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Abstract
We use Richter’s 2-primary proof of Gray’s conjecture to give

a homotopy decomposition of the fibre Ω3S17{2} of the H-space
squaring map on the triple loop space of the 17-sphere. This
induces a splitting of the mod-2 homotopy groups π∗(S

17;Z/2Z)
in terms of the integral homotopy groups of the fibre of the
double suspension E2 : S2n−1 → Ω2S2n+1 and refines a result
of Cohen and Selick, who gave similar decompositions for S5

and S9. We relate these decompositions to various Whitehead
products in the homotopy groups of mod-2 Moore spaces and
Stiefel manifolds to show that the Whitehead square [i2n, i2n]
of the inclusion of the bottom cell of the Moore space P 2n+1(2)
is divisible by 2 if and only if 2n = 2, 4, 8 or 16.

1. Introduction

For a based loop space ΩX, let ΩX{k} denote the homotopy fibre of the kth
power map k : ΩX → ΩX. In [14] and [15], Selick showed that after localizing at
an odd prime p, there is a homotopy decomposition Ω2S2p+1{p} ≃ Ω2S3⟨3⟩ ×Wp,
where S3⟨3⟩ is the 3-connected cover of S3 and Wn is the homotopy fibre of the
double suspension E2 : S2n−1 → Ω2S2n+1. Since Ω2S2p+1{p} is homotopy equivalent
to the pointed mapping space Map∗(P

3(p), S2p+1) and the degree p map on the
Moore space P 3(p) is nullhomotopic, an immediate consequence is that p annihilates
the p-torsion in π∗(S

3) when p is odd. In [16], Ravenel’s solution to the odd primary
Arf-Kervaire invariant problem [12] was used to show that, at least for p ⩾ 5, similar
decompositions of Ω2S2n+1{p} are not possible if n ̸= 1 or p.

The 2-primary analogue of Selick’s decomposition, namely that there is a 2-local
homotopy equivalence Ω2S5{2} ≃ Ω2S3⟨3⟩ ×W2, was later proved by Cohen [4]. Sim-
ilarly, since Ω2S5{2} is homotopy equivalent to Map∗(P

3(2), S5) and the degree 4
map on P 3(2) ≃ ΣRP 2 is nullhomotopic, this product decomposition gives a “geo-
metric” proof of James’ classical result that 4 annihilates the 2-torsion in π∗(S

3).
Unlike the odd primary case, however, for reasons related to the divisibility of the
Whitehead square [ι2n−1, ι2n−1] ∈ π4n−3(S

2n−1), the fibre of the squaring map on
Ω2S2n+1 admits nontrivial product decompositions for some other values of n.
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First, in their investigation of the homology of spaces of maps from mod-2 Moore
spaces to spheres, Campbell, Cohen, Peterson and Selick [1] found that if 2n+ 1 ̸=
3, 5, 9 or 17, then Ω2S2n+1{2} is atomic and hence indecomposable. Following this, it
was shown in [5] that after localization at the prime 2, there is a homotopy decompo-
sition Ω2S9{2} ≃ BW2 ×W4 andW4 is a retract of Ω3S17{2}. Here BWn denotes the
classifying space ofWn first constructed by Gray [6]. Since BW1 is known to be homo-
topy equivalent to Ω2S3⟨3⟩, the pattern suggested by the decompositions of Ω2S5{2}
and Ω2S9{2} led Cohen and Selick to conjecture that Ω2S17{2} ≃ BW4 ×W8. In
this note we prove this is true after looping once. (This weaker statement was also
conjectured in [3].)

Theorem 1.1. There is a 2-local homotopy equivalence Ω3S17{2} ≃W4 × ΩW8.

In addition to the exponent results mentioned above, decompositions of
ΩmS2n+1{p} also give decompositions of homotopy groups of spheres with Z/pZ coef-
ficients. Recall that the mod-p homotopy groups of X are defined by πk(X;Z/pZ) =
[P k(p), X].

Corollary 1.2. πk(S
17;Z/2Z) ∼= πk−4(W4)⊕ πk−3(W8) for all k ⩾ 4.

In Section 3 we relate the problem of decomposing Ω2S2n+1{2} to a problem
considered by Mukai and Skopenkov in [11] of computing a certain summand in a
homotopy group of the mod-2 Moore space P 2n+1(2)—more specifically, the problem
of determining when the Whitehead square [i2n, i2n] ∈ π4n−1(P

2n+1(2)) of the inclu-
sion of the bottom cell i2n : S

2n → P 2n+1(2) is divisible by 2. The indecomposability
result for Ω2S2n+1{2} in [1] (see also [2]) was proved by showing that for n > 1 the
existence of a spherical homology class in H4n−3(Ω

2S2n+1{2}) imposed by a nontriv-
ial product decomposition implies the existence of an element θ ∈ πS

2n−2 of Kervaire
invariant one such that θη is divisible by 2, where η is the generator of the stable
1-stem πS

1 . Such elements are known to exist only for 2n = 4, 8 or 16. We show that
the divisibility of the Whitehead square [i2n, i2n] similarly implies the existence of
such Kervaire invariant elements to obtain the following.

