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ON A BASE CHANGE CONJECTURE FOR HIGHER
ZERO-CYCLES

MORTEN LUDERS

(communicated by Charles A. Weibel)

Abstract

We show the surjectivity of a restriction map for higher
(0,1)-cycles for a smooth projective scheme over an excellent
henselian discrete valuation ring. This gives evidence for a
conjecture by Kerz, Esnault and Wittenberg saying that base
change holds for such schemes in general for motivic cohomol-
ogy in degrees (i, d) for fixed d being the relative dimension over
the base. Furthermore, the restriction map we study is related
to a finiteness conjecture for the n-torsion of CHy(X), where X
is a variety over a p-adic field.

1. Introduction

Let Ok be an excellent henselian discrete valuation ring with quotient field K
and residue field k = Ok /7Ok and always assume that 1/n € k. Let X be a regular
scheme, flat and projective over SpecOy of fibre dimension d. Let Xx denote the
generic fibre and X, the reduced special fibre. Let A = Z/nZ.

In [SS, Cor. 9.5] and [EWB, App.] it is shown that for X — Spec Ok smooth and
projective and k finite or algebraically closed, the restriction map

CH,(X)a = CHo(Xo)a

is an isomorphism of Chow groups with coefficients in A. This result is reproven
in [KEW] for more general residue fields and generalised to the case that X is
a simple normal crossings divisor. In that case one needs to replace CHg(Xy) by
H2¢ (Xo,Z/nZ(d)), i.e. the hypercohomology of the motivic complex Z/nZ(d) in the
cdh-topology, which is isomorphic to CHo(Xo) for Xo/k smooth. The result then
says that if k is finite, or algebraically closed, or (d — 1)! prime to m, or A is of
equal characteristic, or X/Of is smooth with perfect residue field k, then there is an
isomorphism

CH,(X)x = H24 (Xo,Z/nZ(d))

Cf

which is induced by restricting a one-cycle in general position to a zero-cycle on Xg™.
Generalising this result, the following conjecture is stated in Section 10 of [KEW]:
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Conjecture 1.1. The restriction homomorphism
res: H"(X,Z/nZ) — H"} (X0, Z/nZ)
is an isomorphism for all i > 0.
Here H»4(X,Z/mZ) = H'(X,Z/mZ(d)) are the motivic cohomology groups for

schemes over Dedekind rings defined in [Sp]. In this article we consider the corre-
sponding restriction map on higher Chow groups of zero-cycles with A-coefficients

resSM: CHY(X,2d — i)p — CHY(Xq,2d —i)a

for X/Ok smooth which we define to be induced by the following composition:

resCH: CH™(X,m) — CH" (X, m) - CH™ (X ), m + 1) & CH"(Xo, m).

Here -(—) is the product with —7 € CH!(K,1) = K* defined in [BI, Sec. 5], 7 is
a local parameter for the discrete valuation on K and 0 is the boundary map com-
ing from the localization sequence for higher Chow groups (see [Lel]). We call the
composition

spCH: CH™ (X e, m) "7 CH™ (X, m + 1) & CH"(Xo, m)

a specialisation map for higher Chow groups. We note that res“® does not depend
on the choice of © whereas spSH does. For a detailed discussion of the specialisation
map see also [ADIKMP, Sec. 3].

Our main theorem is the following:

Theorem 1.2. Let X/Ok be smooth. Then the restriction map
resCH: CHY(X, 1)y — CHY(Xo,1)4
is surjective. This implies in particular the surjectivity part of Conjecture 1.1 for the
pair (2d — 1,d).
This implies the following corollary:
Corollary 1.3. Let X/Og be smooth. Then the specialisation map
spSH: CHY (X g, 1)4 — CHY(Xo, 1)
1S surjective.

