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THE HOMOTOPY TYPES OF U(n)-GAUGE GROUPS
OVER S4 AND CP 2

TYRONE CUTLER

(communicated by Donald M. Davis)

Abstract
The homotopy types of U(n)-gauge groups over the two most

fundamental 4-manifolds S4 and CP 2 are studied. We give
homotopy decompositions of the U(n)-gauge groups over S4 in
terms of certain SU(n)- and PU(n)-gauge groups and use these
decompositions to enumerate the homotopy types of the U(2)-,
U(3)- and U(5)-gauge groups. Over CP 2 we provide bounding
results on the number of homotopy types of U(n)-gauge groups,
provide p-local decompositions and give homotopy decomposi-
tions of certain U(n)-gauge groups in terms of certain SU(n)-
gauge groups. Applications are then given to count the number
of homotopy types of U(2)-gauge groups over CP 2.

1. Introduction

If G is a topological group and P
p−→ X is a principal G-bundle over a space X then

a natural object to study is the gauge group G(P ) of the bundle. This is the group,
under composition, of G-equivariant maps P → P that cover the identity on X.

The study of the homotopy types of certain gauge groups has been a topic of much
recent interest and perhaps the most interesting examples arise when G is a subgroup
of one of the linear groups. In particular, the cases G = U(n) with X a Riemann
surface and G = SU(n) with X a simply connected 4-manifold have applications
to geometry [6, 7] and physics [4, 18]. Sutherland [19] and Theriault [20, 23] have
contributed valuable work towards the understanding of the first problem, whilst
Kono [15] and Theriault [21, 22] have provided limited solutions of the second for
certain small values of n.

In each of the cases cited the number of isomorphism classes of principal G-bundles
over X is countably infinite, yet in a key paper Crabb and Sutherland [5] have demon-
strated that if G is a compact, connected Lie group and X is a finite complex, then
the number of distinct homotopy types amongst all the gauge groups of principal
G-bundles over X is finite. Consideration of the problem, on the other hand, shows
that this number seems to be proportional to the topological and geometric complex-
ity of the space X and the group G. As cells are added to X and the rank of G grows,
the number of distinct homotopy types of these gauge groups may grow quickly.
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The case when X = S4 and G = SU(n) ⊆ U(n) was first tackled by Kono [14]
and is a natural problem to study for many reasons. In particular, any U(n)-bundle
over S4 has a reduction of structure to an SU(n)-bundle and it is logical to first
study the gauge group associated to the second, simpler, object. The problem for
U(n)-bundles over a simply connected 4-manifold X is different, however, due to the
presence of extra low-dimensional topological information. Specifically there are now
two independent obstructions to a U(n)-bundle being trivial, namely the first and
second Chern classes (c1, c2) ∈ H2(X;Z)⊕H4(X;Z) which may be used to index
the isomorphism classes of U(n)-bundles over X.

This double-index makes the problem much more delicate than, say, the study
of SU(n)-bundles over X. The first Chern class represents a twisting of the bundle
over the 2-skeleton X2 ≃ ∨S2 whilst a non-vanishing second Chern class corresponds
to non-triviality of the bundle over the closed 4-cell e4 ⊆ X. In this context the
problem has not previously been studied and it is the goal of this paper to begin
its consideration by determining the homotopy types of U(n)-gauge groups over the
4-sphere S4 and the complex projective plane CP 2 – two fundamental examples of
simply-connected 4-manifolds.

First we examine the homotopy types of the gauge groups belonging to U(n)-
bundles over S4. Since any such U(n)-bundle has a reduction of structure to an
SU(n)-bundle one may hope that the homeomorphism U(n) ∼= S1 × SU(n) is some-
how reflected in the topology of the gauge groups of these bundles and we show that
this is indeed the case.

For G = U(n), SU(n), PU(n) let Gk(S
4, G) denote the gauge group of the principal

G-bundle over S4 with second Chern class k ∈ H4(S4;Z).

Theorem 1.1. The following statements hold:

1. For n ⩾ 3 there is an isomorphism of principal Gk(S
4, SU(n))-bundles over S1

Gk(S
4, U(n)) ∼= Gk(S

4, SU(n))× S1.

2. For n = 2 and k = 2l there is an isomorphism of principal G2l(S
4, SU(2))-

bundles over S1

G2l(S
4, U(2)) ∼= G2l(S

4, SU(2))× S1.

3. For n = 2 and k = 2l + 1 there is an isomorphism of principal S1-bundles over
G2l+1(S

4, PU(2))

G2l+1(S
4, U(2)) ∼= S1 × G2l+1(S

4, PU(2)).

It was shown by Kono in [14] that Gk(S
4, SU(2)) ≃ Gl(S

4, SU(2)) if and only if
(12, k) = (12, l) and shown by Kamiyama, Kishimoto, Kono and Tsukuda in [13] that
Gk(S

4, PU(2)) ≃ Gl(S
4, PU(2)) if and only if (12, k) = (12, l). Likewise, it was shown

by Hamanaka and Kono in [9] (see also [21]) that Gk(S
4, SU(3)) ≃ Gl(S

4, SU(3)) if
and only if (k, 24) = (l, 24) and shown by Theriault in [22] that Gk(S

4, SU(5))(p) ≃
Gl(S

4, SU(5))(p) when rationalised or localised at any prime p if and only if (k, 120) =
(l, 120). Therefore Theorem 1.1 immediately gives the following corollary.

Corollary 1.2. The following statements hold:

1. There is a homotopy equivalence Gk(S
4, U(2)) ≃ Gl(S

4, U(2)) if and only if
(12, k) = (12, l).
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2. There is a homotopy equivalence Gk(S
4, U(3)) ≃ Gl(S

4, U(3)) if and only if
(k, 24) = (l, 24).

3. There is a local homotopy equivalence Gk(S
4, U(5))(p) ≃ Gl(S

4, U(5))(p) when
rationalised or localised at any prime p if and only if (k, 120) = (l, 120).

Turning now to the complex projective plane it has a cell structure CP 2 = S2 ∪η e
4,

where η is the Hopf map. In this case it is not automatic for a U(n)-bundle to have
a reduction of structure to an SU(n)-bundle and the study of the homotopy types of
U(n)-gauge groups over CP 2 is a new and entirely unexplored area. If c1 = 0 then the
bundle does have a reduction of structure to an SU(n)-bundle and there is some hope
that this simplification will be reflected in the topology of its gauge group. If c1 ̸= 0
then there is a new twisting to the bundle whose effects are previously unstudied.
In fact, when c1 is nontrivial, the problem is very intricate and a complete solution
to the problem is beyond the reach of current techniques. In this case not even the
homotopy types of the based gauge groups, consisting of those bundle automorphisms
that restrict to the identity on the fibre over the basepoint, are well understood.

Let G(k,l)(CP 2, U(n)) be the gauge group of the U(n)-bundle over CP 2 with
first and second Chern classes (c1, c2) = (k, l) ∈ H2(CP 2)⊕H4(CP 2) and let

G(k,l)
∗ (CP 2, U(n)) be the based gauge group associated to the same bundle. Also

let G(k,l)(CP 2, PU(n)) be the gauge group of the PU(n)-bundle with the indicated
characteristic classes and let Gl(CP 2, SU(n)) be the gauge group of the SU(n)-bundle
over CP 2 with second Chern class c2 = l ∈ H4(CP 2).

Many results for general U(n)-gauge groups are stated and proved in section 4.
These are then refined and applied to the case of U(2) to produce our most complete
results. We prove the following.

Theorem 1.3. Let k, l be integers. Then the following hold:

1. There is a homotopy equivalence

G(k,l)(CP 2, U(2)) ≃

{
G(0,l′)(CP 2, U(2)), k even,

G(1,l′)(CP 2, U(2)), k odd

for a suitable integer l′.

2. There is a homotopy equivalence

G(k,l)(CP 2, U(2)) ≃ G(k,l+12)(CP 2, U(2)).

3. There is an isomorphism of principal Gl(CP 2, SU(n))-bundles over S1

G(0,l)(CP 2, U(n)) ∼= S1 × Gl(CP 2, SU(n)).

4. When localised away from 2 there is a product splitting

G(1,l)(CP 2, U(2)) ≃ S1 × G4l−1(CP 2, SU(2)).

5. For any integer values of l, l′ it holds that

G(0,l)(CP 2, U(2)) ̸≃ G(1,l′)(CP 2, U(2)).

6. For any integer values of l, l′ it holds for the based gauge groups that

G(0,l)
∗ (CP 2, U(2)) ̸≃ G(1,l′)

∗ (CP 2, U(2)).
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The SU(2)-gauge groups Gl(CP 2, SU(2)) appear in 3 and 4 of Theorem 1.3. These
gauge groups were studied by Kono and Tsukuda in [15] and their Theorem 1.2 may
be applied to yield the following corollary.

Corollary 1.4. There is a homotopy equivalence G(0,l)(CP 2, U(2)) ≃ G(0,l′)(CP 2,
U(2)) if and only if (6, l) = (6, l′). When localised away from 2 there is a homo-
topy equivalence G(1,l)(CP 2, U(2)) ≃ G(1,l′)(CP 2, U(2)) if and only if (4l − 1, 6) =
(4l′ − 1, 6). In particular, when localised at an odd prime p ⩾ 5, the gauge group G(1,l)

has the trivial homotopy type

G(1,l)(CP 2, U(2)) ≃ U(2)×Map∗(CP 2, U(2)).

A similar statement can be made for U(3)-gauge groups using the material in
section 4 and the information on SU(3)-gauge groups contained in [21]. We leave its
formulation to the interested reader.

What we show leaves us just one step short of a complete classification of the
U(2)-gauge groups over CP 2. We partition the homotopy types into the two non-
intersecting sets {G(0,l)(CP 2, U(2))}, {G(1,l)(CP 2, U(2))} and give a full classification
of the homotopy types in the first set and a full classification of the odd-primary
homotopy types in the second. The discrepancy that remains is in the second set. In
particular, 2 of Theorem 1.3 shows that there are at most 4 distinct homotopy types
amongst the 2-local gauge groups G(1,l)(CP 2, U(2)). In section 5.2 we examine the
low dimensional homotopy of their classifying spaces and show that there are at least
2 distinct homotopy types. It is undecided whether the actual number of distinct
homotopy types of these gauge groups is 2, 3 or 4. A complete integral statement
would be the most desirable resolution.

The layout of the paper is as follows. In section 2 we present preliminary infor-
mation and set up notation for gauge groups. We examine the relationship between
U(n), SU(n) and PU(n) and give a classification of their principal bundles over S4

and CP 2. In section 3 we study the homotopy types of U(n)-gauge groups over S4

and prove Theorem 1.1. Section 4 is dedicated to examining the homotopy types of
U(n)-gauge groups over CP 2. This section is broken into three subsections. In the
first we study the connecting maps for certain evaluation fibrations, in the second we
give p-local decompositions of the U(n)-gauge groups and in the third we examine
the relationship between certain U(n)- and SU(n)-gauge groups. Finally, in section 5,
we apply what we have collected to the case of U(2)-gauge groups over CP 2. In 5.1
we study the homotopy types of the based U(2)-gauge groups and their classifying
spaces and in 5.2 we study the homotopy types of the full U(2)-gauge groups and
complete the proof of Theorem 1.3.

2. Preliminaries

Let G be a connected, compact Lie group and P
p−→ X a principal G-bundle over

a connected, finite complex X. Let G(P ) denote the gauge group of P and G∗(P )
denote the based gauge group consisting of those gauge transformations of P that
reduce to the identity on the fibre over the basepoint. Let BG be the classifying space
for G and EG → BG the universal G-bundle with contractible total space. Then it is
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well known that the isomorphism classes of principal G-bundles over X are in one-to-
one correspondence with the homotopy classes of maps X → BG via the prescription
f 7→ f∗EG which forms the pullback bundle f∗EG → X.

