
Homology, Homotopy and Applications, vol. 20(1), 2018, pp.69–78

GOLODNESS AND POLYHEDRAL PRODUCTS OF SIMPLICIAL
COMPLEXES WITH MINIMAL TAYLOR RESOLUTIONS

KOUYEMON IRIYE and DAISUKE KISHIMOTO

(communicated by Donald M. Davis)

Abstract
Let K be a simplicial complex such that the Taylor resolu-

tion for its Stanley-Reisner ring is minimal. We prove that the
following conditions are equivalent: (1) K is Golod; (2) any two
minimal non-faces of K are not disjoint; (3) the moment-angle
complex for K is homotopy equivalent to a wedge of spheres;
(4) the decomposition of the suspension of the polyhedral prod-
uct ZK(CX,X) due to Bahri, Bendersky, Cohen and Gitler
desuspends.

1. Introduction

Golodness is a property of a graded commutative ring R which is originally defined
by a certain equality involving a Poincaré series of the cohomology of R, and Golod
[6] gave an equivalent condition in terms of the derived torsion algebra of R. Golod-
ness has been intensively studied for Stanley-Reisner rings since those of important
simplicial complexes such as dual sequentially Cohen-Macaulay complexes are known
to have the Golod property, and in this paper, we are interested in Golodness of
Stanley-Reisner rings. So we here define Golodness of Stanley-Reisner rings in terms
of their derived torsion algebras. Let K be a simplicial complex on the vertex set
[m] := {1, . . . ,m}, and let k be a commutative ring. Recall that the Stanley-Reisner
ring of K over k is defined by

k[K] := k[v1, . . . , vm]/(vI | I ⊂ [m], I ̸∈ K),

where |vi| = 2 and vI = vi1 · · · vik for I = {i1, . . . , ik}. We consider the derived algebra
Tork[v1,...,vm](k[K], k) and fix its products and (higher) Massey products to those
induced from the Koszul resolution of k over k[v1, . . . , vm] tensored with k[K]. Let
R+ denote the positive degree part of a graded ring R.

Definition 1.1. The Stanley-Reisner ring k[K] is called Golod if all products and
(higher) Massey products in Tor+k[v1,...,vm](k[K], k) are trivial.
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One of the biggest problems in Golodness of Stanley-Reisner rings is to get a com-
binatorial characterization of Golodness, where we have many examples of interesting
simplicial complexes. This is still open at this moment while there have been many
attempts. Then we consider the following weaker problem.

Problem 1.2. Find a class of simplicial complexes for which Golodness of Stanley-
Reisner rings can be combinatorially characterized.

In a seminal paper [4], Davis and Januszkiewicz showed that the cohomology with
coefficients k of a certain space constructed from a simplicial complex K, called
the Davis-Januszkiewicz space for K, is isomorphic to the Stanley-Reisner ring k[K].
This opens a way of a topological study of Stanley-Reisner rings. Moreover, Baskakov,
Buchstaber and Panov [3] found an isomorphism between the cohomology with coef-
ficients k of the space ZK , called the moment-angle complex for K, and the derived
torsion algebra Tor∗k[v1,...,vm](k[K],k) which respects products and (higher) Massey
products. Then we can study Golodness of Stanley-Reisner rings by investigating
the homotopy types of moment-angle complexes. Thus there is a trinity in studying
Golodness of Stanley-Reisner rings consisting of algebra, combinatorics and homotopy
theory.

In this paper, we consider Problem 1.2 under the above trinity, and we will prove
the following, where the notation in the condition 4 will be defined later. Recall that a
non-empty subset N of the vertex set of a simplicial complex K is a minimal non-face
if N ̸∈ K and N − i ∈ K whenever i ∈ N . Put [m] := {1, . . . ,m}.

Theorem 1.3. Let K be a simplicial complex on the vertex set [m] such that k[K]
has a minimal Taylor resolution. Then the following conditions are equivalent:

1. k[K] is Golod;

2. any two minimal non-faces of K are not disjoint;

3. the moment-angle complex for K is homotopy equivalent to a wedge of spheres;

4. for any X = {Xi}mi=1, there is a homotopy decomposition of a polyhedral product

ZK(CX,X) ≃
∨

∅≠I⊂[m]

|ΣKI | ∧ X̂I .

