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ON A BASE CHANGE CONJECTURE FOR HIGHER
ZERO-CYCLES
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Abstract
We show the surjectivity of a restriction map for higher

(0, 1)-cycles for a smooth projective scheme over an excellent
henselian discrete valuation ring. This gives evidence for a
conjecture by Kerz, Esnault and Wittenberg saying that base
change holds for such schemes in general for motivic cohomol-
ogy in degrees (i, d) for fixed d being the relative dimension over
the base. Furthermore, the restriction map we study is related
to a finiteness conjecture for the n-torsion of CH0(X), where X
is a variety over a p-adic field.

1. Introduction

Let OK be an excellent henselian discrete valuation ring with quotient field K
and residue field k = OK/πOK and always assume that 1/n ∈ k. Let X be a regular
scheme, flat and projective over SpecOK of fibre dimension d. Let XK denote the
generic fibre and X0 the reduced special fibre. Let Λ = Z/nZ.

In [SS, Cor. 9.5] and [EWB, App.] it is shown that for X → SpecOK smooth and
projective and k finite or algebraically closed, the restriction map

CH1(X)Λ
≃−→ CH0(X0)Λ

is an isomorphism of Chow groups with coefficients in Λ. This result is reproven
in [KEW] for more general residue fields and generalised to the case that X0 is
a simple normal crossings divisor. In that case one needs to replace CH0(X0) by
H2d

cdh(X0,Z/nZ(d)), i.e. the hypercohomology of the motivic complex Z/nZ(d) in the
cdh-topology, which is isomorphic to CH0(X0) for X0/k smooth. The result then
says that if k is finite, or algebraically closed, or (d− 1)! prime to m, or A is of
equal characteristic, or X/OK is smooth with perfect residue field k, then there is an
isomorphism

CH1(X)Λ
≃−→ H2d

cdh(X0,Z/nZ(d))

which is induced by restricting a one-cycle in general position to a zero-cycle on Xsm
0 .

Generalising this result, the following conjecture is stated in Section 10 of [KEW]:
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Conjecture 1.1. The restriction homomorphism

res : Hi,d(X,Z/nZ)→ Hi,d
cdh(X0,Z/nZ)

is an isomorphism for all i ⩾ 0.

Here Hi,d(X,Z/mZ) = Hi(X,Z/mZ(d)) are the motivic cohomology groups for
schemes over Dedekind rings defined in [Sp]. In this article we consider the corre-
sponding restriction map on higher Chow groups of zero-cycles with Λ-coefficients

resCH : CHd(X, 2d− i)Λ −→ CHd(X0, 2d− i)Λ
for X/OK smooth which we define to be induced by the following composition:

resCH : CHn(X,m) −→ CHn(XK ,m)
·(−π)−−−→ CHn+1(XK ,m+ 1)

∂−→ CHn(X0,m).

Here ·(−π) is the product with −π ∈ CH1(K, 1) = K× defined in [Bl, Sec. 5], π is
a local parameter for the discrete valuation on K and ∂ is the boundary map com-
ing from the localization sequence for higher Chow groups (see [Le1]). We call the
composition

spCH
π : CHn(XK ,m)

·(−π)−−−→ CHn+1(XK ,m+ 1)
∂−→ CHn(X0,m)

a specialisation map for higher Chow groups. We note that resCH does not depend
on the choice of π whereas spCH

π does. For a detailed discussion of the specialisation
map see also [ADIKMP, Sec. 3].

Our main theorem is the following:

Theorem 1.2. Let X/OK be smooth. Then the restriction map

resCH : CHd(X, 1)Λ ↠ CHd(X0, 1)Λ

is surjective. This implies in particular the surjectivity part of Conjecture 1.1 for the
pair (2d− 1, d).

This implies the following corollary:

Corollary 1.3. Let X/OK be smooth. Then the specialisation map

spCH
π : CHd(XK , 1)Λ ↠ CHd(X0, 1)Λ

is surjective.