Choose a map f : X → BG that classifies the bundle P
p−→ X. Then Gottlieb [8]

has shown the existence of homotopy equivalences

BG(P ) ≃ Mapf (X,BG), BG∗(P ) ≃ Mapf∗(X,BG), (2.1)

where BG(P ) and BG∗(P ) are the classifying spaces of G(P ) and G∗(P ) respectively,
Mapf (X,BG) denotes the path component of f in the space of free maps X → BG

and Mapf∗(X,BG) denotes the path component of f in the space of based maps
X → BG.

Using the representations (2.1) leads to the evaluation fibration for G(P )

· · · → G(P ) → G
δ−→ BG∗(P ) → BG(P )

ev−→ BG, (2.2)

where ev : BG(P ) ≃ Mapf (X,BG) → BG is given by evaluation at the basepoint
ofX. In (2.2) we have made explicit the homotopy equivalence G ≃ ΩBG and denoted
the fibration connection map by δ : G → BG∗(P ). This map shall play a prominent
rôle in the following.

The situation with which we shall primarily be concerned is where X = S4 or
X = CP 2 and G = U(n), however, we shall also have need to consider SU(n)- and
PU(n)-bundles over these spaces and their gauge groups. For this purpose we shall
now briefly discuss the relationship between these groups and set up the notation
required in later sections. In the following we shall always assume that n ⩾ 2. The
special case of U(1) will be treated separately.

The special unitary group SU(n) is related to U(n) by the fibration sequence

SU(n)
j−→ U(n)

det−−→ S1,

which is split by the inclusion S1 ∼= U(1) ↪→ U(n). There results a homeomorphism
U(n) ∼= SU(n)× S1 although this map does not respect the H-space structures.

The projective unitary group PU(n) is the quotient of U(n) by its centre, which is
comprised of the diagonal matrices {λIn|λ ∈ S1} ∼= S1. Equivalently it is the quotient
of SU(n) by its centre Zn of nth roots of unity along the diagonal matrices. This is
displayed in the following homotopy commutative diagram whose columns and rows
are homotopy fibrations which we use to define the projection maps π, ρ, and the
centre inclusion ∆

Zn

��

δ // S1

∆

��

n // S1

SU(n)
j //

ρ

��

U(n)
det //

π

��

S1

��
PU(n)

��

PU(n) //

��

∗

��
K(Zn, 1)

δ // BS1 n // BS1.

(2.3)
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The maps labelled n denote the degree n self maps on the Eilenberg-Mac Lane spaces.
Something to take note of at this point is that the groups U(n), SU(n) and PU(n) all
share the same higher dimensional homotopy and, in particular, there are homotopy
equivalences

ΩkSU(n)
Ωkj
≃ ΩkU(n)

Ωkπ≃ ΩkPU(n), for k ⩾ 2. (2.4)

The last thing to address is the classification of principal G-bundles over X =
S4,CP 2 for G = U(n), SU(n) and PU(n) that shall provide our scheme for labelling
the components of the mapping spaces in (2.1). For this we need to enumerate the
elements of the homotopy set [X,BG] for each possible case. To begin note that
S4 and CP 2 are 4-dimensional, so by connectivity the second Chern class induces a
bijection of sets

c2 : [S
4, BSU(n)]

∼=−→ H4(S4;Z) ∼= Z,

c2 : [CP 2, BSU(n)]
∼=−→ H4(CP 2;Z) ∼= Z.

Now consider the homotopy fibrations BSU(n)
Bj−−→ BU(n)

c1−−→ K(Z, 2) and

BSU(n)
Bρ−−→ BPU(n)

ω2−→ K(Zn, 2). For X = S4 the maps Bj, Bρ induce bijections

c2 : [S
4, BU(n)] ∼= [S4, BPU(n)] ∼= [S4, BSU(n)]

∼=−→ H4(S4) ∼= Z

so that isomorphism classes of principal U(n)-, PU(n)- and SU(n)-bundles over S4

are all in correspondence according to the integer value of their second Chern class.
Similarly, for X = CP 2 we get bijections

(c1, c2) : [CP 2, BU(n)]
∼=−→ H2(CP 2;Z)⊕H4(CP 2;Z) ∼= Z⊕ Z,

(w2, c2) : [CP 2, BPU(n)]
∼=−→ H2(CP 2;Zn)⊕H4(CP 2;Z) ∼= Zn ⊕ Z.

3. Homotopy types of U(n)-gauge groups over S4

Let G be a compact, connected, simple Lie group and pk : P
G
k → S4 the principal

G-bundle classified by the degree k map S4 → BG. In this section we work only
over the base space S4 but shall be interested in comparing the gauge groups of the
bundles PG

k as G and k vary. Since no confusion can arise we introduce the notation
GG
k = G(PG

k ) = Gk(S
4, G) for the gauge group of the bundle PG

k , with similar notation
for the based gauge groups. In subsequent sections we shall revert to the notation
introduced previously as we shall have need to differentiate between the gauge groups
belonging to bundles over different spaces.

From equation (2.1) we get a model for the classifying space of the gauge group GG
k

BGG
k ≃ Mapk(S4, BG) (3.1)

and this leads to the evaluation fibration sequence of equation (2.2)

· · · → G
δGk−−→ BGG

∗k
iG−→ BGG

k
eG−−→ BG. (3.2)

Then using (2.1) again we obtain a string of homotopy equivalences for the classifying
space of the based gauge group GG

∗k
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BGG
∗k ≃ Mapk∗(S

4, BG) = Ω4
kBG ≃ Ω3

kG ≃ Ω3
0G (3.3)

and with respect to these homotopy equivalences we have the following result due to
Lang.

Theorem 3.1 (Lang [16]). The triple adjoint of δGk is the generalised Samelson prod-
uct

⟨k · ϵ3, idG⟩ : S3 ∧G → G, (3.4)

where ϵ3 ∈ π3(G) ∼= Z is a generator.

3.1. Proof of Theorem 1.1
We begin by relating the evaluation fibration sequences (3.2) forG = U(n) andG =

SU(n) using the map Bj : BSU(n) → BU(n). In cohomology Bj∗ : H4(BU(n)) →
H4(BSU(n)) is epic, taking the second Chern class c2 isomorphically between the
two groups. Since this corresponds with our labelling of the components of the map-

ping spaces (3.1) there results a map B̂j : BGSU(n)
k → BGU(n)

k which in turn, as

Bj ◦ eU (f) = Bj(f(∗)) = eSU ◦ B̂j(f) for f ∈ BGU(n)
k , gives a map between the eval-

uation fibrations. Given the homotopy equivalences (3.3), (2.4) it is clear that the
induced map of fibres is the homotopy equivalence Ω3j.

We remark at this stage that for n = 1 the problem is trivial: U(1) ∼= S1 is abelian
and BS1 ≃ K(Z, 2) is an Eilenberg-Mac Lane space. Over S4 there is only the trivial
U(1)-bundle and with regards to its gauge group G we haveBG ≃Map0(S4,K(Z, 2))≃
K(Z, 2) and BG∗ ≃Map0∗(S

4,K(Z, 2))≃∗ so that G ∼= Map(S4, S1) ≃ S1 and G∗ ≃ ∗.
With this simple result out of the way we shall henceforth only consider the values
n ⩾ 2, and we tacitly assume this is so in all of the following.

We assemble the previous information into a commutative diagram whose columns
and rows are homotopy fibrations

∗

��

// S1

ϵ

��

S1

∗

��
Ω3

0SU(n)
iSU

//

≃ Ω3j

��

BGSU(n)
k

(∗)

eSU
//

B̂j

��

BSU(n)

Bj

��
Ω3

0U(n)
iU // BGU(n)

k
eU // BU(n).

(3.5)

The homotopy equivalence Ω3j serves to identify the square labelled (∗) as a homo-
topy pullback. This in turn identifies the contractible space situated in the top left

corner of the diagram and from this it follows that the fibre of B̂j : BGSU(n)
k → BGU(n)

k

has the homotopy type of S1. The triviality of the map S1 → BSU(n) on the right
hand side of the diagram follows from the connectivity of BSU(n).

Now extend the homotopy commutative diagram (3.5) upwards. Each column
becomes a homotopy fibration sequence and, in particular, there is a sequence

· · · → GSU(n)
k

ΩB̂j−−−→ GU(n)
k → S1 ϵ−→ BGSU(n)

k → · · · (3.6)

in which GU(n)
k appears as the homotopy fibre of the map ϵ ∈ π1(BGSU(n)

k ).
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Proof of Theorem 1.1.1. For n⩾ 3 we have π1(BSU(n)) = 0 and π1(Ω
3SU(n)) =

π4(SU(n)) = 0. Therefore it follows from the middle row of (3.5) that π1(BGSU(n)
k ) =

0 and the map ϵ in (3.6) is null-homotopic. The result now follows from the general
theory of principal bundles.

We now focus on the case n = 2.

Lemma 3.2. The following hold:

π1

(
BGSU(2)

k

)
∼= Z2, (3.7)

π1

(
BGU(2)

k

)
∼=

{
0 k odd,

Z2 k even,
(3.8)

π2

(
BGSU(2)

k

)
∼= Z2, (3.9)

π2

(
BGU(2)

k

)
∼= Z⊕ Z2. (3.10)

Proof. The statements (3.7), (3.9) follow easily from the homotopy exact sequence

of the evaluation fibration (3.2) for BGSU(2)
k . For the other groups we use Lang’s

Theorem 3.4 to get that the map induced on homotopy groups by the connecting
map δUk : U(2) → Ω3

0U(2) is given by the Samelson product

πr(U(2)) → πr+3(U(2)), α 7→ ⟨kϵ3, α⟩ = k⟨ϵ3, α⟩,

where ϵ3 ∈ π3(U(2)) ∼= Z is a generator. Bott [2] has calculated the value of this
product for r = 1 and shown that if ϵ1 ∈ π1(U(2)) ∼= Z is a generator, then ⟨ϵ3, ϵ1⟩
generates π4(U(2)) ∼= Z2.

In the fibre sequence (3.2) we have π1(BU(2)) = 0 from which it follows that

π1(BGU(2)
k ) ∼= coker(δUk )

∼= coker

(
π1(U(2))

k⟨ϵ3,−⟩−−−−−→ π4(U(2))

)
∼= Zgcd(2,k) (3.11)

and we get (3.8).

Again in (3.2) we have π3(BU(2)) = 0 so we obtain a short exact sequence

0 → π5(U(n)) ∼= Z2 → π2(BGU(2)
k ) → ker (δUk ) → 0.

By (3.11) ker δUk is either Z or 2Z so this sequence must split to give (3.10).

This lemma implies that there are exactly two isomorphism classes of principal

GSU(2)
k -bundles over S1, one of which is trivial and the other of which is represented

by the generator of π1(BGSU(2)
k ) ∼= Z2. Owing to the fibre sequence (3.6), the gauge

group GU(2)
k must belong to one of these, and to which is decided by the homotopy

class of the map ϵ.

Proof of Theorem 1.1.2. Apply the functor π1 to the homotopy commutative dia-
gram (3.5). There are two cases to consider and the information from the previous
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lemma allows us to fill in the groups.