Theorem 1.3. The Whitehead square [i2n, i2n] ∈ π4n−1(P
2n+1(2)) is divisible by 2 if

and only if 2n = 2, 4, 8 or 16.

This will follow from a preliminary result (Proposition 3.1) equating the divisibility
of [i2n, i2n] with the vanishing of a Whitehead product in the mod-2 homotopy of the
Stiefel manifold V2n+1,2, i.e., the unit tangent bundle over S2n. It is shown in [17]
that there do not exist maps S2n−1 × P 2n(2) → V2n+1,2 extending the inclusions of
the bottom cell S2n−1 and bottom Moore space P 2n(2) if 2n ̸= 2, 4, 8 or 16. When
2n = 2, 4 or 8, the Whitehead product obstructing an extension is known to vanish
for reasons related to Hopf invariant one, leaving only the boundary case 2n = 16
unresolved. We find that the Whitehead product is also trivial in this case.
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2. The decomposition of Ω3S17{2}
The proof of Theorem 1.1 will make use of the 2-primary version of Richter’s proof

of Gray’s conjecture, so we begin by reviewing this conjecture and spelling out some
of its consequences. In his construction of a classifying space of the fibre Wn of the
double suspension, Gray [6] introduced two p-local homotopy fibrations

S2n−1 E2

−−→ Ω2S2n+1 ν−−→ BWn,

BWn
j−−→ Ω2S2np+1 ϕ−−→ S2np−1,

with the property that j ◦ ν ≃ ΩH, where H : ΩS2n+1 → ΩS2np+1 is the pth James-

Hopf invariant. In addition, Gray showed that the composite BWn
j−→ Ω2S2np+1 p−→

Ω2S2np+1 is nullhomotopic and conjectured that the composite Ω2S2np+1 ϕ−→
S2np−1 E2

−−→ Ω2S2np+1 is homotopic to the pth power map on Ω2S2np+1. This was
recently proved by Richter in [13].

Theorem 2.1 ([13]). For any prime p, there is a homotopy fibration

BWn
j−−→ Ω2S2np+1 ϕn−−→ S2np−1

such that E2 ◦ ϕn ≃ p.

For odd primes, it was shown in [21] that there is a homotopy fibration ΩWnp →
BWn → Ω2S2np+1{p} based on the fact that a lift S : BWn → Ω2S2np+1{p} of j can
be chosen to be an H-map when p is odd. One consequence of Theorem 2.1 is that
this homotopy fibration exists for all primes and can be extended one step to the
right by a map Ω2S2np+1{p} →Wnp.

Lemma 2.2. For any prime p, there is a homotopy fibration

BWn −−→ Ω2S2np+1{p} −−→Wnp.

Proof. The homotopy pullback of ϕn and the fibre inclusion Wnp → S2np−1 of the
double suspension defines a map Ω2S2np+1{p} →Wnp with homotopy fibre BWn,
which can be seen by comparing fibres in the homotopy pullback diagram

BWn
// Ω2S2np+1{p} //

��

Wnp

��

BWn
j

// Ω2S2np+1 ϕn //

p

��

S2np−1

E2

��

Ω2S2np+1 Ω2S2np+1.

(1)

Looping once, we obtain a homotopy fibration

Wn −−→ Ω3S2np+1{p} −−→ ΩWnp,

which we will show is split when p = 2 and n = 4. We now fix p = 2 and localize
all spaces and maps at the prime 2. Homology will be taken with mod-2 coefficients
unless otherwise stated.
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The next lemma describes a factorization of the looped second James-Hopf invari-
ant, an odd primary version of which appears in [21]. By a well-known result due to
Barratt, ΩH : Ω2S2n+1 → Ω2S4n+1 has order 2 in the group [Ω2S2n+1,Ω2S4n+1] and
hence lifts to a map Ω2S2n+1 → Ω2S4n+1{2}. Improving on this, a feature of Richter’s

construction of the map ϕn is that the composite Ω2S2n+1 ΩH−−→ Ω2S4n+1 ϕn−−→ S4n−1 is

nullhomotopic [13, Lemma 4.2]. This recovers Gray’s fibration S2n−1 E2

−−→ Ω2S2n+1 ν−→
BWn and the relation j ◦ ν ≃ ΩH since there then exists a lift ν : Ω2S2n+1 → BWn

making the diagram

BWn

j

��

Ω2S2n+1 ΩH //

ν

88

Ω2S4n+1

commute up to homotopy. Since j factors through Ω2S4n+1{2}, by composing the
lift ν with the map BWn → Ω2S4n+1{2} we obtain a choice of lift S : Ω2S2n+1 →
Ω2S4n+1{2} of the looped James-Hopf invariant. Hence we have the following conse-
quence of Richter’s theorem.

Lemma 2.3. There is a homotopy commutative diagram

Ω2S2n+1

ν

��

S // Ω2S4n+1{2}

BWn
// Ω2S4n+1{2},

where S is a lift of the looped second James-Hopf invariant ΩH : Ω2S2n+1 → Ω2S4n+1

and the map BWn → Ω2S4n+1{2} has homotopy fibre ΩW2n.

The following homological result was proved in [1] and used to obtain the homotopy
decompositions of [4] and [5].

