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Abstract
The aim of this article is to provide explicit formulas for the

cup product on the Hochschild cohomology of any nonnega-
tively graded connected algebra A and for the cap products on
the Hochschild homology of A with coefficients in any graded
bimodule M at the level of the complexes HomAe(P•, A) and
M ⊗Ae P•, resp., where P• is a minimal projective resolution
of the A-bimodule A, based on the A∞-algebra structure of
Ext•A(k, k). We remark that we do not (need to) construct any
comparison map between P• and the Hochschild resolution of
A, or any lift ∆: P → P ⊗A P of the identity of A. The main
tools we use come from torsion theory of A∞-algebras and of
their A∞-bimodules.

1. Introduction

The goal of this article is to show that, for a nonnegatively graded connected
algebra A and a graded A-bimodule M , it is possible to compute the cup product of
the Hochschild cohomology of A and the cap product on the Hochschild homology of
A with coefficients in M at the level of the complexes HomAe(P•, A) and M ⊗Ae P•,
resp., where P• is a minimal projective resolution of the A-bimodule A, without
constructing any comparison map between P• and the Hochschild resolution of A, or
any lift ∆: P → P ⊗A P of the identity of A, but by making use of the A∞-algebra
structure of Ext•A(k, k). More precisely, the main result of this work is the following
(see Theorem 4.3).

Theorem. Let A be a nonnegatively graded connected algebra over a field k and
consider C = TorA• (k, k) provided with a coaugmented A∞-coalgebra structure whose
dual is isomorphic to the augmented A∞-algebra Ext•A(k, k). Then, there exists a
twisted cochain τ in Hom(C,A) such that:
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1. there is a quasi-isomorphism of A∞-algebras from the complex C•(A,A) com-
puting the Hochschild cohomology of A to Homτ (C,A), which, in particular,
induces an isomorphism of graded algebras from HH•(A) to H•(Homτ (C,A));

2. given any graded A-bimodule M and using the previous quasi-isomorphism of
A∞-algebras, there exists a quasi-isomorphism of A∞-bimodules over C•(A,A)
from M ⊗τ C to the chain complex C•(A,M) computing the Hochschild homol-
ogy of A with coefficients in M , which gives thus an isomorphism of graded
bimodules over HH•(A) from H•(A⊗τ C) to H•(A,M).

The proof is based on the torsion theory of A∞-algebras and of A∞-bimodules over
them by elements satisfying the Maurer-Cartan equation. We also want to remark
that there is a very simple condition to check if a given coaugmented A∞-coalgebra
structure on TorA• (k, k) is dual to the augmented A∞-algebra Ext•A(k, k) that also
provides the twisting cochain τ (see Theorem 4.2). Moreover, we want to stress that
our main result gives explicit expressions of the cup and cap products (see Adden-
dum 4.4). We give, in particular, an application computing the cup and cap products
on Hochschild cohomology and homology, resp., of a generalized Koszul algebra A
(see Theorem 4.5). The part of this last result concerning Hochschild cohomology was
already observed by Xu and Xiang in [15, Thm. 3.2]. Our proof is, however, com-
pletely different. The part concerning Hochschild homology does not seem to have
been observed so far. Furthermore, our results can be applied to any nonnegatively
graded connected algebras for which the A∞-algebra structure of the Yoneda algebra
is known (e.g., the multi-Koszul algebras studied in [8]).

The article is structured as follows. In Section 2 we review the basic definitions and
results about the main algebraic objects we shall use: coaugmented A∞-coalgebras
and A∞-bimodules over augmented A∞-algebras. For the theory of A∞-algebras we
refer the reader to the nice exposition [11], whose convention we shall follow, and to
standard references like [10] and [13]. The section is concluded with two construc-
tions that will be used in the sequel: an augmented A∞-algebra Hom(C,A) from
a coaugmented A∞-coalgebra C and an augmented dg algebra A, called the con-
volution A∞-algebra, and, given a dg A-bimodule M , an A∞-bimodule M ⊗ C over
Hom(C,A).

Section 3 deals with the twisting theory of topological augmented A∞-algebras
and of A∞-bimodules over them satisfying a particular discreteness assumption. We
surmise that the contents of Subsections 3.2 and 3.4, specially Lemmas 3.4, 3.5, 3.12
and 3.13, might be well-known among the experts, but we could not find any spe-
cific reference for them. Our main interest in these constructions is to show that, if
C is an Adams connected coaugmented A∞-coalgebra and τ is a twisting cochain,
one can twist the convolution A∞-algebra Hom(C,A) and the A∞-bimodule M ⊗ C
over the former. The new constructions are denoted by Homτ (C,A) and M ⊗τ C,
respectively. The contents of Subsection 3.3 are standard with the possible exception
of Lemma 3.11, which we believe is new even though not completely unexpected. The
reason for providing most of the results of this subsection was in order to be able to
prove the mentioned lemma, as well as to establish the notation we use in the sequel.

The last Section is divided in three parts. Subsection 4.1 recalls some easy facts
about the twisted convolution algebra and the twisted tensor product, and presents
a theorem announced by B. Keller at the X ICRA of Toronto, Canada, in 2002 (see
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Theorem 4.2), which is of key importance in the proof of our main result. The latter
is proved in Subsection 4.2 (see Theorem 4.3). Finally, Subsection 4.3 provides an
application, computing the cup and cap products for the Hochschild (co)homology of
a generalized Koszul algebra.
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2. Preliminaries on basic algebraic structures

We recall the following basic facts, which will also establish the notation. From now
on, k will denote a field (which we also consider as a unitary graded ring concentrated
in degree zero). We will denote by N the set of (strictly) positive integers and by
N0 = {0} ∪ N. In this article A∞-algebras (and coalgebras) and their (co)modules will
be graded with respect to G = Z× Z, where the first grading is called (co)homological
and the second one is called Adams. When applying the Koszul sign rule, we will only
take the cohomological degree into account (for a nice exposition on basic homological
algebra of dg modules over dg algebras and a detailed account on the sign rule we
refer to [1]). We shall denote the cohomological degree of a homogeneous element x by
deg x. We recall that a family of linear maps {fi : M →Mi}i∈N, whereM andMi, for
i ∈ N, are vector spaces, is called locally finite if, for all m ∈M , there exists a finite
subset S ⊆ N, which depends on m, such that fi(m) vanishes for all i ∈ N \ S. Given
n0 ∈ Z and V = ⊕(n,m)∈Z2V (n,m) any graded object (decorated perhaps with further

adjectives), we shall denote by V [n0] the shift of V , defined as V [n0]
(n,m) = V (n+n0,m)

for all n,m ∈ Z, and by sV,n0
: V → V [n0] the morphism of cohomological degree

−n0, called the suspension on V of degree n0, whose underlying set-theoretic map
is the identity. In this work we shall never consider shifts of the Adams degree. If
n0 = 1 we will just write sV and call it the suspension on V . We shall say that
a graded vector space V = ⊕(m,n)∈Z2V (m,n) over k is Adams connected if V (0,0) = k

and V ∧ = ⊕(m,n)∈Z2\{(0,0)}V
(m,n) is concentrated in either strictly positive or strictly

negative Adams degrees, and each homogeneous component of V ∧ of a fixed Adams
degree d (but including all cohomological degrees) is locally finite dimensional (cf.
[12, Def. 2.1]). By changing if necessary the Adams grading of V by its opposite, we
may (and shall) assume without loss of generality that an Adams connected graded
vector space V satisfies that V ∧ is concentrated in Adams positive degrees.

2.1. Generalities on A∞-(co)algebras
For the general theory of A∞-algebras and A∞-coalgebras we refer to [10, Chs. 1–

3], or [13, Ch. 3], even though we shall not follow the sign conventions of those
works. The precise definition and sign conventions that we shall use of augmented
A∞-algebras, morphisms among them, their bar construction and modules are given
in the very nice exposition [11], to which we refer. We will present, however, the basic
definitions for the reader’s convenience.

Let A be a graded vector space provided with two maps ηA : k → A and ǫA : A→ k
of degree zero, that we call the unit and the augmentation of A, respectively. Set
IA = Ker(ǫA) and 1A = η(1k). This defines an isomorphism of graded vector spaces
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A ≃ k.1A ⊕ IA. An augmented A∞-algebra is a coderivation BA of cohomological
degree 1 on the coaugmented graded coalgebra T (IA[1]) = ⊕i∈N0

IA[1]
⊗i with the

coproduct given by deconcatenation, the obvious counit ǫT and coaugmentation ηT ,
such that BA ◦ ηT = 0 and BA ◦BA = 0. This coaugmented dg coalgebra is called
the bar construction of A and is denoted by B+(A).

Taking into account that B+(A) is a coaugmented tensor graded coalgebra, it is
cocomplete and cofree, so the coderivation BA is uniquely determined by π1 ◦BA,
where π1 : B

+(A) → IA[1] is the canonical projection (see [10, Lemme 1.1.2.2]). Let
us write this composition map by b =

∑

i∈N bi, where bi : IA[1]
⊗i → IA[1]. For i ∈

N, define m̄i : I
⊗i
A → IA by means of bi = −sIA ◦mi ◦ (s

⊗i
IA
)−1, and extend it to a

map mi : A
⊗i → A given by the composition of m̄i ◦ p

⊗i and the canonical inclusion
IA → A if i 6= 2, where p : A→ IA is the canonical projection, and by m2|I⊗2

A
= m̄2

and m2(1A ⊗ a) = a = m2(a⊗ 11) for all a ∈ A. If the reader translates the previous
definition of augmented A∞-algebra into a condition about the maps {mi}i∈N, he will
find precisely the classical notion appearing in [11].1

A morphism of augmented A∞-algebras f• : A→ B between two augmented A∞-
algebras A and B is a morphism of coaugmented dg coalgebras B+(f) : B+(A) →
B+(B). Since B+(B) is a coaugmented tensor graded coalgebra, the morphism B+(f)
is uniquely determined by its composition with the canonical projection B+(B) →
IB [1], that we write F =

∑

i∈N Fi, where Fi : IA[1]
⊗i → IB [1]. Set f̄i : I

⊗i
A → IB by

means of Fi = sIB ◦ f̄i ◦ (s
⊗i
IA
)−1, for i ∈ N, and define fi : A

⊗i → B as the compo-

sition of f̄i ◦ p
⊗i and the canonical inclusion IB → B if i 6= 1, where p : A→ IA is

the canonical projection, and by f1(1A) = 1B and f1|IA = f̄1. The translation of the
definition of morphism of augmented A∞-algebras into a condition about the maps
{fi}i∈N gives precisely the classical notion that appears in [11].

