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TATE OBJECTS IN STABLE (∞, 1)-CATEGORIES

BENJAMIN HENNION

(communicated by J.P.C. Greenlees)

Abstract
Tate objects allow us to deal with infinite dimensional spaces

by identifying some more structure. In this article, we set up the
theory of Tate objects in stable (∞, 1)-categories, while the lit-
erature only deals with exact categories. We will prove the main
properties expected from Tate objects. In particular, we show that
the K-theory of Tate objects is a delooping of that of the origi-
nal category. This gives us a procedure to transport invariants
from finite dimensional objects to Tate objects, hence providing
interesting invariants.

This new setting includes several useful examples: Tate objects
in the category of spectra for instance, or in the derived category
of a derived algebraic object — which can be thought of as a struc-
tured infinite dimensional vector bundle in the derived setting.

Introduction

Tate vector spaces have been used by many to deal with infinite dimensional spaces.
Identifying some structure allows us to define a well-behaved duality on infinite dimen-
sional spaces. They were studied by several authors, including Lefschetz, Beilinson,
Drinfeld and more recently Osipov and Zhu, Previdi, Saito, and Bräunling, Gröchenig
and Wolfson.

In [Dri], Drinfeld describes them the following way. Let us fix a field k. Let V be a
vector space, which we see as a discrete topological space. Its topological dual V ∨ is
then what is called a linearly compact vector space. A Tate vector space is a topolog-
ical space of the form V ⊕W∨ where both V and W are discrete topological vector
spaces. The first example of such a Tate vector space is the field of Laurent series
k((t)) � k[[t]]⊕ t−1k[t−1]. For any Tate vector space X, we then have (X∨)∨ � X.

Bräunling, Gröchenig and Wolfson [BGW] generalised the idea of Tate vector
spaces to Tate objects in an exact category C – objects of C playing the role of finite
dimensional vector spaces. They use a categorical version of discrete infinite dimen-
sional objects (namely Ind(C)) and of linearly compact objects (namely Pro(C)). An
elementary Tate object is then an object X that fits in an exact sequence

Xp → X → Xi,
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where Xi is discrete and Xp is linearly compact. A Tate object is a retract of an
elementary Tate object. For instance the field Qp is a Tate object in abelian groups,
as it fits in the sequence

Zp → Qp → Qp/Zp
.

In this paper, we establish a suitable framework to talk about derived categories of
Tate modules. Examples of such “Tate complexes” can be found in formal algebraic
geometry (the cohomology of a punctured formal neighbourhood is a Tate complex,
for instance). As recent developments have shown, a suitable framework to talk about
categories of complexes is that of stable∞-categories. Those are the higher categorical
version of triangulated categories. We therefore define Tate objects in a stable ∞-
category C by first identifying a category Ind(C) of discrete objects and a category
Pro(C) of linearly compact objects. The category Tate(C) of Tate objects in C is
then composed of retracts of extensions Xp → X → Xi as above, with Xp ∈ Pro(C)
and Xi ∈ Ind(C). This construction for instance applies to the category of perfect
complexes over some base, or to the category of spectra.

Main results

Before introducing a couple of examples that require this level of generality, let us
state the main results. The goal is to construct invariants of Tate objects. To do so,
we study the non-connective K-theory spectrum K(Tate(C)). Our next result gives
an ∞-categorical analogue to a delooping result of Saito in [Sai], first conjectured by
Kapranov and Previdi.

Theorem 1 (see Theorem 4.3). Let C be a stable and idempotent complete (∞, 1)-
category. The non-connective K-theory of Tate(C) is the suspension of that of C:

K(Tate(C)) � ΣK(C).

This theorem has two benefits: first, it shows that Tate(C) is a delooping for K-
theory. This kind of delooping are useful in order to grasp negative K-theory groups.

Secondly, Theorem 1 allows us to transfer invariants from objects of C to Tate
objects. We apply this idea to algebraic geometry. We give a notion of sheaves of
Tate complexes (i.e. Tate objects in perfect complexes). Given such a sheaf, we use
Theorem 1 to define its dimensional torsor and its determinantal gerbe, two invariants
obtained from the Euler characteristic and the determinant.

Theorem 2 (see Theorem 5.3). Let KTate denote the presheaf in spaces mapping A
to K(Tate(Perf(A))). Let K(Gm, 2) denote the Eilenberg-MacLane classifying stack
and let BZ denote the stack classifying Z-bundles. The determinant Det and the Euler
characteristic Dim induce morphisms

[Det] : KTate → K(Gm, 2),

[Dim] : KTate → BZ.

In particular, any Tate complex E over some X induces a determinantal class
[DetE ] ∈ H2(X,O×X) and a dimensional torsor [DimE ] ∈ H1(X,Z).
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Applications

We give here a couple of applications. Those applications are beyond the scope of
this article and we will not provide any proofs here. Most of the required proofs are
in [Dri, Hen] or [FHK].

Tate objects naturally appear when considering local fields: the field of Laurent
series k((t)) is a Tate vector space over k. The first application concerns the study
of formal loop spaces, as defined in [KV1]. To any scheme X of finite type, we
associate its formal loop space: roughly speaking, it is a geometric object L1(X)
classifying maps from Spec(k((t))) to X. It has a natural Tate bundle (namely its
tangent bundle) and using Theorem 2 we get a determinantal gerbe and a dimension
torsor. For instance, when X = BGm is the classifying stack of line bundles, the
dimension torsor encodes the natural valuation k((t))× → Z while the determinantal
gerbe corresponds to the Contou-Carrère symbol k((t))× × k((t))× → k×.

In [Hen], the author develops a higher dimensional analogue Ld(X) of the formal
loop space. This new geometrical object classifies maps from a d-dimensional punc-
tured formal neighbourhood Spec(k[[t1, . . . , td]])� {0} to X. An algebraic version of
Hartogs theorem forces us to works in the realm of derived algebraic geometry. De-
rived algebraic geometry is a context that allows to study some ill-behaved geometric
situations (the most emblematic examples being non-generic intersections).

In this context, the tangent bundle of Ld(X) no longer lives in an exact cate-
gory, but lives in the derived category of Ld(X), a stable (∞, 1)-category. Exact
categories are not enough here. In [Hen], we prove that in some cases the tangent
of Ld(X) is a Tate complex. Our Theorem 2 then defines a determinantal anomaly
for those higher dimensional formal loop spaces, generalising a result of [KV2]. In
[FHK], Faonte, Kapranov and the author study the determinantal gerbe on Ld(X)
when X = BG is the classifying stack of G-bundles. This gerbe is closely related
to tame symbols in higher dimensions. Moreover, the tangent of the determinan-
tal gerbe is a canonical (non-trivial) central extension of the derived Lie algebra
RΓ(Spec(k[[t1, . . . , td]])� {0}, g⊗O). This extension is a higher dimensional analogue
of the Kac-Moody algebras.