Lemma 2.4 ([1]). Let n ⩾ 2 and let f : X → Ω2S2n+1{2} be a map which induces an
isomorphism on the module of primitives in degrees 2n− 2 and 4n− 3. If the mod-2
homology of X is isomorphic to that of Ω2S2n+1{2} as a coalgebra over the Steenrod
algebra, then f is a homology isomorphism.

Theorem 2.5. There is a homotopy equivalence Ω3S17{2} ≃W4 × ΩW8.

Proof. Let τn denote the map BWn → Ω2S4n+1{2} appearing in Lemma 2.2. By (1),
τn is a lift of j, implying that τn is nonzero in H4n−2( ) by naturality of the Bockstein
since j is nonzero inH4n−1( ). We can therefore use the maps τn in place of the (poten-
tially different) maps σn used in [5] to obtain product decompositions of Ω2S4n+1{2}
for n = 1 and 2, the advantage being that τn has fibre ΩW2n. Explicitly, for n = 2 this
is done as follows. By [5, Corollary 2.1], there exists a map g : Ω3S17{2} → Ω2S9{2}
which is nonzero in H13( ). Letting µ denote the loop multiplication on Ω2S9{2}, it
follows that the composite

ψ : BW2 ×W4
τ2×(g◦Ωτ4)−−−−−−−−→ Ω2S9{2} × Ω2S9{2} µ−−→ Ω2S9{2}

induces an isomorphism on the module of primitives in degrees 6 and 13. Since



A HOMOTOPY DECOMPOSITION OF THE FIBRE OF THE SQUARING MAP ON Ω3S17 145

H∗(BW2 ×W4) and H∗(Ω
2S9{2}) are isomorphic as coalgebras over the Steenrod

algebra, the map above is a homology isomorphism by Lemma 2.4 and hence a homo-
topy equivalence.

Now the map Ωτ4 fits in the homotopy fibration

W4
Ωτ4−−→ Ω3S17{2} −−→ ΩW8

and has a left homotopy inverse given by π2 ◦ ψ−1 ◦ g where ψ−1 is a homotopy inverse
of ψ and π2 : BW2 ×W4 →W4 is the projection onto the second factor. (Alternatively,
composing g : Ω3S17{2} → Ω2S9{2} with the map Ω2S9{2} →W4 of Lemma 2.2
yields a left homotopy inverse of Ωτ4.) It follows that the homotopy fibration above
is fibre homotopy equivalent to the trivial fibration W4 × ΩW8 → ΩW8.

Corollary 2.6. πk(S
17;Z/2Z) ∼= πk−4(W4)⊕ πk−3(W8) for all k ⩾ 4.

One consequence of the splitting of the fibrationWn → Ω3S4n+1{p} → ΩW2n when
n ∈ {1, 2, 4} is a corresponding homotopy decomposition of the fibre of the map S
appearing in Lemma 2.3. As in [18], we define the space Y and the map t by the
homotopy fibration

Y
t−−→ Ω2S2n+1 S−−→ Ω2S4n+1{2}.

This space and its odd primary analogue play a central role in the construction of
Anick’s fibration in [18, 21] and the alternative proof given in [20] of Cohen, Moore
and Neisendorfer’s determination of the odd primary homotopy exponent of spheres.
Unlike at odd primes, the lift S of ΩH cannot be chosen to be anH-map. Nevertheless,
the corollary below shows that its fibre has the structure of an H-space in cases of
Hopf invariant one.

Corollary 2.7. There is a homotopy fibration S2n−1 f−→ Y
g−→ ΩW2n with the prop-

erty that the composite S2n−1 f−→ Y
t−→ Ω2S2n+1 is homotopic to the double suspen-

sion E2. Moreover, if n = 1, 2 or 4 then the fibration splits, giving a homotopy equiv-
alence

Y ≃ S2n−1 × ΩW2n.

Proof. By Lemma 2.3, the homotopy fibration defining Y fits in a homotopy pullback
diagram

S2n−1

f

��

S2n−1

E2

��

Y

g

��

t // Ω2S2n+1

ν

��

S // Ω2S4n+1{2}

ΩW2n
// BWn

// Ω2S4n+1{2},

which proves the first statement. Note that when n = 1, 2 or 4, the map ΩW2n →
BWn is nullhomotopic by Theorem 1.1, hence t lifts through the double suspension.
Since any choice of a lift Y → S2n−1 is degree one in H2n−1( ), it also serves as a left
homotopy inverse of f , which implies the asserted splitting.
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Remark 2.8. The first part of Corollary 2.7 and an odd primary version are proved
by different means in [18] and [20], respectively (see Remark 6.2 of [18]). At odd
primes, there is an analogous splitting for n = 1:

Y ≃ S1 × ΩWp ≃ S1 × Ω3T 2p2+1(p),

where T 2p2+1(p) is Anick’s space (see [19]).

3. Relations to Whitehead products in Moore spaces
and Stiefel manifolds

The special homotopy decompositions of Ω3S2n+1{2} discussed in the previous
section are made possible by the existence of special elements in the stable homotopy
groups of spheres, namely elements of Arf-Kervaire invariant one θ ∈ πS

2n−2 such that
θη is divisible by 2. In this section, we give several reformulations of the existence of
such elements in terms of mod-2 Moore spaces and Stiefel manifolds.