We shall briefly recall the dual notions, because they are no so common in the
literature. Let C be a graded vector space provided two maps ǫC : C → k and ηC : k →
C of degree zero, called the counit and the coaugmentation of C, respectively. Define
1C = ηC(1k) and JC = Coker(ηC), and consider the isomorphism of graded vector
spaces C ≃ k.1C ⊕ JC via the identification JC ≃ Ker(ǫC).

A coaugmented A∞-coalgebra is a derivation DC of cohomological degree 1 on the
augmented graded tensor algebra T (JC [−1]) provided with the concatenation, and the
obvious unit ηT and augmentation ǫT , such that ǫT ◦DC = 0 and DC ◦DC = 0. The
previous augmented dg algebra is called the cobar construction of C and is typically
denoted by Ω+(C).

Since Ω+(C) is a free graded algebra, DC is uniquely determined by its restric-
tion to JC [−1], which we denote by d =

∑

i∈N di for di : JC [−1] → JC [−1]⊗i. Set

∆̄i : JC → J⊗iC by means of di = (−1)i(s⊗iJC [−1])
−1 ◦ ∆̄i ◦ sJC [−1], and define ∆i : C →

C⊗i as the composition of the canonical projection C → JC , ∆̄i and the inclusion
J⊗iC → C⊗i if i 6= 2, and as ∆2(1C) = 1C ⊗ 1C and ∆2(c̄) = ∆̄2(c̄) + 1C ⊗ c̄+ c̄⊗ 1C
for c̄ ∈ JC . Then the collection of maps ∆i : C → C⊗i for i ∈ N is locally finite, each

1
Unfortunately, the choice of sign appearing in the bar construction of Section 9 of [11] is mistaken,

for it is not compatible with their Definition 2.1 if they want their Lemma 9.1 to hold. Using the

notation of that article, a coherent choice of sign is given by taking mn = −mn, and by replacing

(|aj+t|+ 1) by |aj+t| in their definition of w at p. 22.
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of homological degree i− 2 and Adams degree zero, satisfying the following identities
∑

(r,s,t)∈In

(−1)rs+t(id⊗rC ⊗∆s ⊗ id⊗tC ) ◦∆r+1+t = 0,

for n ∈ N, where In = {(r, s, t) ∈ N0 × N× N0 : r + s+ t = n}, (id⊗rC ⊗ ǫC ⊗ id⊗tC ) ◦
∆i vanishes for all i 6= 2 and r, t > 0 such that r + 1 + t = i, (idC ⊗ ǫC) ◦∆2 = idC =
(ǫC ⊗ idC) ◦∆2, ǫC ◦ ηC = idk, ∆2 ◦ ηC(1k) = ηC(1k)

⊗2, and ∆i ◦ ηC(1k) = 0 for all
i ∈ N \ {2}. Reciprocally, starting from a locally finite collection of maps ∆i : C →
C⊗i fulfilling the previous properties we obtain a coaugmented A∞-coalgebra struc-
ture. A coaugmented A∞-coalgebra C is called minimal if ∆1 = 0.

Note that a coaugmented A∞-coalgebra C is also a complex of vector spaces for the
differential ∆1. Moreover, a coaugmented dg coalgebra structure on C is equivalent
to a coaugmented A∞-coalgebra structure with vanishing higher comultiplications
∆n for n > 3, where the differential is ∆1 and the coproduct is ∆2. Note that our
definition of the cobar construction for the special case of a coaugmented dg coalgebra
coincides with the one given in [11, Section 8].

Given two coaugmented A∞-coalgebras C and C ′, a morphism f• : C → C ′ is a
morphism of augmented dg algebras Ω+(f•) : Ω

+(C) → Ω+(C ′) of the cobar construc-
tions. Since Ω+(C) is a free graded algebra, such a morphism is completely determined
by its restriction to JC [−1], which we denote by F =

∑

i∈N Fi, where Fi : JC [−1] →

JC′ [−1]⊗i. Define f̄i : JC → J⊗iC′ by Fi = (−1)i+1(s⊗iJC′ [−1]
)−1 ◦ f̄i ◦ sJC [−1], for i ∈ N,

and set fi : C → (C ′)⊗i as the composition of the canonical projection C → JC , f̄i and
the inclusion J⊗iC′ → (C ′)⊗i if i 6= 1, and f1(1C) = 1C and f1(c̄) = f̄1(c̄) for c̄ ∈ JC .
Then fi : C → (C ′)⊗i is a locally finite collection of maps, each of homological degree
i− 1 and Adams degree zero for i ∈ N, such that

∑

(r,s,t)∈In

(−1)rs+t(id⊗rD ⊗∆D
s ⊗ id⊗tD ) ◦ fr+1+t =

∑

q∈N

∑

ī∈Nq,n

(−1)w
′

(fi1 ⊗· · ·⊗fiq ) ◦∆
C
q ,

where w′ =
∑q

j=1(j − 1)(ij + 1) and N
q,n is the subset of elements ī of Nq satisfying

that |̄i| = i1 + · · ·+ iq = n, ǫC′ ◦ f1 = ǫC , (id
⊗(j−1)
C′ ⊗ ǫC′ ⊗ id

⊗(i−j)
C′ ) ◦ fi vanishes for

all i > 2 and j ∈ {1, . . . , i}, f1 ◦ ηC = ηC′ and fi ◦ ηC vanishes for i > 2. Reciprocally,
starting from a locally finite collection of maps fi : C → (C ′)⊗i fulfilling the previous
properties we obtain a morphism of coaugmented A∞-coalgebras.

Notice that f1 is also a morphism of dg vector spaces for the underlying structures
on C and C ′. A morphism of coaugmented A∞-coalgebras is strict if fi vanishes for
i > 2 and it is called a quasi-isomorphism if the map f1 is so. We remark that our
definition of Ω+(f•) agrees with the corresponding one given in [11, Section 8], for
coaugmented dg coalgebras in the case the morphism f• is further assumed to be
strict.

If f• : C → C ′ and g• : C
′ → D are morphisms of coaugmented A∞-coalgebras, we

can consider their composition Ω+(g•) ◦ Ω
+(f•). Using the comments in the previous

paragraphs we see that Ω+(g•) ◦ Ω
+(f•) = Ω+(h•) where {hn : C → D⊗n}n∈N is of

the form

hn =
∑

q∈N

∑

ī∈Nq,n

(−1)w
′

(gi1 ⊗ · · · ⊗ giq ) ◦ fq,

and w′ =
∑q

j=1(j − 1)(ij + 1).
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2.2. Generalities on A∞-bimodules

For the following definitions we refer to [10, Ch. 2, Section 5], even though our
sign conventions are distinct. Given an augmented A∞-algebra A, an A∞-bimodule
over A is a graded vector space M and a bicoderivation BM on the graded counitary
bicomodule B+(A)⊗M [1]⊗B+(A) over B+(A) such that BM ◦BM = 0. We shall
denote the previous bicomodule by B+(A,M,A). Since B+(A)⊗M [1]⊗B+(A) is a
cofree graded bicomodule, a bicoderivation is uniquely determined by its composition
with ǫB+(A) ⊗ idM [1] ⊗ ǫB+(A), which is a sum of mappings of the form bp,q : IA[1]

⊗p ⊗

M [1]⊗ IA[1]
⊗p →M [1], for p, q ∈ N0. Define mM

p,q : A
⊗p ⊗M ⊗A⊗q →M as the

composition of the canonical projection A⊗p ⊗M ⊗A⊗q → I⊗pA ⊗M ⊗ I⊗qA and

−s−1M ◦ bp,q ◦ (s
⊗p
IA

⊗ sM ⊗ s⊗qIA
) if p+ q 6= 1, and by m0,1 ◦ (idM ⊗ ηA)= idM =m1,0 ◦

(ηA ⊗ idM ) as well as the equalities m0,1 ◦ (idM ⊗ iA) = −s−1M ◦ b0,1 ◦ (sM ⊗ sIA) and
m1,0 ◦ (iA ⊗ idM ) = −s−1M ◦ b1,0 ◦ (sIA ⊗ sM ), where iA : IA → A is the canonical in-
clusion.

They satisfy the identity
∑

(r,s,t)∈In′+n′′+1

(−1)r+stm̃M
r,t ◦ (id

⊗r ⊗ m̃s ⊗ id⊗t) = 0,

for all n′, n′′ ∈ N0, where we recall that In = {(r, s, t) ∈ N0 × N× N0 : r + s+ t = n},
and where m̃s is interpreted as the corresponding multiplication mapms of A if either
r + s 6 n′ or s+ t 6 n′′, and it is understood asmM

n′−r,n′′−t else. In the first case, m̃M
r,t

is mM
n′−s+1,n′′ if r + s 6 n′ or mM

n′,n′′−s+1 if s+ t 6 n′′, and it is mM
r,t else. We also

have that mM
p,q ◦ (id

⊗r ⊗ ηA ⊗ id⊗t) vanishes for r 6= p and (p, q) /∈ {(0, 1), (1, 0)}, and

thatmM
1,0 ◦ (ηA ⊗ idM ) = idM = mM

0,1 ◦ (idM ⊗ ηA). Reciprocally, given any collection

of maps mM
p,q : A

⊗p ⊗M ⊗A⊗q →M fulfilling the previous properties, it defines an
A∞-bimodule structure on M over A. Note that an augmented A∞-algebra is also an
A∞-bimodule for the structure maps mp,q = mp+q+1, where p, q ∈ N0.