The restriction map in the degree of Theorem 1.2 is of particular interest since it
is related to a conjecture on the finiteness of CHd(XK)[n] for K a p-adic field. This
is shown in Section 3 as well as the injectivity for d = 2. Furthermore, Theorem 1.2
together with the main result of [KEW] may be considered as a generalization to
perfect residue fields of the vanishing of the Kato homology group KH3(X,Qℓ/Zℓ)
defined in [SS] where it was proven for k finite or separably closed.
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2. Main result

Let OK be an excellent henselian discrete valuation ring with quotient field K and
residue field k = OK/πOK and always assume that 1/n ∈ k. From now on let X be
a smooth and projective scheme over SpecOK of fibre dimension d in which case we
also say that X is of relative dimension d over OK . Let XK denote the generic fibre
and X0 the reduced special fibre. By X(p) we denote the set of points x ∈ X such

that dim({x}) = p, where {x} denotes the closure of x in X.
We are going to use the following notation for Rost’s Chow groups with coefficients

in Milnor K-theory (see [Ro, Sec. 5]):

Cp(X,m) =
⊕

x∈X(p)

(KM
m+pk(x))⊗ Z/nZ,

Zp(X,m) = ker[∂ : Cp(X,m)→ Cp−1(X,m)],

Ap(X,m) = Hp(C∗(X,m)).

We write Zk(X) for the group of k-cycles on X, i.e. the free abelian group generated
by k-dimensional closed subschemes of X.

Let π be some fixed a local parameter of OK . We define the restriction map

resπ : Cp(X,m)→ Cp−1(X0,m+ 1)

to be the composition

resπ : Cp(X,m)→ Cp−1(XK ,m+ 1)
·{−π}−−−−→ Cp−1(XK ,m+ 2)

∂−→ Cp−1(X0,m+ 1).

In the above composition the map Cp(X,m)→ Cp−1(XK ,m) is defined to be the
identity on all elements supported on X(p) \X0(p) and zero on X0(p). The map ∂ is
defined to be the boundary map induced by the tame symbol on Milnor K-theory
for discrete valuation rings. More precisely, ∂ is defined as follows: Let {x} be the
subscheme corresponding to x ∈ X(p). Let us assume for simplicity that {x} is normal.

Otherwise we take the normalisation and use the norm map. Now if y ∈ {x}(p−1),

then y defines a discrete valuation on k(x). Let π′ be a local parameter of k(x). Let
∂xy : K

M
n+1k(x)→ KM

n k(y) be the tame symbol defined by sending {π′, u1, . . . , un} to
{ū1, . . . , ūn}, where the ui are units in the discrete valuation ring of k(x) and the ūi
their images in k(y). ∂ is defined to be the sum of all ∂xy taken over all x ∈ X(p) and

all y ∈ {x}(p−1). Note that the restriction map resπ has to be distinguished from the
specialisation map

spxy,π′ = ∂xy ◦ {−π′} : KM
n k(x)→ KM

n k(y).

spxy,π′ sends {π′i1u1, . . . , π
′inun} to {ū1, . . . , ūn}, where again the ui are units in the

discrete valuation ring of k(x) and the ūi their images in k(y).
The map resπ depends on the choice of π but the induced map on homology

res : Ap(X,m)→ Ap−1(X0,m+ 1)

is independent of the choice. This can be seen as follows: Let u ∈ O×
K and α ∈

Cp(X,m). Then resuπ(α) = ∂({−πu} · α) = ∂({−π} · α) + ∂({u} · α) is equal to the
sum resπ(α) + ∂({u} · α). Now if α ∈ Ap(X,m), then ∂({u} · α) = 0 and resuπ(α) =
resπ(α). In the following we will write res for resπ, fixing a local parameter π ∈ OK .

We now turn to our principle interest of study, the restriction map
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res : C2(X,−1)→ C1(X0, 0).