Let in−1 : S
n−1 → Pn(2) be the inclusion of the bottom cell and let jn : P

n(2) →
Pn(2) be the identity map. Similarly, let i′2n−1 : S

2n−1 → V2n+1,2 and j′2n : P
2n(2) →

V2n+1,2 denote the inclusions of the bottom cell and bottom Moore space, respec-
tively.1

Proposition 3.1. The Whitehead product [i′2n−1, j
′
2n] ∈ π4n−2(V2n+1,2;Z/2Z) is triv-

ial if and only if the Whitehead square [i2n, i2n] ∈ π4n−1(P
2n+1(2)) is divisible by 2.

Proof. Let λ : S4n−2 → P 2n(2) denote the attaching map of the top cell in V2n+1,2 ≃
P 2n(2) ∪λ e4n−1 and note that [i′2n−1, j

′
2n] = j′2n ◦ [i2n−1, j2n] by naturality of

the Whitehead product. The map [i2n−1, j2n] : P
4n−2(2) → P 2n(2) is essential

since its adjoint is a Samelson product with nontrivial Hurewicz image [u, v] ∈
H4n−3(ΩP

2n(2)), where H∗(ΩP
2n(2)) is isomorphic as an algebra to the tensor alge-

bra T (u, v) with |u| = 2n− 2 and |v| = 2n− 1 by the Bott-Samelson theorem. Since
the homotopy fibre of the inclusion j′2n : P

2n(2)→V2n+1,2 has (4n− 2)-skeleton S4n−2

which maps into P 2n(2) by the attaching map λ, it follows that [i′2n−1, j
′
2n] is trivial

if and only if [i2n−1, j2n] is homotopic to the composite

P 4n−2(2)
q−−→ S4n−2 λ−−→ P 2n(2),

where q is the pinch map.
To ease notation let Pn denote the mod-2 Moore space Pn(2) and consider the

morphism of EHP sequences

[S4n, P 2n+1]
H //

q∗

��

[S4n,ΣP 2n ∧ P 2n]
P //

q∗

��

[S4n−2, P 2n]
E //

q∗

��

[S4n−1, P 2n+1]

q∗

��

[P 4n, P 2n+1]
H // [P 4n,ΣP 2n ∧ P 2n]

P // [P 4n−2, P 2n]
E // [P 4n−1, P 2n+1]

induced by the pinch map. A homology calculation shows that the (4n)-skeleton of
ΣP 2n ∧ P 2n is homotopy equivalent to P 4n ∨ S4n. Let k1 : P

4n → ΣP 2n ∧ P 2n and

1Note that we index these maps by the dimension of their source rather than their target, so the
element of π4n−1(P

2n+1(2)) we call [i2n, i2n] is called [i2n+1, i2n+1] in [11].
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k2 : S
4n → ΣP 2n ∧ P 2n be the composites

P 4n ↪→ P 4n ∨ S4n ≃ sk4n(ΣP
2n ∧ P 2n) ↪→ ΣP 2n ∧ P 2n

and

S4n ↪→ P 4n ∨ S4n ≃ sk4n(ΣP
2n ∧ P 2n) ↪→ ΣP 2n ∧ P 2n

defined by the left and right wedge summand inclusions, respectively. Then we have
that π4n(ΣP

2n ∧ P 2n) = Z/4Z{k2} and P (k2) = ±2λ by [9, Lemma 12]. It follows
from the universal coefficient exact sequence

0 −→ π4n(ΣP
2n ∧ P 2n)⊗ Z/2Z −→ π4n(ΣP

2n ∧ P 2n;Z/2Z)
−→ Tor(π4n−1(ΣP

2n ∧ P 2n),Z/2Z) −→ 0

that

π4n(ΣP
2n ∧ P 2n;Z/2Z) = [P 4n,ΣP 2n ∧ P 2n]

= Z/2Z{k1} ⊕ Z/2Z{k2 ◦ q}

and that the generator k2 ◦ q is in the kernel of P since P (k2) = ±2λ implies

P (k2 ◦ q) = P (q∗(k2)) = q∗(P (k2)) = ±λ ◦ 2 ◦ q = 0

by the commutativity of the above diagram and the fact that q : P 4n−2 → S4n−2

and 2: S4n−2 → S4n−2 are consecutive maps in a cofibration sequence. Therefore
[i2n−1, j2n] = P (k1) since the suspension of a Whitehead product is trivial. On the

other hand, Σλ is homotopic to the composite S4n−1 [ι2n,ι2n]−−−−−→ S2n i2n−−→ P 2n+1 by [9],
which implies E(λ ◦ q) = i2n ◦ [ι2n, ι2n] ◦ q = [i2n, i2n] ◦ q is trivial in [P 4n−1, P 2n+1]
precisely when [i2n, i2n] is divisible by 2. Hence [i2n, i2n] is divisible by 2 if and only
if λ ◦ q = P (k1) = [i2n−1, j2n] ∈ [P 4n−2, P 2n], and the proposition follows.