IfM andN are two A∞-bimodules, amorphism f•,• of A∞-bimodules fromM to N
is a morphism of counitary dg bicomodules B+(f•,•) : B

+(A,M,A) → B+(A,N,A).
Since B+(A)⊗M [1]⊗B+(A) is a cofree graded bicomodule, B+(f•,•) is uniquely
determined by its composition with ǫB+(A) ⊗ idN [1] ⊗ ǫB+(A), which is a sum of maps

Fp,q : I
⊗p
A ⊗M [1]⊗ IA[1]

⊗q → N [1]. Define fMp,q : A
⊗p ⊗M ⊗A⊗q → N as the com-

position of the canonical projection A⊗p ⊗M ⊗A⊗q → I⊗pA ⊗M ⊗ I⊗qA and s−1N ◦

fp,q ◦ (s
⊗p
IA

⊗ sM ⊗ s⊗qIA
). The collection of morphisms fp,q : A

⊗p ⊗M ⊗A⊗q → N sat-
isfy

∑

(r,s,t)∈In′+n′′+1

(−1)r+stfr′,t′ ◦ (id
⊗r ⊗ m̃s ⊗ id⊗t)

=
∑

(a,k,l,b)∈N0,n′,n′′

(−1)b(−k−l)mN
a,b ◦ (id

⊗a
A ⊗ fk,l ⊗ id⊗bA ),

for all n′, n′′ ∈ N0, where N0,n′,n′′ is the subset of N4
0 of elements (a, k, l, b) such that

a+ k = n′ and l + b = n′′, and where we should understand m̃s asm
A
s if either r + s 6

n′ or s+ t 6 n′′, or as mM
n′−r,n′′−t else. The indices (r

′, t′) are completely determined

from the previous cases. We also have that fp,q ◦ (id
⊗r ⊗ ηA ⊗ id⊗t) vanishes for r 6= p
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and (p, q) /∈ {(0, 0)}. Reciprocally, given any collection of maps fMp,q : A
⊗p ⊗M ⊗

A⊗q → N fulfilling the previous properties, it defines a morphism of A∞-bimodules
from M to N over A. We say that it is strict if fp,q vanishes for all (p, q) 6= (0, 0).

The composition of two morphisms f•,• : M → N and g•,• : N → P is defined by
the usual formula B+(g•,•) ◦B

+(f•,•). It is easy to see that the composition is given
by B+(h•,•), where

hp,q =
∑

(a,k,l,b)∈N0,p,q

(−1)b(−k−l)ga,b ◦ (id
⊗a
A ⊗ fk,l ⊗ id⊗bA ).

If f• : A
′ → A is a morphism of augmented A∞-algebras and N is an A∞-bimodule

over A whose bar construction B+(A,N,A) has coderivation BN , then N can be
regarded as an A∞-bimodule over A′ with the unique coderivation B′N determined
by (ǫB+(A) ⊗ idN [1] ⊗ ǫB+(A)) ◦BN ◦ (B+(f•)⊗ idN [1] ⊗B+(f•)). Note that

BN ◦ (B+(f•)⊗ idN [1] ⊗B+(f•)) = (B+(f•)⊗ idN [1] ⊗B+(f•)) ◦B
′
N , (1)

for the compositions of both members with (ǫB+(A) ⊗ idN [1] ⊗ ǫB+(A)) coincide.
Equivalently, if m•,• are the multiplications of N over A, then the structure of an
A∞-bimodule over A′ is given by

m′p,q =
∑

r,s∈N0

∑

(̄i,j̄)∈Nr,p×Ns,q

(−1)εmr,s ◦ (fi1 ⊗ · · · ⊗ fir ⊗ idN ⊗ fj1 ⊗ · · · ⊗ fjs), (2)

where we recall that Nm,n is the subset of Nm of elements ī = (i1, . . . , im) such that
|̄i| = i1 + · · ·+ im = n, and ε =

∑r
u=1(r + s+ 1− u)(iu − 1) +

∑s
u=1(s− u)(ju − 1).

We shall denote the A∞-bimodule over A′ with structure maps m′•,• by
f•N .

2.3. Two constructions

If C is a coaugmented A∞-coalgebra and A is an augmented dg algebra, the dg
vector space H = Hom(C,A) has the structure of an augmented A∞-algebra, which
we call the convolution A∞-algebra, where mH1 is given by the usual differential dA ◦
φ− (−1)deg φφ ◦∆C

1 ,

mHn (φ1 ⊗ · · · ⊗ φn) = (−1)n(deg φ1+···+deg φn+1)µ
(n)
A ◦ (φ1 ⊗ · · · ⊗ φn) ◦∆

C
n , (3)

for n > 2, 1Hom(C,A) = ηA ◦ ǫC and ǫHom(C,A)(φ) = ǫA ◦ φ ◦ ηC(1k).

If f• : C → D is a morphism of coaugmented A∞-coalgebras, then the collection
of morphisms

(fn)∗ : Hom(D,A)⊗n → Hom(C,A), (4)

for n ∈ N, of graded vector spaces of cohomological degree 1− n given by (f1)∗(φ) =
φ ◦ f1, and by

(fn)∗(φ1 ⊗ · · · ⊗ φn) = (−1)(n−1)(deg φ1+···+φn)µ
(n)
A ◦ (φ1 ⊗ · · · ⊗ φn) ◦ fn,

for n > 2, is a morphism of augmented A∞-algebras. We remark that the previous
construction defines an augmented A∞-algebra structure on the graded dual C# of C.

If M is a dg A-bimodule over an augmented dg algebra A and C is a coaugmented
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A∞-coalgebra, then M ⊗ C is an A∞-bimodule over Hom(C,A) with the structure
morphisms given by mM⊗C

0,0 = dM ⊗ idC + idM ⊗∆C
1 , and, for p+ q > 1,

mM⊗C
p,q

(

φ1 ⊗ · · · ⊗ φp ⊗ (m⊗ c)⊗ ψ1 ⊗ · · · ⊗ ψq

)

= (−1)ǫ
′(

φ1(c(q+2)) · · ·φp(c(q+p+1))
)

.m.
(

ψ1(c(1)) · · ·ψq(c(q))
)

⊗ c(q+1),
(5)

where ∆C
p+q+1(c) = c(1) ⊗ · · · ⊗ c(p+q+1), and

ǫ′ = pq + deg c degm+ (p+ q + 1)

p
∑

i=1

deg φi +
∑

16i6p

q+26i′6q+i

deg c(i′) deg φi

+
∑

16j6q

16j′<j

deg c(j′) degψj +
(

degm+

p
∑

i=1

deg c(q+1+i) +

q
∑

j=1

degψj

)(

q+1
∑

j=1

deg c(j)
)

.

(6)

It is rather long but straightforward to prove that it is indeed an A∞-bimodule
over Hom(C,A). If M is only a left (resp., right) dg module over A, we can (and
shall) regard it as a dg A-bimodule by means of the augmentation ǫA, i.e. a.m.a

′ =
ǫA(a

′)a.m (resp., a.m.a′ = ǫA(a)m.a
′), so we may apply the previous construction. It

will be denoted by MǫA (resp., ǫAM).

If g : M → N is a morphism of dg A-bimodules over an augmented dg algebra A
and C is a coaugmented A∞-coalgebra, then the map g ⊗ idC : M ⊗ C → N ⊗ C is a
strict morphism of A∞-bimodules over Hom(C,A).

Let f• : C → D be a morphism of coaugmented A∞-coalgebras and let A be
an augmented dg algebra. It induces a morphism of augmented A∞-algebras
(f•)∗ : Hom(D,A) → Hom(C,A), as seen in (4). In particular, given any dg A-bi-
module M , this allows to consider M ⊗ C as an A∞-bimodule over Hom(D,A) by
means of (2). Then, the collection of morphisms

Fp,q : Hom(D,A)⊗p ⊗ (M ⊗ C)⊗Hom(D,A)⊗q →M ⊗D (7)

given by

Fp,q

(

φ1 ⊗ · · · ⊗ φp ⊗ (m⊗ c)⊗ ψ1 ⊗ · · · ⊗ ψq

)

= (−1)ε
′(

φ1(d(q+2)) · · ·φp(d(q+p+1))
)

.m.
(

ψ1(d(1)) · · ·ψq(d(q))
)

⊗ d(q+1),

where fp+q+1(c) = d(1) ⊗ · · · ⊗ d(p+q+1), and ε
′ is defined by the same expression as

ǫ′ in (6) replacing all occurrences of c(i) by d(i), defines a morphism of A∞-bimodules
over Hom(D,A).

3. Twists of A∞-algebras

We will now recall the twisting procedure of A∞-algebras by a Maurer-Cartan
element, which was introduced in [6, Chs. 3 and 4] (see also [5], and [10, Ch. 6]).
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3.1. Topological definitions
The following definitions are standard. A topology on a dg vector space M is a

decreasing sequence {F iM}i∈N0
of dg vector subspaces of M , where F 0M =M (cf.