Remark 1.4. 1. In Theorem 1.3, Golodness does not depend on the ground ring,
but in general, this is not true as in [10, 8]. We will see in the next section that
minimality of the Taylor resolution of k[K] does not depend on k, so in fact,
Theorem 1.3 does not depend on k.

2. Recently, Frankhuizen [5] proved the equivalence between 1 and 2 in a more
general setting by a purely algebraic manner.

Throughout this paper, let K denote a simplicial complex on the vertex set [m],
where K might have ghost vertices.

2. Minimality of the Taylor resolutions

In this section, we recall the definition of the Taylor resolution for a Stanley-Reisner
ring and a combinatorial characterization of its minimality due to Ayzenberg [1]. We
then prove the implication 1 ⇒ 2 of Theorem 1.3.
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Let N1, . . . , Nr be minimal non-faces of K. Then we have

k[K] = k[v1, . . . , vm]/(vN1 , . . . , vNr ).

The Taylor resolution for k[K] is the free k[v1, . . . , vm]-module resolution

· · · d−→ R−ℓ d−→ R−ℓ+1 d−→ · · · d−→ R0 = k[v1, . . . , vm]
proj−−→ k[K],

such that R−ℓ is the free k[v1, . . . , vm]-module generated by symbols wi1,...,iℓ for
1 ⩽ i1 < · · · < iℓ ⩽ r with the differential

d(wi1,...,iℓ) =
ℓ∑

k=1

(−1)k+1v
Nik

−Ni1∪···∪N̂ik
∪···∪Niℓ

wi1,...,îk,...,iℓ
,

where we set v∅ = 1. As usual, we say that the Taylor resolution is minimal if the
differential satisfies

d⊗k[v1,...,vm] k = 0.

By definition, minimality of the Taylor resolution for k[K] does not depend on the
ground ring k, so we say that K has a minimal Taylor resolution if the Taylor reso-
lution for k[K] is minimal for some k. Minimality of the Taylor resolution for k[K]
can be readily translated combinatorially as:

Proposition 2.1 (Ayzenberg [1]). Let N1, . . . , Nr be minimal non-faces of K. Then
K has a minimal Taylor resolution if and only if

Ni ̸⊂
∪
k ̸=i

Nk for all i.

From any given simplicial complex, Ayzenberg [1] constructed a new simplicial
complex with a minimal Taylor resolution, and here we generalize his construction.
Let N = {N1, . . . , Nr} be a sequence of subsets of a finite set W , where we allow
Ni = Nj for some i ̸= j and call W the ground set of N. We allow N to be empty.

By introducing new distinct points a1, . . . , ar, we put Ñi = Ni ⊔ {ai} and V = W ⊔
{a1, . . . , ar}. Define K(N) to be the simplicial complex on the vertex set V whose

minimal non-faces are Ñ1, . . . , Ñr. When N is empty, we have K(N) = ∆W , where ∆W

denotes the full simplex on the vertex set W . We further translate Proposition 2.1 in
terms of the simplicial complex K(N), which will be used in Section 4 below.

Proposition 2.2. A simplicial complex K has a minimal Taylor resolution if and
only if there is a sequence N of subsets of a finite set W such that K ∼= K(N).

Proof. Since Ñi ̸⊂
∪

k ̸=i Ñk for all i, K(N) has a minimal Taylor resolution by Propo-
sition 2.1. Then K has a minimal Taylor resolution whenever K ∼= K(N). Suppose
next that K has a minimal Taylor resolution. Let N1, . . . , Nr be all minimal non-faces
of K. By Proposition 2.1 there exists ai ∈ Ni −

∪
k ̸=i Nk for all i, where a1, . . . , ar are

distinct. Put W := [m]− {a1, . . . , ar}. If we put N = {N1 − a1, . . . , Nr − ar} which is
a sequence of subsets of W , we have K = K(N) as desired.