The restriction map in the degree of Theorem 1.2 is of particular interest since it
is related to a conjecture on the finiteness of CHY(X g )[n] for K a p-adic field. This
is shown in Section 3 as well as the injectivity for d = 2. Furthermore, Theorem 1.2
together with the main result of [KEW] may be considered as a generalization to
perfect residue fields of the vanishing of the Kato homology group K Hs(X,Q¢/Zy)
defined in [SS] where it was proven for & finite or separably closed.
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2. Main result

Let Ok be an excellent henselian discrete valuation ring with quotient field K and
residue field k = Ok /7O and always assume that 1/n € k. From now on let X be
a smooth and projective scheme over SpecOg of fibre dimension d in which case we
also say that X is of relative dimension d over Ok . Let Xx denote the generic fibre
and X the reduced special fibre. By X(py we denote the set of points x € X such
that dim({z}) = p, where {z} denotes the closure of = in X.

We are going to use the following notation for Rost’s Chow groups with coefficients
in Milnor K-theory (see [Ro, Sec. 5]):

CP(X7 m) = @ (K%erk(x)) ® Z/nZa
ze€X(p
Zp(X,m) = ker[(8>: Cp(X,m) = Cp_1(X, m)],

Ay(X,m) = Hy(C.(X.m)).

We write Zi(X) for the group of k-cycles on X, i.e. the free abelian group generated
by k-dimensional closed subschemes of X.
Let 7 be some fixed a local parameter of Og. We define the restriction map

resy: Cp(X,m) = Cp_1(Xo,m +1)

to be the composition

resy: Cp(X,m) = Cp_1(Xg,m+1) Az, Cp_1(Xkg,m+2) 9, Cp_1(Xo,m+1).

In the above composition the map Cp(X,m) = Cp_1(Xk,m) is defined to be the
identity on all elements supported on X, \ Xo(,) and zero on Xp(,). The map 9 is
defined to be the boundary map induced by the tame symbol on Milnor K-theory
for discrete valuation rings. More precisely, 0 is defined as follows: Let {x} be the
subscheme corresponding to x € X ;). Let us assume for simplicity that {z} is normal.
Otherwise we take the normalisation and use the norm map. Now if y € @(]%w
then y defines a discrete valuation on k(z). Let 7’ be a local parameter of k(x). Let
o7 KM k(z) — K)'k(y) be the tame symbol defined by sending {n’, u1,...,u,} to
{u1,...,u,}, where the u; are units in the discrete valuation ring of k(z) and the u;
their images in k(y). 0 is defined to be the sum of all 9y taken over all z € X(;,) and

ally € m(pfm Note that the restriction map res, has to be distinguished from the
specialisation map

spy =00 o {—m'}: K} k(x) — K} k(y).

spy o sends {7 uy, ..., """ up} to {4y, ..., 1, }, where again the u; are units in the
discrete valuation ring of k(x) and the w; their images in k(y).
The map res, depends on the choice of 7 but the induced map on homology

res: Ap(X,m) - Ap_1(Xo,m+1)
is independent of the choice. This can be seen as follows: Let v € O and o €
Cp(X,m). Then resyx(a) = 0({—mu} - a) = 0({—=} - a) + 0({u} - ) is equal to the
sum resy (o) + 0({u} - o). Now if e € A,(X, m), then O({u} - o) = 0 and res, (o) =
resy(a). In the following we will write res for res,, fixing a local parameter m € Og.
We now turn to our principle interest of study, the restriction map
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res: CQ(X, 71) — Cl(XQ, 0)
We start with the following lemma:

Lemma 2.1. The map res: Cy(X,—1) = C1(Xo,0), after having fized 7, is surjec-
tive.
Proof. Let u € KMk(x) for some = € Xédil). As in the proof of [SS, Lem. 7.2] we
can find a relative surface Z C X containing z, being regular at = and such that
Z N Xo contains {z} with multiplicity 1. Let Zy = UielZol) U {z} be the union of
the pairwise different irreducible components of the special fiber of Z with those
irreducible components different from {z} indexed by I. Since all maximal ideals, m;
corresponding to Zéz) and m,, corresponding to {z}, in the semi-local ring O z, are
coprime, the map Oz z, — [[;c; Oz 2,/mi X Oz z,/m. is surjective. Therefore, we
can find a lift u € KMk(z), z being the generic point of Z, of 4 which specialises to
% in K({z})* and to 1 in K(Z(gl))>< forall i e I. O
The main result we are going to prove is the following:
Proposition 2.2. The restriction map res: Az(X, —1) — A1(Xo,0) is surjective.
It will be implied by the following key lemma:

TES

Key lemma 2.3. Let £ € ker[Z1(X)/n = Zy(Xo)/n], then there is a

¢ € ker[Co(X, —1) =5 C1(Xo,0)]
with 0(¢') = €.
Proof of Proposition 2.2. Let & € ker[C1(X),0) LA Cy(Xo,0)]. By Lemma 2.1 there
is a £ € Cy(X,—1) with res(§) = &. As res(9(€)) = d(res(§)) =0, Key lemma 2.3
tells us that there is a & € ker(Cy(X, —1) = C1(Xp,0)) with 9 = 9. As res
is a homomorphism, it follows that & =res(é —¢') and 9(¢ —¢') =0. Hence

res: Zy(X, —1) = Z1(Xo,0) is surjective and the commutativity of 0 and res implies
that res: As(X,—1) = A1(Xo,0) is surjective. O

Proof of Key lemma 2.3. We start with the case of relative dimension d =1, i.e. X
is a smooth fibered surface over Ok, and consider the following diagram:

Os(X, —1) = K(X)* ® Z/nZ —> C1 (X0, 0) = K (Xo)* ® Z/nZ

o| Jo

Zl(X)/TL res Z()(Xo)/n

where we write Z;(X)/n for C;(X, —i) which are just the cycles of dimension ¢ modulo
n. The restriction map in the lowest degree res: Z1(X)/n — Zy(Xo)/n agrees with
the specialisation map on cycles defined by Fulton in [Fu, Rem. 2.3] since X is a prin-
ciple Cartier divisor and 9 ({~7}) = ordo_; (7). Modifying ¢ € ker[Z,(X)/n iy
Zo(Xo)/n] by elements equivalent to zero in Z;(X)/n, we may represent it by an
element x € ker[Z1(X) — Zo(X0)].

We consider the following short exact sequence of sheaves:

0 = O%.x, = M.x, = Div(X, Xo) =0, (1)
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where MY x (resp. O% x,) denotes the sheaf of invertible meromorphic functions
(resp. invertible regular functions) relative to Spec Ok and congruent to 1 in the
generic point of Xy, i.e. in Ox ,, where 1 is the generic point of X, and Div(X, Xo)
is the sheaf associated to MY,y /O% x,. In other words, Div(X, Xo)(U) is the set
of relative Cartier divisors on U C X which specialise to zero in Xg. For the concept
of relative meromorphic functions and divisors see [EGA4, Sec. 20, 21.15].

We want to show that (Div(X, Xo)(X)/M%.x (X))/n =0.

Claim 2.4. Pic(X, Xo) = Div(X, Xo)(X)/M¥ x, (X).
Short exact sequence (1) induces the following exact sequence:
O%.x, (X) = M%.x,(X) = Div(X, Xo)(X) — Pic(X, Xo) - H' (X, MX.x,)-

Now Pic(X, Xo) = H'(X, O%.x,) can also be described as the group of isomorphism
classes of pairs (£,v) of an invertible sheaf £ with a trivialisation ¢ : £]x, = Ox,
(see e.g. [SV, Lem. 2.1]).

The following argument shows that the map Div(X, X¢)(X) — Pic(X, Xo) is sur-
jective: Let (£,v) € Pic(X, Xg). The trivialisation ¢ gives an isomorphism ¢: £ Qo
Ox, = Ox, and by localising an isomorphism ¢,: £, ®oy , Ox, = Ox,,u» Where
1 again denotes the generic point of Xg. Let s denote a lift of w;l(l) under the sur-
jective map L, - L, ®oy, Ox,,u- Then s is a meromorphic section of £ and the
divisor div(s) € Div(X, Xo)(X) maps to (L, ).