We use Proposition 3.1 in two ways. First, since the calculation of π31(P
17(2)) in

[10] shows that [i16, i16] = 2σ̃2
16 for a suitable choice of representative σ̃2

16 of the Toda
bracket {σ2

16, 2ι16, i16}, it follows that the Whitehead product [i′15, j
′
16] : P

30(2) →
V17,2 is nullhomotopic and hence there exists a map S15 × P 16(2) → V17,2 extending
the wedge of skeletal inclusions S15 ∨ P 16(2) → V17,2. This resolves the only case left
unsettled by Theorem 3.2 of [17].

In the other direction, note that such maps S2n−1 × P 2n(2) → V2n+1,2 restrict to
maps S2n−1 × S2n−1 → V2n+1,2 which exist only in cases of Kervaire invariant one
by [22, Proposition 2.27], so Proposition 3.1 shows that when 2n ̸= 2k for some k ⩾ 1
the Whitehead square [i2n, i2n] cannot be divisible by 2 for the same reasons that the
Whitehead square [ι2n−1, ι2n−1] ∈ π4n−3(S

2n−1) cannot be divisible by 2. Moreover,
since maps S2n−1 × P 2n(2) → V2n+1,2 extending the inclusions of S2n−1 and P 2n(2)
are shown not to exist for 2n > 16 in [17], Proposition 3.1 implies that the Whitehead
square [i2n, i2n] is divisible by 2 if and only if 2n = 2, 4, 8 or 16. In all other cases it
generates a Z/2Z summand in π4n−1(P

2n+1(2)). This improves on the main theorem
of [11] which shows by other means that [i2n, i2n] is not divisible by 2 when 2n is not
a power of 2.

These results are summarized in Theorem 3.3 below. First we recall the following
well-known equivalent formulations of the Kervaire invariant problem.
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Theorem 3.2 ([2, 22]). The following are equivalent:

(a) The Whitehead square [ι2n−1, ι2n−1] ∈ π4n−3(S
2n−1) is divisible by 2;

(b) There is a map P 4n−2(2) → ΩS2n which is nonzero in homology;

(c) There exists a space X with mod-2 cohomology H̃i(X) ∼= Z/2Z for i = 2n,
4n− 1 and 4n, and zero otherwise, with Sq2n : H2n(X) → H4n(X) and
Sq1 : H4n−1(X) → H4n(X) isomorphisms;

(d) There exists a map f : S2n−1 × S2n−1 → V2n+1,2 such that f |S2n−1×∗ =
f |∗×S2n−1 is the inclusion of the bottom cell;

(e) n = 1 or there exists an element θ ∈ πS
2n−2 of Kervaire invariant one.

The above conditions hold for 2n = 2, 4, 8, 16, 32 and 64, and the recent solution
to the Kervaire invariant problem by Hill, Hopkins and Ravenel [8] implies that, with
the possible exception of 2n = 128, these are the only values for which the conditions
hold. Mimicking the reformulations above we obtain the following.

Theorem 3.3. The following are equivalent:

(a) The Whitehead square [i2n, i2n] ∈ π4n−1(P
2n+1(2)) is divisible by 2;

(b) There is a map P 4n(2) → ΩP 2n+2(2) which is nonzero in homology;

(c) There exists a space X with mod-2 cohomology H̃i(X) ∼= Z/2Z for i = 2n+ 1,
2n+ 2, 4n+ 1, 4n+ 2 and zero otherwise with Sq2n : H2n+1(X) → H4n+1(X),
Sq1 : H2n+1(X)→H2n+2(X) and Sq1 : H4n+1(X)→H4n+2(X) isomorphisms;

(d) There exists a map f : S2n−1 × P 2n(2) → V2n+1,2 such that f |S2n−1×∗ and
f |∗×P 2n(2) are the skeletal inclusions of S2n−1 and P 2n(2), respectively;

(e) n = 1 or there exists an element θ ∈ πS
2n−2 of Kervaire invariant one such that

θη is divisible by 2;

(f) 2n = 2, 4, 8 or 16.

Proof. (a) is equivalent to (b): In the n = 1 case, [ι2, ι2] = 2η2 implies [i2, i2] = 0, and
since η3 ∈ π4(S

3) has order 2 its adjoint η̃3 : S
3 → ΩS3 extends to a map P 4(2) →

ΩS3. If this map desuspended, then η̃3 would be homotopic to a composite S3 →
P 4(2) → S2 E−→ ΩS3, a contradiction since π3(S

2) ∼= Z implies that any map S3 →
S2 that factors through P 4(2) is nullhomotopic. Hence the map P 4(2) → ΩS3 has
nontrivial Hopf invariant in [P 4(2),ΩS5] from which it follows that P 4(2) → ΩS3 is
nonzero in H4( ). Composing with the inclusion ΩS3 → ΩP 4(2) gives a map P 4(2) →
ΩP 4(2) which is nonzero in H4( ).