We prove the implication 1 ⇒ 2 of Theorem 1.3. For this, we use the following
lemma, the proof of which will be given in the next section. For a subset I ⊂ [m], we
put

KI := {σ ∈ K |σ ⊂ I}.
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Lemma 2.3. If KI∪J = ∂∆I ∗ ∂∆J for some non-empty I, J ⊂ [m] with I ∩ J = ∅,
then K is not Golod.

Next we record an obvious fact of minimal non-faces, where we omit the proof. For
a simplex σ ∈ K, let lkK(σ) denote the link of σ in K.

Lemma 2.4. Let N1, . . . , Nr be minimal non-faces of K.

1. For a simplex σ ∈ K, any minimal non-face of lkK(σ) has the form Ni − σ for
some i.

2. For a subset I ⊂ [m], minimal non-faces of KI are Ni’s with Ni ⊂ I.

Proposition 2.5. Suppose K has a minimal Taylor resolution. If k[K] is Golod, then
any two minimal non-faces of K are not disjoint.

Proof. Let N1, . . . , Nr be minimal non-faces of K. Assume Ni ∩Nj = ∅ for some
i ̸= j. By Proposition 2.1, we haveNk ̸⊂ Ni ∪Nj for any k ̸= i, j. Then by Lemma 2.4,
Ni, Nj are the only minimal non-faces of KNi∪Nj . It follows that KNi∪Nj = ∂∆Ni ∗
∂∆Nj . Then we have |Ni| ⩾ 1 and |Nj | ⩾ 1. Thus by Lemma 2.3, K is not Golod,
completing the proof.

3. Polyhedral products

In this section, we recall the definition of polyhedral products and their properties
that we are going to use. Let (X,A) = {(Xi, Ai)}i∈[m] be a sequence of pairs of spaces
indexed by vertices of K. The polyhedral product ZK(X,A) is defined by

ZK(X,A) :=
∪
σ∈K

(X,A)σ (⊂ X1 × · · · ×Xm),

where

(X,A)σ = Y1 × · · · × Ym for Yi =

{
Xi i ∈ σ,

Ai i ̸∈ σ.

For a sequence of pointed spaces X = {Xi}i∈[m], we put (CX,X) := {(CXi, Xi)}i∈[m],
where CY denotes the reduced cone of a pointed space Y . The real moment-angle
complex RZK is the polyhedral product ZK(CX,X) with Xi = S0 for all i while the
moment-angle complex ZK is ZK(CX,X) with Xi = S1 for any i. Recall from [7]
that the fat wedge filtration

∗ = Z0
K(CX,X) ⊂ Z1

K(CX,X) ⊂ · · · ⊂ Zm
K (CX,X) = ZK(CX,X)

is defined by

Zi
K(CX,X) = {(x1, . . . , xm) ∈ ZK(CX,X) | at least m− i of xi are basepoints}.

In [7], the fat wedge filtration is shown to be quite useful in studying the homotopy
type of a polyhedral product ZK(CX,X). For example, it is shown that the fat wedge
filtration splits after a suspension so that we can recover the homotopy decomposition
of Bahri, Bendersky, Cohen and Gitler [2] as follows. Let |L| denote the geometric

realization of a simplicial complex L, and put X̂I :=
∧

i∈I Xi for a sequence of pointed
spaces X = {Xi}i∈[m].
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Theorem 3.1 (Iriye and Kishimoto [7] (cf. Bahri, Bendersky, Cohen and Gitler [2])).
There is a homotopy decomposition

ΣZK(CX,X) ≃ Σ
m∨
i=1

Zi
K(CX,X)/Zi−1

K (CX,X) = Σ
∨

∅̸=I⊂[m]

|ΣKI | ∧ X̂I .

We call this homotopy decomposition the BBCG decomposition. Let us consider
a desuspension of the BBCG decomposition. As for the moment-angle complexes,
desuspension is completely characterized as:

Theorem 3.2 (Iriye and Kishimoto [7]). The moment-angle complex ZK is a sus-
pension if and only if its BBCG decomposition desuspends.