Although not yet fully explored, the dimensional torsor should also have some
valuable applications. As aforementioned, it corresponds on L1(X) to the valuation
on k((t))×. In [Dri], Drinfeld suggests that in higher dimensions d � 2, the dimensional
torsor on Ld(X) should play the role of the valuation. In particular, he suggests a
construction of motivic integration in higher dimension, using this torsor.

Another possible source of examples is algebraic topology. If X is a space, then the
category of spectra over X is a stable (∞, 1)-category. Theorem 1 then gives a shifted
version of Waldhausen’s K-theory of X. Again, this example could not be studied
using only exact categories.

Outline of the paper

In section 1, we recall some useful facts about (stable) (∞, 1)-categories.

In section 2, we define the category of Tate objects Tate(C) in a stable (∞, 1)-
category C as the smallest full subcategory of Pro Ind(C) which contains Ind(C) and
Pro(C) and is stable and idempotent complete. We identify the universal property of
Tate(C) (see Theorem 2.7).
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In section 3, we show that objects in Tate(C) are retracts of extensions Xp →
X → Xi with Xp ∈ Pro(C) and Xi ∈ Ind(C) (see Theorem 3.4). In particular, the
definition we gave in section 2 agrees with the intuitive one given in the introduction.

In section 4, we prove Theorem 1 (see Theorem 4.3 below), and in section 5 we
apply it to prove Theorem 2 (see Theorem 5.3 below).

Related work
Literature on Tate objects is flourishing. Let us cite here the work of Drinfeld

[Dri], Previdi [Pre], Saito [Sai], Osipov and Zhu [OZ] and more recently Bräun-
ling, Gröchenig and Wolfson [BGW]. The author has also been told that Barwick,
Gröchenig and Wolfson are working on a theory of Tate objects in exact (∞, 1)-
categories.
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1. Preliminaries

This first section contains ∞-categorical preliminaries. Most of the content comes
from [HTT]. We will also define here some notation.

Notation Throughout this article, we will fix two universes U ∈ V.
Let us first set some notation, borrowed from [HTT]:

• We will denote by CatU∞ the (∞, 1)-category of U-small (∞, 1)-categories – see
[HTT, 3.0.0.1];

• Let PrL,U∞ denote the (∞, 1)-category of U-presentable (and thus V-small)
(∞, 1)-categories with left adjoint functors – see [HTT, 5.5.3.1];

• The symbol sSets will denote the (∞, 1)-category of U-small spaces;

• For any (∞, 1)-categories C andD we will write Fct(C,D) for the (∞, 1)-category
of functors from C to D (see [HTT, 1.2.7.3]). The category of presheaves will
be denoted P(C) = Fct(Cop, sSets).

• For any (∞, 1)-category C and any objects c and d in C, we will denote by
MapC(c, d) the space of maps from c to d.

The following theorem is a concatenation of results from Lurie.

Theorem 1.1 (Lurie). Let C be a V-small (∞, 1)-category. There is an (∞, 1)-cate-
gory IndU(C) and a functor j : C → IndU(C) such that

(i) The (∞, 1)-category IndU(C) is V-small;

(ii) The (∞, 1)-category IndU(C) admits U-small filtered colimits and is generated
by U-small filtered colimits of objects in j(C);

(iii) The functor j is fully faithful and preserves finite limits and finite colimits which
exist in C;
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(iv) For any c ∈ C, its image j(c) is U-small compact in IndU(C);
(v) For all (∞, 1)-category D with every U-small filtered colimits, the functor j

induces an equivalence

FctU−c(IndU(C),D)
∼→ Fct(C,D),

where FctU−c(IndU(C), D) denotes the full subcategory of Fct(IndU(C), D)
spanned by functors preserving U-small filtered colimits;

(vi) If C is U-small and admits all finite colimits then IndU(C) is U-presentable.

Proof. Let us use the notation of [HTT, 5.3.6.2]. Let K denote the collection of U-
small filtered simplicial sets. We then set IndU(C) = PK∅ (C). Recall that IndU(C) is
then the full subcategory of P(C) generated by U-small filtered colimits of diagrams
in C. It satisfies the required properties because of loc. cit. 5.3.6.2 and 5.5.1.1. We
also need tiny modifications of the proofs of loc. cit. 5.3.5.14 and 5.3.5.5.

Lurie proved in [HTT, 5.3.5.15] that any map c → d ∈ IndU(C) is a colimit of
a U-small filtered diagram K → Fct(Δ1, C). We will need afterwards the following
small refinement of this statement, inspired by [BGW, 3.9].

Proposition 1.2 (Strictification of morphisms). Let C be a V-small (∞, 1)-category.
Let f : c → d be a morphism in IndU(C). Let also c̄ : K → C and d̄ : L → C be U-small
filtered diagrams of whom respectively c and d are colimits in IndU(C). There exists
a U-small filtered diagram f̄ : J → Fct(Δ1, C) and a commutative diagram

K

c̄

��

J
pL ��pK��

f̄
��

L

d̄

��
C Fct(Δ1, C) ev1 ��ev0�� C

such that both maps pK and pL are cofinal, and such that f is the colimit of f̄ .

In the proof of the above proposition, we will need the notation:

Definition 1.3 (see [HTT, 1.2.8.4]). Let K be a simplicial set. We will denote by
K� the simplicial set obtained from K by formally adding a final object. This final
object will be called the cone point of K�.

Proof. Using [HTT, 4.3.2.14] we can assume that both K and L are filtered partially
ordered sets. Let us denote by J ′ the fibre product

J ′

��

�� Fct(Δ1, IndU(C))/f
source

��
K ×

C
Fct(Δ1, C)×

C
L

proj.
�� Fct(Δ1, C)

incl.
�� Fct(Δ1, IndU(C)).

Let us first prove that J ′ is filtered. Let P be a partially ordered finite set and P �

denote the partially ordered set P ∪ {∞}, where∞ is a maximal element. A morphism
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P → J ′ is the datum of a commutative diagram

P × {0} κ ��

��

K
c̄

��
P × {1} λ ��

��
L d̄

��P ×Δ1

ψ
��

��

C

��
{∞} ×Δ1 �� P � ×Δ1 �� IndU(C).

