to γ under the horizontal

isomorphism. From §4.6 we know that γ is represented by a Σk-equivariant map

Bp−kTk −→ Ωq−pCk ,

which is trivial on the boundary Bp−k∂Tk ∪ Bp−k−1Tk. The coboundary dp,q1 (γ) has
components in two summands of E1

p+1,q, namely in Bp+1−k(S∗k ,Σk, πq−2Ck) and in

Bp−k(S∗k+1,Σk+1, πq−2Ck+1). The required elements in each are determined by the

inclusions of Bp−kTk as a face in respectively either Bp+1−kTk or Bp−kTk+1. In the
first case we have the usual face inclusions in the bar construction, which correspond
to the cofaces δi(γ) for k ⩽ i ⩽ q in the algebraic situation. In the second case the
face inclusions are induced by the operad structure in P: the face inclusions

Pk ≈ Pk ×P2 −→ Pk+1

(which are all conjugate under the symmetric group) correspond to the algebraic
coface δ0, and the inclusions

Pk ≈ P2 × Pk −→ Pk+1

correspond to the remaining algebraic coface δq+1. (The remaining faces, the inclu-
sions of Pu × Pv with u, v > 2, contribute zero in the E1 term: they give rise to higher
differentials.)

The identification of the algebraic and geometric differentials establishes the lemma.

Now for the main result. We assume the data of Lemma 4.3: C is a Kan operad
which has a loop h-monoid (µ, η) where µ ∈ C2 and η ∈ C0, and we seek information
about homotopy groups of the space E∞(C, µ) of E∞ structures on C which extend µ.
(This space may be empty.)
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Theorem 4.9. The homotopy spectral sequence for E∞ structures on an operad C
with a loop h-monoid is fringed at total degree p− q = 0: it has

Ep,q
2 ≈ πp−1πq−2 C =⇒ πq−p E∞(C, µ) ,

dp,qr : Ep,q
r −→ Ep+r,q+r−1

r ,

where π∗ C is the homotopy Γ-module of Lemma 4.3 and π∗ denotes the stable coho-
motopy of a Γ-module.

Proof. This is a standard Bousfield-Kan fringed homotopy spectral sequence for a
tower of fibrations ([4]; [7, Ch. VI §2]). By Lemma 4.8 above, the cohomology of
(E1, d1) is identified with the cohomology of the complex in Corollary 3.17 of §3.7.
This gives as claimed

Ep,q
2 ≈ πp−1πq−2 C .

The abutment is as usual the homotopy π∗ E∞(C, µ) of the limit of the tower of
fibrations. Conditions for the somewhat delicate convergence of the spectral sequence
are investigated in §4.7 and §4.8 below.

4.7. Conditions for convergence
Since the tower of fibrations is bounded below with St0(C, µ) ≈ {∗}, each term

Ep,q
1 is modified by only finitely many incoming differentials d1, . . . , dp. Therefore

Ep,q
s+1 ⊂ Ep.q

s for all s > p. We set

Ep,q
∞ = lim

s
Ep,q

s ≈
∩
s>p

Ep,q
s

and we note that the derived limit lim1
s E

p,q
s is also defined.

The result we should like to have is complete convergence in the terminology of [7],
which is equivalent to the validity of the two following statements:

1. For all q − p > 0 (that is, away from the fringe) the Ep,q
∞ are the quotients in a

descending composition series for the group

lim
s
πq−p Sts(C, µ) .

2. The natural map

π∗E∞(C, µ) = π∗(lim
s

Sts(C, µ)) −→ lim
s
π∗ Sts(C, µ)

is an isomorphism in all degrees.

Either of these conditions may fail for the homotopy spectral sequence of a general
tower of fibrations. Some composition factors may for instance be proper subgroups
of the corresponding Ep,q

∞ .
There is a standard condition for complete convergence. For the proof of the fol-

lowing we refer to [7, Ch. VI, Lemma 2.20].