Then as we will see in Corollary 3.7 below that a desuspension of the BBCG
decomposition of ZK(CX,X) is closely related with Golodness of k[K]. So we recall
from [7] a criterion for desuspending the BBCG decomposition. It is shown in [7] that
to investigate the fat wedge filtration of ZK(CX,X), the fat wedge filtration of the
real moment-angle complex RZK plays an important role. The fat wedge filtration of
RZK

∗ = RZ0
K ⊂ RZ1

K ⊂ · · · ⊂ RZm−1
K ⊂ RZm

K = RZK

has the following property.

Theorem 3.3 (Iriye and Kishimoto [7]). There is a map φKI : |KI | → RZi−1
K for

each I ⊂ [m] with |I| = i such that RZi
K is obtained from RZi−1

K by attaching cones
by maps φKI for all I ⊂ [m] with |I| = i.

We say that the fat wedge filtration of RZK is trivial if φKI
is null homotopic

for any ∅ ̸= I ⊂ [m]. Then if the fat wedge filtration of RZK is trivial, the BBCG
decomposition for RZK desuspends. Moreover, we have:

Theorem 3.4 (Iriye and Kishimoto [7]). If the fat wedge filtration of RZK is trivial,
then the BBCG decomposition of ZK(CX,X) desuspends for any X.

We will prove the triviality of the fat wedge filtration of RZK for a certain simplicial
complex K in the next section. To this end, we will only use the following property
of the maps φKI

which can be seen easily from the definition of φKI
in [7].

Lemma 3.5. Let L be a subcomplex of K on the same vertex set [m]. Then for any
∅ ̸= I ⊂ [m], there is a commutative diagram

|LI |
φLI //

incl

��

RZ |I|−1
LI

incl

��

|KI |
φKI // RZ |I|−1

KI
.

We pass to the connection between Golodness and moment-angle complexes. In
[3], Baskakov, Buchstaber and Panov observed that the cellular cochain complex
with coefficients k of the natural cell structure of the moment-angle complex ZK is
isomorphic to the Koszul resolution of k over k[K] tensored with k[K]. As a result,
we have:
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Theorem 3.6 (Baskakov, Buchstaber and Panov [3]). There is an isomorphism

H∗(ZK ; k) ∼= Tor∗k[v1,...,vm](k[K], k),

which respects all products and (higher) Massey products.

Since the cohomology of a suspension has trivial products and (higher) Massey
products, we have:

Corollary 3.7. If ZK is a suspension, k[K] is Golod for any commutative ring k.

Then by Theorem 3.2 and 3.4, we obtain:

Corollary 3.8. If the fat wedge filtration of RZK is trivial, then k[K] is Golod over
any commutative ring k.

We close this section by proving Lemma 2.3.

Proof of Lemma 2.3. By definition, we have Z∂∆W
∼= S2|W |−1 for a finite set W , and

ZK∗L = ZK ×ZL. Then we have Z∂∆I∗∂∆J
∼= S2|I|−1 × S2|J|−1. On the other hand,

ZKI is a retract of ZK . So if KI∪J = ∂∆I ∗ ∂∆J , the cohomology of ZK with any
coefficients has a non-trivial product, implying that K is not Golod by Theorem 3.6.
Thus the proof is completed.

4. Proof of Theorem 1.3

We first investigate properties of simplicial complexes whose Stanley-Reisner rings
have minimal Taylor resolutions. Then by Proposition 2.2, we consider a simplicial
complex K(N) in Section 2. We recall notation for K(N). N is a sequence {N1, . . . , Nr}
of subsets of a finite set W , and Ñ1, . . . , Ñr are minimal non-faces of K(N) such that

Ñi = Ni ⊔ {ai} and W ⊔ {a1, . . . , ar} is the vertex set of K(N). Put m := |W |+ r
which is the number of vertices of K(N). For w ∈ W we set

Nw := {Ni − w | i = 1, . . . , r}, N̂w := {Ni |w ̸∈ Ni}, Aw := {ai |w ∈ Ni},

where the ground sets of both Nw and N̂w are W − w. Let dlK(v) denote the deletion
of a vertex v in K. The following properties of the link and the deletion of K(N) are
immediate from Lemma 2.4.