Let us denote by P+ the partially ordered set P ∪ {+} where + is a maximal element.
Because K is filtered, the map κ extends to a morphism κ′ : P+ × {0} → K. There
exists l ∈ L such that the induced map c̄(κ′(+)) → c → d factors through d̄(l) → d.
Since L is filtered, there is a map λ′ : P+ × {1} → L extending λ. We can, more-
over, chose λ′(+) greater than l (i.e. with a map l → λ′(+) in L). Using the map
c̄(κ′(+)) → d̄(l) → d̄(λ′(+)), we get a morphism ψ′ : P+ ×Δ1 → C extending ψ, which
by construction extends to P �

+ ×Δ1 – where we set ∞ � +. This defines a morphism
P+ → J ′, proving that J ′ is filtered. Using [HTT, 4.3.2.14] we define J to be a filtered
partially ordered set with a cofinal map J → J ′. Proving that the maps J → K and
J → L are cofinal is now straightforward. This also implies that the induced diagram
f̄ : J → Fct(Δ1, C) has colimit f in IndU(C).
Remark 1.4. Assume C admits finite colimits. We can consider the V-presentable
category IndV(C) of right exact functors Cop → sSetsV (where sSetsV denotes the
category of V-small spaces). The category IndU(C) then embeds in IndV(C).
Definition 1.5. Let C be a V-small ∞-category. We define ProU(C) as the (∞, 1)-
category

ProU(C) =
(
IndU(Cop)

)op

.

It satisfies properties dual to those of IndU(C).
We will use extensively the notion of stable (∞, 1)-categories. Those categories are

the ∞-categorical analogues of triangulated categories (see [HAlg]).

Definition 1.6. A pointed (∞, 1)-category C is stable if a square is cartesian if and
only if it is cocartesian.

Let CatV,st∞ denote the subcategory of CatV∞ spanned by stable categories with
exact functors between them – see [HAlg, 1.1.4]. Let CatV,st,id∞ denote the full sub-
category of CatV,st∞ spanned by idempotent complete stable categories.

Definition 1.7. Let C ∈ CatV,st∞ . An exact sequence in C is a fibre (and hence also
cofibre) sequence X → Y → Z in C.

The following lemma is a direct consequence of results from Lurie’s [HTT].

Lemma 1.8 (Stable envelop). Let C be a V-small pointed category with all suspen-
sions. Let us assume that the suspension functor C → C is an equivalence. There exists
an (∞, 1)-category Cst with a map j : C → Cst such that

(i) The category Cst is V-small and stable;
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(ii) The functor j is fully faithful and preserves all limits and finite colimits which
exist in C;

(iii) For any stable (∞, 1)-category D the induced map

Fctex(Cst,D) → Fctlex(C,D)

between exact functors and left exact functors (i.e. preserving finite limits that
exist in C) is an equivalence;

(iv) For any stable category D with a fully faithful functor C → D preserving finite
colimits and limits which exist in C, the smallest stable subcategory of D con-
taining the image of C is equivalent to Cst.

Proof. Let us denote by K the simplicial set corresponding to a diagram • ← • → •.
Let R denote the collection of all cocartesian diagrams K� → C and the trivial dia-

gram given by a zero object ∅� = • → C in C. We then set Cst = P{K,∅}
R (C) using the

notation of [HTT, 5.3.6.2]. Note that (iii) is proven in loc. cit. The category Cst is
pointed and it comes with two natural fully faithful maps

C j �� Cst �� P(C) ,
whose composite is the Yoneda functor and therefore preserves limits which exist in C.
It follows that j also preserves those limits. By definition, the functor j preserves finite
colimits which exist in C.

Any object of Cst is a finite colimit of objects in C. Its suspension is therefore the
colimit of the suspensions of those objects. The suspension functor Cst → Cst is thus
an equivalence. Corollary [HAlg, 1.4.2.27] implies that Cst is stable.

We now focus on the assertion (iv). Let f : C → D be as required. Because of the
third point, there is an essentially unique functor g : Cst → D lifting f . Every object
in Cst can be written as both a colimit and a limit of objects of C. It follows that g is
fully faithful and then that Cst contains the smallest full and stable subcategory D′
of D extending C. There is also a universal map Cst → D′ which is easily seen to be
an inverse to the inclusion.

Lemma 1.9. Let C be an idempotent complete V-small (∞, 1)-category. We consider
the natural embeddings i : ProU(C)→ProU IndU(C) and j : IndU(C)→ProU IndU(C).
We will also denote by k the embedding C → ProU IndU(C). If an object of
ProU IndU(C) is in both the essential images of i and j, then it is in the essential
image of k.

Proof. Let x ∈ IndU(C). Let us assume there exists a pro-object y ∈ ProU(C) and
an equivalence f : x → y. Let ȳ : Kop → C be a cofiltered diagram of whom y is a
limit in ProU(C). The equivalence f induces a morphism from the constant diagram
x : Kop → IndU(C) to ȳ : Kop → IndU(C). An inverse g : y → x of f then induces a
map yk = ȳ(k) → x for some k ∈ K such that the composite morphism x → yk → x
is homotopic to the identity. Idempotent completeness and [HTT, 5.4.2.4] finish the
proof.

2. Tate objects

In this subsection we define the category of Tate objects in a stable (∞, 1)-category.
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Definition 2.1. Let C be a V-small stable (∞, 1)-category. We define the category
TateU0 (C) of pure Tate objects in C as the full sub-category of ProU IndU(C) spanned
by the images of IndU(C) and ProU(C) through the canonical functors. The category
TateU0 (C) obviously satisfies the conditions of Theorem 1.8 and we define the category

TateUel(C) of elementary Tate objects in C as the stable envelop

TateUel(C) =
(
TateU0 (C)

)st

.

We also define the category TateU(C) of Tate objects in C as the idempotent com-
pletion of TateUel(C). We have fully faithful exact functors between stable (∞, 1)-
categories

TateUel(C) → TateU(C) → ProU IndU(C).

Remark 2.2. It follows from Theorem 1.8 that TateUel(C) (resp. TateU(C)) is the
smallest stable (resp. stable and idempotent complete) subcategory of ProU IndU(C)
containing both the essential images of IndU(C) and ProU(C). We will see (Theo-
rem 2.8) that the same holds in IndU ProU(C) instead of ProU IndU(C).

Remark 2.3. In Theorem 2.1 as well as in all the results below, the role of the uni-
verse U may be played by any cardinal κ. Replacing IndU(C) (resp. ProU(C)) by the
categories of κ-compact (resp. cocompact) objects. We would require κ to be regular
for Theorem 3.17 (and hence Theorem 3.16) to hold.

Example 2.4. Let C be the category of perfect complexes over a field k. There is a
natural incarnation of k((t)) in TateU(Perfk), given by the isomorphism (of vector
spaces)

k((t)) � lim
p

colim
n

t−nk[t]/tp+n.

