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ON CONSTRUCTING WEIGHT STRUCTURES AND EXTENDING
THEM TO IDEMPOTENT COMPLETIONS
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(communicated by Charles A. Weibel)

Abstract
In this paper we describe a new method for constructing a

weight structure w on a triangulated category C.
For a given C and w it allows us to give a fairly comprehen-

sive (and new) description of triangulated categories containing
C as a dense subcategory (i.e., of subcategories of the idempo-
tent completion of C that contain C; we call them idempotent
extensions of C) to which w extends. In particular, any bounded
above or below w extends to any idempotent extension of C;
however, we illustrate by an example that w does not extend to
the idempotent completion of C in general.

We also describe an application of our results to certain tri-
angulated categories of (relative) motives.

Introduction

In this article we consider the following questions.

Question. When can a weight structure w for a triangulated category C be extended
to its idempotent completion Kar(C)?

More generally, when can w be extended to some full triangulated subcategory C ′

of Kar(C) containing C (we will call a category C ′ satisfying these conditions an
idempotent extension of C)?

We provide the following answer.

Theorem 0.1. 1. If an extension of w to an idempotent extension of C exists,
then it is unique.

2. If w is bounded above or bounded below, the extension exists.

3. More generally, if an idempotent extension admits an extended weight structure,
then it is contained in the category Karwmax(C) ⊂ Kar(C); see Definition 2.2.1
for the notation. Even though Karwmax(C) may contain sub-idempotent exten-
sions not admitting extended weight structures, Karwmax(C) itself admits an
extended weight structure.
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4. There exist triangulated categories C admitting weight structures such that
Karwmax(C) ̸∼= Kar(C) (and so, w does not extend to Kar(C)).

5. There exists an idempotent extension of C (for any (C,w)) such that w extends
to it and the heart of this extended weight structure is idempotent complete.1

This is a very significant improvement of the previous state of the art [Bon10,
Proposition 5.2.2].

Moreover, our current arguments are substantially easier than the ones used for
the proof of loc. cit. The existence of weight structures statements in the theorem (in
its parts 2, 3, and 5) are proved using a somewhat technical (yet not really difficult)
Theorem 2.1.1. As another consequence of the latter theorem we obtain the following
result (see §4 for the definitions, references, and a generalization).

Corollary 0.2. Let B be a Noetherian separated excellent scheme of finite Krull
dimension and of exponential characteristic p; let R be a commutative unital Z[ 1p ]-
algebra. Choose some generalized dimension function δ on separated schemes of finite
type over B (see Definition 4.2.1 below); let j ∈ Z. Then the Chow weight structure
(as constructed in [BoI15]; see Proposition 4.1.3(1) below) on the motivic category
DM c

cdh(B,R) (defined in [CiD15]) restricts to DM c
cdh(B,R)δ⩽j.

We also prove that any triangulated category C that is densely generated (see §1.1)
by its negative (see Definition 1.2.2(6)) additive subcategory B admits a bounded
weight structure whose heart is the retraction-closure of B in C. This statement gen-
eralizes the widely cited Theorem 4.3.2(II) of [Bon10]. Note that the latter theorem
(along with the aforementioned Proposition 5.2.2 of ibid.) has found several appli-
cations to motives, to representation theory (see [PoS16, KoY14, KaY14];2 cf.
also [Pla11, KeN13]); it was also applied to the mixed Hodge theory in [Vol13]
and to the study of the stable homotopy category of (topological) spectra in [Bon10,
§4.6] (along with [Bon15b, §2.4]).3

Let us now describe the contents of the paper.
In §1 we introduce some basic (mostly, categorical) notation and recall some of the

theory of weight structures. None of the statements in this section are really new.
In §2 we prove the aforementioned general existence of weight structures results.
In §3 we demonstrate by simple examples that an (unbounded) weight structure

w for C does not necessarily extend to all idempotent extensions of C. Moreover,
the category Kar(C) does not have to be equivalent to its (essentially) maximal
triangulated subcategory Karwmax(C) to which w extends,4 and there also can exist
idempotent extensions of C inside Karwmax(C) such that w does not extend to them.

In §4 we describe some (“relative”) motivic applications of Theorem 2.1.1 and
prove (a generalization of) Corollary 0.2.

1This result is important for [Bon15b] (and so, to the study of the conservativity of the so-
called weight complex functor). Actually, this application was the main reason to study idempotent
extensions distinct from idempotent completions.
2In these papers weight structures were called co-t-structures following [Pau08].
3The authors also plan to generalize the corresponding “topological” results to categories of equiv-
ariant spectra.
4In contrast, for a triangulated category D with a t-structure, the t-structure extends to the idem-
potent completion Kar(D) (see Theorem 15 of [ChT08]).
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1. Preliminaries

In §1.1 we introduce some notation and conventions, and recall some simple results
on triangulated categories. In §1.2 we recall some basics on weight structures.

1.1. Some terminology and results on triangulated categories
For categories C and D we write D ⊂ C if D is a full subcategory of C.
For a category C and X,Y ∈ ObjC we will write C(X,Y ) for the set of C-

morphisms from X into Y . We will say that X is a retract of Y if idX can be
factored through Y . Note that if C is triangulated then X is a retract of Y if and
only if X is a direct summand.

For a category C the symbol Cop will denote its opposite category.
For a subcategory D ⊂ C we will say that D is retraction-closed in C if D contains

all retracts of its objects in C. We will call the smallest retraction-closed subcategory
KarC(D) of C containing D (here “Kar” is for Karoubi) the retraction-closure of D
in C. The class ObjKarC(D) will also be (abusively) called the retraction-closure
of D; so we will say that this class is retraction-closed in C.

The idempotent completion Kar(B) (no lower index) of an additive category B
is the category of “formal images” of idempotents in B (so, B is embedded into a
category that is idempotent complete, i.e., any idempotent endomorphism splits in
it).

The symbols C and C ′ will always denote some triangulated categories. We will
use the term exact functor for a functor of triangulated categories (i.e., for a functor
that preserves the structures of triangulated categories).

A classD⊂ ObjC will be called extension-closed if 0 ∈ D and for any distinguished
triangle A → B → C in C we have the following implication: A,C ∈ D =⇒ B ∈ D.
In particular, any extension-closed D is strict in C (i.e., contains all objects of C
isomorphic to its elements).

The full subcategory of C whose object class is the smallest extension-closed
D ⊂ ObjC containing a given D′ ⊂ ObjC will be called the extension-closure of D′.
Sometimes we will also abusively use this term for D itself.

Below we will need the following simple fact.

Lemma 1.1.1. Let M,N ∈ ObjC, n ⩾ 0, and assume that N is a retract of M . Then
N belongs to the extension-closure of {N [2n]} ∪ {M [i], 0 ⩽ i < 2n}.

Proof. Assume that M ∼= N
⊕

P . Then the assertion is given by the (split)
distinguished triangles M [2j] → N [2j] → P [2j + 1] and M [2j + 1] → P [2j + 1] →
N [2j + 2] for 0 ⩽ j < n.

The smallest extension-closed D ⊂ C that is also closed with respect to retracts
and contains a given D′ ⊂ ObjC will be called the envelope of D′.

We will say that a class D ⊂ ObjC strongly generates a subcategory D ⊂ C and
write D = ⟨D⟩C if D is the smallest full strict triangulated subcategory of C such that
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D ⊂ ObjD. Certainly, this condition is equivalent to D being the extension-closure
of ∪j∈ZD[j].