Proposition 4.10. The spectral sequence of Theorem 4.9 is completely convergent if
and only if the derived limit lim1

s E
p,q
s is trivial for all q − p > 0. 2

One may hope to satisfy the hypothesis here by showing that the systems {Ep,q
s }s

satisfy a Mittag-Leffler condition.
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Corollary 4.11. If all the homotopy groups πjCk of the operad spaces are finite, then
the spectral sequence is completely convergent.

Proof. In this case Lemma 4.8 shows that all the Ep,q
1 groups are finite, so that the

Mittag-Leffler condition guarantees the vanishing of the derived limits required by
Proposition 4.10.

It would be possible to generalize this Corollary to a situation where the spectral
sequence were in the category of modules over a ring, and the πjCk were all modules
of finite length.

4.8. Obstructions and the fringe
The spectral sequence can be used as normal to calculate πiE∞(C, µ) for i ⩾ 1. The

calculation of π0E∞(C, µ) (in particular, the question of whether any E∞ structure
exists) encounters the fringe. Explicitly, the spectral sequence arises from the homo-
topy exact sequences of the fibrations Stp(C, µ)→ Stp−1(C, µ); and such a sequence
ends

Ep,p
1 = π0 Stpp−1 −→ π0 Stp(C, µ) −→ π0 Stp−1(C, µ) ,

with no indication of whether the last map is surjective. This fringe in total degree
zero is a normal feature of the homotopy spectral sequence of a tower.

The tower for E∞(C, µ) has extra structure. Since the tree space Pk is the cone on
∂Pk by Proposition 2.2, it follows that the bar filtration stage BnTk (defined in §4.3) of
the tree operad is obtained from Bn−1Tk by attaching kn copies of Pk ×∆n along their
boundaries ∂Pk ×∆n ∪ Pk × ∂∆n. These are Σk-equivariant principal cofibrations.
Using the attaching maps we can therefore extend each cofibration sequence

Bn−1Tk ⊂ BnTk
one step to the left.

Passing to equivariant mapping spaces of the diagonal filtration, we have shown
that each Stp(C, µ)→ Stp−1(C, µ) is a principal fibration. We have de-looped the fibre
Stpp−1 and we can extend the homotopy exact couple by one step to the right, so that
its ends

π0 Stp(C, µ) −→ π0 Stp−1(C, µ) −→ Ep,p−1
1 ≈

p⊕
k=2

Bp−k(S∗k ,Σk, πp−3Ck) ,

where we have identified the new term Ep,p−1
1 as in §4.6. Therefore, we have in the

group on the right an obstruction in the cochain complex of (Corollary 3.17, §3.7) to
lifting a (p− 1)-stage for a structure to a p-stage. As usual, this cochain must be a
cocycle, as its value on a chain is calculated on a relative boundary.

The earlier part of the homotopy exact sequence implies that there are difference
chains lying in Ep−1,p−1

1 for (p− 1)-stages extending the same underlying (p− 2)-
stage; and all the chains in this group occur as differences. As in Eilenberg’s original
theory we may ask the effect on the obstruction cocycle of altering the (p− 1)-stage
by a general difference cochain. This amounts to asking for an evaluation of the
image of the differential dp−1,p−1

1 : Ep−1,p−1
1 → Ep,p−1

1 . The answer is given by the
desuspension of Lemma 4.8: one can alter the cocycle by any coboundary in the
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algebraic complex of Corollary 3.17. Therefore, we have a primary obstruction in
Ep,p−1

2 ≈ πp−1πp−3C to replacing the (p− 1)-stage by a p-stage with the same under-
lying (p− 2)-stage. (We have no description of the differential d2 on the extended
fringe Ep,p−1

2 , and therefore do not define Ep,p−1
r for r > 2.) This discussion proves

the following theorem.