To see it actually lives in Tate objects, one can write the isomorphism k((t)) � k[[t]]⊕
t−1k[t−1] and translate it in terms of objects in ProU IndU(Perfk). It follows that
limp colimn t

−nk[t]/tp+n indeed lies in TateU(Perfk). We will see in section 3 that
any Tate object can be written as such an extension, of an ind-object by a pro-object.

The above example does not require (∞, 1)-categories to work. Although, it leads
to the following generalisation. We can see k((t)) as the ring of functions on the

punctured formal neighbourhood Â1 � {0}. Now considering the complex of derived
global sections of the sheaf of functions on the punctured formal neighbourhood
Âd � {0} = Spec(k[[t1, . . . , td]])� {0} of dimension d. Computing its cohomology, we
get for d � 2

Hn(Âd � {0},O) �

⎧⎪⎨
⎪⎩
k[[t1, . . . , td]] if n = 0,

(t1 . . . td)
−1k[t−1

1 , . . . , t−1
d ] if n = d− 1,

0 else.

Hence we get RΓ(Âd � {0}, O) � k[[t1, . . . , td]] ⊕ (t1 . . . td)
−1k[t−1

1 , . . . , t−1
d ][1− d]

(where [1− d] is the shift by 1− d). It is again the extension of a pro-object by
an ind-object.
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Remark 2.5. Note that TateU(C) is V-small. The construction TateU(−) defines a
functor

CatV,st∞ → CatV,st,id∞ .

It comes with a fully faithful – i.e. pointwise fully faithful – natural transformation

CatV,st∞
TateU

��

��

CatV,st,id∞

����
CatV∞

ProU IndU

�� CatV∞.

Remark 2.6. We can immediately see that the functor TateU map any fully faithful
and exact functor C → D between stable categories to a fully faithful (and exact)
functor TateU(C) → TateU(D).

Let us now give a universal property for the category of pure Tate objects. The
next theorem states that for any (∞, 1)-category D and any commutative diagram

C ��

��

IndU(C)
f

��
ProU(C)

g
�� D,

such that f preserves U-small filtered colimits and g preserves U-small cofiltered
limits there exists an essentially unique functor TateU0 (C) → D such that f and g are
respectively equivalent to the composite functors

IndU(C) → TateU0 (C) → D,

ProU(C) → TateU0 (C) → D.

This universal property was discovered during a discussion with Michael Gröchenig,
whom the author thanks greatly. To state formally this property, let us fix some nota-
tion. Let i : IndU(C) → TateU0 (C) and p : ProU(C) → TateU0 (C) denote the canonical
inclusions. We will denote by Fctt(Tate

U

0 (C), D) the full subcategory of
Fct(TateU0 (C),D) spanned by those functors ξ such that

• The composite functor ξi maps filtered colimit diagrams to colimit diagrams.

• The composite functor ξp maps cofiltered limit diagrams to limit diagrams.

Let also Fctm(C,D) denote the category of functors g : C → D such that

• For any filtered diagram K → C, the composite diagram K → C → D admits a
colimit in D.

• For any cofiltered diagram Kop → C, the composite diagram Kop → C → D ad-
mits a limit in D.

Theorem 2.7. Let C be a V-small stable (∞, 1)-category. For any (∞, 1)-category
D, the restriction functor induces an equivalence

Fctt(Tate
U

0 (C),D) �� Fctm(C,D).
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Proof. Let us shorten the notation:

IC = IndU(C), PC = ProU(C), TC = TateU0 (C), PIC = ProU(IndU(C)).
Recall that P(D) denotes the (∞, 1)-category of simplicial presheaves on D. The
restriction functor Fct(PIC,P(D)) → Fct(TC,P(D)) admits a left adjoint given by the
left Kan extension. The restriction functor Fct(PIC,P(D)) → Fct(IC,P(D)) admits
a right adjoint, given by the right Kan extension. Let us fix their notation

Fct(TC,P(D))
δ �� Fct(PIC,P(D))

β ��
γ

�� Fct(IC,P(D))
α

��

the left adjoints being represented above their right adjoint. Note that both α and δ
are fully faithful. Let also τ denote the fully faithful functor

Fctm(C,D) � Fctc(IC,D)×
Fct(C,D)

Fctl(PC,D)

τ

��
Fct(IC,P(D))×

Fct(C,P(D))

Fctl(PC,P(D)) � Fct(IC,P(D)),

where Fctc (resp. Fctl) denotes the category of functors preserving filtered colim-
its (resp. cofiltered limits) which exist in the source. We use here that the Yoneda
embedding D → P(D) preserves limits. Let θ be the fully faithful functor

Fctt(TC,D)
θ �� Fct(TC,P(D)).

The composite functor βδ is nothing but the restriction along the canonical inclusion
IC → TC. It follows that βδθ has image in the essential image of τ . On the other hand,
the functor γατ has image in the essential image of θ. We hence get an adjunction

f : Fctt(TC,D) � Fctm(C,D) : g,

where f is left adjoint to g. The functor g is equivalent to the restriction functor
and the unit transformation fg → idX is then an equivalence. Moreover, as objects
of TC are either pro-objects or ind-objects, the restriction functor f is conservative.
It follows that the above adjunction is an equivalence.

Corollary 2.8. The category of Tate objects is equivalent to the smallest stable and
idempotent complete full subcategory of IndU ProU(C) generated by the images of
IndU(C) and ProU(C).

Proof. This follows from Theorem 2.7 and Theorem 1.8.

Remark 2.9. The fully faithful functor j : TateU0 (C) → ProU IndU(C) preserves both
the limits and colimits which exist in TateU0 (C). Let indeed x̄ : K → TateU0 (C) be a
diagram which admits a colimit x ∈ TateU0 (C). Let us denote by x′ a colimit of j x̄ in
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ProU IndU(C). We have, for any cofiltered diagram y :̄ Lop → IndU(C)
MapProU IndU(C)(x

′, lim ȳ) � colim
l

colim
k

MapProU IndU(C)(j x̄, ȳ)

� colim
l

colim
k

MapTateU

0(C)(x̄, ȳ)

� colim
l

MapTateU

0(C)(x, ȳ) � colim
l

MapProU IndU(C)(x, ȳ)

� MapProU IndU(C)(x, lim ȳ).

We show symmetrically that the inclusion TateU0 (C) → IndU ProU(C) preserves lim-
its. It follows that limits and colimits that exist in TateU0 (C) are exactly those coming
from diagram in either IndU(C) or ProU(D). We can hence reformulate the universal
property from Theorem 2.7 as follows: The datum of a commutative square

C ��

��

IndU(C)
f

��
ProU(C)

g
�� D

such that f preserves filtered colimits and g preserves cofiltered limits is equivalent
to that of a functor TateU0 (C) → D preserving both filtered colimits and cofiltered
limits which exist in TateU0 (C).