Lemma 4.1. For w ∈ W we have

lkK(N)(w) = K(Nw), dlK(N)(w) = K(N̂w) ∗∆Aw .

We next describe the homotopy type of |K(N)|. Let N1, . . . , Nr be minimal non-
faces of K and L be a simplicial complex on the vertex set [m] with minimal non-faces
M1, . . . ,Mr such that Mi ⊂ Ni for i = 1, . . . , r. Then L is a subcomplex of K. Indeed,
if σ ⊂ [m] is a simplex of L, Mi ̸⊂ σ for any i, implying Ni ̸⊂ σ for any i. Then σ is
a simplex of K.

Proposition 4.2. We have

|K(N)| ≃

{
S|W |−1 N1 ∪ · · · ∪Nr = W,

∗ otherwise,

where we put S−1 = ∅. Moreover, for a sequence M = {M1, . . . ,Mr} of subsets of W
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satisfying Mi ⊂ Ni for all i and M1 ∪ · · · ∪Mr = W , the inclusion |K(M)| → |K(N)|
is a homotopy equivalence.

Proof. We induct on |W | to get the homotopy type of K(N). When |W | = 0, there
is nothing to do. When |W | = 1, we may assume N1 = · · · = Ns = W and Ns+1 =
· · · = Nr = ∅ for some 0 ⩽ s ⩽ r, so

K(N) = W ⊔∆{a1,...,as}. (4.1)

Hence if s ⩾ 1, or equivalently N1 ∪ · · · ∪Nr = W , then |K(N)| ≃ S0, and if s = 0,
or equivalently N1 ∪ · · · ∪Nr ̸= W , then |K(N)| is contractible. We assume the case
m− 1 and prove the case m. Notice that for any w ∈ W , there is a pushout of spaces

|lkK(N)(w)| //

��

|lkK(N)(w) ∗ w|

��

|dlK(N)(w)| // |K(N)|.

(4.2)

For W ̸= N1 ∪ · · · ∪Nr, we take w ∈ W −N1 ∪ · · · ∪Nr. Then we have Nw = N̂w,
implying lkK(N)(w) = dlK(N)(w) by Lemma 4.1. Then we get |K(N)| = |lkK(N)(w) ∗ w|
which is contractible. For W = N1 ∪ · · · ∪Nr, we take any w ∈ W , and we have
Aw ̸= ∅, so by Lemma 4.1 |dlK(N)(w)| is contractible. Since |lkK(N)(w) ∗ w| is also
contractible, we obtain |K(N)| ≃ Σ|lkK(N)(w)|. By Lemma 4.1, we have lkK(N)(w) =
K(Nw) to which we can apply the induction hypothesis since the ground set of Nw
is W − w. Thus since N1 ∪ · · · ∪Nr = W if and only if (N1 − w) ∪ · · · ∪ (Nr − w) =
W − w, we obtain the desired result.

We next prove the second assertion also by induction on |W |. The case |W | = 1
follows from the identity (4.1). Note that the diagram (4.2) is natural with respect
to the canonical inclusions between M, N. Then the second assertion holds by the
induction hypothesis as above.

We next consider the fat wedge filtration of the real moment-angle complex RZK(N).
We prove the following simple lemma that we are going to use.

Lemma 4.3. For non-empty finite sets A1, . . . , Ar, the following hold:

1. RZ∂∆A1∗···∗∂∆Ar
∼= S|A1|−1 × · · · × S|Ar|−1.

2. Let T be the fat wedge of S|A1|−1, . . . , S|Ar|−1, that is,

T := {(x1, . . . , xr) ∈ S|A1|−1 × · · · × S|Ar|−1 |xi is the basepoint for some i}.

Then the natural inclusion T → RZ |A1|+···+|Ar|−1

∂∆A1∗···∗∂∆Ar
is a homotopy equivalence.

Proof. (1) In general, we have RZK∗L = RZK × RZL for simplicial complexes K,L
and RZ∂∆[m]

∼= Sm−1 as in the proof of Lemma 2.3. Thus we get the desired result.