π2(BGU(2)
k )

��
0

��

π1(S
1) ∼= Z

ϵ∗

��
0 // Z2

∼= //

∼=
��

π1(BGSU(2)
k )

��

// 0

Z
δUk // Z2

//

��

0

0
k odd

π2(BGU(2)
k )

��
0

��

π1(S
1) ∼= Z

ϵ∗

��
0 // Z2

∼= //

∼=
��

π1(BGSU(2)
k )

B̂j∗
��

// 0

0 // Z2

∼= //

��

π1(BGU(2)
k )

��

// 0

0 0
k even

For k odd the map ϵ∗ is an epimorphism onto a non-trivial group so that ϵ itself must
be essential. For k even it follows from the exactness of the diagram that B̂j∗ is an
isomorphism and the map ϵ = ϵ∗(1) = 0 is trivial. The statements of the theorem now
follow by arguing as in the proof of Theorem 1.1.1.

There is more to say about the case n = 2 and k = 2l + 1. For this we return
to some generality and introduce the projective unitary group PU(n). We have the
homotopy equivalences of equation (2.4) and using these we follow the same steps that
we did for the creation of diagram (3.5) to build the following homotopy commutative
diagrams

∗

��

// K(Z, 2)

��

K(Z, 2)

��
Ω3

0U(n)
iU //

≃ Ω3π

��

BGU(n)
k

eU //

B̂π
��

(∗)

BU(n)

Bπ

��
Ω3

0PU(n)
iPU

//

��

BGPU(n)
k

ePU
//

η

��

BPU(n)

χ

��
∗ // K(Z, 3) K(Z, 3)

∗

��

// K(Zn, 1)

��

K(Zn, 1)

��
Ω3

0SU(n)
iSU

//

≃ Ω3ρ

��

BGSU(n)
k

eSU
//

B̂ρ
��

(∗)

BSU(n)

Bρ

��
Ω3

0PU(n)
iPU

//

��

BGPU(n)
k

ePU
//

θ

��

BPU(n)

ω2

��
∗ // K(Zn, 2) K(Zn, 2)

(3.12)
Each rown and column in these diagrams is a homotopy fibration sequence and the
labelled squares are homotopy pullbacks. We use the fact that the fibration sequence
down the right hand side of each diagram is principal to define the bottom rows,
the map θ from the class ω2 ∈ H2(BPUn;Zn) and the map η from the integral class
χ = δω2.
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Now fix n = 2. Then SU(2) ∼= Spin(3) is the 2-connected cover of PU(2) ∼= SO(3).
Kamiyama, Kishimoto, Kono and Tsukuda [13] have examined the gauge groups of
SO(3)-bundles over S4 and calculated enough Samelson products in SO(3) so as to

obtain the low-dimensional homotopy groups of BGPU(2)
k .

Lemma 3.3 (Kamiyama, Kishimoto, Kono, Tsukuda [13]).

π1(BGPU(2)
k ) ∼=

{
0 k odd,

Z2 k even,

π2(BGPU(2)
k ) ∼=


Z2 k odd,

Z4 k ≡ 2 mod 4,

Z2 ⊕ Z2 k ≡ 0 mod 4.

We now have enough information to complete the proof of 1.1.

Proof of Theorem 1.1.3. For k = 2l + 1, Lemma 3.3 and the Hurewicz Theorem give

H1(BGPU(2)
2l+1 ) = 0 and H2(BGPU(2)

2l+1 ) ∼= Z2. Furthermore, rational homotopy shows us

that H3(BGPU(2)
2l+1 ) is torsion. From the universal coefficient theorem it now follows

that

H1(BGPU(2)
2l+1 ) = 0, H2(BGPU(2)

2l+1 ) = 0, H3(BGPU(2)
2l+1 ) ∼= Z2.

Consider then the Serre spectral sequence with integral coefficients for the evaluation

fibration of BGPU(2)
2l+1 . Using the cohomology groups above it follows from connectivity

that there is an exact sequence

0 // H2(Ω3
0PU(2))

τ // H3(BPU(2))
ePU∗

// H3(BGPU(2)
2l+1 ) // H3(Ω3

0PU(2))

Z2 Z2 Z2

The transgression τ must be injective in degree 2 by exactness and so must be an iso-

morphism. The map ePU ∗
: H3(BPU) → H3(BGPU(2)

2l+1 ) is therefore trivial. Returning

to the diagrams (3.12) we see that the classifying map η : BGPU(2)
2l+1 → K(Z, 3) factors

through the map χ : BPU(n) → K(Z, 3) as

η = χ ◦ ePU = ePU ∗
(χ).

Since ePU∗ is trivial in degree 3 cohomology, so is the map η = ePU ∗
(χ). Thus the

homotopy fibration S1 → GU(2)
2l+1 → GPU(2)

2l+1 is classified by the trivial map Ωη ≃ ∗ and
splits.

Remark 3.4. In the case that k = 2l it is not hard to see that there is a nontrivial

relationship between the gauge groups GSU(2)
2l and GPU(2)

2l , and between GU(2)
2l and

GPU(2)
2l . The maps η, θ are essential in these cases and the bundle structure is twisted.

Remark 3.5. The proof of 3 of Theorem 1.1 actually allows for a slightly stronger

conclusion to be drawn. It is shown that η : BGPU(n)
k → K(Z, 3) is trivial for odd k.
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Since this map classifies the principal fibration B̂π : BGU(n)
k → BGPU(n)

k it is possible

to use the principal action to construct a homotopy equivalence BGU(n)
k ≃ BGPU(n)

k ×
K(Z, 2). Thus the claimed splitting actually happens on the level of classifying spaces.

4. Homotopy types of U(n)-gauge groups over CP 2

Let E(k,l)

p(k,l)−−−→ CP 2 be the principal U(n)-bundle over CP 2 with Chern classes

(c1, c2) = (k, l) ∈ H2(CP 2)⊕H4(CP 2) and let G(k,l)(CP 2, U(n)) denote the gauge
group of this bundle. We assume that n ⩾ 2. From (2.1) there are homotopy equiva-
lences

BG(k,l)(CP 2, U(n)) ≃ Map(k,l)(CP 2, BU(n)),

BG(k,l)
∗ (CP 2, U(n)) ≃ Map

(k,l)
∗ (CP 2, BU(n)),

and these spaces sit in the evaluation fibration

G(k,l)(CP 2, U(n))→U(n)
λ(k,l)−−−→ BG(k,l)

∗ (CP 2, U(n))→BG(k,l)(CP 2, U(n))
e−→BU(n)

(4.1)

where λ(k,l) : U(n) → BG(k,l)
∗ (CP 2, U(n)) denotes the fibration connecting map.

Now the cellular structure of CP 2 gives rise to a cofiber sequence

S3 η−→ S2 i−→ CP 2 q−→ S4 → · · · , (4.2)

where η is the Hopf map. This sequence comes furnished with a coaction c : CP 2 →
CP 2 ∨ S4 produced by pinching a sphere out of the top cell. Application of the functor
Map∗(−, BU(n)) to (4.2) yields a principal fibring

Ω4BU(n)
q∗−→ Map∗(CP 2, BU(n))

i∗−→ Ω2BU(n) (4.3)

and the coaction induces a homotopy action

µ : Map∗(CP 2, BU(n))×Ω4BU(n)→Map∗(CP 2, BU(n)), (f, ωl) 7→∇ ◦ (f ∨ ωl) ◦ c.

In (4.3) we have identified Map∗(S
r, BU(n)) = ΩrBU(n) and used the homeomor-

phism Map∗(CP 2 ∨ S4, BU(n)) ∼= Map∗(CP 2, BU(n))× Ω4BU(n).
In cohomology the coaction induces the map c∗ : H∗(CP 2)⊕H∗(S4) → H∗(CP 2)

which in degree 4 satisfies c∗(l · x2, l′ · s4) = l · x2 + l′ · q∗s4 = (l + l′) · x2, where
x ∈ H2(CP 2), s4 ∈ H4(S4) are integral generators. From this it is clear that after
taking components there results a map

µ : Map
(k,l)
∗ (CP 2, BU(n))× Ω4

l′BU(n) → Map
(k,l+l′)
∗ (CP 2, BU(n)). (4.4)

For each nonnegative integer r fix an element ωr ∈ Ω4
rBU(n) and extend this to all

integers by using the inverse to define ω−r = −ωr. Then with BG(k,l)
∗ (CP 2, BU(n)) ≃

Map
(k,l)
∗ (CP 2, BU(n)) there results, for each triple of integers k, l and r, a map

Sr : BG(k,l)
∗ (CP 2, BU(n)) → BG(k,l+r)

∗ (CP 2, BU(n)) defined by

Sr(f) = µ(f, ωr) : CP 2 c−→ CP 2 ∨ S4 f∨ωr−−−→ BU(n) ∨BU(n)
∇−→ BU(n).

That this map is well defined follows from the properties of the coaction [1]. Moreover,
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it is straightforward to show using these properties that Sr is a homotopy equivalence
with inverse S−r [17]. Using these maps we get the following.

Proposition 4.1. For each integer k ∈ Z and any l, l′ ∈ Z there are homotopy equiv-
alences

BG(k,l)
∗ (CP 2, BU(n)) ≃ BG(k,l′)

∗ (CP 2, BU(n)).

This proposition cannot be upgraded to a statement about the classifying space of
the full gauge group due to its reliance on the coaction c. We still are able to get the
following result, however.

Theorem 4.2. With respect to the evaluation fibrations, for each pair of integers
(k, l) and any integer r, there are fibre homotopy equivalences over BU(n)

BG(k,l)(CP 2, U(n)) ≃ BG(k+rn,l+kr(n−1)+1/2n(n−1)r2)(CP 2, U(n)).

These restrict to homotopy equivalences

BG(k,l)
∗ (CP 2, U(n)) ≃ BG(k+rn,l+kr(n−1)+1/2n(n−1)r2)

∗ (CP 2, U(n)).

Proof. Let E(η)
η−→ CP 2 denote the canonical line bundle with c1(η) = x ∈ H2(CP 2)

a generator. Now let E be a U(n)-bundle over CP 2, r ∈ Z and form the tensor product
E ⊗ ηr, where

ηr =


⊗rη r > 0,

ϵ1 r = 0,

⊗−rη̄ r < 0

with ϵ1 denoting the trivial line bundle and η̄ denoting the conjugate bundle of η.
Then E ⊗ ηr is again a U(n)-bundle and calculating with the Chern character shows
that

c1(E ⊗ ηr) = c1(E) + (rn) · x,
c2(E ⊗ ηr) = c2(E) + r(n− 1) · c1(E) ∪ x+ 1

2r
2n(n− 1) · x2.

(4.5)

We use the tensor product with ηr as above to define a map

Tr = ((−)⊗ ηr) : Map(k,l)(CP 2, BU(n))

→ Map(k+rn,l+kr(n−1)+1/2n(n−1)r2)(CP 2, BU(n))

as follows. Let f : CP 2 → BU(n) represent the U(n)-bundle E. Then E ⊗ ηr may be
represented by the composite

Tr(f) = Tr(E) : CP 2 ∆−→ CP 2 × CP 2 f×ηr

−−−→ BU(n)×BU(1)
mn−−→ BU(n), (4.6)

where mn is the H-action of BU(1) on BU(n) induced by the tensor product and

ηr here is the composite CP 2 ∆−→ ΠrCP 2 Πrη−−→ ΠrBU(1)
m1◦(1×m1)◦···◦(1×···×1×m1)−−−−−−−−−−−−−−−−−−−→

BU(1) (with η replaced by η̄ if r < 0, and η0 = ∗ is defined to be the constant map).
If f ∈ Map(k,l)(CP 2, BU(n)), then it is seen from (4.5) that Tr(f) lies in the correct
component and everything is well-defined. We take (4.6) as the definition of Tr.