Let us close this section with the following lemma.

Lemma 2.10. Let C be a V-small stable (∞, 1)-category with a functor f : Cop → C.
The functor f induces a functor

f̃ :
(
ProV IndU(C)

)op

→ ProV IndU(C),
which maps (elementary) U-Tate objects to (elementary) U-Tate objects.

If, moreover, the functor f is an equivalence, then f̃ induces an equivalence(
TateU(C)

)op

� TateU(C).

Remark 2.11. The above lemma applies for instance when C is the category of perfect
complexes on a base k. The duality functor (−)

∨
= Hom(−, k) induces a duality of

Tate objects

(−)
∨
: Tatek = Tate(Perfk)

∼→ Tateopk .

In particular, for any Tate object X, we have (X∨)∨ � X.

Proof. The category ProV IndU(C) has all V-small limits and colimits – it is the
opposite category of a V-presentable category. We define the functor f̃ as the extension
of the composition

Cop → C → ProV IndU(C).
It maps objects of IndU(C) to objects of ProU(C) ⊂ ProV(C) and vice-versa and
therefore preserves pure Tate objects. The functor f̃ also preserves finite limits. It
follows that it preserves Tate objects.
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3. Lattices

Tate object are characterised by the existence of a lattice. A lattice for a pro-ind-
object X is an exact sequence

Xp → X → Xi,

where Xp is a pro-object and Xi is an ind-object. We will see below that a pro-ind-
object is an elementary Tate object if and only if it admits a lattice. We will then
study the category of lattices of a given Tate object.

Proposition 3.1. Let C be a V-small stable (∞, 1)-category. For any elementary Tate
objects X ∈ TateUel(C) there exists a U-small cofiltered diagram X̄ : Kop → IndU(C)
such that

• The object X is a limit of X̄ in ProU IndU(C) and
• For any k ∈ K the diagram ker

(
X̄ → X̄(k)

)
:
(
k/K

)op → IndU(C) has values
in the essential image of C.

Definition 3.2. Let C be a V-small stable (∞, 1)-category. For any elementary Tate
object X ∈ TateUel(C), we will call a Tate diagram for X any U-small cofiltered dia-
gram X̄ : Kop → IndU(C) as in Theorem 3.1.

of Theorem 3.1. Let D denote the full subcategory of ProU IndU(C) spanned by
those objectsX satisfying the conclusion of the proposition. The category D obviously
contains both the essential images of IndU(C) and ProU(C). It suffices to prove that
D is stable by extension. We see that it is stable by shifts and we can thus consider
an exact sequence X → X0 → X1 in ProU IndU(C) such that both X0 and X1 are
in D. Let X̄0 : K

op → IndU(C) and X̄1 : L
op → IndU(C) be Tate diagrams for X0

and X1 respectively. Using Theorem 1.2, we can assume K = L and that we have a
diagram Kop → Fct(Δ1, IndU(C)) of whom the map X0 → X1 is a limit. Considering
the pointwise kernel, we get a diagram X̄ : Kop → IndU(C) of whom X is a limit. It
obviously satisfies the required property.

Remark 3.3. To state the above proposition in an informal way, any elementary Tate
object X can be represented by a diagram limα colimβ Xαβ such that for any α0,
the kernel of canonical projection X → colimβ Xα0β is actually a pro-object. This
obviously imply the following corollary.

Corollary 3.4. Any elementary Tate object X fits into an exact sequence

Xp → X → Xi,

where Xp ∈ ProU(C) and Xi ∈ IndU(C).
Definition 3.5. Let C be a V-small stable (∞, 1)-category. For any elementary Tate
object X ∈ TateUel(C), we will call a lattice of X any exact sequence

Xp → X → Xi,

where Xp ∈ ProU(C) and Xi ∈ IndU(C).
Remark 3.6. Let X be an elementary Tate object in C. Let us consider a lattice Xp →
X → Xi of X. We will construct a Tate diagram for X out of it. Let X̄p : Kop → C
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be a U-small cofiltered diagram of which Xp is a limit in ProU(C). The extension
map Xi[−1] → Xp induces a natural transformation Xi[−1] → X̄p from the constant
diagram Xi[−1] : Kop → IndU(C) to X̄p. The quotient of this natural transformation
defines a diagram X̄ : Kop → IndU(C) which is by construction a Tate diagram for
X: for any morphism k → l in K, the kernel of the induced map X̄(l) → X̄(k) is
equivalent to that of X̄p(l) → X̄p(k) which belongs to C.
Remark 3.7. In the literature, the word “lattice” is often dedicated to maps Xp → X
whose quotient is an ind-object – where Xp is a pro-object.

Lemma 3.8. Let C be a V-small stable (∞, 1)-category. Let f : X → Y be a map
between elementary Tate objects in C. For any lattice Y p → Y → Y i there exists a
lattice Xp → X → Xi compatible with f , i.e. fitting in a commutative diagram

Xp ��

��

X ��

f

��

Xi

��
Y p �� Y �� Y i.

Dually, for any lattice Xp → X → Xi there exists a lattice Y p → Y → Y i and a
commutative diagram as above.

Remark 3.9. In particular, any map X → Y i from a Tate object to an ind-object
factors through a lattice X → Xi of X.

Proof. Choose any lattice Xp
0 → X → Xi

0 for X. The composite map Xp
0 → X

f→
Y → Y i goes from a pro-object to an ind-object. It therefore factors through an
object E ∈ C. We define Xp as the fibre of the map Xp

0 → E and Xi as the cofibre
of the map Xp → X. By construction, we have Xp ∈ ProU(C) and a commutative
diagram

Xp ��

��

X ��

f

��

Xi

��
Y p �� Y �� Y i.

Moreover, the fibre of the induced map Xi → Xi
0 is equivalent to E and thus Xi ∈

IndU(C).
Let us now denote by LattC the full-subcategory of Fct(Δ1 ×Δ1,ProU IndU(C))

spanned by the cocartesian (and hence also cartesian) squares of the form

Xp ��

��

X

��
0 �� Xi

where Xp lies in the essential image of ProU(C) and Xi lies in that of IndU(C). Let
us denote by q the natural functor LattC → TateUel(C) mapping a square as above
to X. Let us also denote the πp and πi the natural functors from LattC to ProU(C)
and IndU(C) respectively.
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Definition 3.10. For any elementary Tate object X, we will denote by LattC(X)
the fibre category q−1(X). We will call it the category of lattices of X.

Remark 3.11. In the literature, the category LattC(X) defined above is sometimes
called the Sato Grassmannian of X.