We will say that D ⊂ ObjC densely generates a subcategory D ⊂ C whenever
D is smallest retraction-closed triangulated subcategory of C such that D ⊂ ObjD.
Certainly, this condition is equivalent to ObjD being the envelope of ∪j∈ZD[j].

We will say (following §1.4 of [Tho97]) that a full strict triangulated subcategory
C of a triangulated C ′ is dense in C ′ if KarC′ C = C. Recall that (according to The-
orem 1.5 of [BaS01]) the category Kar(C) can be naturally endowed with the struc-
ture of a triangulated category so that the natural embedding functor C → Kar(C) is
exact. Hence if C is a dense subcategory of C ′ then there exists a fully faithful exact
functor C ′ → Kar(C). Moreover, the subcategory C1 of C that is strongly generated
by some class D ⊂ ObjC is dense in the subcategory C2 of C densely generated by D.

For X,Y ∈ ObjC we will write X ⊥ Y if C(X,Y ) = {0}. For D,E ⊂ ObjC we
write D ⊥ E if X ⊥ Y for all X ∈ D, Y ∈ E. For D ⊂ ObjC the symbol D⊥ will be
used to denote the class

{Y ∈ ObjC : X ⊥ Y ∀X ∈ D}.

Dually, ⊥D is the class {Y ∈ ObjC : Y ⊥ X ∀X ∈ D}.
In this paper all complexes will be cohomological, i.e., the degree of all differentials

is +1. We will write K(B) for the homotopy category of complexes over an additive
category B. Its full subcategory of bounded complexes will be denoted by Kb(B).

Since triangulated categories of complexes give examples of weight structures
important for the current paper, we recall the following simple statements.

Proposition 1.1.2. 1. The full subcategories of K(B) corresponding to classes of
B-complexes concentrated in degrees ⩾ 0 and ⩽ 0 are idempotent complete.

2. The classes of bounded B-complexes that are homotopy equivalent to complexes
concentrated in degrees ⩾ 0 and ⩽ 0 are retraction-closed in Kb(B).

Proof. 1. This is a part of [Sch11, Theorem 3.1] (cf. also Remark 2.1.4(2) of [BoS17]
one should take F (−) =

⨿
i⩾0 −[2i] in it).

2. See Remark 6.2.2(1) of [Bon10].

1.2. Weight structures: basics
Let us recall the definition of the main notion of this paper.

Definition 1.2.1. A couple of subclasses Cw⩽0 and Cw⩾0 ⊂ ObjC will be said to
define a weight structure w for a triangulated category C if they satisfy the following
conditions:

(i) Cw⩽0 and Cw⩾0 are retraction-closed in C (i.e., contain all C-retracts of their
elements).

(ii) Semi-invariance with respect to translations:
Cw⩽0 ⊂ Cw⩽0[1] and Cw⩾0[1] ⊂ Cw⩾0.
(iii) Orthogonality:
Cw⩽0 ⊥ Cw⩾0[1].
(iv) Weight decompositions:
For any M ∈ ObjC there exists a distinguished triangle X → M → Y→X[1] such

that X ∈ Cw⩽0 and Y ∈ Cw⩾0[1].
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We will also need the following definitions.

Definition 1.2.2. Let i, j ∈ Z.
1. The full subcategory Hw ⊂ C whose object class is Cw=0 = Cw⩾0 ∩ Cw⩽0 is

called the heart of w.

2. Cw⩾i (resp. Cw⩽i, Cw=i) will denote Cw⩾0[i] (resp. Cw⩽0[i], Cw=0[i]).

3. C [i,j] denotes Cw⩾i ∩ Cw⩽j ; so, this class equals {0} if i > j.

Cb ⊂ C will be the category whose object class is ∪i,j∈ZC [i,j].

4. We will say that (C,w) is bounded if Cb = C (i.e., if ∪i∈ZCw⩽i = ObjC =
∪i∈ZCw⩾i).
Respectively, we will call ∪i∈ZCw⩽i (resp. ∪i∈ZCw⩾i) the class of w-bounded
above (resp. w-bounded below) objects; we will say that w is bounded above
(resp. bounded below) if all the objects of C satisfy this property.

5. Let C and C ′ be triangulated categories endowed with weight structures w and
w′, respectively; let F : C → C ′ be an exact functor.
F is said to be weight-exact (with respect to (w,w′)) if it maps Cw⩽0 into C ′

w′⩽0

and Cw⩾0 into C ′
w′⩾0.

6. Let B be a full additive subcategory of a triangulated category C.
We will say that B is negative (in C) if ObjB ⊥ (∪i>0 Obj(B[i])).

Remark 1.2.3. 1. A simple (though rather important) example of a weight structure
comes from the stupid filtration on K(B) (or on Kb(B), K−(B), or K+(B)) for an
arbitrary additive category B. In either of these categories we take Cw⩽0 (resp. Cw⩾0)
to be the class of objects in C that are homotopy equivalent to those complexes in C ⊂
K(B) that are concentrated in degrees ⩾ 0 (resp. ⩽ 0). Then weight decompositions
of objects are given by stupid filtrations of complexes, and the only non-trivial axiom
to check is that the classes Cw⩽0 and Cw⩾0 are retraction-closed in C; this fact is
immediate from Proposition 1.1.2.

The heart of this stupid weight structure is the retraction closure of B in C.
2. A weight decomposition (of any M ∈ ObjC) is (almost) never canonical.
Still for m ∈ Z some choice of a weight decomposition of M [−m] shifted by [m] is

often needed (though in the current paper we will only be concerned with m equal
to 0 or −1). So we choose a distinguished triangle

w⩽mM → M → w⩾m+1M,

with some w⩾m+1M ∈ Cw⩾m+1 and w⩽mM ∈ Cw⩽m. We will use this notation below
(though w⩾m+1M and w⩽mM are not canonically determined by M).

3. In the current paper we use the “homological convention” for weight structures;
it was previously used in [Wil09, Heb11, Bon14, Bon15a, BoI15, Bon15b], and
in [Bon16], whereas in [Bon10] the “cohomological convention” was used. In the
latter convention the roles of Cw⩽0 and Cw⩾0 are interchanged, i.e., one considers

Cw⩽0 = Cw⩾0 and Cw⩾0 = Cw⩽0. So, a complex X ∈ ObjK(A) whose only non-zero
term is the fifth one (i.e., X5 ̸= 0) has weight −5 in the homological convention, and
has weight 5 in the cohomological convention. Thus the conventions differ by “signs
of weights”; respectively, K(A)[i,j] is the retraction closure in K(A) of the class of
complexes concentrated in degrees [−j,−i].
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4. Actually, in [Bon10] both “halves” of w were required to be additive. Yet
the proof of Proposition 1.3.3(1,2) of ibid. (that is essentially Proposition 1.2.4(2)
below) did not use this additional assumption, whereas that statement easily yields
the additivity of Cw⩽0 and Cw⩾0 (since it implies Proposition 1.2.4(3)). Moreover,
Definition 2.4 of [Pau08] (where weight structures were defined independently from
[Bon10]) did not require Cw⩽0 and Cw⩾0 to be additive also.

5. The orthogonality axiom in Definition 1.2.1 immediately yields that Hw is
negative in C. A certain converse to this statement is given by Corollary 2.1.2 below.

Let us recall some basic properties of weight structures. Starting from this moment
we will assume that C is (a triangulated category) endowed with a (fixed) weight
structure w.

Proposition 1.2.4. Let M,M ′ ∈ ObjC, g ∈ C(M,M ′).

1. The axiomatics of weight structures is self-dual, i.e., for D = Cop (so ObjD =
ObjC) there exists the (opposite) weight structure wop for which Dwop⩽0 =
Cw⩾0 and Dwop⩾0 = Cw⩽0.