[4, Ch. III, §2, n◦ 5]). We understand each dg vector subspace F iM as a neighborhood
of the zero element of M , and we say that M is a topological dg vector space. Note
that F iM is closed for all i ∈ N0. The topology is Hausdorff if ∩i∈N0

F iM = 0. We
regard k with the discrete topology, i.e. the one given by the filtration F ik = {0} for
i ∈ N. We define a homogeneous morphism of topological dg vector spaces f : M → N
to be a homogeneous morphism that is continuous. It is said to be contracting if
f(F iM) ⊆ F iN , for all i ∈ N0. Given two topological dg vector spaces M and N , the
tensor product M ⊗N has the topology

F i(M ⊗N) =
∑

i1+i2>i

F i1M ⊗ F i2N, (8)

for i ∈ N0. We remark that this topology is equivalent to the one considered in [14,
1.5], since

F i(M ⊗N) ⊆ F ⌊i/2⌋M ⊗N +M ⊗ F ⌊i/2⌋N

and

F iM ⊗N +M ⊗ F jN ⊆ Fmin(i,j)(M ⊗N),

where ⌊x⌋ ∈ Z denotes the floor function of x ∈ R. The definition of completion of a
topological dg vector space M is the standard one via inverse limits

M̂ = lim
←N0

M/F jM, where F iM̂ = lim
←N0

F iM/F jM (9)

gives the topology (cf. [4, Ch. III, §2, n◦ 6]). Moreover, the completed tensor product
M⊗̂N is the completion of M ⊗N for the previous topology (8).

We remark that there is an obvious notion of complete dg coalgebra, which is just
a coalgebra in the monoidal category of complete topological dg vector spaces and
continuous morphisms of dg vector spaces (of degree zero) provided with completed
tensor products (see [10, Subsection 6.2.1]). The same comments apply to their (com-
plete) dg (bi)comodules.

All the previous definitions can also be made for the category of graded vector
spaces, and they are obtained from the previous ones by imposing the differentials to
be zero.

3.2. Topological A∞-algebras and their bimodules
A topological augmented A∞-algebra is an augmented A∞-algebra such that the

underlying graded vector space has a Hausdorff topology satisfying that all morphisms
mi, for i ∈ N, and ǫA are contracting morphisms of topological graded vector spaces.
We note that the unit morphism ηA is always contracting. A morphism of topological
augmented A∞-algebras f• : A→ B is a morphism of augmented A∞-algebras such
that fi is a contracting morphism of topological graded vector spaces for all i ∈ N.

The next statement is easy to prove.

Proposition 3.1. Let V be a topological graded vector space with F 1V = V , and
let C(V ) be the complete coaugmented graded coalgebra

∏

n∈N0
V ⊗̂n with coproduct
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given by deconcatenation, the obvious counit and coaugmentation, and the filtration
{
∏

m∈N0
Fn(V ⊗̂m)}n∈N0

. Then

(i) the topology stated before coincides with the usual product topology, and, as a
consequence, if ι : T c(V ) → C(V ) denotes the canonical inclusion of the graded
tensor coalgebra T c(V ), its image is dense in C(V );

(ii) ∆C(V ) ◦ ι = (ι⊗ ι) ◦∆T c(V ) and ι commutes with the corresponding coaugmen-
tations and counits.

In particular, if V is complete, C(V ) is the cofree counitary (but not necessarily coaug-
mented) topological coalgebra over V in the monoidal category of complete topological
vector spaces provided with continuous morphisms, i.e. given C any complete topolog-
ical counitary graded coalgebra C and a continuous morphism f : C → V , there exists
a unique morphism of topological counitary graded coalgebras F : C → C(V ) such that
π1 ◦ F = f , where π1 : C(V ) → V is the canonical projection. It is explicitly given by

F (c) = ǫC(c) + f(c) +
∑

n∈N>2

f ⊗̂n ◦∆
(n)
C .

Proof. Note that F 1V = V yields that Fn(V ⊗̂m) = V ⊗̂m if m > n. Indeed, using

identities (8) and (9), Fn(V ⊗̂m) is given as a sum, one of whose terms is precisely

(F 1V )⊗̂n⊗̂(F 0V )⊗̂(m−n) = V ⊗̂m. As a consequence,

∏

m∈N0

Fn(V ⊗̂m) =

n−1
∏

m=0

Fn(V ⊗̂m)×
∏

m>n

V ⊗̂m. (10)

This is clearly an open neighborhood of the origin of C(V ) for the usual product
topology, and conversely, any open neighborhood of the origin of C(V ) for the usual
product topology includes a subspace of the form (10) for n large enough. This implies
the first part of item (i). The second part of it follows from [14, Prop. 1.6 and
Eq. (1.9)]. Item (ii) is clear. For the last part, see [14, Thm. 3.1].

The following statement is the topological analogue of a well-known result (cf. for
instance [11, Lemma 9.1]), and can be regarded as an extension of [6, Lemma 3.2.17].

Lemma 3.2. Let A be a complete Hausdorff topological graded vector space pro-
vided with contracting maps ǫA : A→ k and ηA : k → A of degree zero satisfying that
ǫA ◦ ηA = idk. Let IA = Ker(ǫA) and B(A) = C(IA[1]). Then the set of structures of
topological augmented A∞-algebra structures on A with unit ηA and augmentation ǫA
is in bijection with the set of contracting coderivations of B(A) that vanish on the
image of the coaugmentation of B(A) and turn B(A) into a complete coaugmented
dg coalgebra.

Proof. Let A be a topological augmented A∞-algebra, and consider the topology of
IA induced by that of A, i.e. F pIA = F pA ∩ IA. By Proposition 3.1, the inclusion
ι : B+(A) → B(A) has dense image. Since the maps m• are contracting, the same is
true for π1 ◦B, where π1 : B

+(A) → IA[1] is the canonical projection. Hence π1 ◦B
is continuous for the induced topology of B(A), so it can be thus uniquely extended

to a continuous linear map b̂ from B(A) to IA[1]. As the filtration defining the

topology of IA[1]
⊗̂n is the completion of that of IA[1]

⊗n, and π1 ◦B is contracting,



USING TORSION THEORY TO COMPUTE HOCHSCHILD (CO)HOMOLOGY 127

the restriction of b̂ to IA[1]
⊗̂n is also contracting. Define B̂ from B(A) to itself as

the unique continuous coderivation satisfying that (π̂1 ◦ B̂) is b̂, where π̂1 : B̂
+(A) →

IA[1] is the canonical projection. Note that B̂ ◦ ηB(A) = 0 and ι : B+(A) → B(A)

commutes with the differentials. The last property follows from π̂1 ◦ B̂ ◦ ι = π1 ◦B
and Proposition 3.1. Hence, B̂ ◦ B̂ ◦ ι = ι ◦B ◦B = 0. The continuity of B̂ ◦ B̂ and
the density of ι imply thus that B̂ is a differential. This tells us that B(A) is a
complete coaugmented dg coalgebra whose differential vanishes on the image of its
coaugmentation and is contracting.

Conversely, if B̂ is a contracting coderivation of B(A) that is a differential and
it vanishes on the image of ηB(A), we define b = π̂1 ◦ B̂ ◦ ι, where ι : B+(A) → B(A)
is the canonical inclusion, and extend b to a coderivation B of B+(A). Since ι com-
mutes with the coaugmentations, B ◦ ηB+(A) vanishes. The fact that B̂ is a differen-
tial implies that B is also, for ι commutes with the differentials and it is injective.
Moreover, since B̂ is contracting, the multiplications m• determined by B are also
contracting, and the statement follows.

We shall denote the coaugmented dg coalgebra of the lemma by B̂+(A), and call
it the complete bar construction of A (cf. [6, Def. 3.2.16]).

The proof of the next result is similar to the one given for the previous lemma (cf.
[11, Lemma 9.3]).

Lemma 3.3. Let A and A′ be two complete topological augmented A∞-algebras, and
let B+(A) and B+(A′) be the corresponding complete bar constructions. Then the
set of morphisms {fn : A

⊗n → A′}n∈N of topological augmented A∞-algebras is in
bijection with the set of contracting morphisms of complete coaugmented dg coalgebras
from B̂+(A) to B̂+(A′).

We shall denote the last morphism of the lemma by B̂+(f•).
Let M be an A∞-bimodule over a complete topological augmented A∞-algebra A.

We say that M is almost discrete if there exists an increasing filtration {FiM}i∈N0

of A∞-subbimodules of M (i.e. the inclusion FiM in M is a strict morphism of A∞-
bimodules over A) that is exhaustive (i.e. ∪i∈N0

FiM =M) and such that, for all
i ∈ N0 there exists ℓ ∈ N satisfying that mp,q(ω ⊗m⊗ ω′) vanishes for all m ∈ FiM ,
ω ∈ IA[1]

⊗p and ω′ ∈ IA[1]
⊗q such that ω ⊗ ω′ ∈ F ℓ(IA[1]

⊗(p+q)). The next result
shows that this property is essentially some kind of discreteness assumption on M .

Lemma 3.4. Let (A,m•) be a complete topological augmented A∞-algebra, and letM
be a graded vector space provided with an exhaustive increasing filtration {FiM}i∈N0

.
If M is an A∞-bimodule over A with structure maps m•,• such that each FiM

is a strict A∞-subbimodule of M and it is almost discrete with respect to the given
filtration, then the bicoderivation BM of the bar construction B+(A,M,A) can be
extended to a unique continuous bicoderivation B̂M of the counitary graded bicomodule
over B̂+(A) given by B̂+(A,M,A) = ∪i∈N0

B̂+(A)⊗̂FiM [1]⊗̂B̂+(A) that respects the
filtration and is a differential, where we assume in the latter space that each FiM has
the discrete topology and the union has the direct limit topology.