Let us study morphisms between lattices. Note first that a lattice Xp → X → Xi

is determined by the morphism Xp → X. A map between lattices is a commutative
diagram

Xp
0

��

α

��

X ��

=

��

Xi
0

��
Xp �� X �� Xi.

It is actually determined by the quotient of α, which belongs to C. That is what the
following lemma is about.

Lemma 3.12. Let X• = (Xp → X → Xi) be a lattice. There is a canonical equiva-
lence

LattC(X)/X• � Xp
/C.

Proof. We consider the inclusion {(0, 0)} → Δ1 ×Δ1. It induces a functor LattC →
ProU(C). In particular, we get

P : LattC(X)/X• → ProU(C)/Xp.

Remark that the functor P is fully faithful (by essential uniqueness of cofibres and
compositions). Let us consider a morphism of lattices of X

Xp
0

α

��

�� X

=

��

�� Xi
0

β

��
Xp �� X �� Xi.

The quotient x of α is equivalent to the shift of that of β. It follows from Theorem 1.9
that x belongs to the essential image of C. The composite functor

LattC(X)/X• P �� ProU(C)/Xp
Q

∼ �� X
p
/ProU(C),

therefore, has image in the full subcategory Xp/C. We get a fully faithful functor

φ : LattC(X)/X• → Xp
/C.

Let now γ : Xp → x be in Xp/C. The quotient of the induced map ker(γ) → X is an
ind-object and thus defines a lattice of X. The functor φ is essentially surjective and
hence an equivalence.
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We also let LattC/X denote the category

LattC/X ��

��

{X}

��
LattΔ

1

C target
�� LattC q

�� TateUel(C).

We have a natural fully faithful functor fX : LattC(X) → LattC/X. We define dually

the category X/LattC and the fully faithful functor gX : LattC(X) → X/LattC .
Let i : ProU(C) → IndV ProU(C) and j : IndU(C) → ProV IndU(C) denote the

canonical embeddings. Let us denote by πp
! the left Kan extension of iπp along the

functor q : LattC → TateUel(C). Dually, we define π!
i the right Kan extension of jπi

along q. We get a diagram

ProU(C)
i

��

LattC
πi ��πp

��

q

��

IndU(C)
j

��
IndV ProU(C) TateUel(C)

α

��

		 β

πp
!

��
π!
i

�� ProV IndU(C).

Lemma 3.13. The functor πp
! is equivalent to the embedding TateUel(C) →

IndV ProU(C) defined in Theorem 2.8. The functor π!
i is equivalent to the canoni-

cal embedding TateUel(C) → ProV IndU(C) defined in Theorem 2.1.

Proof. The statement about π!
i is dual to that about πp

! . Let us prove the latter. Let
s denote the section of πp mapping a pro-object X to the exact sequence X → X → 0
and let t denote the section of πi mapping an ind-object Y to 0 → Y → Y . It suffices
to prove that the induced functors

ProU(C) s→ LattC
q→ TateUel

πp
!→ IndV ProU(C),

IndU(C) t→ LattC
q→ TateUel

πp
!→ IndV ProU(C)

are equivalent to the natural embeddings. Let us first deal with the case of ProU(C).
Let X be a pro-object. The image s(X) is a final object in the category LattC/X.
Hence the canonical map

αs(X) : π
p
! qs(X) � colim

Z•∈LattC/X
iπp(Z•) → iπps(X) � i(X)

is an equivalence. Let now Y be an ind-object. Let us prove that the category C/Y
of exact sequences y → Y → Y/y where y ∈ C is cofinal in LattC/Y . This implies the
result, since Y � colimy∈C/Y i(y) and πp

! qt(Y ) � colimY •∈LattC/Y iπp(Y •).
To prove this cofinality, we will use Quillen’s theorem A. Let us denote by g the

functor C/Y → LattC/Y . Let Z• = Zp → Z → Zi be a lattice with a map Z → Y .
From Quillen’s theorem A (see [HTT, 4.1.3.1]), it suffices to prove that the simplicial
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set

K = Z•/
(
C/Y

)
= C/Y ×

LattC/Y

Z•/
(
LattC/Y

)

is contractible. We have a diagram

Zp �� Z

��

�� Zi

Y.

The composite map Zp → Y , from a pro-object to an ind-object, factors through an
object y ∈ C. Hence we get a commutative diagram

Zp ��

��

Z

��

�� Zi

��
y �� Y �� Y/y.

This proves that K is not empty. The category C admits finite colimits and it follows
that K is filtered (as any finite diagram admits an upper bound, namely its colimit).
The result is then deduced from [HTT, 5.5.8.7].

Remark 3.14. Let X be a Tate object in C and let X•
0 = (Xp

0 → X → Xi
0) and X•

1 =
(Xp

1 → X → Xi
1) be two lattices for X. There is a lattice X• for X with maps

X•
0 ← X• → X•

1 . To prove this statement, let us use Theorem 3.6. It defines two
Tate diagrams

X̄0 : K
op → IndU(C),

X̄1 : L
op → IndU(C),

for X. Strictifying the identity of X using Theorem 1.2, we get a diagram

θ : Jop ×Δ1 → IndU(C),
with cofinal maps α : J → K and β : J → L such that θ(−, 0) � X̄0(α−) and θ(−, 1) �
X̄1(β−). The diagram θ(−, 1) is again a Tate diagram forX and hence defines a lattice
X• for X. It naturally comes with morphisms X•

0 ← X• → X•
1 .

We will improve the above remark into the following ∞-categorical incarnation of
a phenomenon first discovered in [BGW, theorem 6.7].

Theorem 3.15. Let C be a U-small stable and idempotent complete (∞, 1)-category.
For any elementary Tate object X in C, the category LattC(X) is U-small and both
filtered and cofiltered. Moreover, the functor fX : LattC(X) → LattC/X is cofinal and

the functor gX : LattC(X) → X/LattC is coinitial.

This theorem, together with Theorem 3.13, implies the following
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Corollary 3.16. Any elementary Tate object X is the colimit in IndU ProU(C)
X � colimXp

and the limit in ProU IndU(C)
X � limXi,

where the limit and the colimit are indexed by (Xp → X → Xi) ∈ LattC(X).

Lemma 3.17. Let K be a V-small simplicial set. Assume that K is filtered and that
for any vertex k ∈ K, the simplicial sets k/K and K/k are U-small. Then the simpli-
cial set K is U-small.

Proof. Let k ∈ K be any vertex. As K is filtered we have

K =
⋃

l∈k/K
K/l.

The result follows.

Proof of Theorem 3.15. Let us delay the size issue. We will prove that LattC(X)
is filtered and that fX is cofinal. What remains is deduced using the equivalence
TateU(Cop) � (TateU(C))op.