Now suppose n > 1 and [i2n, i2n] = 2α for some α ∈ π4n−1(P
2n+1(2)). Then Σα

has order 2 so there is an extension P 4n+1(2) → P 2n+2(2) whose adjoint f : P 4n(2) →
ΩP 2n+2(2) satisfies f |S4n−1 = E ◦ α. Since ΩΣ(P 2n+1(2) ∧ P 2n+1(2)) has 4n-skeleton
S4n, to show that f∗ is nonzero on H4n(P

4n(2)) it suffices to show that H2 ◦ f is non-
trivial in [P 4n(2),ΩΣ(P 2n+1(2) ∧ P 2n+1(2))] where H2 : ΩP

2n+2(2) → ΩΣ(P 2n+1(2)
∧ P 2n+1(2)) is the second James-Hopf invariant. If H2 ◦ f is nullhomotopic, then
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there is a map g : P 4n(2) → P 2n+1(2) making the diagram

P 2n+1(2)
E // ΩP 2n+2(2)

H2 // ΩΣ(P 2n+1(2) ∧ P 2n+1(2))

P 4n(2)

g

OO

f

99

commute. But then α− g|S4n−1 is in the kernel of E∗ : π4n−1(P
2n+1(2)) →

π4n(P
2n+2(2)) which is generated by [i2n, i2n], so α− g|S4n−1 is a multiple of [i2n, i2n].

Since [i2n, i2n] has order 2 and clearly 2g|S4n−1 = 0, it follows that [i2n, i2n] = 2α = 0,
a contradiction. Therefore f∗ is nonzero on H4n(P

4n(2)).

Conversely, assume n > 1 and f : P 4n(2) → ΩP 2n+2(2) is nonzero in H4n( ). Since
the restriction f |S4n−1 lifts through the (4n− 1)-skeleton of ΩP 2n+2(2), there is a
homotopy commutative diagram

S4n−1 //

g

��

P 4n(2)

f

��

P 2n+1(2)
E // ΩP 2n+2(2),

for some map g : S4n−1 → P 2n+1(2). Since E ◦ 2g is nullhomotopic, 2g is a multiple
of [i2n, i2n]. But if 2g = 0, then g admits an extension e : P 4n(2) → P 2n+1(2) and it
follows that f − E ◦ e factors through the pinch map q : P 4n(2) → S4n. This makes
the Pontrjagin square u2 ∈ H4n(ΩP

2n+2(2)) a spherical homology class, and this is a
contradiction which can be seen as follows. If u2 is spherical, then the 4n-skeleton of
ΩP 2n+2(2) is homotopy equivalent to P 2n+1(2) ∨ S4n. On the other hand, it is easy
to see that the attaching map of the 4n-cell in ΩP 2n+2(2) is given by the Whitehead
square [i2n, i2n] which is nontrivial as n > 1, whence P 2n+1 ∪[i2n,i2n] e

4n ̸≃ P 2n+1(2) ∨
S4n.

(a) is equivalent to (d): Since the Whitehead product [i′2n−1, j
′
2n] ∈ π4n−2(V2n+1,2;

Z/2Z) is the obstruction to extending i′2n−1 ∨ j′2n : S2n−1 ∨ P 2n(2) → V2n+1,2 to
S2n−1 × P 2n(2), this follows immediately from Proposition 3.1.

As described in [17], applying the Hopf construction to a map f : S2n−1 ×P 2n(2)→
V2n+1,2 as in (d) yields a map H(f) : P 4n(2) → ΣV2n+1,2 with Sq2n acting nontriv-
ially on H2n(CH(f)). Since Σ2V2n+1,2 ≃ P 2n+2(2) ∨ S4n+1, composing the suspen-
sion of the Hopf construction H(f) with a retract Σ2V2n+1,2 → P 2n+2(2) defines a
map g : P 4n+1(2) → P 2n+2(2) with Sq2n acting nontrivially on H2n+1(Cg), so (d)
implies (c).

By the proof of [17, Theorem 3.1], (c) implies (e), and (e) implies (f). The triviality
of the Whitehead product [i′2n−1, j

′
2n] ∈ π4n−2(V2n+1,2;Z/2Z) when n = 1, 2 or 4 is

implied by [17, Theorem 2.1], for example, and Proposition 3.1 implies [i′15, j
′
16] ∈

π30(V17,2;Z/2Z) is trivial as well since [i16, i16] ∈ π31(P
17(2)) is divisible by 2 by [10,

Lemma 3.10]. Thus (f) implies (d).
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4. A loop space decomposition of J3(S
2)

In this section, we consider some relations between the fibre bundle S4n−1 →
V4n+1,2 → S4n defined by projection onto the first vector of an orthonormal 2-frame
in R4n+1 (equivalently, the unit tangent bundle over S4n) and the fibration BWn →
Ω2S4n+1{2} →W2n of Lemma 2.2. Letting ∂ : ΩS4n → S4n−1 denote the connect-
ing map of the first fibration, we will show that there is a morphism of homotopy
fibrations

Ω2S4n Ω∂ //

��

ΩS4n−1 //

��

ΩV4n+1,2

��

ΩW2n
// BWn

// Ω2S4n+1{2},

(2)

from which it will follow that for n = 1, 2 or 4, Ω∂ lifts through Ωϕn : Ω
3S4n+1 →

ΩS4n−1. If this lift can be chosen to be Ω2E, then it follows that there is a homotopy
pullback diagram