Theorem 4.12. Let C be an operad of Kan spaces, and let µ ∈ C2 be a loop h-monoid
in C.
1. Given, for some n ⩾ 3, an n-stage of an E∞ structure which extends µ, there is

an obstruction in πnπn−2 C which vanishes if and only if the underlying (n− 1)-
stage extends to a (n+ 1)-stage.

2. If πnπn−2 C ≈ 0 for all n ⩾ 3, then there exists an E∞ structure extending the
homotopy-commutative, homotopy-associative multiplication µ.

3. If also πnπn−1C ≈ 0 for all n ⩾ 2, then every finite stage of this E∞ structure is
unique up to homotopy. If further the spectral sequence is completely convergent
(see §4.7), then the E∞ structure extending µ is unique up to homotopy. 2

4.9. Application: E∞ structures on ring spectra
As a special case of Theorem 4.12 we derive a generalization of Theorems 5.5

and 5.6 of [18].
We work with spectra in a simplicial model category S in which the smash prod-

uct is symmetric monoidal, and the homotopy category Ho(S) is equivalent to the
standard stable homotopy category. Thus either the category of orthogonal spectra
[10] or the category of symmetric spectra [8] for S would be suitable.

Let V be a ring spectrum in the classical sense: thus we are given a multiplication
µ : V ∧ V → V and a unit map η : S → V , making V into a commutative monoid in
the homotopy category. Then (µ, η) is an h-monoid structure in the endomorphism
operad End(V ), where

End(V )n = MapS(V ∧n, V ) ;

and the invertibility of suspension in S ensures that (µ, η) is a loop h-monoid struc-
ture in the sense of §4.1. An E∞ structure on V is simply a morphism of operads
T → End(V ); and we may use the theorems of §§4.2–4.8 to investigate these. The
coefficients for the obstruction theory are in right Γ-modules

πn−i End(V )∗ = πn−i MapS(V ∧∗, V )

= V i−n(V ∧∗) ,

where for each value of n− i these groups form a right Γ-module by Lemma 4.3. From
Theorem 4.12 we deduce

Theorem 4.13. Let V be a ring spectrum with homotopy commutative, homotopy
associative multiplication µ : V ∧ V → V and unit η : S → V .

1. Given, for some n ⩾ 3, an n-stage of an E∞ structure on V extending µ, there
is an obstruction in πn

(
V 2−n(V ∧∗)

)
which vanishes if and only if the underlying

(n− 1)-stage extends to a (n+ 1)-stage.

2. If πn
(
V 2−n(V ∧∗)

)
≈ 0 for all n ⩾ 3, then there exists an E∞ structure extending

the homotopy-commutative, homotopy-associative multiplication µ.
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3. If also πn
(
V 1−n(V ∧∗)

)
≈ 0 for all n ⩾ 2, then every finite stage of this E∞

structure is unique up to homotopy. If further the spectral sequence of §4.5 is
completely convergent in the sense of §4.7, then the E∞ structure extending µ
is unique up to homotopy. 2

We recall that the convergence condition in the last clause of Theorem 4.13 is
non-trivial. By Corollary 4.11 a sufficient condition for complete convergence is that
all groups V ∗(V ∧∗) be finite. This suggests that if only finite type conditions are
available, it would be worth looking at completions.

A frequently-arising special case is when V satisfies a universal coefficient theorem
in the form

V ∗(V ∧k) ≈ HomV∗

(
(V∗V )⊗k, V∗

)
,

which is not needed in Theorem 4.13, but is true whenever the bialgebra V∗V of
homology co-operations is projective over the coefficient ring V∗. Then the graded
right Γ-module π∗End(V ) is the dual of the graded Loday functor L(V ∗V ) of [15,
§1.7], so that π∗π∗End(V ) is the Γ-cohomology [21] of V ∗V . Then from Theorem 4.13
we recover Theorems 5.5 and 5.6 of [18], corrected by the insertion of a convergence
clause which was omitted there.
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