We first say that LattC(X) is not empty – see Theorem 3.3. Let now X̄• : K →
LattC(X) be a finite diagram. We consider the composite diagram

fXX̄• : K → LattC/X.

The category LattC/X admits finite colimits, and we can hence extend fXX̄• into
a colimit diagram K� → LattC/X. Let us denote by Y • = (Y p → Y → Y i) the col-
imit. It comes with a map ψ : Y → X. We get a lattice X• = (Xp → X → Xi) from
Theorem 3.8, with a map Y • → X• lifting ψ. Using the composition in LattC/X, we
get a diagram K� → LattC/X whose vertices lie in the essential image of fX . Since
fX is fully faithful, we get a diagram

K� → LattC(X)

extending X̄•. This proves the category LattC(X) is filtered.

We now have to prove the functor fX is cofinal. Let Y • ∈ LattC/X. From Theo-
rem 3.8, we deduce that the category

D = LattC(X) ×
LattC/X

Y •/
(
LattC/X

)

is not empty. Take a finite diagram K → D. We see using the same argument as
above that it extends into a diagram K� → D. In particular, D is filtered and hence
the underlying simplicial set is contractible. We conclude using Quillen’s theorem A
– see [HTT, 4.1.3.1].

To see that LattC(X) is essentially U-small, we now use Theorem 3.17 and Theo-
rem 3.12.
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4. K-theory

In this section, we will prove Theorem 1. The strategy of the proof is inspired by
that in the case of exact categories, which can be found in [Sai].

Definition 4.1. Let C → D be a fully faithful exact functor between V-small stable
and idempotent complete (∞, 1)-categories. We denote by D/C the cofibre of the
functor C → D in the category of (V-small) stable and idempotent complete (∞, 1)-
categories. Note that its existence is guarantied by [BGT, Part 5]. Let us call D/C
the Verdier quotient of D by C.

Proposition 4.2. Let C be a V-small stable and idempotent complete (∞, 1)-category.
The commutative diagram

C ��

��

IndU(C)

��
ProU(C) �� TateU(C)

induces an equivalence between the Verdier quotients

IndU(C)/C
∼→ TateU(C)/ProU(C).

Proof. Let us fix the following notation

IVC = IndV(C), IVIC = IndV IndU(C),
IVPC = IndV ProU(C), IVTC = IndV TateU(C).

We also set

E = IndV

(
IndU(C)/C

)
and E ′ = IndV

(
TateU(C)/ProU(C)

)
.

The commutative diagram

C ��

��

IndU(C)

��

�� IndU(C)/C

��
ProU(C) �� TateU(C) �� TateU(C)/ProU(C)

induces the diagram of adjunctions between presentable stable (∞, 1)-categories

IVC ��

��

IVIC
β ��

f
��

ε
�� E

p

��

α
��

IVPC ��

g





IVTC
e

��

φ





b �� E ′.
a

��

q





We have represented here the left adjoints on top or on the left of their right ad-
joint. It follows from [BGT, 5.12 and 5.13] that the two lines in the above diagram
are cofibre sequences of presentable stable (∞, 1)-categories. Since IndU(C)/C (resp.
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TateU(C)/ProU(C)) is idempotent complete, it is equivalent to the category of com-

pact objects in E (resp. E ′). It hence suffices to prove that p and q are equivalences.
We will prove the sufficient assertions:

(a) The functor p is fully faithful.

(b) The functor q is conservative.

Let us start with assertion (a). Using [BGT, 5.5], we deduce that both a and α are
fully faithful. Moreover, the functor f is also fully faithful, and it thus suffices to prove
the equivalence fα � ap. We have bfα � pβα � p. It is now enough to prove that fα
has values in the essential image of a (so that abfα � fα). To do so, we will show that
for any object x ∈ IVIC, if ε(x) vanishes, then so does ef(x). Let x̄ : K → IndU(C)
denote a V-small filtered diagram whose colimit in IVIC is x. Let also ȳ : Lop → C
be a U-small cofiltered diagram. We denote by y its limit in ProU(C). The functor e
preserves filtered colimits (as its left adjoint preserves compact objects). The image
ef(x) is therefore the functor ProU(C) → sSets mapping y to the simplicial set

colim
k∈K

colim
l∈L

MapIndU(C)(ȳ(l), x̄(k)) � colim
l∈L

colim
k∈K

MapIndU(C)(ȳ(l), x̄(k)).

On the other hand, the assumption ε(x) = 0 implies that for any c ∈ C, the space

colim
k∈K

MapIndU(C)(c, x̄(k))

is contractible. It follows from [HTT, 5.5.8.7] that ef(x) vanishes.

We can now focus on assertion (b). Since q preserves exact sequences and a is fully
faithful, it suffices to prove that if z ∈ IVTC is such that both φ(z) and e(z) vanish,
then so does z. We can see z as a functor TateU(C)op → sSets preserving finite
limits while φ(z) and e(z) are its restriction respectively to IndU(C)op and ProU(C).
As TateU(C) is generated by ind- and pro-objects under finite limits and retracts, we
deduce that z is equivalent to 0.

Corollary 4.3. Let C be a V-small stable and idempotent complete (∞, 1)-category.
The spectrum of non-connective K-theory of TateU(C) is the suspension of the non-
connective K-theory of C:

K(TateU(C)) � ΣK(C).

Remark 4.4. This corollary is an ∞-categorical version of a theorem of Sho Saito in
exact 1-categories in [Sai].

Proof. Let us use the notation IC = IndU(C), PC = ProU(C) and TC = TateU(C).
Because the K-theory functor preserves cofibre sequences of stable categories (see
[BGT, sect. 9]), we get two exact sequences in the (∞, 1)-category of spectra

K(C) → K(IC) → K

(
IndU(C)/C

)
,

K(PC) → K(TC) → K

(
IndU(C)/C

)
.

The vanishing of K(PC) and K(IC) – since those categories contain countable sums –
concludes the proof.
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5. An application: families of Tate complexes

In this last section, we will study Tate complexes in (derived) algebraic geometry.
In this context, one should think of Tate complexes as structured infinite dimen-
sional vector bundles (or more generally quasicoherent complexes). In this section,
we will produce additive invariants on such Tate complexes, out of the common addi-
tive invariants of finite dimensional vector bundles (or perfect complexes), using our
Theorem 4.3.

As an example of such additive invariants, we will be able to define the dimension of
a Tate complex (or rather its Euler characteristic). Given a finite dimensional vector
bundle on a variety X, the dimension can be seen as a locally constant function
X → Z – or equivalently as a class in H0(X,Z). The shift in K-theory we proved in
Theorem 4.3 will allow us to define the dimension of a Tate complex as a class in
H1(X,Z) – or equivalently as a Z-torsor over X.