(2) By definition RZ |Ai|−1

∂∆Ai
is contractible, so there is a homotopy equivalence

S|A1|−1 × · · · × i∗ × · · · × S|Ar|−1 → RZ∂∆A1 × · · · × RZ |Ai|−1

∂∆Ai
× · · · × RZ∂∆Ar .

Since the inclusion RZ |Ai|−1

∂∆Ai
→ RZ∂∆Ai is a cofibration for each i and

RZ |A1|+···+|Ar|−1

∂∆A1∗···∗∂∆Ar
=

r∪
i=1

(RZ∂∆A1 × · · · × RZ |Ai|−1

∂∆Ai
× · · · × RZ∂∆Ar ),
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the proof is completed by the standard homotopy pushout argument.

We now prove triviality of the map φK(N) : |K(N)| → RZm−1
K(N) of Theorem 3.3 when

Ñi ∩ Ñj ̸= ∅ for any i, j, that is, under the condition 2 of Theorem 1.3. When N1 ∪
· · · ∪Nr ̸= W , φK(N) is trivial since |K(N)| is contractible by Proposition 4.2. Next
we assume N1 ∪ · · · ∪Nr = W . We put

M = {M1, . . . ,Mr} for Mi = Ni − (N1 ∪ · · · ∪Ni−1).

Now we have M1 ∪ · · · ∪Mr = W and Mi ⊂ Ni for all i. So by Proposition 4.2 the
inclusion |K(M)| → |K(N)| is a homotopy equivalence. By Lemma 3.5, there is a com-
mutative diagram

|K(M)|
φK(M)

//

incl≃

��

RZm−1
K(M)

��

|K(N)|
φK(N)

// RZm−1
K(N) .

(4.3)

Then it is sufficient to prove that the composite around the right perimeter is null
homotopic.

Since M̃i = Mi ⊔ {ai} and a1, . . . , ar are distinct, M̃i ∩ M̃j = ∅ for i ̸= j. Then we
have

K(M) = ∂∆M̃1 ∗ · · · ∗ ∂∆M̃r and K(M)U = ∂∆M̃2 ∗ · · · ∗ ∂∆M̃r ,

where U = M̃2 ∪ · · · ∪ M̃r and K(M)U is the full subcomplex of K(M) on U as above.
Then by Lemma 4.3 we get the following.

Proposition 4.4. We have

RZK(M)
∼= S|M1| × · · · × S|Mr|, RZK(M)U

∼= S|M2| × · · · × S|Mr|.

We now suppose Ñi ∩ Ñj ̸= ∅ for any i, j, and fix 2 ⩽ i ⩽ r. By our supposition,
there exists wi ∈ N1 ∩Ni. Put

Mi = {M i
1, . . . ,M

i
r}, where M i

k =

{
Mi ∪ wi k = i,

Mk k ̸= i.

Then M̃ i
j ∩ M̃ i

k = ∅ for j ̸= k with j, k ⩾ 2, so in a manner similar to Proposition 4.4
we have

RZK(Mi)U∪wi

∼= S|Mi
2| × · · · × S|Mi

r| = S|M2| × · · · × S|Mi|+1 × · · · × S|Mr|.

Hence the inclusion RZK(M)U → RZK(Mi)U∪wi
is identified with the inclusion

S|M2| × · · · × S|Mi| × · · · × S|Mr| 1×···×incl×···×1−−−−−−−−−−−→ S|M2| × · · · × S|Mi|+1 × · · · × S|Mr|

in which the ith coordinate sphere contracts up to homotopy. It follows that the inclu-
sion RZK(M)U → RZK(M2)U∪w2

∪ · · · ∪ RZK(Mr)U∪wr
is null homotopic by contracting

each coordinate sphere, where the union RZK(M2)U∪w2
∪ · · · ∪ RZK(Mr)U∪wr

is taken

in RZm−1
K(N) . Thus we obtain:

Proposition 4.5. If Ñi ∩ Ñj ̸= ∅ for any i, j, then the inclusion RZK(M)U → RZm−1
K(N)

is null homotopic.
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By Proposition 4.4, we have RZK(M)U
∼= S|M2| × · · · × S|Mr| which we abbreviate

by P , and let T be the fat wedge of S|M1|, . . . , S|Mr|. Then by Lemma 4.3, T →
RZm−1

K(M) is a homotopy equivalence. We will show:

Lemma 4.6. The composite

Φ: |K(M)|
φK(M)−−−→ RZm−1

K(M) ≃ T
incl−−→ T ∪ CP

is null homotopic.