We may now use elementary properties of the tensor product to determine some
of the features of Tr. We abuse notation by blurring the distinction between a bundle
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and a representing map for it. It follows from the associativity of the tensor product
that

T−r ◦ Tr(E) = (E ⊗ ηr)⊗ η−r ∼= E ⊗ (ηr ⊗ η−r) ∼= E ⊗ ϵ1 ∼= E,

which demonstrates that Tr has a homotopy inverse and is a homotopy equivalence.
Since we may choose the map classifying η to be basepoint preserving and we may

assume that the action mn is strictly unital in the sense that mn(x, ∗) = x for all
x ∈ BU(n) and mn(∗, z) = B∆(z) for all z ∈ BU(1), we see the compatibility with
the evaluation fibration,

e ◦ Tr(f) = mn ◦ (f × (rη)) ◦∆(∗) = mn(f(∗), ∗) = f(∗) = e(f).

Hence by [3] the map Tr is a fibre homotopy equivalence and thus restricts to gives
a homotopy equivalence between the fibres.

Before moving on we record one further lemma which will be of use in our appli-
cations. In the literature, for simply connected G, a standard technique is to take
components in the fibration (4.3) and attempt to factor the connecting map δ through
the fibre inclusion q∗ : Ω3

0G → Map∗(CP 2, BG). In our case the problem is different.
Once components are taken it is not even clear what the homotopy fibre of i∗ actually
is. What allows for progress to be made is the action µ; its presence makes the map
i∗ into what Zabrodsky [26] calls a weakly principal fibration.

Let i∗ : Map
(k,l)
∗ (CP 2, BU(n)) → Ω2

kBU(n) be the map induced by i : S2 ↪→ CP 2

and let X(k, l; n) denote the homotopy fibre of this map. Then for any
space X the map µ produces an operation of the homotopy set [X, Ω3

0 U(n)] on

[X, Map
(k,l)
∗ (CP 2, BU(n))] and we denote this action by the symbol + in the follow-

ing.

Proposition 4.3. There is a homotopy equivalence

X(k, l;n) ≃ Ω4
0BU(n) ≃ Ω3

0SU(n).

Moreover, in the resulting homotopy fibration sequence

Ω4
0BU(n)

j−→ Map
(k,l)
∗ (CP 2, BU(n))

i∗−→ Ω2
kBU(n) (4.7)

we may identify the fibre inclusion j as the map given by

j(ω) = f(k,l) + ω,

where f(k,l) ∈ Map(k,l)(CP 2, BU(n)) is a chosen basepoint preserving map.

Proof. Consider the following homotopy commutative diagram in which each row
and column is a cofiber sequence, c is the coaction and Cc is its mapping cone:

S2

(hpo)i

��

i // CP 2

incl.

��

q // S4

γ

��
CP 2 c //

q

��

CP 2 ∨ S4 r //

��

Cc

��
S4 S4 // ∗.
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The fact that the diagram homotopy commutes follows from the properties of the
coaction and so the square labelled (hpo) is a homotopy pushout by construction.

From this one infers that the induced map of cofibers γ : S4 ≃−→ Cc is a homotopy
equivalence. Moreover, this identification makes it possible to identify the map r as
r = (q,−1) : CP 2 ∨ S4 → S4.

Now with the identifications Cc ≃ S4 and r = (q,−1) in place, apply Map∗(−,
BU(n)) to the diagram and use (4.4) to replace the map induced by the coaction c
with the action µ. The result of this is the following diagram in which each column
and row is a homotopy fibration sequence and the square labelled (hpb) is a homotopy
pullback

∗ //

��

Ω4BU(n)

in2

��

Ω4BU(n)

q∗

��
Ω4BU(n)

(q∗,−1)// Map∗(CP 2, BU(n))× Ω4BU(n)

(hpb)pr1

��

µ // Map∗(CP 2, BU(n))

i∗

��
Ω4BU(n)

q∗ // Map∗(CP 2, BU(n))
i∗ // Ω2BU(n).

Restricting to components of the mapping spaces in the bottom right-hand square
of this diagram will now produce a new homotopy pullback square. Including homo-
topy fibres it appears as

∗ //

��

Ω4
lBU(n)

v

��

≃
e

// X(k, l;n)

j′

��
Ω4

lBU(n)

≃
��

u // Map
(k,0)
∗ (CP 2, BU(n))× Ω4

lBU(n)

(hpb)pr1

��

µ // Map
(k,l)
∗ (CP 2, BU(n))

i∗

��
X(k, 0;n) // Map

(k,0)
∗ (CP 2, BU(n))

i∗ // Ω2
kBU(n),

where u : Ω4
lBU(n) −→ Map

(k,0)
∗ (CP 2, BU(n))× Ω4

lBU(n) is defined by u(ω) =

(f(k,l) − ω, ω) for a chosen basepoint map f(k,l) ∈ Map
(k,l)
∗ (CP 2, BU(n)),

v : Ω4
lBU(n) → Map

(k,0)
∗ (CP 2, BU(n))× Ω4

lBU(n) is defined by v(ω) = (f(k,l) − ω0,
ω) for a chosen basepoint loop ω0 ∈ Ω4

lBU(n) and e is defined by the diagram.
Since the bottom right-hand square is a homotopy pullback, the map e is a homo-

topy equivalence which we take as an identification e : Ω4
lBU(n) ≃ X(k, l;n) to get

the homotopy type of X(k, l;n) and a homotopy fibration sequence

Ω4
lBU(n)

j′′−→ Map
(k,l)
∗ (CP 2, BU(n))

i∗−→ Ω2BU(n)

with j′′ ≃ j′ ◦ e ≃ µ ◦ v given by

j′′(ω) = µ ◦ v(ω) = µ(f(k,l) − ω0, ω) = f(k,l) + (ω − ω0).

Finally, we choose the homotopy equivalence Ω4
0BU(n) ≃ Ω4

lBU(n) to be given by
ω 7→ ω + ω0 and define j in (4.7) to be the composite of j′′ with this map. We get

j(ω) = (f(k,l) + ω + ω0)− ω0 = f(k,l) + ω.
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Before moving on we comment on the homotopy types of U(1)-gauge groups over
CP 2. Since BU(1) ≃ K(Z, 2) we have [CP 2, BU(1)] ∼= H2CP 2 ∼= Z so isomorphism
classes of principal U(1)-bundles are in correspondence with the integers. Using a
theorem of Thom [24], however, we get from equation (2.1) that BGk(CP 2, U(1)) ≃
Mapk(CP 2, BU(1)) ≃ BU(1) and BGk

∗ (CP 2, U(1)) ≃ Mapk∗(CP 2, BU(1)) ≃ ∗, so
there is a unique homotopy type amongst the classifying spaces of these gauge groups.
It follows that Gk(CP 2, U(1)) ≃ S1 and Gk(CP 2, U(1)) ≃ ∗. For the remainder of the
paper we will always assume that n ⩾ 2.

4.1. A decomposition of the connecting map λ(k,l)

For each pair of integers (k, l) we have the evaluation fibration (4.1). There is also
the evaluation fibration for the gauge group of a U(n)-bundle over S4 with second
Chern class l ∈ H4(S4) ∼= Z

· · · → Gl(S4, U(n)) → U(n)
δl−→ Ω3

0U(n) → BGl(S4, U(n))
e−→ BU(n).

The connecting map δl : U(n) → Ω3
0U(n) of this sequence is more amenable to

study than λ(k,l) since by Theorem 3.1 it is adjoint to the Samelson product
⟨ϵ3, idU(n)⟩ : S3 ∧ U(n) → U(n). The purpose of this section is to relate the two maps
λ(k,l), δl in such a way as to allow more easily obtained information about δl to

be passed to λ(k,l). For the following recall the action µ : Map
(k,l)
∗ (CP 2, BU(n))×

Ω4
l′BU(n) → Map

(k,l+l′)
∗ (CP 2, BU(n)) and the notation + for the induced operation

of the homotopy set [X,Ω3
0U(n)] on [X,Map

(k,l)
∗ (CP 2, BU(n))].

Theorem 4.4. In the homotopy set [U(n),Map
(k,l)
∗ (CP 2, BU(n))] there is equality

λ(k,l) = λ(k,0) + δl.

Proof. Since BU(n) is connected the components of the unbased mapping space
Map(CP 2 ∨ S4, BU(n)) are in one-to-one correspondence with those of the based
mapping space Map∗(CP 2 ∨ S4, BU(n)). Thus we may consider the map of evalua-
tion fibrations induced by c in the diagram

U(n)
∆(k,0;l)//Map

(k,0;l)
∗ (CP 2 ∨ S4, BU(n))

c∗

��

//Map(k,0;l)(CP 2 ∨ S4, BU(n))
e //

c∗

��

BU(n)

U(n)
λ(k,l) //Map

(k,l)
∗ (CP 2, BU(n)) //Map(k,l)(CP 2, BU(n))

e //BU(n)

(4.8)
which we use to define the fibration connecting map ∆(k,0;l) belonging to the top
row. Here we label the components of the mapping space on the top row using the

triple of integers (k, 0; l) according to Map
(k,0;l)
∗ (CP 2 ∨ S4, BU(n)) ∼= Map

(k,0)
∗ (CP 2,

BU(n))× Ω4
lBU(n).

We wish to identify the connecting map ∆(k,0;l) under the homeomorphism

θ = (in∗
0, in

∗
1) ◦∆ : Map∗(CP 2 ∨ S4, BU(n)) ∼= Map∗(CP 2, BU(n))× Ω4BU(n)

where in0 : CP 2 → CP 2 ∨ S4 and in1 : S
4 → CP 2 ∨ S4 are the inclusions. These

inclusions induce natural maps in∗
0 : Map(k,0;l)(CP 2 ∨ S4, BU(n)) → Map(k,0)(CP 2,
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BU(n)) and in∗
1 : Map(k,0;l)(CP 2 ∨ S4, BU(n)) → Mapl(S4, BU(n)) which are com-

patible with all three evaluation fibrations and produce factorisations

U(n)
∆(k,0;l)// Map(k,0;l)(CP 2 ∨ S4, BU(n))

in∗
0

��
U(n)

λ(k,0) // Map(k,0)(CP 2, BU(n))

U(n)
∆(k,0;l)// Map(k,0;l)(CP 2 ∨ S4, BU(n))

in∗
0

��
U(n)

δl // Ω4
lBU(n).

Since θ sends f ∈ Map(k,0;l)(CP 2, BU(n)) to the pair (f ◦ in0, f ◦ in1) ∈
Map

(k,0)
∗ (CP 2, BU(n))× Ω4

lBU(n) the above factorisations show that for x ∈ U(n)
we have θ

(
∆(k,0;l)(x)

)
= (∆(k,0;l)(x) ◦ in0,∆(k,0;l)(x) ◦ in1) = (λ(k,0)(x), δl(x)).

Now let us return to the diagram (4.8) and use the homeomorphism θ to alter the
left-most square, which will now appear as

U(n)
(λ(k,0),δl) // Map

(k,0)
∗ (CP 2, BU(n))× ΩlBU(n)

µ

��
U(n)

λ(k,l) // Map
(k,l)
∗ (CP 2, BU(n)).

(4.9)

To identify the action µ appearing here we simply note that the inverse to θ is the
map

θ−1 = ∇ ◦ (− ∨−) : Map∗(CP 2, BU(n))× Ω4BU(n) ∼= Map∗(CP 2 ∨ S4, BU(n)),
(4.10)

which sends the pair (f, g) ∈ Map
(k,0)
∗ (CP 2, BU(n))× Ω4

lBU(n) to the composite∇ ◦
(f ∨ g) : CP 2 ∨S4 →BU(n). Thus c∗

(
θ−1(f, g)

)
= c∗(∇◦ (f ∨ g))=∇ ◦ (f ∨ g) ◦ c =

µ(f, g) = f + g. Combining (4.9) and (4.10) gives us the claimed equality of homotopy
classes

λ(k,l) = µ(λ(k,0), δl) = λ(k,0) + δl.