2. Cw⩾0 = (Cw⩽−1)
⊥ and Cw⩽0 = ⊥Cw⩾1.

3. Cw⩽0, Cw⩾0, and Cw=0 are (additive and) extension-closed.

4. The full subcategory C+ (resp. C−) of C whose objects are the w-bounded below
(resp. bounded above) objects of C is a retraction-closed triangulated subcategory
of C.

5. Cb is the extension-closure of ∪i∈ZCw=i in C.

6. If w is bounded then Cw⩽0 (resp. Cw⩾0) is the extension-closure of ∪i⩽0Cw=i

(resp. of ∪i⩾0Cw=i) in C.

7. Let v be another weight structure for C; assume Cw⩽0 ⊂ Cv⩽0 and Cw⩾0 ⊂
Cv⩾0. Then w = v (i.e., the inclusions are equalities).

Proof. All of these assertions were proved in [Bon10] (pay attention to Remark
1.2.3(3) above!).

Remark 1.2.5. For C endowed with a weight structure w and a triangulated sub-
category D ⊂ C we will say that w restricts to D whenever the couple (Cw⩽0 ∩
ObjD,Cw⩾0 ∩ObjD) gives a weight structure wD for D. Part 2 of our proposition
easily implies that w restricts to D if and only if the embedding D → C is weight-
exact with respect to a certain weight structure for D; if this weight structure exists
then it is equal to wD as described by the previous sentence.

2. Main results

This is the central section of the paper.

In §2.1 we prove our (new) general results on the existence of weight structures. In
§2.2 we apply these statements to extending weight structures to idempotent exten-
sions of C.
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2.1. The general existence of weight structures results

Theorem 2.1.1. Let C ′ be a triangulated category. Assume given two classes C ′
−

and C ′
+ of objects of C ′ satisfying the axioms (ii) [Translation Semi-Invariance] and

(iii) [Orthogonality] of Definition 1.2.1 (for Cw⩽0 and Cw⩾0, respectively). Let us

call a C ′-distinguished triangle X → M → Y [1] a pre-weight decomposition of M if
X belongs to the envelope C ′

w′⩽0 of C ′
− and Y belongs to the envelope C ′

w′⩾0 of C ′
+.

I. Then the following statements are valid:
1. The class of objects possessing pre-weight decompositions is extension-closed (in

C ′). Moreover, if M and N ∈ ObjC ′ possess pre-weight decompositions then any C ′-
extension of M by N possesses a pre-weight decomposition whose components are
some extensions of the corresponding components of pre-weight decompositions of M
and of N , respectively (cf. [Bon10, Lemma 1.5.4]).

2. C ′
w′⩽0 ⊂ C ′

w′⩽0[1] and C ′
w′⩾0[1] ⊂ C ′

w′⩾0.

3. C ′
w′⩽0 ⊥ C ′

w′⩾0[1].

4. Let C ′ be a subclass of ObjC ′ such that C ′ is the extension-closure of C ′ and any
element of C ′ possesses a pre-weight decomposition. Then the couple (C ′

w′⩽0, C
′
w′⩾0)

gives a weight structure w′ for C ′.
5. Assume (in addition to the assumptions of the previous assertion) that C ′ =

∪i∈ZC[i] for some C ⊂ ObjC ′ and that for any c ∈ C there exists ic ∈ Z such that
c[ic] ∈ C ′

w′⩾0 (resp. c[ic] ∈ C ′
w′⩽0). Then this w′ is bounded below (resp. bounded

above).
II. Suppose that a class C ′′ ⊂ ObjC ′ satisfies the following conditions: C ′ is densely

generated by C ′′ (see §1.1), pre-weight decompositions exist for c[i] whenever c ∈ C ′′

and i ∈ Z, and for any c ∈ C ′′ there exists ic ∈ Z such that c[ic] ∈ C ′
w′⩽0 (cf. assertion

I.5).5

Then the couple (C ′
w′⩽0, C

′
w′⩾0) is a weight structure for C ′ in this case also; this

weight structure w′ is bounded below.
Moreover, w′ is also bounded above if we assume in addition that for any c ∈ C ′′

there exists i′c ∈ Z such that c[i′c] ∈ C ′
w′⩽0.

III. Assume that N ∈ C ′
w′⩽0 is a retract of some M ∈ ObjC ′ and let X → M →

Y [1] → X[1] be a pre-weight decomposition (of M). Then the following statements
are valid:

1. N is a retract of X.
2. Suppose that N ′ ∈ C ′

w′⩾0 is a retract of some M ′ ∈ ObjC ′ and let A′ → M ′[1] →
B′[1] → A′[1] be a pre-weight decomposition of M ′[1]. Then N ′ is a retract of B′.

3. Let A → X[1] → B[1] → A[1] be a pre-weight decomposition of X[1]. Then B ∈
C ′

w′⩽0 ∩ C ′
w′⩾0. Moreover, if N also belongs to C ′

w′⩾0 then N is a retract of B.

Proof. I.1. See Remark 1.5.5(1) of [Bon10].
2, 3. Obvious from the corresponding properties of (C ′

−, C
′
+).

4. We use an easy and more or less standard argument; it was first applied to
weight structures in the proof of [Bon10, Theorem 4.3.2(II.1)].

Certainly C ′
w′⩽0 and C ′

w′⩾0 are retraction-closed in C ′. Axioms (ii) and (iii) of

weight structures are fulfilled for (C ′
w′⩽0, C

′
w′⩾0) according to the previous assertions.

5See the proof of Corollary 4.2.4 below for an example of C′
−, C′

+, and C′′ (for a certain C′).



44 MIKHAIL V. BONDARKO and VLADIMIR A. SOSNILO

We only have to verify the existence of weight decompositions (for all objects of
C ′). This statement is an immediate consequence of assertion I.1.

5. Immediate from Proposition 1.2.4(4).
II. We take C ′ = ∪i∈ZC

′′[i] ∪ C ′
w⩾0[1]. Certainly, all elements of C ′ possess pre-

weight decompositions. According to assertion I.4, the couple (C ′
w′⩽0, C

′
w′⩾0) gives a

weight structure for C ′ if C ′ equals the extension-closure of C ′; so we verify the latter
fact.

Denote by C ′′ the triangulated subcategory of C ′ strongly generated by C ′′.
According to assertion I.1, any c ∈ ObjC ′′ possesses a pre-weight decomposition, and
there (also) exists ic ∈ Z such that c[ic] ∈ C ′

w′⩽0. Now, any object of C ′ is a retract of

an object of C ′′; hence it also satisfies the latter property. Applying Lemma 1.1.1 we
easily deduce that C ′ equals the envelope of ObjC ′′ ∪ C ′

w⩾0[1]; hence it also equals

the C ′-envelope of C ′.
Lastly, the boundedness below of w′ along with the “moreover” part of the assertion

follows immediately from Proposition 1.2.4(4).
III.1. Recall that N being a retract of M means that idN can be factored through

M . Next, we have N ⊥ Y [1]; hence the corresponding morphism from N into M can
be factored through X.

2. This assertion can be easily seen to be the categorical dual of the previous one
(cf. Proposition 1.2.4(1)).

3. Recall that C ′
w′⩽0 is extension-closed in C ′. Hence the distinguished triangle

X → B → A gives B ∈ C ′
w′⩽0. Next, B ∈ C ′

w′⩾0 by the definition of a pre-weight
decomposition.

Lastly, N is a retract of X according to assertion III.1; hence the “moreover” part
of this assertion follows immediately from the previous assertion.