We start with the following lemma:

Lemma 2.1. The map res : C2(X,−1)→ C1(X0, 0), after having fixed π, is surjec-
tive.

Proof. Let ū ∈ KM
1 k(x) for some x ∈ X(d−1)

0 . As in the proof of [SS, Lem. 7.2] we
can find a relative surface Z ⊂ X containing x, being regular at x and such that

Z ∩X0 contains {x} with multiplicity 1. Let Z0 = ∪i∈IZ
(i)
0 ∪ {x} be the union of

the pairwise different irreducible components of the special fiber of Z with those
irreducible components different from {x} indexed by I. Since all maximal ideals, mi

corresponding to Z
(i)
0 and mx corresponding to {x}, in the semi-local ring OZ,Z0 are

coprime, the map OZ,Z0 →
∏

i∈I OZ,Z0/mi ×OZ,Z0/mx is surjective. Therefore, we
can find a lift u ∈ KM

1 k(z), z being the generic point of Z, of ū which specialises to

ū in K({x})× and to 1 in K(Z
(i)
0 )× for all i ∈ I.

The main result we are going to prove is the following:

Proposition 2.2. The restriction map res : A2(X,−1)→ A1(X0, 0) is surjective.

It will be implied by the following key lemma:

Key lemma 2.3. Let ξ ∈ ker[Z1(X)/n
res→ Z0(X0)/n], then there is a

ξ′ ∈ ker[C2(X,−1)
res→ C1(X0, 0)]

with ∂(ξ′) = ξ.

Proof of Proposition 2.2. Let ξ0 ∈ ker[C1(X0, 0)
∂→ C0(X0, 0)]. By Lemma 2.1 there

is a ξ ∈ C2(X,−1) with res(ξ) = ξ0. As res(∂(ξ)) = ∂(res(ξ)) = 0, Key lemma 2.3
tells us that there is a ξ′ ∈ ker(C2(X,−1)→ C1(X0, 0)) with ∂ξ′ = ∂ξ. As res
is a homomorphism, it follows that ξ0 = res(ξ − ξ′) and ∂(ξ − ξ′) = 0. Hence
res : Z2(X,−1)→ Z1(X0, 0) is surjective and the commutativity of ∂ and res implies
that res : A2(X,−1)→ A1(X0, 0) is surjective.

Proof of Key lemma 2.3. We start with the case of relative dimension d = 1, i.e. X
is a smooth fibered surface over OK , and consider the following diagram:

C2(X,−1) = K(X)∗ ⊗ Z/nZ res //

∂

��

C1(X0, 0) = K(X0)
∗ ⊗ Z/nZ

∂

��
Z1(X)/n

res // Z0(X0)/n

where we write Zi(X)/n for Ci(X,−i) which are just the cycles of dimension imodulo
n. The restriction map in the lowest degree res : Z1(X)/n→ Z0(X0)/n agrees with
the specialisation map on cycles defined by Fulton in [Fu, Rem. 2.3] since X0 is a prin-

ciple Cartier divisor and ∂xy ({−π}) = ordO{x},y
(π). Modifying ξ ∈ ker[Z1(X)/n

res→
Z0(X0)/n] by elements equivalent to zero in Z1(X)/n, we may represent it by an
element x ∈ ker[Z1(X)→ Z0(X0)].

We consider the following short exact sequence of sheaves:

0→ O∗
X;X0

→M∗
X;X0

→ Div(X,X0)→ 0, (1)
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where M∗
X;X0

(resp. O∗
X;X0

) denotes the sheaf of invertible meromorphic functions
(resp. invertible regular functions) relative to SpecOK and congruent to 1 in the
generic point of X0, i.e. in OX,µ, where µ is the generic point of X0, and Div(X,X0)
is the sheaf associated to M∗

X;X0
/O∗

X;X0
. In other words, Div(X,X0)(U) is the set

of relative Cartier divisors on U ⊂ X which specialise to zero in X0. For the concept
of relative meromorphic functions and divisors see [EGA4, Sec. 20, 21.15].