Now we have noted that the connecting map δl : U(n) → Ω3
0U(n) is adjoint to a

Samelson product in U(n). It follows from the linearity of the Samelson product that
δl ≃ l · δ1. It is also true [12] that δ1 is rationally trivial and has finite order in the
group [U(n),Ω3

0U(n)]. Denote the order of δ1 by |δ1|. Then for each fixed integer
k, the following corollary gives an upper bound on the number of homotopy types
amongst the gauge groups G(k,l)(CP 2, U(n)).

Corollary 4.5. For each pair of integers (k, l) there is a homotopy equivalence

G(k,l)(CP 2, U(n)) ≃ G(k,l+|δ1|)(CP 2, U(n)).

Proof. Recall that G(k,l)(CP 2, U(n)) is the homotopy fibre of the connecting map
λ(k,l), which, according to Theorem 4.4, has a decomposition λ(k,l) = λ(k,0) + δl. Here
we will further decompose this by focusing on the map δl : U(n) → Ω3

0U(n).

Consider the degree l map l : S4 → S4 and the map of evaluation fibrations that
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it induces

U(n)
δ1 // Ω3

1U(n)

l∗

��

// Map1(S4, BU(n))

l∗

��

e // BU(n)

U(n)
δl // Ω3

lU(n) // Mapl(S4, BU(n))
e // BU(n).

The adjoint of the left-most square of this ladder is the diagram

S3 ∧ U(n)
δ̃1 // U(n)

S3 ∧ U(n)

l∧1

OO

δ̃l // U(n)

which displays a factorisation of the adjoint map δ̃l ≃ δ̃1 ◦ (l ∧ 1) ≃ l · δ̃1. Adjointing
back we get

δl = l · δ1 ∈ [U(n),Ω3
0U(n)].

Now the coaction c : CP 2 → CP 2 ∨ S4 satisfies (c ∨ 1) ◦ c = (1 ∨ ν) ◦ c, where
ν : S4 → S4 ∨ S4 is the coproduct. This means that for any space X and maps
f : CP 2 → X, α, β : S4 → X we have in our notation f + (α+ β) = (f + α) + β.
Applying this to the case at hand gives us the decomposition

λ(k,l) = λ(k,0) + δl = λ(k,0) + l · δ1.

Thus if |δ1| is the order of δ1 then

λ(k,l+|δ1|) = λ(k,0) + (l + |δ1|)δ1 = (λ(k,0) + l · δ1) + |δ1| · δ1 = λ(k,0) + l · δ1 = λ(k,l).

Thus there is a homotopy λ(k,l) ≃ λ(k,l+|δ1|) and since the gauge groups G(k,l)(CP 2,

U(2)) and G(k,l+|δ1|)(CP 2, U(2)) are the homotopy fibres of λ(k,l) and λ(k,l+|δ1|),
respectively, they share a common homotopy type.

4.2. p-Local decompositions of G(k,l)(CP 2, U(n))
Given the close relationship between the groups U(n), SU(n) and PU(n) displayed

in the fibration diagram (2.3), it is not surprising that the group U(n) has particularly
nice properties when localised at certain primes. The purpose of this section is to
formalise this statement and examine how much of this behaviour is transferred to
the U(n)-gauge groups over CP 2.

Lemma 4.6. For each pair of integers k, l ∈ Z there is a homotopy equivalence

Map
(k,l)
∗ (CP 2, BU(n)) ≃ Map

(k,l)
∗ (CP 2, BPU(n)).

Proof. Apply the functor Map∗(CP 2,−) to the homotopy fibration BU(n)
Bπ−−→

BPU(n)
χ−→ K(Z, 3) to get the following homotopy fibration sequence

Map∗(CP 2, BU(n))
Bπ∗−−−→ Map∗(CP 2, BPU(n))

χ∗−→ Map∗(CP 2,K(Z, 3)).

Observe from diagram (2.3) that Ω2χ : ΩPU(n) → S1 factors through a map Zn → S1

and is thus null-homotopic. Using the fact that Thom’s theorem [24] gives a homotopy
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equivalenceMap∗(CP 2,K(Z, 3)) ≃ Map∗(S
2,K(Z, 3)) ≃ S1 we find that the induced

map χ∗ factors through Ω2χ and is thus also null-homotopic. It follows that Bπ∗
admits a section and since the homotopy fibre of Bπ∗ is Map∗(CP 2, BS1) ≃ Z it
is easy to see that this section becomes a homotopy equivalence after restricting to
components.

An easy consequence of this lemma is the following very useful homotopy pullback.

Lemma 4.7. The following homotopy commutative diagram is a homotopy pullback:

BG(k,l)(CP 2, U(n))
eU //

B̂π
��

(hpb)

BU(n)

Bπ

��
BG(k,l)(CP 2, PU(n))

ePU
// BPU(n).

(4.11)

Proof. The map Bπ induces the map B̂π : BG(k,l)(CP 2, U(n)) ≃ Map(k,l)(CP 2,

BU(n)) → Map(k,l)(CP 2, BPU(n)) ≃ BG(k,l)(CP 2, PU(n)). The restriction of B̂π to

the homotopy fibre of eU is the homotopy equivalence Bπ∗ : Map
(k,l)
∗ (CP 2, BU(n)) ≃

Map
(k,l)
∗ (CP 2, BPU(n)) that was demonstrated in Lemma 4.6 and from this it follows

that the square (4.11) is a homotopy pullback.

The main application of this lemma is the following theorem, which is the main
result of this section. It is of interest in its own right, however, and the reader should
bear in mind the accidental isomorphism PU(2) ∼= SO(3) when we study U(2)-gauge
groups in a subsequent section. In this case the lemma says the classifying spaces of
the based U(2)- and SO(3)-gauge groups are of the same homotopy type.

Proposition 4.8. Let p be a prime not dividing n. Then after localisation at p the
following diagram becomes homotopy commutative

S1

∆

��

// ∗ //

��

BS1

��

BS1

B∆

��
U(n)

λ(k,l) //

q

��

BG(k,l)
∗ (CP 2, U(n)) //

≃
��

BG(k,l)(CP 2, U(n))

B̂π
��

// BU(n)

Bπ

��
SU(n)

δl′ // BGl′

∗ (CP 2, SU(n)) // BGl′(CP 2, SU(n)) // BSU(n),

(4.12)

where

l′ =

{
2nl − (n− 1)k2, n even,

2nl − (n−1)
2 k2, n odd.

Proof. Let p be a prime not dividing n and localise at p. Then the canonical pro-
jection ρ : SU(n) → PU(n) becomes a homotopy equivalence which we shall use to
identify these groups and their classifying spaces. From Lemma 4.6 there is an integral

homotopy equivalence BG(k,l)
∗ (CP 2, U(n)) ≃ BG(k,l)

∗ (CP 2, PU(n)) and we use the
maps induced by Bρ to identify BG(k,l)(CP 2, PU(n)) ≃ Map(k,l)(CP 2, BPU(n)) ≃
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BGl′(CP 2, SU(n)) ≃ Mapl
′
(CP 2, BSU(n)) and BG(k,l)

∗ (CP 2, SU(n)) ≃ BGl′

∗ (CP 2,
SU(n)). Note that we have used different integer labels for the components on each
side of the equivalence. This a point to which we shall shortly return.

Now insert these identifications in the square (4.11) appearing in Lemma 4.7 and
extend to get the following homotopy commutative diagram

S1

∆

��

// ∗ //

��

BS1

��

BS1

B∆

��
U(n) //

π

��

BG(k,l)
∗ (CP 2, U(n)) //

≃
��

BG(k,l)(CP 2, U(n))

B̂π

��

// BU(n)

Bπ

��
SU(n)

δl′ // BGl′

∗ (CP 2, SU(n)) // BGl′(CP 2, SU(n)) // BSU(n).

(4.13)

At this stage we have left the notation of (4.11) in place: the maps in the diagram
are not canonical projections and must be carefully calculated. Note that the bottom
row of the diagram now appears as the evaluation fibration of the gauge group of an
SU(n)-bundle over CP 2.

We next identify the integer l′. The action of B∆ on the first two integral Chern
classes was calculated by Woodward in [25] where it was shown that

B∆∗c1 = nx,

B∆∗c2 =
n(n− 1)

2
x2,

where x ∈ H2(BS1) is a generator. Using this he proves that the image of
Bπ∗ : H4(BPU(n)) → H4(BU(n)) is generated by{

−(n− 1)c21 + 2nc2, n even,

− (n−1)
2 c21 + 2nc2, n odd

and so we obtain the action of Bπ∗ on the Pontryagin class p1 ∈ H4(BPU(n))

Bπ∗p1 =

{
−(n− 1)c21 + 2nc2, n even,

− (n−1)
2 c21 + 2nc2, n odd.

With this the value of l′ is now clear. If f : CP 2 → BU(2) satisfies f∗c1 = k · x, f∗c2 =
l · x2 then

B̂π(f)∗p1 = (Bπ ◦ f)∗p1

= f∗

({
−(n− 1)c21 + 2nc2, n even,

− (n−1)
2 c21 + 2nc2, n odd

)

=

{
(2nl − (n− 1)k2) · x2, n even,(
2nl − (n−1)

2 k2
)
· x2, n odd

and we have

l′ =

{
2nl − (n− 1)k2, n even,

2nl − (n−1)
2 k2, n odd.
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With this in place it only remains to study the map π in (4.13). Consider the
diagram

S1 × SU(n)

pr2

��

n·i+j // U(n)

π

��
SU(n)

ρ // PU(n),

(4.14)

where i : S1 = U(1) → U(n) is the inclusion. We claim that this diagram homotopy
commutes. Indeed, the map π is a homomorphism so

π ◦ (n · i+ j) = n · (π ◦ i) + π ◦ j ≃ ∗+ ρ ◦ pr2 ≃ ρ ◦ pr2.

Note that since (n, p) = 1, the map n · i+ j on the top row is a p-local homotopy
equivalence with inverse (1/n · det)× q : U(n) → S1 × SU(n) where q, i appear in

the fibration sequence S1 i−→ U(n)
q−→ U(n)/S1 ∼= SU(n).

The map we seek to identify is ρ−1 ◦ π : U(n) → SU(n) and using (4.14) we may
write this as

ρ−1 ◦ π ≃ pr2 ◦ (n · i+ j)−1 ≃ pr2 ◦ (1/n · det× q) = q.

In short, up to equivalence, we may simply replace the map π in (4.13) with the
projection q. This information is presented, with a slight abuse of notation, in the
diagram (4.12).

Corollary 4.9. Let p be a prime not dividing n. Then after localisation at p there is
a homotopy equivalence

G(k,l)(CP 2, U(n)) ≃ Gl′(CP 2, SU(n))× S1,

where

l′ =

{
2nl − (n− 1)k2, n even,

2nl − (n−1)
2 k2, n odd.

Proof. Loop diagram (4.12) of Proposition 4.8 to obtain

G(k,l)
∗ (CP 2, U(n)) //

≃
��

G(k,l)(CP 2, U(n))

ΩB̂π

��

// U(n)

π

��
Gl′

∗ (CP 2, SU(n))

��

// Gl′(CP 2, SU(n)) //

ϵ

��

SU(n)

∗
��

∗ // BS1 BS1.