Ω2V4n+1,2
//

��

Ω2S4n Ω∂ //

Ω2E
��

ΩS4n−1

Wn
Ωj

//

��

Ω3S4n+1 Ωϕn //

Ω2H
��

ΩS4n−1

Ω3S8n+1 Ω3S8n+1,

(3)

which identifies Ω2V4n+1,2 with ΩM3(n) where {Mk(n)}k⩾1 is the filtration of BWn

studied in [7] beginning with the familiar spaces M1(n) ≃ ΩS4n−1 and M2(n) ≃
S4n−1{2}. (Spaces are localized at an odd prime throughout [7] but the construc-
tion of the filtration works in the same way for p = 2.) We verify this (and deloop
it) for n = 1 since it leads to an interesting loop space decomposition which gives
isomorphisms πk(V5,2) ∼= πk(J3(S

2)) for all k ⩾ 3.

In his factorization of the 4th-power map on Ω2S2n+1 through the double suspen-
sion, Theriault constructs in [18] a space A and a map E : A→ ΩS2n+1{2} with the
following properties:

(a) H∗(A) ∼= Λ(x2n−1, x2n) with Bockstein βx2n = x2n−1;

(b) E induces a monomorphism in homology;

(c) There is a homotopy fibration S2n−1 → A→ S2n and a homotopy fibration
diagram

S2n−1 //

E2

��

A //

E
��

S2n

E
��

Ω2S2n+1 // ΩS2n+1{2} // ΩS2n+1.

Noting that the homology of A is isomorphic to the homology of the unit tangent
bundle τ(S2n) as a coalgebra over the Steenrod algebra, Theriault raises the question
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of whether A is homotopy equivalent to τ(S2n) = V2n+1,2. Our next proposition shows
this is true for any space A with the properties above.

Proposition 4.1. There is a homotopy equivalence A ≃ V2n+1,2.

Proof. First we show that A splits stably as P 2n ∨ S4n−1. As in [18], let Y denote
the (4n− 1)-skeleton of ΩS2n+1{2}. Consider the homotopy fibration

ΩS2n+1{2} −−→ ΩS2n+1 2−−→ ΩS2n+1

and recall that H∗(ΩS
2n+1{2}) ∼= H∗(ΩS

2n+1)⊗H∗(Ω
2S2n+1). Restricting the fibre

inclusion to Y and suspending once we obtain a homotopy commutative diagram

S2n+1

��

2
// S2n+1

��

ΣY

ℓ

33

// ΣΩS2n+1{2} // ΣΩS2n+1 Σ2 // ΣΩS2n+1,

where 2 is the degree 2 map, the vertical maps are inclusions of the bottom cell
of ΣΩS2n+1 and a lift ℓ inducing an isomorphism in H2n+1( ) exists since ΣY is
a 4n-dimensional complex and sk4n(ΣΩS

2n+1) = S2n+1. It follows from the James
splitting ΣΩS2n+1 ≃

∨∞
i=1 S

2ni+1 and the commutativity of the diagram that 2 ◦ ℓ
is nullhomotopic, so, in particular, Σℓ lifts to the fibre S2n+2{2} of the degree 2
map on S2n+2. Since H∗(S

2n+2{2}) ∼= Z/2Z[u2n+1]⊗ Λ(v2n+2) with βv2n+2 = u2n+1,
this implies Σℓ factors through a map r : Σ2Y → P 2n+2(2) which is an epimor-
phism in homology by naturality of the Bockstein, and hence P 2n+2(2) is a retract
of Σ2Y . (Alternatively, r can be obtained by suspending a lift ΣY → S2n+1{2}
of ℓ and using the well-known fact that ΣS2n+1{2} splits as a wedge of Moore
spaces.) Now since E : A→ ΩS2n+1{2} factors through Y and induces a monomor-
phism in homology, composing Σ2A→ Σ2Y with the retraction r shows that Σ2A ≃
Σ2(P 2n(2) ∨ S4n−1).

Next, let E∞ : A→ QA denote the stabilization map and let F denote the homo-
topy fibre of a map g : QP 2n(2) → K(Z/2Z, 4n− 2) representing the mod-2 cohomol-
ogy class u22n−1 ∈ H4n−2(QP 2n(2)). A homology calculation shows that the (4n− 1)-
skeleton of F is a three-cell complex with homology isomorphic to Λ(x2n−1, x2n) as
a coalgebra. The splitting Σ2A ≃ Σ2(P 2n(2) ∨ S4n−1) gives rise to a map π1 : QA ≃
QP 2n(2)×QS4n−1 → QP 2n(2) inducing isomorphisms in H2n−1( ) and H2n( ), and
since the composite g ◦ π1 ◦ E∞ : A→ K(Z/2Z, 4n− 2) is nullhomotopic, there is a
lift A→ F inducing isomorphisms in H2n−1( ) and H2n( ). The coalgebra structure
of H∗(A) then implies this lift is a (4n− 1)-equivalence and the result follows as
V2n+1,2 can similarly be seen to be homotopy equivalent to the (4n− 1)-skeleton
of F .