We want to show that (Div(X,X0)(X)/M∗
X;X0

(X))/n = 0.

Claim 2.4. Pic(X,X0) ∼= Div(X,X0)(X)/M∗
X;X0

(X).

Short exact sequence (1) induces the following exact sequence:

O∗
X;X0

(X)→M∗
X;X0

(X)→ Div(X,X0)(X)→ Pic(X,X0)→ H1(X,M∗
X;X0

).

Now Pic(X,X0) = H1(X,O∗
X;X0

) can also be described as the group of isomorphism
classes of pairs (L, ψ) of an invertible sheaf L with a trivialisation ψ : L|X0

∼= OX0

(see e.g. [SV, Lem. 2.1]).
The following argument shows that the map Div(X,X0)(X)→ Pic(X,X0) is sur-

jective: Let (L, ψ) ∈ Pic(X,X0). The trivialisation ψ gives an isomorphism ψ : L ⊗OX

OX0

∼=−→ OX0 and by localising an isomorphism ψµ : Lµ ⊗OX,µ
OX0,µ

∼=−→ OX0,µ, where
µ again denotes the generic point of X0. Let s denote a lift of ψ−1

µ (1) under the sur-
jective map Lµ ↠ Lµ ⊗OX,µ

OX0,µ. Then s is a meromorphic section of L and the
divisor div(s) ∈ Div(X,X0)(X) maps to (L, ψ).

It follows that Pic(X,X0) ∼= Div(X,X0)(X)/M∗
X;X0

(X).

Claim 2.5. Pic(X,X0) is uniquely n-divisible.

Since

Pic(X,X0) ∼= lim←−
m

Pic(Xm, X0) ∼= lim←−
m

H1(X0, 1 + πOXm),

where the first isomorphism follows from [EGA3, Thm. 5.1.4], it suffices to show that
H1(X0, 1 + πOXm) is uniquely n-divisible. This can be seen as follows:

1 + πOXm
⊃ 1 + π2OXm

⊃ · · · ⊃ 1

defines a finite filtration on the sheaf 1 + πOXm with the following graded pieces:
grn = (π)n/(π)n+1 ∼= OX0 ⊗ (π)n. We use this filtration to define a filtration on
H1(X0, 1 + πOXm) by

Fn := Im(H1(X0, 1 + πnOXm)→ H1(X0, 1 + πOXm)).

The unique divisibility of H1(X0, 1 + πOXm) follows now by descending induction
from the exact sequence

0→ 1 + πn+1OXm → 1 + πnOXm → grn → 0,

the unique divisibility of Hi(X0,OX0 ⊗ πn) as a finitely generated k-module and the
five-lemma.

It follows that Pic(X,X0)/n ∼= (Div(X,X0)(X)/M∗
X;X0

(X))/n = 0 and therefore

that the class of x in Z1(X)/n, i.e. ξ, is in the image of ker[C2(X,−1)
res→ C1(X0, 0)]

under ∂.
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We now do the induction step for X of arbitrary relative dimension d > 1 over
SpecOK , assuming that the key lemma holds for relative dimension d− 1, using an
idea of Bloch put forward in [EWB, App.]. By a standard norm argument we may
from now on assume that k is infinite.

As above we may represent ξ by an element of ker[Z1(X)→ Z0(X0)] and as in
the proof of [KEW, Prop. 4.1] we may assume that ξ is represented by a cycle of
the form [x]− r[y] ∈ ker[Z1(X)→ Z0(X0)] with x and y integral and such that y is
regular and has intersection number 1 with X0. Let us recall the argument: First note
that one can lift a reduced closed point ofX0 to an integral horizontal one-cycle having
intersection number 1 with X0. Now if ξ =

∑s
i=1 ni[xi] ∈ ker[Z1(X)→ Z0(X0)], then

we lift (xi ∩X0)red to a one-cycle yi of the aforementioned type. Furthermore, we
choose the same yi for all the xi intersecting X0 in the same closed point. Let ri be
the intersection multiplicity of xi with X0. Then also

∑s
i=1 niri[yi] ∈ ker[Z1(X)→

Z0(X0)] and it suffices to show the statement for each xi − riyi separately, i.e. the
claim follows.