Since SU(n) is 2-connected the connecting map SU(n) → BS1 of the right-hand
vertical fibration is trivial. The connecting map ϵ : Gl′(CP 2, SU(n)) → BS1 factors
through this trivial map so it too is trivial. This observation induces the product
decomposition G(k,l)(CP 2, U(n)) ≃ Gl′(CP 2, SU(n))× S1.
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Remark 4.10. It is interesting to observe that the splitting of Corollary 4.9 actually
happens on the level of classifying spaces. Indeed, localised at a prime p not divid-
ing n the map χ : BPU(n) → K(Z, 3) becomes trivial since it factors through the
contractible space K(Zn, 2)(p) ≃ K((Zn)(p), 2) ≃ ∗. Using the principal action we get
a local homotopy equivalence BS1 ×BSU(n) ≃ BS1 ×BPU(n) ≃ BU(n) (see [11])
which induces a local homotopy equivalenceMap(CP 2, BS1)×Map(CP 2, BSU(n))≃
Map(CP 2, SU(n)). The inverse is not easily identified, however, and it is difficult to
correctly match components.

4.3. The relationship between BG(0,l)(CP 2, U(n)) and BGl(CP 2, SU(n))
Consider the bundles E(0,l) → CP 2 with trivial first Chern class. These bun-

dles restrict to trivial bundles over S2 so therefore G(E(0,l)|S2) ≃ G(S2 × U(n)) ≃
Map(S2, U(n)). This observation hints that the gauge groups G(E(0,l)) of the unre-
stricted bundles may have a particularly simple structure and this is indeed the case.
In this section we examine the topologies of these gauge groups and uncover their rela-
tionship with certain SU(n)-gauge groups. Our first result relates to the classifying
spaces of the based groups.

Lemma 4.11. For each integer l there is a homotopy equivalence

BG(0,l)
∗ (CP 2, U(n)) ≃ BGl

∗(CP 2, SU(n)).

Proof. Start with the fibration sequence SU(n)
j−→ U(n)

det−−→ S1. Note that this se-
quence is split by the inclusion S1 ∼= U(1) ↪→ U(n) which, being itself a group homo-
morphism, induces a splitting of the fibring of classifying spaces

BSU(n)
Bj−−→ BU(n)

Bdet−−−→ BS1. (4.15)

Now consider the fibre sequence of functors Ω4(−)
q∗−→ Map∗(CP 2,−)

i∗−→ Ω2(−) and
take its product with the fibration (4.15). The result of this is a homotopy commu-
tative diagram in which each row and column is a fibre sequence

Ω4BSU(n)
q∗ //

Ω4Bj≃
��

Map∗(CP 2, BSU(n))
i∗ //

Bj∗

��
(∗)

Ω2BSU(n)

Ω2Bj

��
Ω4BU(n)

q∗ //

��

Map∗(CP 2, BU(n))
i∗ //

Bdet∗

��

Ω2BU(n) ≃ Z× Ω2BSU(n)

Ω2Bdet

��
∗ // Map∗(CP 2, BS1)

i∗ //
≃

// Ω2BS1 ≃ Z.

By a result of Thom [24] Map∗(CP 2, BS1) ≃ Map∗(CP 2, K(Z, 2)) ≃
K(H2(CP 2), 0) ≃ K(H2(S2), 0) so the map i∗ along the bottom of the diagram is
a homotopy equivalence. Since also Ω4Bj on the left-hand side of the diagram is a
homotopy equivalence it follows that the square (∗) is a homotopy pullback.

Restricting the downwards arrow on the right-hand side of (∗) to the basepoint
component converts it into a homotopy equivalence Ω2Bj : Ω2BSU(n) ≃ Ω2

0BU(n)

and i∗ takes the component Map
(0,l)
∗ (CP 2, BU(n)) into Ω2

0BU(n). Since homotopy
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classes CP 2 → BSU(n) are classified by their action on the second Chern class, the

map Bj∗ sends the component Mapl∗(CP 2, BSU(n)) into Map
(0,l)
∗ (CP 2, BU(n)).

From these observations we obtain, through restriction, another homotopy pull-
back, here labelled (hpb)

Ω4
lBSU(n)

q∗ //

Ω4
l Bj≃

��

Mapl∗(CP 2, BSU(n))
i∗ //

Bj∗|≃
��

(hpb)

Ω2BSU(n)

Ω2
0Bj≃

��
Ω4

lBU(n)
q∗ // Map

(0,l)
∗ (CP 2, BU(n))

i∗ // Ω2
0BU(n),

which clearly displays the restriction Bj∗| as a homotopy equivalence.

The previous lemma leads immediately to the next, and the pair is subsequently
used to relate the classifying spaces of the full U(n)- and SU(n)-gauge groups.

Lemma 4.12. The following homotopy commutative square is a homotopy pullback

BGl(CP 2, SU(n))
eSU

//

B̂j
��

(hpb)

BSU(n)

Bj

��
BG(0,l)(CP 2, U(n))

eU // BU(n).

(4.16)

Proof. Introduce the evaluation fibrations for each of the gauge groups G(0,l)(CP 2,
U(n)) and Gl(CP 2, SU(n)) and use the map Bj : BSU(n) → BU(n) to induce the

map B̂j : BGl(CP 2, SU(n)) → BG(0,l)(CP 2, U(n)). Using Lemma 4.11 we see that

the induced map of fibres is the homotopy equivalence Bj∗ : BGl
∗(CP 2, SU(n))

≃−→
BG(0,l)

∗ (CP 2, U(n)) and we use this to identify (4.16) as a homotopy pullback.

Theorem 4.13. There is an isomorphism of principal Gl(CP 2, SU(n))-bundles
over S1:

G(0,l)(CP 2, U(n)) ∼= S1 × Gl(CP 2, SU(n)).

Proof. Consider diagram (4.16). Since it is a homotopy pullback the homotopy fibre

of B̂j and Bj share a common homotopy type, namely S1, and it follows that there
is a homotopy fibration sequence

· · · → Gl(CP 2, SU(n))
ΩB̂j−−−→ G(0,l)(CP 2, U(n))

ξ−→ S1 ν−→ BGl(CP 2, SU(n)) → · · ·

for some maps ξ, ν. We shall show that the map ν : S1 → BGl(CP 2, SU(n)) must be
null-homotopic by demonstrating that π1(BGl(CP 2, SU(n))) = 0 and from this we
will be able to conclude the theorem.

To this end we note that π1(BSU(n)) = 0 so the homotopy exact sequence of the
top line in (4.16) gives an epimorphism π1(BGl

∗(CP 2, SU(n)))→π1(BGl(CP 2, SU(n)))
and it will therefore be sufficient to show that π1(BGl

∗(CP 2, SU(n))) = 0. Using
the action of Ω4BSU(n) we obtain a homotopy equivalence BGl

∗(CP 2, SU(n)) ≃
Mapl(CP 2, BSU(n)) ≃ Map0∗(CP 2, BSU(n)) and we find this latter space in the

homotopy fibration sequence Ω4
0BSU(n)

q∗−→ Map0∗(CP 2, BSU(n))
i∗−→ Ω2BSU(n)
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which is induced by the cofibring S3 η−→ S2 i−→ CP 2 q−→ S4. The long exact homotopy
sequence of this fibration then gives us the following exact sequence

π4(BSU(n))∼=Z η∗

−→π5(BSU(n))
q∗−→π1(Map0∗(CP 2, BSU(n)))

i∗−→ 0=π3(BSU(n)).

For n ⩾ 3 we have π5(BSU(n)) = 0 and so in this case it must be that π1(Map0∗(CP 2,
BSU(n))) = 0. When n = 2 we have BSU(2) ≃ BS3 with π4(BS3) ∼= Z generated
by the inclusion of the bottom cell i : S4 ↪→ BS3, and π5(BS3) ∼= Z2 generated by
i ◦ η. Thus η∗ : π4(BS3) → π5(BS3) is onto in this case and once again we have
π1(Map0∗(CP 2, BSU(2))) = 0. From the proceeding comments we are now able to
conclude the stated result.

5. Homotopy types of U(2)-gauge groups over CP 2

In this section we give application for the various theorems we have collected
by studying the homotopy types of U(2)-gauge groups over CP 2. We first examine
the homotopy types of the based U(2)-gauge groups over CP 2 and their classifying
spaces. The results collected here are then used to complete the proof of Theorem 1.3
in section 5.2.

5.1. The based gauge groups
We focus here on the classifying spaces of the based gauge groups. Using Theo-

rem 4.2 and Proposition 4.1 we see that there are at most two distinct types, with

representatives BG(0,0)
∗ and BG(1,0)

∗ . The main result of this section is that these
two spaces do, in fact, represent distinct homotopy types. The proof proceeds by an
investigation of the low-dimensional homotopy groups of each of the types.

This result is in strong contrast to previous cases that appear in the literature. For
instance when studying the gauge groups associated to any simply connected, compact
Lie group over a simply connected 4-manifold, the analogue of Proposition 4.1 is
enough to ensure that there is a unique homotopy type amongst the classifying spaces
of the based gauge groups.

Lemma 5.1.

π1(BG(0,0)
∗ (CP 2, U(2))) = 0, (5.1)

π1(BG(1,0)
∗ (CP 2, U(2))) ∼= Z2. (5.2)

Proof. We first show (5.1). We identify BG(0,0)
∗ (CP 2, U(2)) ≃ Map

(0,0)
∗ (CP 2, BU(2)).

Then we have a homotopy fibration sequence

· · · → Ω2S3 η∗

−→ Ω3
0S

3 q∗−→ Map
(0,0)
∗ (CP 2, BU2)

i∗−→ ΩS3,

which is the restriction of the sequence (4.3) to the basepoint components. Examining
the homotopy exact sequence of this fibration in low dimensions leads to the exact
sequence

π2(BG(0,0)
∗ (CP 2, U(2)))

i∗−→ π3(S
3) ∼= Z η∗

−→ π4(S
3)

∼= Z2
q∗−→ π1(BG(0,0)

∗ (CP 2, U(2))) → 0

with q∗ onto since π1(ΩS
3) ∼= π2(S

3) = 0. As π3(S
3) ∼= Z is generated by the identity
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idS3 and π4(S
3) ∼= Z2 is generated by the Hopf map η, the middle map of this sequence

is, in fact, onto and it must be that π1(BG(0,0)
∗ ) = 0, proving (5.1).

Turning now to (5.2) we first recall that BG(1,0)(CP 2, U(2)) ≃ BG(1,1)(CP 2, U(2))
by Proposition 4.1 so to prove the statement it will be sufficient to calculate
π1(BG(1,1)(CP 2, U(2))). We have a fibring

Ω3
0S

3 j−→ Map
(1,1)
∗ (CP 2, BU(2))

i∗−→ ΩS3

granted by Proposition 4.3 but in this case there is no easy identification of the
fibration connecting map. In any case the homotopy exact sequence shows us that

π1(Map
(1,1)
∗ (CP 2, BU(2))) is a quotient of π1(Ω

3
0S

3) ∼= Z2 and so it is either trivial
or Z2. We will show it is the latter.

Consider the U(2)-bundle U(2) ↪→ SU(3) → CP 2 obtained by letting SU(3) act on
CP 2 in the standard way and let f : CP 2 → BU(2) be a classifying map for this bun-
dle. Then a simple calculation with the Serre spectral sequence shows that this bun-
dle has Chern classes (f∗c1, f

∗c2) = (x, x2) so that f is an element of Map(1,1)(CP 2,
BU(2)) ≃ BG(1,1)(CP 2, U(2)).