It follows that Pic(X, Xo) = Div(X, Xo)(X)/ M. x,(X). O

Claim 2.5. Pic(X, Xg) is uniquely n-divisible.

Since
Pic(X, Xo) 2 lim Pic(X,n, Xo) & lim H' (Xo, 1 +7Ox,,),

where the first isomorphism follows from [EGA3, Thm. 5.1.4], it suffices to show that
H'(Xo,1+ 70x,,) is uniquely n-divisible. This can be seen as follows:

1+7T0Xm:)1+7T20Xm D---D1

defines a finite filtration on the sheaf 14+ 7Ox,, with the following graded pieces:
gr™ = (m)"/(m)" T =2 Ox, @ (7)". We use this filtration to define a filtration on
H'(Xo,1+70x,,) by

F":=Im(H"'(Xo,1+ 7"Ox,,) = H'(X0,1+ 70x,,)).

The unique divisibility of H(Xg,1+ 7Ox, ) follows now by descending induction
from the exact sequence

0= 1+a"0x —1+7"0x, — gr" —0,

the unique divisibility of H(Xo, Ox, ® 7") as a finitely generated k-module and the
five-lemma. O

It follows that Pic(X, Xo)/n = (Div(X, Xo)(X)/MX. x,(X))/n = 0 and therefore
that the class of z in Z1(X)/n, i.e. &, is in the image of ker[Cy (X, —1) "5 C1 (X, 0)]
under 0.
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We now do the induction step for X of arbitrary relative dimension d > 1 over
SpecOg, assuming that the key lemma holds for relative dimension d — 1, using an
idea of Bloch put forward in [EWB, App.]. By a standard norm argument we may
from now on assume that k is infinite.

As above we may represent £ by an element of ker[Z;(X) — Zy(Xp)] and as in
the proof of [KEW, Prop. 4.1] we may assume that & is represented by a cycle of
the form [x] — r[y] € ker[Z1(X) — Zo(Xo)] with z and y integral and such that y is
regular and has intersection number 1 with Xg. Let us recall the argument: First note
that one can lift a reduced closed point of X to an integral horizontal one-cycle having
intersection number 1 with Xo. Now if £ = Y7, n;[z;] € ker[Z1(X) — Zy(Xo)], then
we lift (x; N Xo)rea to a one-cycle y; of the aforementioned type. Furthermore, we
choose the same y; for all the z; intersecting X in the same closed point. Let r; be
the intersection multiplicity of x; with Xo. Then also Y ;_, n;r;[y;] € ker[Z;(X) —
Zo(Xp)] and it suffices to show the statement for each x; — r;y; separately, i.e. the
claim follows.

Let & be the normalisation of x. Since Ok is excellent, Z is finite over z. This
implies that there is an imbedding Z < X’ := X Xgpec 0k P such that the following
diagram commutes:

X' =X XSpec Ok PN

T

X
Spec Ok - Spec Ok

Let [N X(] =r'[Z] for Z an integral zero-dimensional subscheme of X;. We take a
regular lift 2z of Z in y x PV C X’ which has intersection number 1 with X/ and get
that [Z] — r'[z] € ker[Z1(X") = Zo(X()] and prx.([Z] —r'[z]) = [z] — r[y] = &.

We now use a Bertini theorem by Altman and Kleiman to prove Key lemma 2.3
by an induction on the relative dimension of X over O.
Lemma 2.6. There exist smooth closed subschemes Z,Z' C X' with the following
properties:

1. Z has fiber dimension one, Z' has fiber dimension d — 1.

2. 7 contains T, Z' contains z.