Now we describe an easy application of our theorem (along with previous results).

Corollary 2.1.2. Let B be an (additive) negative subcategory (see Definition
1.2.2(6)) of a triangulated category C ′ such that C ′ is densely generated by ObjB.

Then the following statements are valid:
1. The envelopes C ′

w′⩽0 and C ′
w′⩾0 of the classes ∪i⩽0 ObjB[i] and ∪i⩾0 ObjB[i],

respectively, give a weight structure on C ′.
2. The heart of this weight structure w′ equals KarC′(B).
3. ObjKarC′(B) strongly generates C ′. Moreover, C ′

w′⩽0 (resp. C ′
w′⩾0) is the

extension-closure of ∪i⩽0 ObjKarC′(B)[i] (resp. of ∪i⩾0 ObjKarC′(B)[i]).
4. w′ is the only weight structure for C ′ whose heart contains B.

Proof. 1. It suffices to note that the classes C ′
− = ∪i⩽0 ObjB[i], C ′

+ = ∪i⩾0 ObjB[i],
and C ′′ = ObjB satisfy the conditions of Theorem 2.1.1(II). Indeed, C ′

− ⊥ C ′
+[1] since

B is negative, and all the other conditions are obvious.
2. Denote by C the triangulated subcategory of C ′ that is strongly generated by B.

Then part I.4 of our theorem immediately implies that w′ restricts to C (in the sense
of Remark 1.2.5). Denote the corresponding weight structure on C by w.6

Now, applying (the “moreover” statement in) part I.1 of our theorem to (C,w) we
obtain that for any M ∈ ObjC there exists a choice of X = w⩽0M belonging to the

6Its existence is precisely Theorem 4.3.2(II.1) of [Bon10].
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extension-closure of ∪i⩽0 Obj(B[i]). Applying the same part of the theorem to X we
obtain the existence of a choice of w⩾0X belonging to ObjB.

Next, any object N of C ′ is a retract of some object M of C. Taking an arbitrary
N ∈ C ′

w′=0 and considering the corresponding w⩾0X as described above we obtain
that N is a retract of w⩾0X ∈ ObjB according to part III.3 of the theorem. Hence
Hw′ equals KarC′(B).

3. Since w′ is bounded, C ′
w′=0 strongly generates C ′ according to Proposition

1.2.4(5). Combining this with assertion 2 we obtain the first part of our assertion,
whereas Proposition 1.2.4(6) gives the second part.

4. Let v be a weight structure for C ′ whose heartHv contains B. ThenHv certainly
contains KarC′(B). Now, the classes C ′

v⩽0 and C ′
v⩾0 contain the extension-closures

of ∪i⩽0(C
′
v=0[i]) and of ∪i⩾0(C

′
v=0[i]), respectively. Applying the previous assertion

we obtain C ′
w′⩽0 ⊂ C ′

v⩽0 and C ′
w′⩾0 ⊂ Cv⩾0. Thus our uniqueness assertion follows

from Proposition 1.2.4(7).

Remark 2.1.3. For C ′ as above being idempotent complete our corollary gives Propo-
sition 5.2.2 of [Bon10]. So we obtain a new proof of loc. cit. that only relies on §1 of
ibid. (and so, it is somewhat easier than the original one).

The general case of Corollary 2.1.2 is completely new.

2.2. On extending weight structures to idempotent extensions

Definition 2.2.1. 1. We will call a triangulated category C ′ an idempotent extension
of C if it contains C and there exists a fully faithful exact functor C ′ → Kar(C).7

2. We will say that a weight structure w extends to an idempotent extension C ′

of C whenever there exists a weight structure w′ for C ′ such that the embedding
C → C ′ is weight-exact. In this case we will call w′ an extension of w.

3. We will say that a triangulated category C ′ endowed with a weight structure w′

is weight-Karoubian if Hw′ is idempotent complete.
4. We will call a weight-Karoubian category (C ′, w′) a weight-Karoubian extension

of (C,w) if C ′ is an idempotent extension of C and w′ is an extension of w to C ′.
5. The (triangulated) category ⟨ObjC ∪ObjKar(Hw)⟩Kar(C) will be denoted by

Karwmin(C), and the category ⟨ObjKar(C−) ∪ObjKar(C+)⟩Kar(C) (see Proposition
1.2.4(4)) will be denoted by Karwmax(C).

Now we study those idempotent extensions of C such that w extends to them.

Theorem 2.2.2. Let C ′ be an idempotent extension of C.
I.1. Assume that w′ is an extension of w to C ′. Then C ′

w⩽0 (resp. C ′
w′⩾0, C

′
w′=0)

is the retraction-closure of Cw⩽0 (resp. Cw⩾0, Cw=0) in C ′.

2. An extension of w to C ′ exists if and only if C ′ is strongly generated by ObjC ∪
C1 ∪ C2 for some class C1 of retracts of objects of C+ and some class C2 of C ′-retracts
of objects of C−.

II.1. An extension w′ of w is bounded below (resp. above) if and only if w is.
2. Assume that w is either bounded below or bounded above. Then w extends to

any idempotent extension of C.

7The latter assumption is certainly equivalent to any of the following conditions: any object of C′

is a retract of some object of C; C is dense (see §1.1) in C′.
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III.1. The categories Karwmin(C) ⊂ Karwmax(C) when equipped with the unique exten-
sions of w to them are weight-Karoubian extensions of C.

2. If C ′ is a weight-Karoubian extension of C then Hw′ is equivalent to the idem-
potent completion of Hw.

3. If w extends to C ′ then there exists a fully faithful exact functor from C ′ into
Karwmax(C); this functor is weight-exact with respect to the corresponding (extended)
weight structures.

4. If C ′ is weight-Karoubian then there exists a fully faithful weight-exact functor
Karwmin(C) → C ′.

Proof. I.1. Since C ′
w′⩽0, C

′
w′⩾0, and C ′

w′=0 are retraction-closed (in C ′), these classes
do contain the retraction closures in question.

The proof of the converse implication is similar to the proof of Corollary 2.1.2(2).
Let an element N of C ′

w′⩾0 (resp. of C ′
w′⩽0, C

′
w′=0) be a retract of M ∈ ObjC. Note

now that any w-decomposition of an object of C is also a w′-decomposition. Applying
Theorem 2.1.1(III) we obtain that N is a retract of any choice of X = w⩽0M (resp.
of w⩾0M , w⩾0X), whereas these three objects belong to Cw⩽0, Cw⩾0, and Cw=0,
respectively.

2. Assume that an extension of w to C ′ exists. Then any object M of C ′ possesses
a weight decomposition with respect to w′. Applying assertion I.1, we obtain that this
triangle gives a presentation of M as an extension of an object M1 of KarC′(C+) by

an object M2 of KarC′(C−). Thus one can take C1 to be the class of all M1 obtained
this way, and C2 to be the class of all M2.

To verify the converse implication, for C ′ being strongly generated by ObjC ∪
C1 ∪ C2 we should check that the C ′-retraction closures C ′

w⩾0 and C ′
w′⩽0 of the

classes Cw⩾0 and Cw⩽0, respectively, give a weight structure for C ′. For this purpose

we apply Theorem 2.1.1(I.4) for C ′
− = C ′

w′⩽0 and C ′
+ = C ′

w′⩽0. According to this
theorem, it suffices to verify that any element of ObjC ∪ (∪i∈ZC1[i]) ∪ (∪i∈ZC2[i])
possesses a pre-weight decomposition. Certainly, any object of C possesses a pre-
weight decomposition inside C. Hence it suffices to verify the existence of pre-weight
decompositions for elements of ∪i∈ZC1[i] (since dualization would yield the same
assertion for ∪i∈ZC2[i]; cf. Proposition 1.2.4(1)).