Now the homotopy fibration sequence

SU(3) → CP 2 f−→ BU(2)

gives rise to a short exact sequence of homotopy groups

0 → π5(SU(3)) ∼= Z → π5(CP 2) ∼= Z f∗−→ π5(BU(2)) ∼= Z2 → 0. (5.3)

Here π6(BU(2)) ∼= π5(U(2)) ∼= Z2 so the left-hand map is monic and π4(SU(3)) = 0
so f∗ is epic.

Now π5(CP 2) is generated by the Hopf map γ : S5 → CP 2, so (5.3) shows that
f∗(γ) = f ◦ γ = γ∗(f) is a generator, ϵ̃5, of π5(BU(2)). It follows that γ induces a
map of evaluation fibrations as in the diagram

· · · // U(2)
λ(1,1) // BG(1,1)

∗ (CP 2, U(2))

γ∗

��

// BG(1,1)(CP 2, U(2))
e //

γ∗

��

BU(2)

· · · // U(2)
δ′ // Ω4

0U(2) // Mapϵ̃5(S5, BU(2)) // BU(2).

(5.4)
Here we see a factorisation of the connecting map δ′ of the bottom sequence through
λ(1,1).

By the work of Lang [16] the adjoint of δ′ is the Samelson product ⟨ϵ4, idU(2)⟩ : S4 ∧
U(2) → U(2), where ϵ4 generates π4(U(2)) ∼= Z2 and is adjoint to ϵ̃5. On the funda-
mental group we then have δ′∗ : π1(U(2)) → π5(U(2)) taking a generator ϵ1 ∈ π1(U(2))
to the Samelson product ⟨ϵ4, ϵ1⟩.

We claim that this Samelson product is non-trivial and is, in fact, a generator of
the group. Indeed, if ϵ3 ∈ π3(U(2)) ∼= Z is a generator, then ⟨ϵ3, ϵ1⟩ = ϵ4 generates
π4(U(2)) ∼= Z2 [2]. Now using that the inclusion j : S3 ∼= SU(2) ↪→ U(2) gives an iso-
morphism on homotopy groups in dimension greater than 1 we have an identification
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of the generators as ϵ3 = j and ϵ4 = ⟨ϵ3, ϵ1⟩ = j∗η. From this we get that

⟨ϵ4, ϵ1⟩ = ⟨j∗η, ϵ1⟩ = ⟨ϵ3, ϵ1⟩ ◦ (η ∧ 1) = j ◦ η ◦ Ση

is the generator of π5(U(2)) ∼= Z2 and the Samelson product is non-trivial.
It follows that δ′∗ : π1(U(2)) → π5(U(2)) is onto and the factorisation in the left-

hand square of (5.4) shows that π1(BG(1,1)
∗ (CP 2, U(2))) cannot be the trivial group.

We now know that π1(BG(1,1)
∗ (CP 2, U(2))) is a non-trivial quotient of Z2. It must

therefore be Z2.

We see from the lemma that there are, in fact, two distinct homotopy types
amongst the classifying spaces of the based U(2)-gauge groups. Since the homo-
topical information presented in Lemma 5.1 is retained after looping, the distinction
is passed onto the based gauge groups they classify as well. We record this in the
following statement.

Theorem 5.2. There are exactly two different homotopy types amongst the classi-
fying spaces of based gauge groups of U(2)-bundles over CP 2. A Similar statement
holds for the based gauge groups they classify. In particular

BG(0,0)
∗ (CP 2, U(2)) ̸≃ BG(1,0)

∗ (CP 2, U(2))

and

G(0,0)
∗ (CP 2, U(2)) ̸≃ G(1,0)

∗ (CP 2, U(2)).

It turns out the distinction between these classifying spaces is solely due to 2-local
phenomena. The odd primary homotopy types of these based gauge groups are much
more understandable.

Proposition 5.3. Localised away from 2 there is a single homotopy type amongst the
classifying spaces of based gauge groups of U(2)-bundles over CP 2. A Similar state-
ment holds for the based gauge groups they classify. In particular, there are local homo-

topy equivalences BG(0,0)
∗ (CP 2, U(2)) ≃ BG(1,0)

∗ (CP 2, U(2)) and G(1,0)
∗ (CP 2, U(2)) ≃

G(0,0)
∗ (CP 2, U(2)) ≃ Map∗(CP 2, U(2)).

Proof. Once 2 is inverted we have two chains of homotopy equivalences,

BG(0,0)
∗ (CP 2, U(2)) ≃ Map

(0,0)
∗ (CP 2, BU(2)) ≃Map

(0,0)
∗ (CP 2, BPU(2))

≃Map0∗(CP 2, BS3),

BG(1,0)
∗ (CP 2, U(2)) ≃ Map

(1,0)
∗ (CP 2, BU(2)) ≃Map

(1,0)
∗ (CP 2, BPU(2))

≃Map0∗(CP 2, BS3),

which follow from Lemma 4.6 and Proposition 4.8. Combining these two chains yields
the first statement.

With this established it is now immediate that

G(1,0)
∗ (CP 2, U(2)) ≃ ΩBG(1,0)

∗ (CP 2, U(2))

≃ ΩBG(0,0)
∗ (CP 2, U(2)) ≃ G(0,0)

∗ (CP 2, U(2)).

Moreover, sinceMap
(0,0)
∗ (CP 2, BU(2)) is the component containing the constant map
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it holds that

G(0,0)
∗ (CP 2, U(2)) ≃ ΩBG(0,0)

∗ (CP 2, U(2)) ≃ ΩMap
(0,0)
∗ (CP 2, BU(2))

≃ Map
(0,0)
∗ (ΣCP 2, BU(2)) ≃ Map

(0,0)
∗ (CP 2,ΩBU(2))

≃ Map
(0,0)
∗ (CP 2, U(2)).

Thus

G(1,0)
∗ (CP 2, U(2)) ≃ G(0,0)

∗ (CP 2, U(2)) ≃ Map
(0,0)
∗ (CP 2, U(2)).

For later use we record the following.

Lemma 5.4.

π2(BG(0,0)
∗ ) ∼= Z, (5.5)

π2(BG(1,0)
∗ ) ∼= Z⊕ Z2. (5.6)

Proof. We first show (5.5) using the homotopy exact sequence of the fibring Ω3
0S

3 q∗−→
Map

(0,0)
∗ (CP 2, BU2)

i∗−→ ΩS3, which, after making the appropriate identifications,
displays as

π4S
3 η∗

−→ π5S
3 q∗−→ π2Map

(0,0)
∗ (CP 2, BU2)

i∗−→ π3S
3 η∗

−→ π4S
4.

Now π4(S
3) ∼= Z2 is generated by η and π5(S

3) ∼= Z2 is generated by η2 so the left

hand η∗ is an isomorphism and we get π2(Map
(0,0)
∗ (CP 2, BU2)) ∼= ker(η∗ : π3(S

3) →
π4(S

3)). From Lemma 5.1 we know that ker (η∗ : π3(S
3) → π4(S

3)) ∼= 2Z and so we
are able to conclude (5.5).

Now we shall show (5.6). We begin by using the map induced by i : S2 ↪→ CP 2 to
compare the evaluation fibration sequence of the gauge group G(1,0)(CP 2, U(2)) with
that of the gauge group G1(S2, U(2)) belonging to the restricted bundle. The result
of this is the following homotopy commutative diagram

∗

��

// Ω3
0S

3

j

��

Ω3
0S

3

��

// ∗

��
U(2)

λ(1,0) //// Map
(1,0)
∗ (CP 2, BU(2))

(hpb)i∗

��

// BG(1,0)(CP 2, U(2))

i∗

��

e // BU(2)

U(2)
δ1 // ΩS3 // BG1(S2, U(2)) // BU(2).

(5.7)

By construction the square labelled (hpb) is a homotopy pullback. In this diagram
we have used the homotopy fibration sequence

Ω3
0S

3 j−→ Map
(1,0)
∗ (CP 2, BU(2))

i∗−→ ΩS3 (5.8)

supplied by Proposition 4.3 to identify the spaces appearing in the top line of the
diagram. The point of which to take note is the factorisation of the connecting map
δ1 of the bottom evaluation sequence through both i∗ and λ(1,0).
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Now it was shown in Lemma 5.1 that π1(Map
(1,0)
∗ (CP 2, BU(2))) ∼= Z2, and argued

there also that the map j∗ : π1(Ω
3
0S

3)
∼=−→ π1(Map

(1,0)
∗ (CP 2, BU(2))) is an isomor-

phism. Shortly we shall show that the map j∗: π2(Ω
3
0S

3)→π2(Map
(1,0)
∗ (CP 2, BU(2)))

is injective. If we assume this for now and examine the homotopy exact sequence of
the fibration (5.8) we find a short exact sequence

0 → π2(Ω
3
0S

3)
j∗−→ π2(Map

(1,0)
∗ (CP 2, BU(2)))

i∗−→ π2(ΩS
3) → 0,

which must split for algebraic reasons since π2(ΩS
3) ∼= π3(S

3) ∼= Z is free abelian.
This then allows us to get (5.6) by concluding that

π2(Map
(1,0)
∗ (CP 2, BU(2))) ∼= π2(ΩS

3)⊕ π2(Ω
3
0S

3) ∼= Z⊕ Z2.

We shall now provide the details of the argument for j∗ : π2(Ω
3
0S

3) →
π2(Map

(1,0)
∗ (CP 2, BU(2))) being injective. We have seen that the Samelson prod-

uct ⟨ϵ1, ϵ3⟩ is non-trivial and that the map δ1∗ : π3(U(2)) → π3(ΩS
3) ∼= π4(U(2))

is given the assignment α 7→ ⟨ϵ1, α⟩. It must therefore be that δ1∗ is a non-trivial
surjection π3(U(2)) ∼= Z → π4(U(2)) ∼= Z2. In (5.7) we saw that δ1 factors through

i∗ : Map
(1,0)
∗ (CP 2, BU(2)) → ΩS3 so it must be that i∗ induces a non-trivial surjec-

tion in this degree. Consequently, the connecting map of the sequence ∆: π3(ΩS
3) →

π2(Ω
3S3) must be trivial and the following map of the sequence, j∗ : π2(Ω

3
0S

3) →
π2(Map

(1,0)
∗ (CP 2, BU(2))), must be injective.

5.2. The full gauge groups
Moving on now to the full gauge groups we first use Theorem 4.2 to reduce the

enumeration problem to a more manageable size. Applying its statement in the case
of n = 2 yields the following.

Proposition 5.5. For all integers, k, l, r there are homotopy equivalences

BG(k,l)(CP 2, U(2)) ≃ BG(k+2r,l+kr+r2)(CP 2, U(2))

and, consequently, also homotopy equivalences

G(k,l)(CP 2, U(2)) ≃ G(k+2r,l+kr+r2)(CP 2, U(2)).

Now assume given a particular gauge group G(k,l)(CP 2, U(2)). Write k = 2k′ + ϵ
with ϵ ∈ {0, 1} and take r = −k′ in the formula of Proposition 5.5 to obtain a homo-
topy equivalence

BG(k,l)(CP 2, U(2)) ≃ BG(ϵ,l−k′2−ϵk′)(CP 2, U(2))

with ϵ = 0 or 1. We see that in studying the homotopy type of any given gauge group
G(k,l)(CP 2, U(2)) we can always find a homotopy equivalent object with k = 0 or 1.
This observation reduces the problem of studying the homotopy types of all possible
U(2)-gauge groups over CP 2 to just the study of the homotopy types of the gauge
groups

G(0,l)(CP 2, U(2)) G(1,l)(CP 2, U(2))

and their classifying spaces as l ranges over the integers. In the following we shall
always therefore assume that k is an integer mod 2.
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We next obtain an upper bound on the number of homotopy types in each class.
We apply Corollary 4.5 and feed in the information from Theorem 1.1, that |δ1| = 12
[14], to get the following.