Let x̃ be the normalisation of x. Since OK is excellent, x̃ is finite over x. This
implies that there is an imbedding x̃ ↪→ X ′ := X ×SpecOK

PN such that the following
diagram commutes:

x̃ //

��

X ′ = X ×SpecOK
PN

prX

��
x //

��

X

��
SpecOK

= // SpecOK

Let [x̃ ∩X ′
0] = r′[z̄] for z̄ an integral zero-dimensional subscheme of X ′

0. We take a
regular lift z of z̄ in y × PN ⊂ X ′ which has intersection number 1 with X ′

0 and get
that [x̃]− r′[z] ∈ ker[Z1(X

′)→ Z0(X
′
0)] and prX∗([x̃]− r′[z]) = [x]− r[y] = ξ.

We now use a Bertini theorem by Altman and Kleiman to prove Key lemma 2.3
by an induction on the relative dimension of X over OK .

Lemma 2.6. There exist smooth closed subschemes Z,Z ′ ⊂ X ′ with the following
properties:

1. Z has fiber dimension one, Z ′ has fiber dimension d− 1.

2. Z contains x̃, Z ′ contains z.

3. The intersection Z ∩ Z ′ ∩X ′
0 consist of reduced points.

Proof. First note that for a sheaf of ideals J ⊂ OX′ we have the following short exact
sequence:

0→ J ⊗OX′ OX′(−[X ′
0])(M)→ J ⊗OX′ OX′(M)→ J ⊗OX′ i∗OX′

0
(M)→ 0

for i : X ′
0 ↪→ X ′ and M ∈ Z. For M ≫ 0 Serre vanishing implies that H1(X ′,F(M))

is 0 for F coherent and therefore that the map

Γ(J ⊗OX′ OX′(M)) ↠ Γ(J ⊗OX′ OX′
0
(M))

is surjective. This allows us to lift the sections on the right defining subvarieties of X ′
0

to sections of a twisted sheaf of ideals on X ′.
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Let Jx̃ be the sheaf of ideals defining x̃ and Jz be the sheaf of ideals defining z. Let
p ∈ x̃ ∩X ′

0 (q ∈ z ∩X ′
0). Then dimX0(p) = d ⩾ 2 and since x̃ (resp. z) is regular, we

have that ex̃∩X′
0
(p) ⩽ ex̃(p) = dimk(p)(Ω

1
x̃(p)) = 1 < 2, where ex̃(p) is the embedding

dimension of x̃ at p and analogously for q. Therefore by [AK, Thm. 7], we can find
sections in σ̄1, . . . , σ̄d+N−1 ∈ Jx̃|X′

0
(M) (resp. σ̄′ ∈ Jx̃|X′

0
(M)) defining smooth sub-

schemes containing p (resp. q) that intersect transversally. Let σ1, . . . , σd+N−1 (resp.
σ′) be liftings under the surjections Γ(Jx̃ ⊗OX′ OX′(M)) ↠ Γ(Jx̃ ⊗OX′ OX′

0
(M))

and Γ(Jz ⊗OX′ OX′(M)) ↠ Γ(Jz ⊗OX′ OX′
0
(M)). Then the complete intersections

Z := V (σ1, . . . , σd+N−1) and Z
′ := V (σ′) have the desired properties.