Conversely, assume that there exists a continuous bicoderivation B′ of the couni-
tary graded bicomodule B̂+(A,M,A) = ∪i∈N0

B̂+(A)⊗̂FiM [1]⊗̂B̂+(A) over B̂+(A)
that preserves the filtration and is a differential, where each FiM has the discrete
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topology and the union has the direct limit topology. Then M is an almost discrete
A∞-bimodule over A with respect to the given filtration and B′ coincides with the
bicoderivation B̂M mentioned previously.

Proof. Suppose that M is almost discrete and set πM
1 : B+(A,M,A) →M [1] the

projection given by ǫB+(A) ⊗ idM [1] ⊗ ǫB+(A). Let ιM : B+(A,M,A) → B̂+(A,M,A)

denote the canonical inclusion. We will show that πM
1 ◦BM can be extended to a

unique continuous linear map b̂M from B̂+(A,M,A) to M [1] as follows. Since FiM is
a strict A∞-subbimodule of M , πM

1 ◦BM sends B+(A)⊗ FiM [1]⊗B+(A) to FiM .
The assumption that M is almost discrete tells us that the previous map vanishes
on F ℓ(B+(A)⊗ FiM [1]⊗B+(A)) for some ℓ, so it is continuous for the topology
induced from B̂+(A)⊗̂FiM [1]⊗̂B̂+(A). Since a continuous morphism of graded vector
spaces is uniformly continuous, it can be uniquely extended to the completion, and
we obtain thus a continuous morphism b̂iM from B̂+(A)⊗̂FiM [1]⊗̂B̂+(A) to FiM [1].
As a continuous bicoderivation of the latter space over the complete dg coalgebra
B̂+(A) is determined by the continuous morphism from B̂+(A)⊗̂FiM [1]⊗̂B̂+(A) to
FiM [1] given by composition with the canonical projection (cf. [10, Lemme 2.1.2.1]),

b̂iM determines a unique continuous bicoderivation B̂i
M on B̂+(A)⊗̂FiM [1]⊗̂B̂+(A).

Finally, B̂i
M ◦ B̂i

M vanishes. Indeed, this follows from the verification of a well-known

condition on the map π̂M
1 ◦ B̂i

M that is analogous to the one in [10, Lemme 2.1.2.1],

where π̂M
1 denotes ǫB̂+(A)⊗̂idM [1]⊗̂ǫB̂+(A). The mentioned identity for b̂iM is just the

continuous extension of the analogous condition for the map πM
1 ◦BM restricted

to FiM , which holds for BM is a differential. Now, it is trivial to see that all the
maps b̂iM (or B̂i

M ) are compatible for all i ∈ N0, so they define a unique continuous

bicoderivation of B̂+(A,M,A) over B̂+(A) which is also a differential. It is clear that
the inclusion ιM of B+(A,M,A) into B̂+(A,M,A) commutes with the differentials.

Conversely, if there is a continuous bicoderivation B′ of the counitary graded bico-
module B̂+(A,M,A) = ∪i∈N0

B̂+(A)⊗̂FiM [1]⊗̂B̂+(A) over B̂+(A) that respects the
filtration and is a differential, where each FiM has the discrete topology and the
union hast the direct limit topology, π̂M

1 ◦B′ induces for each i ∈ N0 a continuous
map from B̂+(A)⊗̂FiM [1]⊗̂B̂+(A) to FiM [1]. The fact that FiM is discrete implies
that there exists ℓ ∈ N such that π̂M

1 ◦B′ vanishes on F ℓ(B̂+(A)⊗̂FiM [1]⊗̂B̂+(A)).
Define bi as the composition of the inclusion of B+(A)⊗ FiM [1]⊗B+(A) inside
B̂+(A)⊗̂FiM [1]⊗̂B̂+(A) together with π̂M

1 , and take Bi as the unique bicoderiva-
tion of B+(A)⊗ FiM [1]⊗B+(A) over B+(A) induced by bi. Then FiM is an A∞-
bimodule for all i ∈ N0 such that the inclusion FiM → Fi+1M is a strict morphism
of A∞-bimodules. This induces the structure of an A∞-bimodule on their union M ,
which is almost discrete with respect to the filtration {FiM}i∈N0

. The rest of the
proof follows from the comments in the previous paragraph.

Let M and N be two almost discrete A∞-bimodules over a complete topological
augmented A∞-algebra A with respect to the increasing filtrations {FiM}i∈N0

and
{FiN}i∈N0

, respectively, and let f•,• : M → N be a morphism of A∞-bimodules over
A. We say that f•,• is almost discrete (with respect to the given filtrations) if for each
i ∈ N0, fp,q(IA[1]

p ⊗ FiM ⊗ IA[1]
q) ⊆ FiN for all p, q ∈ N0, and there is ℓ ∈ N such

that fp,q(ω ⊗m⊗ ω′) vanishes for all m ∈ FiM , ω ∈ IA[1]
⊗p and ω′ ∈ IA[1]

⊗q such
that ω ⊗ ω′ ∈ F ℓ(IA[1]

⊗(p+q)).
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The proof of the following result is analogous to the one of the previous lemma.

Lemma 3.5. Let (A,m•) be a complete topological augmented A∞-algebra, and let
(M,mM

•,•) and (N,mN
•,•) be two almost discrete A∞-bimodules over it, with fixed

increasing filtrations.
If f•,• : (M,mM

•,•) → (N,mN
•,•) is almost discrete, then the morphism of counitary

dg bicomodules B+(f•,•) can be extended to a unique continuous morphism of couni-

tary dg bicomodules B̂+(f•,•) from B̂+(A,M,A) to B̂+(A,N,A), that respects the
filtration stated in Lemma 3.4 and where we consider the topologies indicated in that
result.

Conversely, given a continuous morphism of counitary dg bicomodules F ′ from
B̂+(A,M,A) to B̂+(A,N,A) that respects the filtrations mentioned previously, where
we consider the topologies indicated there, it induces a unique almost discrete mor-
phism f•,• : (M,mM

•,•) → (N,mN
•,•) of A∞-bimodules such that F ′ coincides with the

morphism B̂+(f•,•).

3.3. Twists of topological A∞-algebras and A∞-bimodules
Let A be a topological augmented A∞-algebra, which we assume to be A complete.
We recall that k is a complete counitary dg coalgebra with the discrete topology

and zero differential. Fix an element a in the neighborhood F 1A of cohomological
degree 1 and zero Adams degree, and define a morphism of topological graded couni-
tary (not necessarily coaugmented) coalgebras ξa : k → B̂+(A) as the unique one
satisfying that π̂1 ◦ ξa sends 1k to −[a], where π̂1 : B̂

+(A) → IA[1] is the canonical
projection. It exists by the universal property of B̂+(A) stated in Proposition 3.1. We
say that a satisfies the (topological) Maurer-Cartan equation if ξa commutes with the
differentials, i.e. B̂ ◦ ξa = 0, and we shall denote the set of such elements by MC(A).
Equivalently, a satisfies the Maurer-Cartan equation if the sum

∑

n∈N

(−1)
n(n+1)

2 mn(a
⊗n) (11)

converges to zero. Note that the previous sum always converges because A is complete.
Let a ∈ MC(A). Let ta : B̂

+(A) → IA[1] be the sum of π̂1 and the composition of
the canonical projection ǫB̂+(A) : B̂

+(A) → k together with the map sending 1k to

−[a]. Then, there exists a unique morphism of topological counitary graded coal-
gebras Ta : B̂

+(A) → B̂+(A) such that π̂1 ◦ Ta = ta. Note that Ta is contracting,
Ta ◦ ηB̂+(A) = ξa and that π̂1 ◦ Ta ◦ T−a = π̂1 ◦ T−a ◦ Ta = π̂1. The last chain of iden-

tities and the universal property of B̂+(A) imply that Ta is an isomorphism with
inverse T−a.

Given l, n ∈ N0, define

pal,n : A
⊗n → A⊗(l+n)

as follows. If n = 0, we set pal,0(1k) = a⊗l, where a⊗0 = 1k ∈ k. If n > 1,

pal,n(x1 ⊗ · · · ⊗ xn) =
∑

l̄∈Nn+1,l
0

(−1)w
′′

a⊗l1 ⊗ x1 ⊗ a⊗l2 ⊗ x2 ⊗ · · · ⊗ a⊗ln ⊗ xn ⊗ a⊗ln+1 ,

where w′′ =
∑n+1

j=2 lj(deg x1 + · · ·+ deg xj−1 + j − 1). Note that pal,n is a contracting
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morphism of topological graded vector spaces of cohomological degree l and Adams
degree zero.

Proposition 3.6. Let (A,m•) be a complete topological augmented A∞-algebra with
strict unit 1A and augmentation ǫA, and let a ∈ MC(A). Define

ma
n =

∑

l∈N0

(−1)
l(l+1)

2 +lnmn+l ◦ p
a
l,n, (12)

for n ∈ N. It converges by the completeness hypothesis on A. Then (A,ma
•) is a topo-

logical augmented A∞-algebra with strict unit 1A and augmentation ǫA.

Proof. It is easy to verify that ma
n has cohomological degree 2− n and zero Adams

degree, and it is contracting, for all n ∈ N. Consider the differentials B and B̂ of
the bar constructions B+(A) and B̂+(A) of (A,m•). Define now the new differential
B̂a = T−1a ◦ B̂ ◦ Ta for B(A). The fact that a ∈ MC(A) implies that B̂a ◦ ηB̂+(A) = 0,

so B̂a is a continuous coderivation of the coaugmented graded coalgebra structure
of B(A). Furthermore, it is contracting, because B̂, Ta and its inverse are so. The
multiplications of the topological A∞-algebra structure it determines by means of
Lemma 3.2 are exactly the ones given in (12). The statement thus follows from
Lemma 3.2.

We shall denote the topological augmented A∞-algebra described in the previous
proposition by (A,ma

•). It will be called the twisted topological augmented A∞-algebra
of (A,m•) by a. Note that these definitions coincide with the corresponding ones for
augmented dg algebras, in the case that mi vanishes for i > 3.