Thus it suffices to verify the following: for any j ∈ Z and all pairs (M,N), where
M ∈ Cw⩾j and N is a C ′-retract of M , there exists a pre-weight decomposition of
N . This fact is certainly true if j > 0. In the general case we choose n ⩾ 0 such that
j + 2n > 0 and recall thatN belongs to the extension-closure of {N [2n]} ∪ {M [i], 0 ⩽
i < 2n} (see Lemma 1.1.1). It remains to apply Theorem 2.1.1(I.1).

II.1. Certainly, if all objects of C ′ are w′-bounded below (resp. above) then all
objects of C are w′-bounded below (resp. above); hence they are w-bounded below
(resp. above) also.

The converse implication is immediate from assertion I.1.
2. Immediate from assertion I.2.
III.1. The weight structure w extends both to Karwmin(C) and to Karwmax(C) accord-

ing to assertion I.2; these categories are weight-Karoubian according to assertion I.1.
Lastly, the existence of weight decompositions in C certainly implies that Karwmin(C)⊂
Karwmax(C).

2. Immediate from assertion I.1.
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3. The existence of a fully faithful exact functor F : C ′ → Karwmax(C) is immediate
from assertion I.2. The functor F is weight-exact according to assertion I.1.

4. Certainly, if a weight-Karoubian extension C ′ of C is a strict subcategory of
Kar(C) then it contains KarKar(C) Hw; this implies the existence of a full embedding
Karwmin(C) → C ′. This functor is weight-exact according to assertion I.1.

Remark 2.2.3. 1. In particular, there exists at most one extension of w to C ′ (so,
it may be called “the” extension of w to C ′); its heart can be embedded into the
idempotent completion of Hw.

2. So, any (C,w) possesses a weight-Karoubian extension. This fact is important
for [Bon15b].

3. Certainly, any idempotent complete triangulated category with a weight struc-
ture is weight-Karoubian, but the converse fails (for unbounded weight structures).
In particular, the categories Karwmin(C) and Karwmax(C) can be distinct from Kar(C)
(see the example in §3.1).

4. Obviously, part I.2 of the theorem can be reformulated as follows: w extends to
C ′ if and only if C ′ is strongly generated by ObjKarC′ C− ∪ObjKarC′ C+.

Assume now that the category C is essentially small; then its idempotent com-
pletion D = Kar(C) is also essentially small. Next, the triangulated categories C ′,
⟨ObjC ∪ObjKarC′ C−⟩C′ , and ⟨ObjC ∪ObjKarC′ C+⟩C′ may be assumed to be
dense in D for any idempotent extension C ′ of C.

Now recall that the Grothendieck group K0(D) is defined as follows: it is the
abelian group whose generators are isomorphism classes of objects of D, and such
that for any D-distinguished triangle X → Y → Z the relation [Y ] = [X] + [Z] on
the classes is fulfilled. Furthermore, sending a subgroup H of K0(D) into the full
subcategory of D whose objects are characterized by the condition [M ] ∈ H one
obtains a one-to-one correspondence between the set of subgroups of K0(D) and the
set of (all) dense subcategories of D; see Theorem 2.1 of [Tho97].

Thus the subcategories ⟨ObjC ∪ObjKar(C−)⟩D and ⟨ObjC ∪ObjKar(C+)⟩D of
D correspond to certain subgroups K− and K+ of K0(D), and one can easily check
that w extends to C ′ if and only if for the group G = Im(K0(C

′) → K0(D)) we have
(G ∩K−) + (G ∩K+) = G.

The authors suspect that this criterion is rather difficult to apply in general.
Note however, that these Grothendieck group observations have inspired the example
described in §3.2 below.

3. Some (counter)examples

By Theorem 2.2.2(II.2), any bounded above (or bounded below) weight structure
w on C extends to any idempotent extension of C. In this section we demonstrate
that this statement (along with two of its natural implications) fails for a general w.

3.1. The category Karwmax(C) may be strictly smaller than Kar(C)

Certainly, if C+ and C− are idempotent complete then C ∼= Karwmax(C). Now we
construct an example of this situation with C not being idempotent complete; it
certainly follows that Karwmax(C) is not equivalent to Kar(C) in this situation.
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Consider the unbounded homotopy category C = K(A) (note that K(A) does not
have infinite coproducts if A does not, and in particular, is not necessarily idempo-
tent complete), where A is an additive category with K−1(A) ̸= 0; here we endow A
with the trivial structure of an exact category and define the groups K∗(A) using
Definition 8 of [Sch06]. Note that for this purpose one can take A to be the cate-
gory of finitely generated projective modules over a (commutative) ring R such that
K−1(R) ̸= 0 (see Theorem 5 of ibid.); rings satisfying this condition are well known
to exist.

Indeed, one can take the affine nodal curve C = Spec(R) for R = Q[x, y]/(y2 −
x3 − x2). Then the (cartesian) abstract blow-up square (see [CHSW08, §0])

Spec(Q[t]/(t− 1)(t+ 1))

��

// Spec(Q[x, y]/(x, y))

��
Spec(Q[t])

x 7→t2−1,y 7→t3−t // C

yields the exact sequence of cdh-cohomology

0 → H0
cdh(C,Z) → H0

cdh(pt,Z)⊕H0
cdh(A1,Z) → H0

cdh(pt ⊔ pt,Z) → H1
cdh(C,Z) → 0.

Note that there is an isomorphism of functors H0
cdh(−,Z) ∼= Zcomp(−) where comp(X)

is the set of connected components of a k-variety X. Hence by [CHSW08, Theo-
rem 0.2] we have K−1(R) = K−1(C) ∼= H1

cdh(C,Z) ∼= Z.
Next, Corollary 6 of [Sch06] implies that in this case K(A) is not idempotent

complete.8

Now take w to be the stupid weight structure for C (see Remark 1.2.3(1)). Then
the categories C+ and C− are idempotent complete according to Proposition 1.1.2(1).
Thus Karwmax(C) is equivalent to C, whereas Kar(C) is not, and we obtain the desired
example.

Lastly, applying Theorem 2.2.2(III.3) we conclude that a weight structure on a
triangulated category does not necessarily extend to its idempotent completion.

This example also demonstrates that there exist rather “natural” triangulated
categories that are not idempotent complete.

3.2. An idempotent extension inside Karwmax(C) such that w does not
extend to it

Now we construct an example of (C,w) and an idempotent extension C ′ of C
such that C ∼= Karwmin C ⊂ C ′ ⊂ Karwmax(C) = Kar(C), but w does not extend to C ′.
Certainly, w will not be bounded either above or below (cf. Theorem 2.2.2(II.2)).

Let L be an arbitrary (fixed) field; denote by L- vect the category of finite dimen-
sional L-vector spaces.

We start from describing our candidate for Kar(C). It will be a certain full trian-
gulated subcategory D of K(L- vect);9 yet it will be convenient for us not to assume

8Theorem 5, Corollary 6, and Definition 8 in the published version of this paper correspond to
Theorem 7.1, Corollary 8.2, and Definition 5.4 in the K-theory archives preprint version, respectively.
9The idea is to choose a subcategory D of K(L- vect) with “large” K0(D); see Remark 2.2.3(4).
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that D is strict in K(L- vect), i.e., D will not be closed with respect to K(L- vect)-
isomorphisms. We will write M = (M i) if the L-vector spaces M i are the terms of
the complex M .