Using these subschemes, we can now do the induction step and finish the proof
of the key lemma. Since Z ∩ Z ′ ∩X ′

0 consists of reduced points, the component z′

of Z ∩ Z ′ that contains z ∩X ′
0 has intersection number 1 with X ′

0 and is a regular
curve as it is regular over the closed point of SpecOK . Now since Z ′ is of relative
dimension d− 1 and z and z′ both lie in Z ′ and satisfy res([z′]− [z]) = 0, we get by
the induction assumption that there is a ξ with support on Z ′ restricting to 1 and
with ∂(ξ) = [z′]− [z].

By the relative dimension one case proved in the beginning we get that for x̃, z′ ⊂ Z
and [x̃]− r′[z′], which also restricts to 0, there is a ξ′ with support on Z such that
res(ξ′) = 0 and ∂(ξ′) = [x̃]− r′[z′]. It follows that res(ξ′ + rξ) = 1 and ∂(ξ′ + rξ) =
[x̃]− r′[z].

By the commutativity of the following diagram we get the result.

C2(X
′,−1)

��

{{

// C1(X
′
0, 0)

��

||

Z1(X
′)/n

{{

// Z0(X
′
0)/n

||

C2(X,−1)

��

// C1(X0, 0)

��
Z1(X)/n // Z0(X0)/n

The commutativity of the diagram follows from [Ro, Sec. 4] since all the maps in
question are defined in terms of the ‘four basic maps’ which are compatible.

Corollary 2.7. The restriction map

resCH : CHd(X, 1)Λ → CHd(X0, 1)Λ

defined in the introduction is surjective.

Proof. We first show that the homology of the sequence

⊕
x∈X

(d−2)
0

KM
2 k(x)→ ⊕

x∈X
(d−1)
0

KM
1 k(x)→ ⊕

x∈X
(d)
0
KM

0 k(x)

is isomorphic to CHd(X0, 1) which implies that A1(X0, 0) ∼= CHd(X0, 1)Λ. This fol-
lows from the spectral sequence

Ep,q
1 = ⊕

x∈X
(p)
0

CHr−p(Spec k(x),−p− q)⇒ CHr(X0,−p− q) (2)

(see [Bl, Sec. 10]) for r = d = dimX0, the fact that CHr(k(x), r) ∼= KM
r (k(x)) and

the vanishing of CHr(Spec k(x), j) for r > j as well as the vanishing of CH0(k(x), 1).
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Using a limit argument and the localization sequence for schemes over a regular
noetherian base B of dimension one constructed in [Le1], we also get the existence
of spectral sequence (2) for X/OK . Now for the same reasons as above this spectral
sequence implies that the homology of

⊕x∈X(d−2)KM
2 k(x)→ ⊕x∈X(d−1)KM

1 k(x)→ ⊕x∈X(d)KM
0 k(x)

is isomorphic to CHd(X, 1) which implies that A2(X,−1) ∼= CHd(X, 1)Λ.
The result now follows from Proposition 2.2 and the compatibility of res and

resCH.

Remark 2.8. The isomorphism A1(X0, 0) ∼= CHd(X0, 1)Λ also follows from the iso-
morphism CHp(X0, 1) ∼= Hp−1(X0,Kp) for p ⩾ 0 and Kp the K-theory sheaf (see e.g.
[M, Cor. 5.3]).

3. Remarks on the injectivity of res

In this section we prove the injectivity of the restriction map for d = 2 in our case
and remark on implications of the conjectured injectivity.

Conjecture 3.1. The map res : A2(X,−1)→ A1(X0, 0) is injective.

Proposition 3.2. Conjecture 3.1 holds for X/OK of relative dimension 2.

Proof. Let Λ := Z/n and Λ(q) := µ⊗q
n . We use the coniveau spectral sequence

Ep,q
1 (X,Λ(c)) =

⨿
x∈Xp

Hp+q
x (X,Λ(c))⇒ Hp+q

ét (X,Λ(c)),

where H∗
x is étale cohomology with support in x.