Let a ∈ MC(A), and let f• : A→ B be a morphism of topological augmented A∞-
algebras. Define b as the unique element of B satisfying that B̂+(f•) ◦ ξa = ξb. We
call it the image of a under f•. Equivalently, b is defined as the convergent sum

∑

n∈N

(−1)
n(n+1)

2 +1fn(a
⊗n).

Proposition 3.7. Let f• : A→ B be a morphism of complete topological augmented
A∞-algebras, and let a ∈ MC(A). Then, the image b of a under f• satisfies the
Maurer-Cartan equation.

Proof. This follows directly from

B̂′ ◦ ξb = B̂′ ◦ B̂+(f•) ◦ ξa = B̂+(f•) ◦ B̂ ◦ ξa = 0,

where B̂′ denotes the differential of B+(B) and B̂ that of B+(A).

Proposition 3.8. Let f• : A→ B be a morphism of complete topological augmented
A∞-algebras, and let a ∈ MC(A). Take b as the image of a under f• and define

fan =
∑

l∈N0

(−1)
l(l+1)

2 +lnfn+l ◦ p
a
l,n,

for n ∈ N, which converges by the completeness hypothesis on B. Then fa• defines a

morphism of topological augmented A∞-algebras from (A,mA,a
• ) to (B,mB,b

• ).
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Proof. The statement follows from the fact that fa• is the morphism of complete
topological augmented A∞-algebras satisfying that B̂+(fa• ) = T−1b ◦ B̂+(f•) ◦ Ta.

Given l′, l′′ ∈ N0 and n′, n′′ ∈ N0, let us define

pal′,n′,l′′n,′′ : A
⊗n′

⊗M ⊗A⊗n
′′

→ A⊗(l
′+n′) ⊗M ⊗A⊗(l

′′+n′′)

as pal′,n′ ⊗ idM ⊗ pal′′,n′′ , where the first and last tensor factors morphisms were intro-
duced at the beginning of this subsection.

The proof of the next result is analogous to the one given for Proposition 3.6.

Proposition 3.9. Let (A,m•) be a complete topological augmented A∞-algebra, a ∈
MC(A) and (M,m•,•) an almost discrete A∞-bimodule over it. Define

ma
n′,n′′ =

∑

l′,l′′∈N0

(−1)
(l′+l′′)(l′+l′′+1)

2 +l′(n′+n′′+1)+l′′n′′

mn′+l′,n′′+l′′ ◦ p
a
l′,n′,l′′,n′′ , (13)

for n′, n′′ ∈ N0. Then (M,ma
•,•) is an A∞-bimodule over (A,ma

•).

Proof. Note that (13) is well-defined, since the almost discrete assumption of M
implies that {mn′+l′,n′′+l′′ ◦ p

a
l′,n′,l′′,n′′}l′,l′′∈N0

is locally finite. Define

B̂a
M = (T−1a ⊗ idM [1] ⊗ T−1a ) ◦ B̂M ◦ (Ta ⊗ idM [1] ⊗ Ta).

The statement follows, sincema
•,• are the higher multiplications induced by the unique

bicoderivation of B+(A,M,A) over B+(A,ma
•) given in Lemma 3.4 associated to

B̂a
M .

The new A∞-bimodule will be denoted by (M,ma
•,•), and it is called the twisted

A∞-bimodule of (M,m•,•) by a. Notice that these definitions coincide with the cor-
responding ones for bimodules over augmented dg algebras, in the case that mi′,i′′

vanishes for i′ + i′′ ∈ N.
The proof of the next result is analogous to one given in Proposition 3.9 and it is

based on Lemma 3.5.

Proposition 3.10. Let (A,m•) be a complete topological augmented A∞-algebra, a ∈
MC(A), (M,mM

•,•) and (N,mN
•,•) be two almost discrete A∞-bimodules over it, and

f•,• : M → N be a morphism of A∞-bimodules over A. We assume that f•,• is almost
discrete. Define

fan′,n′′ =
∑

l′,l′′∈N0

(−1)
(l′+l′′)(l′+l′′+1)

2 +l′(n′+n′′+1)+l′′n′′

fn′+l′,n′′+l′′ ◦ p
a
l′,n′,l′′,n′′ , (14)

for n′, n′′ ∈ N0. Then (fa•,•) is a morphism of A∞-bimodules from (M,mM,a
•,• ) to

(N,mN,a
•,• ) over (A,ma

•).

Proof. The expression (14) is well-defined, since the almost discrete assumption of
f•,• implies that the family of maps {fn′+l′,n′′+l′′ ◦ p

a
l′,n′,l′′,n′′}l′,l′′∈N0

is locally finite.
Define

B̂+(f•,•)
a = (T−1b ⊗ idN [1] ⊗ T−1b ) ◦ B̂+(f•,•) ◦ (Ta ⊗ idM [1] ⊗ Ta).

The statement holds, since fa•,• is the unique morphism of counitary dg bicomodules

over B+(A,ma
•) given in Lemma 3.5 associated to B̂+(f•,•)

a.
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The following result will be useful in the sequel.

Lemma 3.11. Let f• : A→ B be a morphism of topological augmented A∞-algebras
and a ∈ MC(A). Take b ∈ B the image of a under f•. If (N,m•,•) is an almost dis-
crete A∞-bimodule over B, then the identity of N gives a strict isomorphism of A∞-
bimodules over (A,ma

•) between the almost discrete A∞-bimodules (f•N, (m
′
•,•)

a) and

fa
•
(N,mb

•,•), where m
′
•,• is given by (2).

Proof. Using Propositions 3.9 and 3.10, the statement is a direct consequence of the
following commuting diagram

B̂+(A,N,A)

B̂′
N

B̂+(f•)⊗idN[1]⊗B̂
+(f•)

B̂+(B,N,B)

B̂NB̂+(A,N,A)

(B̂′
N )a

Ta⊗idN[1]⊗Ta

B̂+(fa
• )⊗idN[1]⊗B̂

+(fa
• )

B̂+(B,N,B)

B̂b
N

Tb⊗idN[1]⊗Tb

B̂+(A,N,A)
B̂+(f•)⊗idN[1]⊗B̂

+(f•)
B̂+(B,N,B)

B̂+(A,N,A)

Ta⊗idN[1]⊗Ta

B̂+(fa
• )⊗idN[1]⊗B̂

+(fa
• )

B̂+(B,N,B)

Tb⊗idN[1]⊗Tb

together with Lemmas 3.4 and 3.5. We remark that the commutativity of the back
square face is just the completed version of equation (1) (which is a consequence of
Lemmas 3.3 and 3.4).

3.4. The twisted convolution A∞-algebra and the twisted tensor product

Lemma 3.12. Let A be an augmented dg algebra and C an Adams connected coaug-
mented A∞-coalgebra. Consider the convolution A∞-algebra H = Hom(C,A) intro-
duced in Subsection 2.3, and define a topology on it by setting F iH as the subset of
H given by maps which vanish on the subspace Fi−1C of C formed by the sums of
the homogeneous elements of Adams degree less than or equal to i− 1. Then H is a
complete topological augmented A∞-algebra.

Proof. It is easy to see that {F iH}i∈N0
defines a Hausdorff decreasing filtration of

graded vector subspaces of H. We shall now prove that the topology is complete.
For all i ∈ N0, we have the obvious isomorphism of graded vector spaces H/F iH ≃
Hom(Fi−1C,A) induced by f 7→ f |Fi−1C , for f ∈ H. This implies that

lim
←N0

H/F iH ≃ lim
←N0

Hom(Fi−1C,A) ≃ Hom( lim
→N0

Fi−1C,A) = Hom(C,A).

Hence, the topological graded vector space H is complete.
On the other hand, the augmentation of H is clearly contracting. It thus suffices

to prove that the multiplications mHn are morphisms of topological graded vector
spaces for all n ∈ N. Let φ ∈ F iH. Then mH1 (φ) = dA ◦ φ− (−1)deg φφ ◦∆1 vanishes
on Fi−1C, because ∆1 preserves the Adams degree. This implies that mH1 (φ) ∈ F iH.
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Let n > 2 and take φ1 ∈ F i1H, . . . , φn ∈ F inH. By the definition of mHn given in (3)
and the fact that ∆n preserves the Adams degree, we see thatmHn (φ1, . . . , φn) vanishes
on any element of Fi1+···+in−1C, implying that mHn is contracting. The lemma is thus
proved.

Lemma 3.13. Let A be an augmented dg algebra, C an Adams connected coaug-
mented A∞-coalgebra, and M a dg bimodule over A. Then the A∞-bimodule M ⊗ C
defined in Subsection 2.3 is almost discrete for the increasing filtration given by
Fi(M ⊗ C) =M ⊗ FiC, where FiC is the subspace of C formed by the sums of homo-
geneous elements of Adams degree less than or equal to i. Moreover, if f• : C → D is
a morphism of Adams connected coaugmented A∞-coalgebras, then the induced map
described in (7) is almost discrete.

Proof. Let n′, n′′ ∈ N0. Take m ∈M and c ∈ FiC homogeneous, ω = φ1 ⊗ · · · ⊗ φp
in F aHom(C,A)⊗p, and ω′ = ψ1 ⊗ · · · ⊗ ψq in F bHom(C,A)⊗q. Then, using Adams
grading considerations and (5) we see that mp,q(ω ⊗ (m⊗ c)⊗ ω′) vanishes for
a+ b > i+ 1, which proves the first part of the lemma. The second part is proved
analogously.