The objects of D will be those M = (M i) ∈ ObjK(L- vect) such that the L-
dimensions of M i are bounded (by some constant depending on M). Obviously, D is
a triangulated subcategory of K(L- vect), and it contains the “standard” cone of any
D-morphism (see [GeM03, §III.2(b)]; recall that D is not strict in K(L- vect)). Note
also that any M ∈ ObjD is isomorphic to M ′ ∈ ObjD such that all the differentials
of M ′ are zero. In particular, it follows that D is idempotent complete. Moreover, the
stupid weight structure for K(L- vect) certainly restricts to D.

For any M ∈ ObjD consider the following sequences:

ajM =
∑

0⩽i⩽j

(−1)i dimL(M
i) and bjM =

∑
0⩽i⩽j

(−1)i dimL(M
−i),

where j runs through non-negative integers. Note that if M is a zero object of D then
these sequences are bounded.

This fact implies the following one: if for M ∈ ObjD there exists a real num-
ber αM such that the sequence ajM − αM · j, j ∈ N, is bounded (resp. βM ∈ R such

that bjM − βM · j is bounded) then for any M ′ ∈ ObjD that is isomorphic to M the

sequence ajM ′ − αM · j (resp. bjM ′ − βM · j) is bounded also. Thus any real number
γ defines (obviously) non-empty subsets D+

γ and D−
γ of ObjD characterized by the

conditions αM = γ and βM = γ, respectively, and these sets are closed with respect
to D-isomorphisms.

Obviously, D+
γ [1] = D+

−γ and D−
γ [1] = D−

−γ for any γ ∈ R. Moreover, if M1 →
M2 → M3 → M1[1] is a distinguished triangle in D then M3 is isomorphic to
Cone(M1 → M2) ∈ ObjD; hence if there exist γ1, γ2 ∈ R such that Mi ∈ D+

γi
(resp.

Mi ∈ D−
γi
) for i = 1, 2 then M3 belongs to D+

γ2−γ1
(resp. to D−

γ2−γ1
). Furthermore,

all bounded above (resp. bounded below) objects of D belong to D+
0 (resp. to D−

0 ).

Now we are able to describe C and C ′. We take C to be the subcategory of D
whose object set is ∪(l,m)∈Z×Z(D

+
l ∩D−

m). The observations above imply that C is a
triangulated subcategory ofD; moreover, the stupid weight structure forK(L- vect) ⊃
D obviously restricts to C. Since C contains Kb(L- vect), the heart of this restricted
weight structure w is equivalent to L- vect; hence C ∼= Karwmin C. Next, any object M
of D is a retract of an object of C (easy; recall that we can assume the differentials
of M to be zero); hence Karwmax(C) = Kar(C) ∼= D.

Thus it remains to specify a triangulated subcategory C ′ of D that contains C
and such that the stupid weight structure does not restrict to C ′. For this purpose it
obviously suffices to take the object set of C ′ to be equal to ∪(l,r)∈R×Z(D

+
l ∩D−

l+r).

4. A survey of motivic applications of Theorem 2.1.1

Now we describe the application of Theorem 2.1.1(II) to various “relative motivic”
categories.
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4.1. On relative motives and Chow weight structures for them:
a reminder

We consider some tensor triangulated categories of motives over schemes that are
separated and of finite type over a (fixed) base scheme B. We always assume that
B is Noetherian separated excellent of finite Krull dimension. We will call schemes
that are separated and of finite type over B just B-schemes, and a B-morphism is a
morphism between B-schemes (over B).10

Our main examples will be certain full subcategories of triangulated categories of
the following types.

Example 4.1.1. 1. Beilinson motives. For any B satisfying the aforementioned
conditions one can consider the categories of Beilinson motives over B-schemes.
Recall that Beilinson motives is a version of (generalized) Voevodsky motives
with rational coefficients; they were one of the main subjects of [CiD12] (that
heavily relied on [Ayo07]).

2. cdh-motives. If we assume in addition that B is a scheme of characteristic p for
p being a prime or zero, then for any Z[ 1p ]-algebra R (we set Z[ 1p ] = Z if p = 0)

one can also consider R-linear cdh-motives DMcdh(−, R) over B-schemes (this
is another version of Voevodsky motives that was studied in detail in [CiD15]).

3. K-motives. For any B and Y being a B-scheme one can consider the Λ-linear
version of the homotopy category of modules over the symmetric motivic ring
spectrum KGl′Y , where S is a set of primes containing all primes non-invertible
on B and Λ = Z[S−1]. This means the following: as in §13.3 of [CiD12] (that
relied on [RSO10]) one should consider a certain Quillen model for the motivic
stable homotopy category SH(Y ), take the category of strict left modules over
KGl′Y (that is a certain highly structured ring spectrum weakly homotopy equiv-
alent to the Voevodsky’s K-theory spectrum KGlY ), and “invert the primes in
S” using the corresponding well-known method (see [Kel12, §A.2], [Lev13,
Appendix B], or [BoL16, Proposition 1.1.1]). We will (following ibid.) use the
notation DK(Y ) for this category and call its objects K-motives.

4. Cobordism-motives. For any B as in example 2, a B-scheme Y, any set of primes
S containing p, and Λ = Z[S−1] one can similarly take the Λ-linear version of
the category DMGl(Y ) of strict left modules over the Voevodsky’s spectrum
MGlY (cf. [BoD17, Example 1.3.1(3)]).

Actually, any couple (B,D) that satisfies a certain (rather long) list of properties
is fine for our purposes; cf. [Bon16, §3].

For Y being aB-scheme the full tensor triangulated subcategory of compact objects
in D(Y ) (for D(−) being any of the four aforementioned motivic categories) will be
denoted by Dc(Y ) and its tensor unit will be denoted by 111Y .

All these categories can be endowed with the corresponding Chow weight struc-
tures. We will now present one of many equivalent definitions. To do this we need to
first discuss the six Ayoub-Grothendieck operations.

10So, for a B-scheme Y a B-morphism into Y is just a separated morphism of finite type.
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For any B-morphism (of B-schemes) f : X → Y there are two pairs of adjoint
functors

f! : Dc(X) ⇆ Dc(Y ) : f ! and f∗ : Dc(Y ) ⇆ Dc(X) : f∗.

Next, for any Y we have a natural splitting g∗(111P1(Y )) ∼= 111Y
⊕

111Y ⟨−1⟩ induced by
the zero section Y → P1(Y ), where g : P1(Y ) → Y is the canonical projection, and
111Y ⟨−1⟩ is ⊗-invertible (this splitting can be used as the definition of 111Y ⟨−1⟩). For
any n ∈ Z we will write −⟨n⟩ for the tensor product by the −nth power of 111Y ⟨−1⟩ in
Dc(Y ) ⊂ D(Y ); this is a certain version of Tate twist that is denoted by −(n)[2n] in
the Voevodsky’s convention introduced in [Voe00].

Definition 4.1.2. Let Y be a B-scheme.
1. We will write Dc(Y )wChow(Y )⩾0 (resp. Dc(Y )wChow(Y )⩽0) for the envelope of

{f∗(111P )⟨n⟩[i]} (resp. of {f!(111P )⟨n⟩[−i]}) for f : P → Y running through all B-mor-
phisms with regular domain, n ∈ Z, and i ⩾ 0.

2. The objects of the category

ChowD(Y ) = KarDc(Y )({f∗(111P )⟨n⟩ : f : P → Y proper, P regular, n ∈ Z})

will be called D-Chow motives over Y .