Cohomological purity (resp. absolute purity) gives isomorphisms Hp+q
x (X,Λ(c)) ∼=

Hq−p(k(x),Λ(c− p)) which lets us write the above spectral sequence in the following
form:

Ep,q
1 (X,Λ(c)) =

⨿
x∈Xp

Hq−p(k(x),Λ(c− p))⇒ Hp+q
ét (X,Λ(c)).

For more details see, for example, [CHK]. Writing out this spectral sequence for X
andX0 respectively and using the norm residue isomorphismKM

n (k)/m ∼= Hn(k, µ⊗n
m )

for n ⩽ 2 (see [MS]), we get injective edge morphisms A2(X,−1) ↪→ H3
ét(X,Λ(2)) and

A1(X0,−1) ↪→ H3
ét(X0,Λ(2)) for dimensional reasons. The restriction map induces a

map between these spectral sequences and therefore a commutative diagram

A2(X,−1) //
� _

��

A1(X0, 0)� _

��
H3

ét(X,Λ(2))
∼= // H3

ét(X0,Λ(2))

whose lower horizontal morphism is an isomorphism by proper base change. It follows
that A2(X,−1)→ A1(X0, 0) is injective.

Remark 3.3. The injectivity of res would have implications for a finiteness conjec-
ture on the n-torsion of CH0(XK) for XK a smooth projective scheme over a p-adic



ON A BASE CHANGE CONJECTURE FOR HIGHER ZERO-CYCLES 67

field with good reduction (see, for example, [Co]). More precisely, using the coniveau
spectral sequence, we can see that the group A1(XK , 0) is isomorphic to
H2d−1

Zar (XK ,Z/n(d)) and therefore surjects onto CH0(XK)[n]. Furthermore it fits into
the exact sequence (see [Ro, Sec. 5])

A2(X,−1)→ A1(XK , 0)→ A1(X0,−1) ∼= CH1(X0)/n.

Now Conjecture 3.1 implies that there is a sequence of injections

A2(X,−1) ↪→ A1(X0, 0) ↪→ H2d−1
ét (X0,Z/n(d))

into the finite group H2d−1
ét (X0,Z/n(d)). Note that the second injection follows from

the Kato conjectures. More precisely, there is an exact sequence

KH3(X0,Z/nZ)→ A1(X0, 0) ∼= CHd(X0, 1)Λ → H2d−1
ét (X0,Z/n(d))

(see [JS, Lem. 6.2]) and the Kato homology group KH3(X0,Z/nZ) is zero due to the
Kato conjectures (see [KS]). Therefore the finiteness of CH0(XK)[n] would depend
on the finiteness of CH1(X0)/n.

In the case of relative dimension 2 the finiteness of CH1(X0)/n ∼= Pic(X0)/n can be
shown using the injection Pic(X0)/n ↪→ H2

ét(X0, µn) and the finiteness of H2
ét(X0, µn)

(see e.g. [Mi, VI.2.8]). Therefore Proposition 3.2 implies in particular the finiteness
of CH0(XK)[n] for XK a smooth projective surface over a p-adic field with good
reduction. The finiteness of CH0(XK)[n] is known more generally for any smooth
surface XK over a p-adic field K by [CSS1] (see also [CSS2]).

Remark 3.4. In the light of Remark 3.3 and the base change conjecture for higher
zero-cycles stated in the introduction one might ask if

CHd(XK , i)[n]

is finite for all i ⩾ 0 for smooth schemes over p-adic fields.

References

[AK] A. Altman, S. Kleiman, Bertini theorems for hypersurface sections
containing a subscheme, Comm. Algebra 7 (1979), 775–790.

[ADIKMP] P.L. del Angel, C. Doran, J. Iyer, M. Kerr, J.D. Lewis, S. Mueller-
Stach, D. Patel, Specialization of cycles and the K-theory elevator,
preprint.

[Bl] S. Bloch, Algebraic cycles and higher K-theory, Adv. in Math. 61
(1986), 267–304.

[Co] J.-L. Colliot-Thélène, L’arithmétique du groupe de Chow des zero-
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