A (generalized or homotopical) twisting cochain from C to A is an element τ ∈
H = Hom(C,A) of cohomological degree 1 and zero Adams degree such that ǫA ◦ τ
and τ ◦ ηC vanish and that it satisfies the Maurer-Cartan equation on H. Note that
τ ◦ ηC = 0 means precisely that τ ∈ F 1H. Equation (11) translates explicitly into

dA ◦ τ +
∑

i∈N

(−1)i(i+1)/2+1µ
(i)
A ◦ τ⊗i ◦∆i = 0,

where µ
(i)
A : A⊗i → A is the iterative application of the product of A. The twist of

the convolution A∞-algebra Hom(C,A) by a twisting cochain τ will be called the
twisted convolution algebra and it will be denoted by Homτ (C,A). The twist of the
A∞-bimoduleM ⊗ C by a twisting cochain τ will be called the twisted tensor product
(of M and C by τ) and it will be denoted by M ⊗τ C.

Let A be an augmented dg algebra and C an Adams connected coaugmented A∞-
coalgebra. If Tw(C,A) denotes the set of twisting cochains from C to A, we have a
canonical map

Homaug-dg-alg(Ω
+(C), A) → Tw(C,A) (15)

given by g 7→ g ◦ τC , where τC : C → Ω+(C) is the composition of the canonical pro-
jection C → C/JC , s

−1
JC [−1] and the canonical inclusion of JC [−1] inside Ω+(C), where

JC is the cokernel of the coaugmentation ηC of C. It is clear that the map (15) is a
bijection (see [13, Lemme 3.17]). Furthermore, by means of the previous morphism
we can define the composition twisting cochain of a morphism of Adams connected
coaugmented A∞-coalgebras f• : C

′ → C with a twisting cochain τ from C to A.
Indeed, if Fτ ∈ Homaug-dg-alg(Ω

+(C), A) is the morphism such that Fτ ◦ τC = τ , and
Ω+(f•) is the morphism of augmented dg algebras from Ω+(C ′) to Ω+(C), the com-
position twisting cochain τ ◦ f• is defined as Fτ ◦ Ω+(f•) ◦ τ

C′

. It is easy to see that
the composition twisting cochain coincides exactly with the image of τ under the
morphism (f•)∗ : Hom(C,A) → Hom(C ′, A) introduced in (4).
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4. Hochschild (co)homology of nonnegatively graded
connected algebras

4.1. Some preparatory results
Let C be a coaugmented A∞-coalgebra and A be a nonnegatively (Adams) graded

connected algebra, which we regard in zero cohomological degree. Denote by Ae

the enveloping algebra of A defined as Aop ⊗A. It has two commuting A-bimodule
actions: the outer structure given by a.(a′ ⊗ b′).b = a.a′ ⊗ b′.b, and the inner one of
the form a.(a′ ⊗ b′).b = a′.b⊗ a.b′, for a, a′, b, b′ ∈ A and where the products of the
right members of the two definitions are in A.

The next result is clear.

Proposition 4.1. Let C be a coaugmented A∞-coalgebra, let A be a nonnegatively
(Adams) graded connected algebra, which we regard in zero cohomological degree, and
let τ : C → A be a twisting cochain. Then Ae ⊗τ C is a complex of free graded A-
bimodules provided with a map of complexes of A-bimodules from it to A of the form
(a⊗ a′)⊗ c 7→ a′.a.ǫC(c). The previous twisted tensor product is formed by making
use of the outer A-bimodule structure of Ae, whereas the remaining inner structure
turns Ae ⊗τ C into an A-bimodule. Moreover,

(i) if we apply the functor HomAe(−, A) to Ae ⊗τ C, the complex obtained is nat-
urally identified with the underlying complex of the twisted convolution A∞-al-
gebra Homτ (C,A) given by twisting the topological A∞-algebra of Lemma 3.12;

(ii) if M is a(n Adams) graded A-bimodule, which we regard in zero cohomologi-
cal degree, the complex obtained by applying functor M ⊗Ae (−) to Ae ⊗τ C is
naturally identified with the underlying complex of the twisted tensor product
A∞-bimodule M ⊗τ C over Homτ (C,A), given by twisting the almost discrete
A∞-bimodule of Lemma 3.13.

We recall the following theorem, which must be well-known by the experts. It was
announced by B. Keller at the X ICRA of Toronto, Canada, in 2002.

Theorem 4.2. Let C be a minimal coaugmented A∞-coalgebra and A be a nonnega-
tively (Adams) graded connected algebra, which we regard in zero cohomological degree.
Then, the following are equivalent:

(i) There is a quasi-isomorphism of augmented minimal A∞-algebras

Ext•A(k, k) → C#.

(ii) There is a twisting cochain τ : C → A such that the twisted tensor product

ǫAA⊗τ C is a minimal projective resolution of the trivial left A-module k, where
the twisted tensor product is formed by using the A-bimodule structure ǫAA with
the action induced by the augmentation ǫA of A on the left and with the stan-
dard action on the right, whereas the left A-module structure of ǫAA⊗τ C comes
from the remaining left action of A.

(iii) There is a twisting cochain τ : C → A such that the twisted tensor product Ae ⊗τ

C is a minimal projective resolution of the regular A-bimodule A, where the
twisted tensor product is formed by using the outer A-bimodule structure of Ae,
whereas the A-bimodule structure of Ae ⊗τ C comes from the inner action of
the A-bimodule Ae.
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Proof. A short proof of the equivalence between (i) and (ii) was given in [8, Thm. 4.7].
Furthermore, the condition (iii) implies (ii) by a standard argument. Indeed, since
Ae ⊗τ C is a minimal projective resolution of A, the cone of the quasi-isomorphism
Ae ⊗τ C → A is exact. Since an exact complex of projective left A-modules is homo-
topically trivial, there exists a contracting homotopy s for it, which is A-linear. Then
idk ⊗A s is a contracting homotopy of the cone of k ⊗A (Ae ⊗τ C) ≃ ǫAA⊗τ C →
k ⊗A A ≃ k. To prove that condition (ii) implies (iii), we only have to show that
Ae ⊗τ C is exact in positive homological degrees. This follows from [3, Prop. 4.1].

Note that, according to our conventions, the differential of ǫAA⊗τ C is the map

m
ǫA

A⊗τC

0,0 = idA ⊗∆1

+
∑

i∈N

(−1)
i(i+1)

2 (µ
(i+1)
A ⊗ idC) ◦ (idA ⊗ τ⊗i ⊗ idC) ◦ (idA ⊗∆i+1).

4.2. Main result
We present now the main result of this article.

Theorem 4.3. Let A be a nonnegatively (Adams) graded connected algebra, that we
regard in zero (co)homological degree, let C be a minimal coaugmented A∞-coalgebra
such that there is a quasi-isomorphism of augmented minimal A∞-algebras

Ext•A(k, k) → C#,

and let τ be the associated twisted cochain of Theorem 4.2.
Then, there exists a quasi-isomorphism of A∞-algebras from the cochain com-

plex C•(A,A) computing the Hochschild cohomology of A to Homτ (C,A), which,
in particular, induces an isomorphism of graded algebras from HH•(A) to
H•(Homτ (C,A)).

Given any graded A-bimodule M and using the previous quasi-isomorphism of
A∞-algebras, there exists a quasi-isomorphism of A∞-bimodules over C•(A,A) from
M ⊗τ C to the chain complex C•(A,M) computing the Hochschild homology of A with
coefficients in M , which, in particular, induces an isomorphism of graded bimodules
from H•(A⊗τ C) to H•(A,M) over HH•(A).

Proof. By dualizing the quasi-isomorphism of augmented A∞-algebras

B+(A)# → Ext•A(k, k) → C#,

we obtain a quasi-isomorphism of Adams connected coaugmented A∞-coalgebras

f• : C → B+(A).

Note that B+(A) is also Adams connected, for A is nonnegatively graded and con-
nected (see [12, Lemma 2.2]). By the comments in Subsection 2.3, we obtain a
morphism (f•)∗ : Hom(B+(A), A) → Hom(C,A) of augmented A∞-algebras, which
are complete topological A∞-algebras by Lemma 3.12. Since f• respects the Adams
degree, (f•)∗ is contracting, so a morphism of topological augmented A∞-algebras.
By taking a look at the proof of Theorem 4.2 we see that the image under
(f•)∗ of τA is τ , which yields a morphism of topological augmented A∞-algebras
(f•)

τA
∗ : HomτA(B+(A), A) → Homτ (C,A). On the other hand, by Lemma 3.13
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f• induces an almost discrete morphism of A∞-bimodules over Hom(B+(A), A) of
the form

F̄•,• :
(f•)∗(Ae ⊗ C) → Ae ⊗B+(A),

such that F̄0,0 = idAe ⊗ f1. We also have an almost discrete morphism of A∞-bimod-
ules over Hom(B+(A), A)

F•,• :
(f•)∗(M ⊗ C) →M ⊗B+(A), (16)

such that F0,0 = idM ⊗ f1. By Proposition 3.10, the twist of F̄•,• by τA yields a
morphism of A∞-bimodules over HomτA(B+(A), A) of the form

F̄ τA
•,• :

(f•)
τA
∗ (Ae ⊗τ C) → Ae ⊗τA B

+(A),

where we are using Lemma 3.11 to identify (f•)
τA
∗ (Ae ⊗τ C) and the twist by τA of

(f•)∗(Ae ⊗ C). It is clearly Ae-linear for the A-bimodule structures coming from the
corresponding inner actions of Ae. We know that the codomain of this map is the usual
Hochschild resolution of the A-bimodule A (see [9, Fact 2.1]), whereas the domain is
the minimal projective resolution of the A-bimodule A by the previous theorem. The
map F̄ τA

0,0 is a morphism between different free resolutions of A-bimodules of A, so it

is a quasi-isomorphism. This implies that F̄ τA
•,• is also a quasi-isomorphism.