3. The intersection Z N Z' N X|) consist of reduced points.
Proof. First note that for a sheaf of ideals J C Ox/ we have the following short exact
sequence:

0= J ®oy, Ox:/ (=[Xg)(M) = T ®o,, Ox/(M) = J ®0o,, ixOx; (M) = 0

for i: X)) < X’ and M € Z. For M >> 0 Serre vanishing implies that H* (X', F(M))
is 0 for F coherent and therefore that the map

I'(J ®o,, Ox/(M)) - T(J ®o,, Ox;(M))

is surjective. This allows us to lift the sections on the right defining subvarieties of X,
to sections of a twisted sheaf of ideals on X'.
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Let J; be the sheaf of ideals defining Z and 7, be the sheaf of ideals defining z. Let
p€TNX| (¢ €2nX(). Then dimy,(p) = d > 2 and since Z (resp. z) is regular, we
have that eznx; (p) < ez(p) = dimyp) (Q}(p)) = 1 < 2, where ez(p) is the embedding
dimension of Z at p and analogously for ¢. Therefore by [AK, Thm. 7], we can find
sections in o1,...,04+N-1 € Jz|x; (M) (vesp. ¢’ € Jz|x;(M)) defining smooth sub-
schemes containing p (resp. ¢) that intersect transversally. Let o1,...,04+n-1 (resp.
') be liftings under the surjections I'(Jz ®o,, Ox/(M)) - I'(Jz ®o,, Ox;(M))
and I'(J. ®o,, Ox/(M)) - T'(J. ®o,, Ox;(M)). Then the complete intersections
Z =V (o1,...,04+n-1) and Z' := V(¢’) have the desired properties. O

Using these subschemes, we can now do the induction step and finish the proof
of the key lemma. Since Z N Z’' N X{ consists of reduced points, the component z’
of ZNZ' that contains z N X{, has intersection number 1 with X{ and is a regular
curve as it is regular over the closed point of SpecO. Now since Z’ is of relative
dimension d — 1 and z and 2’ both lie in Z’ and satisfy res([z'] — [z]) = 0, we get by
the induction assumption that there is a £ with support on Z’ restricting to 1 and
with 9(§) =[] — [2].

By the relative dimension one case proved in the beginning we get that for z, 2’ C Z
and [Z] — r'[2/], which also restricts to 0, there is a & with support on Z such that
res(¢’) =0 and 9(¢') =[] — r'[2/]. Tt follows that res(&’ + &) =1 and I(&' 4+ r€) =
[Z] — r'[2].

By the commutativity of the following diagram we get the result.

Cy(X’, 1) C1(X(,0)

| |
Z(X")/n / Zo(Xg)/n
Co(X, 1) C1(Xo,0)
v |

Zi(X)/n Zo(Xo)/n

The commutativity of the diagram follows from [Ro, Sec. 4] since all the maps in
question are defined in terms of the ‘four basic maps’ which are compatible. O

Corollary 2.7. The restriction map
res®H: CHY(X, 1), — CHY(Xy,1)a

defined in the introduction is surjective.
Proof. We first show that the homology of the sequence

D, e x (-2 KME(z) — Byex(a-D KME(z) — D x @ KME(x)
is isomorphic to CH?(Xy, 1) which implies that A;(X,0) 2 CH%(X,1)4. This fol-
lows from the spectral sequence

EPY =@, CH " (Speck(x), —p — q) = CH"(Xo, —p — q) (2)

(see [BL, Sec. 10]) for r = d = dimXy, the fact that CH"(k(z),r) = KM (k(x)) and
the vanishing of CH" (Spec k(z), j) for r > j as well as the vanishing of CH®(k(x), 1).
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Using a limit argument and the localization sequence for schemes over a regular
noetherian base B of dimension one constructed in [Lel], we also get the existence
of spectral sequence (2) for X/Ok. Now for the same reasons as above this spectral
sequence implies that the homology of

@xeX(d—mKéwk(x) — @xex(d—l)Kyk(x) — @xex(d)Ké\/Ik(l')

is isomorphic to CHY(X, 1) which implies that As(X, —1) = CHY(X,1)x.
The result now follows from Proposition 2.2 and the compatibility of res and
res“H, O

Remark 2.8. The isomorphism A;(Xo,0) 2 CH%(X,, 1), also follows from the iso-
morphism CH? (X, 1) & HP~1(X,,K,) for p > 0 and K,, the K-theory sheaf (see e.g.
[M, Cor. 5.3]).