Another very interesting example of such an invariant will be the determinant of
a Tate complex. This determinant will be a class in H2(X,Gm), hence classifying a
gerbe with lien Gm over X.

Note that this question was, at least partially, addressed in [Dri] or [OZ, sec-
tion 3.2] in the context of (usual) algebraic geometry.

In the work, we will focus on the derived algebro-geometric setting, that has not
been covered in any previous work.

We start with a short introduction to derived algebraic geometry.

DAG in a nutshell Let us assume k is a field. First introduced by Toën and Vez-
zosi in [HAG2], derived algebraic geometry is a generalisation of algebraic geometry
in which we replace commutative algebras over k by simplicial commutative algebras
up to homotopy. We refer to [Toë] for a recent survey of this theory.

Derived algebraic geometry allows us to study ill-behaved geometric situations.
The most emblematic example is the study of non-generic intersections, or of quo-
tients by a wild action. Note that usual objects of algebraic geometry – varieties,
schemes, algebraic spaces or stacks – embed in derived algebraic geometry. Another
nice feature of this theory is the cotangent bundle. If we usually require smoothness
to define a tangent bundle, dual to the cotangent, it is no longer needed in derived
algebraic geometry (we only need finiteness conditions). The main trick is to consider
the (co)tangent bundle not as a quasi-coherent sheaf, but as a complex of such. The
category of quasi-coherent complexes becomes a central object in this context. This
category is actually a stable and idempotent complete (∞, 1)-category. This core ex-
ample of such a category motivates the results of this article. The derived category of
quasi-coherent complex of a derived stack X admits a full-subcategory Perf(X) of so-
called perfect complexes. Perfect complexes are to complexes what finitely generated
projective modules are to modules. In particular, they behave regarding duality.

We will denote by sCAlgk the (∞, 1)-category of simplicial commutative algebras
over k. It is the (∞, 1)-localization of a model category along weak equivalences. Let
us denote dAffk the opposite (∞, 1)-category of sCAlgk. It is the category of derived
affine schemes over k.

A derived prestack is a presheaf dAffop
k � sCAlgk → sSets. We will thus write

P(dAffk) for the (∞, 1)-category of derived prestacks. A derived stack is a prestack
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satisfying a descent condition. For the purpose of this paper, we will only consider the
Nisnevich topology. We will denote by dStNis

k the (∞, 1)-category of derived Nisnevich
stacks. It comes with an adjunction

(−)+ : P(dAffk) � dStNis
k ,

where the left adjoint (−)+ is called the stackification functor.
Let Perf denote the derived stack of perfect complexes A �→ Perf(A). Let also K

denote the connective K-theory functor (seen as a group object in spaces).

Definition 5.1. Let us define the groups in prestacks

KPerf : A �→ K(Perf(A)),

KTate : A �→ K(TateU(Perf(A))).

We also define the prestack of Tate complexes

Tate : A �→ TateU(Perf(A)).

From Theorem 4.3, we get a fibre sequence of prestacks

BKPerf �� KTate �� KTate
0 .

Lemma 5.2. The prestack KTate
0 vanishes Nisnevich-locally. It follows that the map

BKPerf → KTate is a Nisnevich-local equivalence.

Proof. Is suffices to prove that for any Henselian simplicial commutative algebra A,
we have

K−1(Perf(A)) � K0(Tate
U(Perf(A))) � 0.

Recall that A is Henselian if and only if π0(A) is. Using the Bass exact sequences,
we get

K0(A[t])⊕K0(A[t
−1]) ��

f

��

K0(A[t, t−1]) ��

g

��

K−1(A) ��

h

��

0

K0(π0(A)[t])⊕K0(H
0(A)[t−1]) �� K0(π0(A)[t, t

−1]) �� K−1(π0(A)) �� 0.

Since K0 only depends on the non-derived part of an affine scheme (see [Wal, 2.3.2]),
both f and g are isomorphisms and hence so is h. We can thus restrict to the non-
derived case – which can be found in [Dri, theorem 3.7].

Theorem 5.3. Let i be any additive invariant of perfect complexes: it can then be
encoded as a group morphism i : KPerf → G for any group object G.

The invariant i induces an additive invariant [i] of Tate complexes:

[i] : KTate → BG,

with values in the classifying stack BG. In particular, for any derived algebraic stack
X and any Tate complex E over X, we get a G-bundle classified by the map

X
E �� Tate �� KTate

[i] �� BG.
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Remark 5.4. In the theorem above, we only need the map i to preserve the group
structure. It does not need to preserve the commutativity constraints.

Proof. From Theorem 5.2, we see that the stack (KTate)+ associated to the prestack
KTate is equivalent to that associated to BKPerf . We can hence form B i : BKPerf →
BG. Let us denote by δ : (BKPerf )+ → BG the map of stacks obtained by stackifying
B i. We can hence set

[i] : KTate �� (KTate)+ � (BKPerf )+
δ �� BG.

A motivating example We define the determinantal anomaly to be the invariant
[Det] associated to the determinant Det : KPerf → BGm:

[Det] : KTate → BBGm � K(Gm, 2).

In particular, any Tate object E over a derived stack X defines a determinantal
anomaly [DetE ] ∈ H2

Nis(X,O×X). Similarly, applying Theorem 5.3 to the Euler char-
acteristic i = Dim = χ : KPerf → Z, we get the dimensional torsor [DimE ] = [χE ] ∈
H1

Nis(X,Z) (see [Dri]).

The above construction is for instance useful in the following application. In [Hen],
the author introduces the d-dimensional formal loops space Ld(X) with values in a
nice enough derived stack. It is a derived stack representing maps from the punctured
formal neighbourhood Spec(k[[t1, . . . , td]])� {0} to X. We prove in loc. cit. that the
tangent of this formal loops space is a Tate object over Ld(X). It follows from the
above construction the existence of a class, called the determinantal class

[detT] ∈ H2
Nis(Ld(X),O×).

This class generalises the class introduced by Kapranov and Vasserot in [KV1], that is
proved to be an obstruction to the existence of sheaves of chiral differential operators.

Note that the determinantal gerbe is in general not trivial. The case where X is
the stack BG classifying G-bundles, for an algebraic group G, this determinantal
class determines a non-trivial central extension of the shifted tangent dg-Lie algebra
of Ld(X) at the neutral element. This central extension is studied in [FHK], as it
provides a higher dimensional analogue to the Kac-Moody extensions. Indeed, when
d = 1, we find back g⊗ k((t)) and its usual extension by a central charge.
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