By item (i) of Proposition 4.1, HomAe(F̄ τA
0,0 , A) is the first component of the mor-

phism of augmented A∞-algebras (f•)
τA
∗ : HomτA(B+(A), A) → Homτ (C,A), which

is thus a quasi-isomorphism. The first part of the theorem thus follows. In particular,
there is an isomorphism of graded algebras from HH•(A) to H•(Homτ (C,A)).

Finally, item (ii) of Proposition 4.1 tells us that idM ⊗Ae F̄ τA
0,0 is the first component

of the morphism of A∞-bimodules

F τA
•,• :

(f•)
τA
∗ (M ⊗τ C) →M ⊗τA B

+(A)

over HomτA(B+(A), A) given by twisting (16) by τA. Hence, F τA
•,• is a quasi-iso-

morphism. This induces an isomorphism of graded bimodules over HH•(A) from
H•(M ⊗τ C) to H•(A,M). The theorem is thus proved.

Addendum 4.4. By (3) and (12), we see that the product of H = Homτ (C,A) is

mH,τ
2 (φ1, φ2)(c) =

∑

l∈N0

l̄∈N3,l
0

(−1)στ(c(1)) · · ·τ(c(l1))φ1(c(l1+1))τ(c(l1+2)) · · ·

· · · τ(c(L2+1))φ2(c(L2+2))τ(c(L2+3)) · · · τ(c(l+2)),

(17)

where σ = l + l2 + deg φ1 deg φ2 + (l2 + l3) deg φ1 + l3 deg φ2, L2 = l1 + l2, φ1, φ2 ∈
H and c ∈ C are homogeneous, and where the sum in the expression of the comulti-
plication map ∆l+2(c) = c(1) ⊗ · · · ⊗ c(l+2) is omitted for simplicity.

Analogously, the left action of a homogeneous element φ ∈ H on m⊗ c ∈M ⊗τ C,
that is also assumed to be homogeneous, is obtained by using (5) and (13) for n′ = 1
and n′′ = 0, and it gives

∑

l′,l′′∈N0

l̄′∈N2,l′

0

(−1)σ
′

τ(c(l′′+2))· · ·τ(c(L′
1+1))φ(c(L′

1+2))τ(c(L′
1+3))· · ·

· · ·τ(c(l+2))mτ(c(1))· · ·τ(c(l′′))⊗ c(l′′+1),

(18)
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where σ′ = l′′ + l′2 + deg φ(l′1 + 1) + deg c(deg φ+ l′), L′1 = l′′ + l1, l = l′ + l′′, and
where the sum in the expression of the comultiplication map ∆l+2(c) = c(1) ⊗ · · · ⊗
c(l+2) is omitted for simplicity.

4.3. An application

We shall now provide an application of the previous theorem, showing that the
first part gives a different proof of the main result of [15, Thm. 3.2], that computes
the cup product for the Hochschild cohomology of any s-Koszul algebra. From our
point of view, this computation is just a direct consequence of Theorem 4.3 taking
into account that the A∞-coalgebra C is just the dual to the A∞-algebra considered
in [7, Thm. 6.5], and the twisting cochain is given by minus the composition of
the canonical projection C → V and the canonical inclusion V → A. However, our
main result may also be applied to compute the algebraic structure of the Hochschild
(co)homology of any nonnegatively graded connected algebra, e.g. if A is multi-Koszul
in the sense of [8], by applying Thm. 4.8 of that article (taking into account, however,
that the definition of Maurer-Cartan equation there has a different sign convention).

Let V be a finite dimensional vector space over k and A = TV/(R) be an s-
homogeneous algebra for s ∈ N>2, i.e. R ⊆ V ⊗s. We say that A is generalized Koszul
(or s-Koszul, if we want to emphasize the degree of R) if the minimal projective reso-
lution P• of the trivial left A-module k satisfies that Pn is (a graded free module) gen-
erated in degree ξs(n), for all n ∈ N0, where ξs(2m) = sm and ξs(2m+ 1) = sm+ 1,
for all m ∈ N0.

The Koszul property of A implies that C = TorA• (k, k) satisfies that

Cp = TorAp (k, k) =

ξs(p−2)
⋂

i=0

V ⊗i ⊗R⊗ V ⊗
(

ξs(p−2)−i
)

,

for p > 2, together with C0 = TorA0 (k, k) = k and C1 = TorA1 (k, k) = V (see
[2, Eq. (2.5)]). From now on we shall only consider s > 2, for the case s = 2 has
already been treated in [9, Prop. 2.2]. We give to C the following A∞-coalgebra
structure. There are only two nonvanishing comultiplications, ∆2 and ∆s, which sat-
isfy that

(i) (pp1
⊗ pp2

) ◦∆2|Cp
is the canonical inclusion if p1 + p2 = p and ξs(p) = ξs(p1) +

ξs(p2) for p1, p2, p ∈ N0, and zero else;

(ii) (pp1
⊗ · · · ⊗ pps

) ◦∆s|Cp
is the canonical inclusion if p1 + · · ·+ ps = p+ s− 2

and ξs(p) = ξs(p1) + · · ·+ ξs(ps) for p1, . . . , ps, p ∈ N, and zero otherwise;

where pm : C → Cm denotes the canonical projection. Note that the nonvanishing
statement of item (i) implies that either p1 or p2 is even, whereas in the case of
item (ii) it yields that p1, . . . , ps are odd (and p even). It is now trivial to verify

ǫAA⊗τ C is the minimal projective (Koszul) resolution of Ak, where τ : C → A is
the twisting cochain given by the composition of the canonical projection C → V
together with minus the canonical inclusion. By Thm. 4.2, the graded dual of C is
quasi-isomorphic to Ext•A(k, k), and it is precisely the one appearing in [7, Thm. 6.5].

If n̄ = (n1, . . . , n5) ∈ N
5
0 is a partition of n ∈ N0, consider the canonical map

an̄ : V
⊗n → V ⊗n1 ⊗ · · · ⊗ V ⊗n5 . Given n ∈ N0 and p1, p2 ∈ N0 such that n > ξs(p1) +
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ξs(p2), define the set of its decompositions of type (p1, p2) of an element ω ∈ V ⊗n as

{an̄(ω) : n̄ ∈ N
5
0 is a partition of n such that n2i = ξs(pi) for i = 1 and 2}.

In what follows we shall denote an̄(ω) by ω1ω
′
1ω2ω

′
2ω3.

The next result is a more general statement than the one appearing in [15, Thm.
3.2], which only covers the case of Hochschild cohomology. Our proof is completely
different.

Theorem 4.5. Let A be an s-Koszul algebra, with s ∈ N>2. By Theorem 4.3, the
graded algebras HH•(A) and H•(Homτ (C,A)) are isomorphic, and the product φ1 ·
φ2 of two cocycles φ1 ∈ Hp1 = Hom(Cp1

, A) and φ2 ∈ Hp2 = Hom(Cp2
, A) in the lat-

ter algebra is described in general by (17). In this particular case, we obtain:

1. if either p1 or p2 is even, then φ1 · φ2 ∈ Hp1+p2 is

(φ1 · φ2)(c) = φ1(c(1)).φ2(c(2)),

where c = c(1) ⊗ c(2), c(1) ∈ Cp1
and c(2) ∈ Cp2

, and we have omitted the sum
in the expression of c;

2. if both p1 and p2 are odd, then φ1 · φ2 ∈ Hp1+p2 is

(φ1 · φ2)(c) = −(−1)s
∑

ω1φ1(ω
′
1)ω2φ2(ω

′
2)ω3,

2

where the sum is indexed over the set of decompositions ω1ω
′
1ω2ω

′
2ω3 of type

(p1, p2) of the fixed element c ∈ Cp1+p2
, for which the sum and tensor symbols

are omitted in order to reduce the notation, and ωi ∈ V ⊗n2i−1 .

Given any graded A-bimodule, Theorem 4.3 tells us that there is an isomorphism
of graded bimodules between H•(A⊗τ C) and H•(A,M) over HH•(A). The left
action of a cocycle φ ∈ Hp = Hom(Cp, A) on m⊗ c ∈M ⊗ Cq is described in gen-
eral by (18). In this case, we obtain:

1. if q is odd, or both p and q are even, then φ · (m⊗ c) ∈M ⊗ Cq−p is

φ(c(2)).m⊗ c(1),

where c = c(1) ⊗ c(2), c(2) ∈ Cp, and we have omitted the sum in the expression
of c;

2. if p is odd and q are even, then φ · (m⊗ c) ∈M ⊗ Cq−p is

−
∑

(−1)n1+n3+n5
(

ω2φ(ω
′
2)ω3mω1

)

⊗ ω′1,

where the sum is indexed over the set of decompositions ω1ω
′
1ω2ω

′
2ω3 of type

(q − p, p) of c ∈ Cq for which the sum and the tensor signs are omitted in order
to reduce the notation, and ωi ∈ V ⊗n2i−1 .

Proof. This is a direct consequence of Theorem 4.3, Addendum 4.4 and the descrip-
tion of the A∞-coalgebra structure of TorA• (k, k) given in the previous paragraph.

2
The sign difference with [15] comes from the fact that our definition of cup product respects the

Koszul sign rule, whereas the corresponding one in the mentioned article does not.



USING TORSION THEORY TO COMPUTE HOCHSCHILD (CO)HOMOLOGY 139

References

[1] Luchezar Avramov, Hans-Bjorn Foxby, and Stephen Halperin, Differential graded
homological algebra. Preprint.

[2] Roland Berger, Koszulity for nonquadratic algebras, J. Algebra 239 (2001), no. 2,
705–734.

[3] Roland Berger and Nicolas Marconnet, Koszul and Gorenstein properties for
homogeneous algebras, Algebr. Represent. Theory 9 (2006), no. 1, 67–97.
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