The homotopy commutative diagram (2) is now obtained by noting that the

composite ΩS4n−1 −→ ΩV4n+1,2
ΩE−−−→ Ω2S4n+1{2} is homotopic to ΩS4n−1 ΩE2

−−−−→
Ω3S4n+1 −→ Ω2S4n+1{2}, which in turn is homotopic to a composite
ΩS4n−1 −→ BWn −→ Ω2S4n+1{2} since by Theorem 2.1 there is a homotopy fibration
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diagram

ΩS4n−1

ΩE2

��

// BWn

��

j
// Ω2S4n+1 ϕn // S4n−1

E2

��

Ω3S4n+1 // Ω2S4n+1{2} // Ω2S4n+1 2 // Ω2S4n+1.

Specializing to the case n = 1, the proof of Proposition 4.3 will show that ΩV5,2
fits in a delooping of diagram (3) and hence that ΩV5,2 ≃M3(1). We will need the
following cohomological characterization of V5,2.

Lemma 4.2. Let E be the total space of a fibration S3 → E → S4. If E has integral
cohomology group H4(E;Z) = Z/2Z and mod-2 cohomology ring H∗(E) an exterior
algebra Λ(u, v) with |u| = 3 and |v| = 4, then E is homotopy equivalent to the Stiefel
manifold V5,2.

Proof. As shown in [22, Theorem 5.8], the top row of the homotopy pullback diagram

X4 //

��

P 4(2) //

q

��

BS3

S7 ν // S4 // BS3

induces a split short exact sequence

0 −−→ Z/4Z −−→ π6(P
4(2)) −−→ π5(S

3) −−→ 0,

from which it follows that π6(P
4(2)) = Z/4Z{λ} ⊕ Z/2Z{η̃23} where λ is the attach-

ing map of the top cell of V5,2 and η̃23 maps to the generator η23 of π5(S
3). It follows

from the cohomological assumptions that E ≃ P 4(2) ∪f e
7, where f = aλ+ bη̃23 for

some a ∈ Z/4Z, b ∈ Z/2Z, and that H∗(ΩE) is isomorphic to a polynomial alge-
bra Z/2Z[u2, v3]. Since the looped inclusion ΩP 4(2) → ΩE induces the abelianiza-
tion map T (u2, v3) → Z/2Z[u2, v3] in homology, it is easy to see that the adjoint
f ′ : S5 → ΩP 4(2) of f has Hurewicz image [u2, v3] = u2 ⊗ v3 + v3 ⊗ u2 and hence f
is not divisible by 2. Moreover, since E is an S3-fibration over S4, the pinch map

q : P 4(2) → S4 must extend over E. This implies the composite S6 f−→ P 4(2)
q−→ S4

is nullhomotopic and therefore b = 0 by the commutativity of the diagram above. It
now follows that f = ±λ which implies E ≃ V5,2.

Proposition 4.3. There is a homotopy fibration

V5,2 −−→ J3(S
2) −−→ K(Z, 2),

which is split after looping.

Proof. Let h denote the composite ΩS3⟨3⟩ −→ ΩS3 H−→ ΩS5 and consider the pullback

P //

��

S4

E
��

ΩS3⟨3⟩ h // ΩS5.
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Since h has homotopy fibre S3, so does the map P → S4. Next, observe that P is the

homotopy fibre of the composite ΩS3⟨3⟩ h−→ ΩS5 H−→ ΩS9 and since ΩS9 is 7-connect-
ed, the inclusion of the 7-skeleton of ΩS3⟨3⟩ lifts to a map sk7(ΩS

3⟨3⟩) → P . Recalling
that H4(ΩS3⟨3⟩;Z) ∼= Z/2Z and H∗(ΩS

3⟨3⟩) ∼= Λ(u3)⊗ Z/2Z[v4] with generators in
degrees |u3| = 3 and |v4| = 4, it follows that this lift must be a homology isomorphism
and hence a homotopy equivalence. So P is homotopy equivalent to the total space of a
fibration satisfying the hypotheses of Lemma 4.2 and there is a homotopy equivalence
P ≃ V5,2.

It is well known that the iterated composite of the pth James-Hopf invariant

H◦k : ΩS2n+1 → ΩS2npk+1 has homotopy fibre Jpk−1(S
2n), the (pk − 1)st stage of

the James construction on S2n. The argument above identifies V5,2 with the homo-
topy fibre of the composite

ΩS3⟨3⟩ −−→ ΩS3 H−−→ ΩS5 H−−→ ΩS9,

so there is a homotopy pullback diagram

V5,2 //

��

J3(S
2) //

��

K(Z, 2)

ΩS3⟨3⟩ //

H◦h
��

ΩS3 //

H◦2

��

K(Z, 2)

ΩS9 ΩS9,

where the maps into K(Z, 2) represent generators of H2(J3(S
2); Z) ∼= Z and

H2(ΩS3;Z) ∼= Z. To see that the homotopy fibration along the top row splits after
looping, note that the connecting map ΩK(Z, 2) = S1 → V5,2 is nullhomotopic since
V5,2 is simply-connected. Therefore the looped projection map ΩJ3(S

2) → S1 has a
right homotopy inverse producing a splitting ΩJ3(S

2) ≃ S1 × ΩV5,2.

Corollary 4.4. πk(J3(S
2)) ∼= πk(V5,2) for all k ⩾ 3.
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