Proposition 4.1.3. Let Y be a B-scheme.
1. Then the couple (Dc(Y )wChow(Y )⩽0,Dc(Y )wChow(Y )⩾0) gives a bounded weight

structure wChow(Y ) on Dc(Y ) for D being any of the examples in 4.1.1.11

2. We have ChowD(Y ) ⊂ HwChow(Y ).

Proof. 1. This fact was established in [BoI15] for the example 2. Moreover, the
methods of ibid. can actually be used in all the four examples; see §2 of [BoL16],
Remark 3.4.3 of [Bon16], and Remark 4.1.4(2–5) below for more detail.

2. Recall that f∗ = f! if f is proper; the assertion follows immediately.

Remark 4.1.4. 1. If Y is the spectrum of a perfect field k and Dc(Y ) = DMgm(k)
is the category of geometric Voevodsky motives (with coefficients in any ring), f is
a smooth morphism, then the object f!f

!(111Y ) is isomorphic to the Voevodsky motif
of the variety P (over k); moreover, f!f

!(111Y ) ∼= f!(111X)⟨d⟩ whenever all connected
components of X are of dimension d. Hence our definition of Chow motives over
Y generalizes the description of the subcategory of Chow motives inside DMgm(k)
(see [Voe00]); this is why the weight structures considered in this section are called
Chow weight structures.

2. Now we discuss the proof of Proposition 4.1.3(1); this will also explain why one
needs Theorem 2.1.1 to prove Corollary 4.2.4 below.

The classes Dc(Y )wChow(Y )⩽0 and Dc(Y )wChow(Y )⩾0 are retraction-closed
by construction; the inclusions Dc(Y )wChow(Y )⩽0 ⊂ Dc(Y )wChow(Y )⩽0[1] and
Dc(Y )wChow(Y )⩾0[1] ⊂ Dc(Y )wChow(Y )⩾0 are automatic also. So we obtain axioms (i)
and (ii) of Definition 1.2.1 for wChow(Y ).

The proof of the orthogonality axiom (iii) is more complicated; yet the arguments
used for the proof of [BoI15, Lemma 1.3.3] are easily seen to work fine in all of our
examples 4.1.1.

11Moreover, this “compact version” of wChow(Y ) naturally extends to an unbounded weight struc-
ture on the whole D(Y ); see [BoL16, §2.3] and [Bon16, Proposition 1.2.4].
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3. However, checking the existence of wChow(Y )-weight decompositions for objects
of Dc(Y ) is somewhat more complicated. The authors know three methods for proving
this statement.

Firstly, one can try to verify that D-Chow motives strongly generate Dc(Y ).
Since the category ChowD(Y ) is negative (in Dc(Y ) ⊂ D(Y ); this fact follows from
the orthogonality axiom for wChow(Y ) that we have just discussed), this assertion
would yield the remaining axiom (iv) (see Corollary 2.1.2). One would also obtain
Chow(Y ) = HwChow(Y ).

Yet to prove that Chow(Y ) strongly generates Dc(Y ) one requires some state-
ment on the “abundance” of proper Y -schemes that are regular; thus it is a certain
resolution of singularities problem. In the case where Y = Spec k, k a characteris-
tic 0 field, it was proved in [Voe00, Corollary 3.5.5] (using Hironaka’s resolution
of singularities) that the subcategory of Dc(Y ) strongly generated by the motives
of smooth projective k-varieties also contains the motives of all smooth varieties.
Thus the category ⟨ObjChow(k)⟩DMgm(k) is dense in DMgm(k). Next, a formal
argument (essentially using weight decompositions) was applied in [Bon09] to prove
that ⟨ObjChow(k)⟩DMgm(k) actually equals DMgm(k). This method of proof can be
applied to all of our four examples of Dc(Y ) (see Example 4.1.1) whenever Y is of
characteristic 0 (i.e., if it is a SpecQ-scheme); see Theorem 2.4.3 of [BoD17]. For
other Y one needs certain alterations (de Jong’s ones for rational coefficients and
Gabber’s ones in the general case of our Example 4.1.1(2–4)) and somewhat more
complicated “formal” arguments. So, if the coefficient ring is not a Q-algebra then our
current level of knowledge enables us to prove that Dc(Y ) is strongly generated by
D-Chow motives over Y only under the assumption that Y is essentially of finite type
over a field; see [Bon11] (cf. also [Kel12, Proposition 5.5.3]) for the case Y = Spec k
and [BoI15, §2.3] for the general case. For rational coefficients substantially weaker
assumptions on Y are sufficient (cf. [BoD17, §2.4]); the corresponding method of
constructing wChow was applied in [Heb11]. It appears that these assumptions on Y
(and B) are also sufficient to ensure (more or less) “easily” that the weight structure
wChow(Y ) restricts (see Remark 1.2.5) to the levels of the dimension filtration for
Dc(Y ) (that we will describe below; see Corollary 4.2.4).12 However, this argument
was never written down in the general case (yet cf. [BoD17, §2.4] for a somewhat
related reasoning).

4. One more possible definition of wChow(Y ) for the Example 4.1.1(1) (for a “gen-
eral” Y ) was given in [Bon14, §2.3]; it used stratifications of Y (and it was essen-
tially proven in [BoI15, Theorem 2.2.1] that this definition is equivalent to our Def-
inition 4.1.2(1)). Then one can proceed to prove the existence of weight decompo-
sitions using the gluing of weight structures argument described in [Bon14, §2.3]
and [BoI15, §2.1] (this is the second method of checking axiom (iv) of Defini-
tion 1.2.1 for wChow(Y )).13 Yet this formal argument does not yield much information

12Thus one does not need Theorem 2.1.1 to prove Corollary 4.2.4 in these cases.
13Recall that for Z being any closed subscheme of Y and U = Y \ Z the categories D(Y ), D(Z),
and D(U) along with the natural functors connecting them yield a gluing datum in the sense of
§1.4.3 of [BBD82]; cf. Proposition 1.1.2(10) of [Bon14]. Furthermore, weight structures can be
“glued” in this setting according to Theorem 8.2.3 of [Bon10]. One also needs certain “continuity”
arguments to “glue wChow(Y ) from the Chow weight structures over points of Y ”.
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on “weights” and weight decompositions of (“concrete”) objects of Dc(Y ). In partic-
ular, if one considers (following [Voe00]; see below) a certain dimension filtration for
Dc(Y ) then the gluing argument does not imply that an object belonging to some
level of this filtration possesses a weight decomposition inside this level.14

5. To overcome the latter difficulty the third method of studying wChow(Y )-decom-
positions (that is more “explicit” than the second one) was developed in [BoL16, §3].
It uses quite complicated “geometric” arguments (and relies on [ILO14, Theorems
IX.1.1, II.4.3.2]); it is closely related to Gabber’s arguments applied in [ILO14, §XIII]
to the study of constructibility for complexes of étale sheaves.15 Unfortunately, the
corresponding Theorem 3.4.2 of [BoL16] is too complicated to be formulated here. So
(following [Bon16, §3.4]) we formulate some of its consequences instead (in Proposi-
tion 4.2.3).

6. Recall that the behaviour of the categories Dc(−) and of the “weights” of their
objects is quite similar to that of mixed Ql-complexes of étale sheaves and their
weights as studied in [BBD82].16

In particular, if X is regular then the object 111X is a Chow motif over X; so it
belongs to Dc(X)wChow=0 (cf. Theorem 5.3.8 of [BBD82]). Next, for any B-morphism
f the functors f∗ and f! possess certain weight-exactness properties with respect to
the corresponding Chow weight structures (see Theorem 2.2.1 of [BoI15]; cf. the
‘stabilities’ 5.1.14 of [BBD82]). Moreover, the functor −⟨n⟩ is weight-exact for any
Y and any n ∈ Z.