Proof. By Theorem 3.3, the composite |K(M)|
φK(M)−−−→ RZm−1

K(M)

incl−−→ RZK(M) is a cofiber

sequence. Then the composite

|K(M)| Φ−→ T ∪ CP
incl−−→ RZK(M) ∪ CP (4.4)

is a homotopy cofiber sequence. Let T ′ ⊂ P be the fat wedge of S|M2|, . . . , S|Mr|.
Then we have T = (S|M1| × T ′) ∪ (∗ × P ), so

T/P = (S|M1| × T ′)/(∗ × T ′) = S|M1| ∧ (T ′ ⊔ ∗).
Since T ′ ⊔ ∗ is a retractile subcomplex of P ⊔ ∗ in the sense of James [9], the inclusion
T ′ ⊔ ∗ → P ⊔ ∗ has a left homotopy inverse after a suspension. Thus the map

T ∪ CP ≃ T/P = S|M1| ∧ (T ′ ⊔ ∗)
→ S|M1| ∧ (P ⊔ ∗) = (S|M1| × P )/(∗ × P ) ≃ RZK(M) ∪ CP

has a left homotopy inverse since |M1| ⩾ 1, where this composite is homotopic to
the second map of the homotopy cofiber sequence (4.4). Thus the map Φ: |K(M)| →
T ∪ CP is null homotopic as desired, completing the proof.

By Proposition 4.5, the inclusion P → RZm−1
K(N) is null homotopic. Then the map

T → RZm−1
K(N) extends to a map T ∪ CP → RZm−1

K(N) , and by Theorem 3.3, the commu-

tative diagram (4.3) extends to a homotopy commutative diagram

|K(M)| Φ //

≃
��

T ∪ CP

��

|K(N)|
φK(N)

// RZm−1
K(N) .

Thus the map φK(N) is null homotopic by Lemma 4.6, and therefore we have estab-
lished the following.

Proposition 4.7. If Ñi ∩ Ñj ̸= ∅ for any i, j, the map φK(N) is null homotopic.

Theorem 4.8. If Ñi ∩ Ñj ̸= ∅ for any i, j, then the fat wedge filtration of RZK(N) is
trivial.

Proof. Suppose Ñi ∩ Ñj ̸= ∅ for any i, j. By Proposition 4.7, it is sufficient to prove
that every full subcomplex of K(N) is either contractible or isomorphic to K(M) for
some M. Since every full subcomplex is obtained by deleting vertices, the following
claim proves the statement above.

Claim: For any vertex v of K(N), dlK(N)(v) = K(M) ∗∆S for some S, M such that
any two elements of M are not disjoint, where M, S may be empty.

We divide the proof of the claim into the following two cases:
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Case v ∈ W : By Lemma 4.1, dlK(M)(v) = K(N̂v) ∗∆Av . By our supposition, any

two elements of N̂v are not disjoint. Then the claim is true for K(N̂v) ∗∆Av .
Case v ̸∈ W : Since v = ai for some i, we have dlK(N)(v) = K(M), where M = {Nj |

j ̸= i}. Then the claim is obviously true for K(M).

Proof of Theorem 1.3. The implication 1⇒ 2 follows from Proposition 2.5. If 2 holds,
then by Proposition 2.2 and Theorem 4.8, the fat wedge filtration of RZK is trivial.
Thus by Theorem 3.4, 4 holds. Moreover, by Proposition 4.2, 3 holds. When 3 or 4
holds, 1 holds by Corollary 3.7. Therefore the proof is completed.
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