Proposition 5.6. For each pair of integers k, l, there is a homotopy equivalence

G(k,l)(CP 2, U(2)) ≃ G(k,l+12)(CP 2, U(2)).

This proposition gives an upper bound that is not necessarily met. Indeed there
are fewer distinct homotopy types amongst the gauge groups in the first class. For
these objects we have already solved the problem completely.

Proposition 5.7. There is a homotopy equivalence G(0,l)(CP 2, U(2)) ≃ G(0,l′)(CP 2,
U(2)) if and only if (6, l) = (6, l′).

Proof. From Theorem 4.13 we obtain a decomposition

G(0,l)(CP 2, U(2)) ≃ S1 × Gl(CP 2, SU(2)). (5.9)

Now the gauge groups of principal SU(2)-bundles over CP 2 have been studied by
Kono and Tsukuda in [15]. In fact, they give results relating to the homotopy types of
SU(2)-bundles over any simply connected 4-manifold. To apply their results we sim-
ply note that the signature of the intersection form on CP 2 is +1, so their The-
orem 1.2 applies to give Gl(CP 2, SU(2)) ≃ Gl′(CP 2, SU(2)) if and only if (6, l) =
(6, l′). Combining this information with the splitting in equation (5.9) completes the
proof.

Turning now towards the study of the second class of gauge groups, namely the
gauge groups G(1,l)(CP 2, U(2)), we encounter a much more delicate problem. Integral
results are particularly tricky and for the most part we make do with p-local state-
ments. We already have the upper bound G(1,l)(CP 2, U(2)) ≃ G(1,l+12)(CP 2, U(2)) of
Proposition 5.6. The following provides a lower bound of at least 2 distinct homotopy

types. For its proof recall the notation of section 4.1; λ(k,l) : U(2) → Map
(k,l)
∗ (CP 2,

BU(2)) is the connecting map for the evaluation fibration of the gauge group
G(k,l)(CP 2, U(2)) and δl : U(2) → Ω3

0U(2) is the connecting map of the evaluation
fibration sequence of the gauge group Gl(S4, U(2)).

Proposition 5.8.

π1(BG(1,l)(CP 2, U(2))) ∼=

{
0, l ≡ 1 (mod 2),

Z2, l ≡ 0 (mod 2).

Proof.The first step of the proof is to calculate the homomorphisms λ(1,0)∗:π1(U(2))→
π1(Map

(1,0)
∗ (CP 2, BU(2))) and δl : π1(U(2)) → π4(U(2)). Following this we use the

decomposition of Theorem 4.4 to obtain the action of λ(1,l)∗ for each l, and thus

calculate π1BG(1,l)(CP 2, U(2)) ∼= coker(λ(1,l)∗).

To proceed we use the evaluation fibration for the gauge group G(1,0)(CP 2, U(2))
to get an exact sequence

π1(G(1,0)(CP 2, U(2)))
e∗−→ π1(U(2))

λ(1,0)∗−−−−→ π1(Map
(1,0)
∗ (CP 2, BU(2)))

→ π1(BG(1,0)(CP 2, U(2))) → 0
(5.10)
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since BU(2) is simply connected. The map e : G(1,0)(CP 2, U(2)) → U(2) is the eval-
uation. We claim that e∗ is surjective and therefore λ(1,0) is trivial. This is seen as
follows.

Since its second Chern class vanishes, the bundle E(1,0) → CP 2 has a reduction of

structure to a U(1)-bundle Ẽ1 → CP 2 and there results an isomorphism of principal
bundles E(1,0)

∼= Ẽ1 ×U(1) U(2) over CP 2, where U(1) acts on U(2) from the left via
its inclusion i2 : U(1) ↪→ U(2) in the bottom right-hand corner. Define α : U(1) →
G(Ẽ1 ×U(1) U(2)) ∼= G(1,0)(CP 2, U(2)) by

α(λ)(x,A) = (x, i1(λ) ·A), λ ∈ U(1), x ∈ Ẽ1, A ∈ U(2),

where i1 : U(1) → U(2) is the inclusion in the top left-hand corner. It is not difficult
to see that this is a well defined homomorphism and satisfies

e ◦ α = i1. (5.11)

Now recall that i1 generates π1(U(n)). It follows from (5.11) that e∗ is surjective and
λ(1,0)∗ = 0.

On the other hand, δl : U(2) → Ω3
0U(2) is adjoint to the Samelson product

⟨l · ϵ3, 1U(2)⟩ : S3 ∧ U(2) → U(2) and on the fundamental group the induced homo-
morphism is given by δl∗ : π1(U(2)) ∼= Z → π4(U(2)) ∼= Z2, ϵ1 7→ ⟨l · ϵ3, ϵ1⟩ = l · ϵ4
where ϵi generates πiU(2). It is therefore trivial when l is even and a non-trivial
surjection when l is odd.

Now we calculate the action of the combined map λ(1,l) = λ(1,0) + δl. Consider the

composite λ(1,l)∗ϵ1 = λ(1,l) ◦ ϵ1 as a class in π1(Map
(1,l)
∗ (CP 2, BU(2))). With respect

to the decomposition of Theorem 4.4 it is represented by the following map

S1 → Map
(1,l)
∗ (CP 2, BU(2))

z 7→
[
CP 2 c−→ CP 2 ∨ S4 (λ(1,0)∗ϵ1(z))∨(δl∗ϵ1(z))−−−−−−−−−−−−−−−→ BU(2) ∨BU(2)

∇−→ BU(2)

]
.

Since λ(1,0)∗ϵ1 = 0, it is homotopic to the constant loop at a chosen basepoint map

f(1,0) ∈ Map
(1,0)
∗ (CP 2, BU(2)). Similarly, δl∗ϵ1 is either homotopic to a chosen base-

point loop ω0 ∈ Ω4
lBU(2) when l is even, or, when l is odd, is a generator ϵ̂1 ∈

π1(Ω
4
lBU(2)) ∼= Z2. Thus we have

λ(1,l)∗ϵ1(z) = λ(1,0)∗ϵ1(z) + δl∗ϵ1(z)

= f(1,0) + δl∗ϵ1(z)

=

{
f(1,0) + ω0, l even

f(1,0) + ϵ̂1(z), l odd
(5.12)

=

{
f(1,l), l even

f(1,l) + (−ω0 + ϵ̂1(z)), l odd

=

{
j(ω0), l even

j(ϵ̂1(z)), l odd,

where the last line follows from Proposition 4.3 where the fibre inclusion j: Ω4
0BU(2)→

Map
(1,l)
∗ (CP 2, BU(2)) was identified as j(ω) = f(1,l) + ω.
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Now equation (5.12) shows us that if l is even, then λ(1,l)∗ϵ1 is the constant
loop at the basepoint map and is thus trivial. On the other hand, if l is odd, then

λ(1,l)∗ϵ1 = j∗ϵ̂1. Since j∗ : π1(Ω
4
lBU(2)) → π1(Map

(1,l)
∗ (CP 2, BU(2))) is an isomor-

phism by Lemma 5.1, this element is non-trivial and we conclude that λ(1,l)∗ is sur-
jective in this case.

Now (5.10) displays the fact that π1(BG(1,l)(CP 2, U(2))) ∼= coker
(
λ(1,l)∗

)
. We have

just seen that λ(1,l)∗ is zero when l is even and surjective when l is odd. We know

π1(Map
(1,l)
∗ (CP 2, BU(2))) = Z2 so therefore

π1(BG(1,l)(CP 2, U(2))) ∼=

{
0, l ≡ 1 (mod 2),

Z2, l ≡ 0 (mod 2)

and we are complete.

The major obstacle to obtaining further integral information on the homotopy
types of the gauge groups G(1,l)(CP 2, U(2)) is actually a lack of 2-local information.
Localised at an odd prime p, the homotopy types of these objects are much simpler.

Theorem 5.9. When localised away from 2 there is a product splitting

G(1,l)(CP 2, U(2)) ≃ S1 × G4l−1(CP 2, SU(2)).

It follows that when localised away from 2 there is a homotopy equivalence G(1,l)(CP 2,
U(2)) ≃ G(1,l′)(CP 2, U(2)) if and only if (4l − 1, 6) = (4l′ − 1, 6). In particular, when
localised at an odd prime p ⩾ 5, the gauge group G(1,l)(CP 2, U(2)) has the trivial
homotopy type

G(1,l)(CP 2, U(2)) ≃ U(2)×Map∗(CP 2, U(2)).

Proof. The decomposition statement follows from Corollary 4.9. After this is estab-
lished it is a simple matter to apply the results of Kono and Tsukuda [15] on the
homotopy types of the G4l−1(CP 2, SU(2)) gauge groups to verify the second state-
ment. The final statement is then an immediate consequence of this.

Before closing we shall return to the integral world to answer one remaining ques-
tion.

Theorem 5.10. For any integer values of l, l′ it holds that

BG(0,l)(CP 2, U(2)) ̸≃ BG(1,l′)(CP 2, U(2)),

G(0,l)(CP 2, U(2)) ̸≃ G(1,l′)(CP 2, U(2)).

To demonstrate the statement we shall calculate π2 of each classifying space. We
shall find the result independent of the integers l, l′ – up to isomorphism – but different
for BG(0,l)(CP 2, U(2)) and BG(1,l′)(CP 2, U(2)). From this we shall conclude that
there are no values of l, l′ for which the classifying spaces are homotopy equivalent.
Since the information in π2 is retained after looping we shall be able to conclude the
statement for the gauge groups.

Lemma 5.11. For any integer values of l, l′ the following hold.

π2(BG(0,l)(CP 2, U(2))) ∼= Z⊕ Z,

π2(BG(1,l′)(CP 2, U(2))) ∼= Z⊕ Z⊕ Z2.
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Proof. The first step comes from an examination of the homotopy exact sequences
of the evaluation fibration sequences

· · ·U(2)
λ(k,l)−−−→ BG(k,l)

∗ (CP 2, U(2)) → BG(k,l)(CP 2, U(2))
e−→ BU(2)

for k = 0, 1. Since π3(BU(2)) = 0 we have in both cases an exact sequence

0 → π2(BG(k,l)
∗ (CP 2, U(2))) → π2(BG(k,l)(CP 2, U(2)))

e∗−→ π2(BU(2))
λ(k,l)∗−−−−→ π1(BG(k,l)

∗ (CP 2, U(2)))

and we conclude from this that the following is short exact

0 → π2(BG(k,l)
∗ (CP 2, U(2))) → π2(BG(k,l)(CP 2, U(2))) → ker(λ(k,l)∗) → 0. (5.13)

Now Lemma 5.1 and Proposition 5.8 give

ker(λ(k,l)∗) ∼=

{
2Z k = 1, l odd,

Z otherwise

so in either case this means that the last group in (5.13) is free abelian and the
sequence must split to give

π2(BG(k,l)(CP 2, U(2))) ∼= π2(Map
(k,l)
∗ (CP 2, BU(2)))⊕ Z.

Now the calculation of π2(Map
(k,l)
∗ (CP 2, BU(2))) was completed in Lemma 5.4

and using this information completes the proof.

Summarising the details presented in this section we now briefly prove Theorem 1.3.

Proof of Theorem 1.3. The first item 1 follows from Proposition 5.5 and the com-
ments following it. Item 2 is Proposition 5.6. Item 3 follows from Theorem 4.13 and
was included in the proof of Proposition 5.7. Item 4 is the statement of Theorem 5.9.
Item 5 was shown in proposition 5.10 and item 6 was given in Theorem 5.2.
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