These observations “motivate” the description of wChow given in Definition 4.1.2.

4.2. On dimension filtrations and restrictions of wChow(−) to its levels
Now it is the time to define the dimension filtration for Dc(Y ). One of the problems

here is that to obtain a “satisfactory” filtration we need some sort of dimension
function δ on B-schemes; the reason is that we want some notion of dimension that
would satisfy the following property: if U is open dense in X then its “dimension”
δ(U) should be equal to δ(X). So we give the following definition following [Bon16,
Definition 3.1.1].

Definition 4.2.1. 1. Let δB be a function from the set B of Zariski points of B
into integers17 that satisfies the following condition: if b ∈ B and a point b′ ∈ B
belongs to its closure then δ(b) ⩾ δ(b′) + codimb b

′.
Then for y being a generic point of a B-scheme Y (so, y is the spectrum of a
field; certainly, we can assume Y to be irreducible here) and b ∈ B being the

14The problem is that some of the functors in the aforementioned gluing datum do not respect this
filtration.
15Recall also that a reasoning very similar to Gabber’s one was applied to the study of constructibility
of motives in [CiD12, §4.2].
16This observation was treated in §3 of [Bon14]. Note however, that “weights” for mixed complexes
of étale sheaves do not correspond to any weight structures; see Remark 2.5.2 of [Bon15a]. On the
other hand, we have the (self-dual) perverse t-structure p1/2 for mixed complexes of sheaves that
“respects weights”, whereas the existence of its motivic analogue (essentially suggested by Beilinson;
cf. [Bon15a]) is an extremely hard conjecture (that may be true only for motives with coefficients
in a Q-algebra).
17In some of the formulations of [Bon16] it is convenient to assume that the values of δB are
non-negative; yet this additional restriction is easily seen to be irrelevant for the purposes of the
current paper.
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image of y in B we set δ(y) = δB(y) = δB(b) + tr. deg. k(y)/k(b), where k(y)
and k(b) are the corresponding fields.

2. For Y being a B-scheme we define δ(Y ) as the maximum over points of Y of
δ(y).

Remark 4.2.2. In the case where B is a Jacobson scheme all of whose components are
equicodimensional one may take δ to be equal to the Krull dimension function.18 More
generally, one may take δ to be a “true” dimension function as described in [ILO14,
§XIV.2] (cf. §1.1 of [BoD17]).

Now we fix δB and the corresponding δ (till the end of the paper). The correspond-
ing dimension filtration on Dc(Y ) is defined as follows: for any j ∈ Z we take Dc

δ⩽j(Y )
to be the subcategory of Dc(Y ) that is densely generated (see §1.1) by {f!(111P )⟨δ(P )⟩}
for f : P → Y running through all B-morphisms with δ(P ) ⩽ j and regular P .

We recall the main ingredient of the proof of Theorem 3.4.2(I) of [Bon16].

Proposition 4.2.3. For any j ∈ Z the category Dc
δ⩽j(Y ) contains the objects

f∗(111P )⟨δ(P )⟩ and f!(111P )⟨δ(P )⟩ whenever f : P → Y is a B-morphism with δ(P ) ⩽ j.
Moreover, if f0 : P0 → Y is a B-morphism, δ(P0) = j, then for the object M =

f0!(111P0)⟨j⟩ and any m ∈ Z there exists a distinguished triangle L → M → R → L[1]
with R (resp. L) belonging to the envelope of u∗(111U )⟨δ(U)⟩[m+ i+ 1] (resp. of
u!(111U )⟨δ(U)⟩[m− i]) for u : U → Y running through all B-morphisms with regular
domain and δ(U) ⩽ j, and i ⩾ 0.

Proof. This is an easy consequence of [BoL16, Theorem 3.4.2]; see also Proposi-
tion 3.4.1(2) of [Bon16] for some more detail.

Let us now prove the main statement of this section (that generalizes Corollary 0.2).
We take Y = B in it since this does not affect the generality of the statement.

Corollary 4.2.4. Assume that the couple (B,D) is of any of the types 1–4 described
in Example 4.1.1.

Consider the Chow weight structure wChow(B) on Dc(B) (see Proposition 4.1.3(1)).
Then wChow(B) restricts (see Remark 1.2.5) to Dc

δ⩽j(B).

Proof. Given the results mentioned above, this is an easy application of
Theorem 2.1.1(II).

We set C ′ = Dc
δ⩽m(B) and take C ′

− = {u!(111U )⟨δ(U)⟩[−s] } and C ′
+ =

{u∗(111U )⟨δ(U)⟩[s]} for u : U → B running through B-morphisms with regular domain
and δ(U) ⩽ j, and s ⩾ 0. These two classes obviously satisfy axiom (ii) of Defini-
tion 1.2.1. Moreover, we have C ′

− ⊥ C ′
+[1] since C ′

− ⊂ Dc(B)wChow(B)⩽0 and C ′
+ ⊂

Dc(B)wChow(B)⩾0.
We take C ′′ to be the set of all f!(111P )⟨δ(P )⟩ for P being regular, δ(P ) ⩽ j, and f

being a B-morphism. Then C ′′ densely generates C ′ and we have C ′′ ⊂ C−. Accord-
ing to Proposition 4.2.3, any element of C ′′[i] for i ∈ Z possesses a pre-weight decom-
position with respect to the corresponding C ′

w′⩽0 and C ′
w′⩾0. Thus we can apply

Theorem 2.1.1(II) to conclude the proof.

18In particular, this statement may be applied in the case where B is of finite type over SpecZ or
over Spec k; yet the latter case is not really interesting to us due to the reasons described above.
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Remark 4.2.5. 1. It follows that wChow(B) also restricts to the union ∪j∈ZDc
δ⩽j(B)

that will be denoted by Dc
eff (B). The latter fact is certainly (formally) weaker than

the existence of all the restrictions to Dc
δ⩽j(B); yet the authors do not know any

proof of it that does not rely on [BoL16].
2. We will call Dc

eff (B) the subcategory of δ-effective objects of Dc(B). Note here
that Dc

eff (B) is the subcategory of Dc(B) that is densely generated by {f!(111P )⟨δ(P )⟩}
for f : P → B running through all B-morphisms.

This definition originates from Definition 2.2.1 of [BoD17]; it is also closely related
to an earlier definition from [Pel13, §2].

Recall also that the definition of Voevodsky motives (in [Voe00]) actually “started
from” certain effective motivic categories. It seems that this construction method
does not work so nicely for general (“relative”) motivic categories; still our definition
of Dc

eff (B) ⊂ Dc(B) essentially generalizes the one of ibid. according to [BoD17,
Example 2.3.13(1)].

3. Certainly, having the category Dc
eff (B) one can also consider the slice filtra-

tion of Dc(B) by the subcategories Dc
eff (B)⟨i⟩ (= Dc

eff (B)(i)) for i running through
integers. Note also that the union ∪i∈ZDc

eff (B)⟨i⟩ equals Dc(B). Moreover, Theorem
3.4.2(II) (along with Remark 3.4.3(1)) of [Bon16] easily implies that the intersection
of Dc

eff (B)⟨i⟩ for all i ∈ Z is zero for D being as in Example 4.1.1(1, 2, or 4). On
the other hand, K-motives are periodic, i.e., 111B⟨i⟩ ∼= 111B for any i ∈ Z (and so, all
DKc

eff (B)⟨i⟩ are equal to DKc(B)).
4. These two types of filtrations for the “whole” D(−) were the main subject

of [Bon16, §3].
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