3. Remarks on the injectivity of res

In this section we prove the injectivity of the restriction map for d = 2 in our case
and remark on implications of the conjectured injectivity.

Conjecture 3.1. The map res: Ax(X,—1) — A1(Xo,0) is injective.
Proposition 3.2. Conjecture 3.1 holds for X/Ok of relative dimension 2.
Proof. Let A :=Z/n and A(q) := p29. We use the coniveau spectral sequence
EPIX,A(e) = [ HEFU(X,A() = HE™(X,A(e)),
zeXP

where H is étale cohomology with support in z.

Cohomological purity (resp. absolute purity) gives isomorphisms H2T(X, A(c)) =
H?P(k(x), A(c — p)) which lets us write the above spectral sequence in the following
form:

EPI(X,A0) = [T HP(k(2), Ale - p)) = HE(X, Ae)).
reXP

For more details see, for example, [CHK]. Writing out this spectral sequence for X
and X respectively and using the norm residue isomorphism KM (k)/m = H"(k, u&m)
for n < 2 (see [MS]), we get injective edge morphisms A»(X, —1) < H3 (X, A(2)) and
A1(Xo, —1) = H3,(Xo,A(2)) for dimensional reasons. The restriction map induces a
map between these spectral sequences and therefore a commutative diagram

A (X, —1) —— A1(Xy,0)

H3,(X,A(2)) — H3 (Xo,A(2))

whose lower horizontal morphism is an isomorphism by proper base change. It follows
that A3(X, —1) — A1(Xo,0) is injective. O

Remark 3.3. The injectivity of res would have implications for a finiteness conjec-
ture on the n-torsion of CHy(X ) for X a smooth projective scheme over a p-adic
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field with good reduction (see, for example, [Co]). More precisely, using the coniveau
spectral sequence, we can see that the group A;(Xk,0) is isomorphic to
H25 Y (X i, Z/n(d)) and therefore surjects onto CHo (X ¢)[n]. Furthermore it fits into
the exact sequence (see [Ro, Sec. 5])

AQ(X7 —1) — Al(XK, 0) — Al(Xo, —1) = CHl(Xo)/TL
Now Conjecture 3.1 implies that there is a sequence of injections
As(X, 1) = A1(Xo,0) = HG'™'(Xo, Z/n(d))

into the finite group Hz' (X, Z/n(d)). Note that the second injection follows from
the Kato conjectures. More precisely, there is an exact sequence

K H3(Xo,Z/nZ) — A1(Xo,0) = CHY(Xo, 1) — HZY(Xo,Z/n(d))

(see [JS, Lem. 6.2]) and the Kato homology group K Hs(Xg,Z/nZ) is zero due to the
Kato conjectures (see [KS]). Therefore the finiteness of CHo (X )[n] would depend
on the finiteness of CH;y(Xy)/n.

In the case of relative dimension 2 the finiteness of CH; (Xy)/n = Pic(Xy)/n can be
shown using the injection Pic(Xo)/n < HZ (Xo, iin) and the finiteness of HZ (Xo, fn)
(see e.g. [Mi, VI.2.8]). Therefore Proposition 3.2 implies in particular the finiteness
of CHy(Xxk)[n] for X a smooth projective surface over a p-adic field with good
reduction. The finiteness of CHy(Xk)[n] is known more generally for any smooth
surface X over a p-adic field K by [CSS1] (see also [CSS2]).

Remark 3.4. In the light of Remark 3.3 and the base change conjecture for higher
zero-cycles stated in the introduction one might ask if

CH (X, i)[n]

is finite for all ¢ > 0 for smooth schemes over p-adic fields.
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