
Homology, Homotopy and Applications, vol. 19(2), 2017, pp.313–342

PERSISTENCE OF ZERO SETS
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(communicated by Graham Ellis)

Abstract
We study robust properties of zero sets of continuous maps

f : X → Rn. Formally, we analyze the family Z<r(f) := {g−1(0) :
‖g − f‖ < r} of all zero sets of all continuous maps g closer to f than
r in the max-norm. All of these sets are outside A := {x : |f(x)| � r}
and we claim that Z<r(f) is fully determined by A and an element of
a certain cohomotopy group which (by a recent result) is computable
whenever the dimension of X is at most 2n− 3.

By considering all r > 0 simultaneously, the pointed cohomotopy
groups form a persistence module—a structure leading to persistence
diagrams as in the case of persistent homology or well groups. Even-
tually, we get a descriptor of persistent robust properties of zero
sets that has better descriptive power (Theorem A) and better com-
putability status (Theorem B) than the established well diagrams.
Moreover, if we endow every point of each zero set with gradients of
the perturbation, the robust description of the zero sets by elements
of cohomotopy groups is in some sense the best possible (Theorem C).

1. Introduction

Vector valued continuous maps f : X → Rn are ubiquitous in modeling phenomena
in science and technology. Their zero sets f−1(0) often play an important role in those
models. Vector fields can represent dynamical systems, and their zeros are their key
property. Similarly, maps X → Rn can represent measured continuous physical quan-
tities such as MRI or ultrasound scans and the preimages of points in Rn correspond
to isosurfaces. In nonlinear optimization, the set of feasible solutions is described as
the zero set f−1(0) of a given continuous map f : X → Rn.

In practice, we often have only access to approximations of those maps. Either they
are sampled by imprecise measurements or inferred from models that only approx-
imate reality. Thus we need to understand their zero sets in a robust way. This is
formalized as follows. For a continuous map f : X → Rn defined on a topological
space X and a robustness radius r ∈ R+ we define

Z<r(f) := {g−1(0) : g : X → Rn such that ‖f − g‖ < r},
where ‖ · ‖ is the max-norm with respect to some fixed norm | · | in Rn.
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Figure 1: The zero set of the scalar function
f(x, y) = y is the x-axis. For r > 0, any r-
perturbation g has a zero set g−1(0) that
separates the two components of A := {x :
|f(x)| � r}. Conversely, any closed set Z ⊆
X disjoint from A that separates these two
components can be realized as the zero set
of some r-perturbation g of f .

Any function g with ‖g − f‖ < r
will be called an r-perturbation and
any property of f−1(0) that is shared
with g−1(0) for all r-perturbations g
is called an r-robust property. Invari-
ants of zero sets that are preserved
by r-perturbations translate to prop-
erties of Z<r(f): in particular, the
problem of an r-robust existence of
zero translates to non-emptiness of
all sets in Z<r(f).

The problem ∅ ∈ Z<r(f) has been
analyzed from the algorithmic view-
point when X is a finite simpli-
cial complex and f is piecewise lin-
ear [19]. The results are surpris-
ing and far from obvious: the non-
emptiness of all sets in Z<r(f) is
algorithmically decidable if dimX �
2n− 3 or n = 1 or n is even. Con-
versely, ∅ ∈ Z<r(f) is algorithmically undecidable for odd n � 3. This has been shown
by a reduction to the topological extension problem for maps to spheres and to recent
(un)decidability results for the latter [5, 4, 28, 35].

However, non-emptiness of all sets in Z<r(f) is only the simplest topological prop-
erty, see Figure 1 for a slightly more interesting property. Thus a natural question is
the following.

“Which properties of the zero set of f are preserved under perturbations?”

A notable attempt to attack this problem is the concept of well group, based on
studying homological properties of zero sets. However, well groups do not constitute
a complete invariant of Z<r(f): some properties of zero sets are not captured by
well groups, see [17, Thm. D,E].1 This paper is an attempt to answer the above
question via means of homotopy theory. As we will see in Theorem C, under some
mild assumptions, zero sets of smooth r-perturbations that are transverse to zero
form a framed cobordism class of submanifolds of X. This suggests that homotopy
theory is indeed the right tool for studying this problem and that homology alone is
not sufficient.

2. Statement of the results

Robustness through lenses of homotopy theory. The surprising recipe is not
to analyze f where its values are small, but rather where they are big—namely, of
norm at least r. Therefore we need to refer to the set A = {x : |f(x)| � r} on which
any r-perturbation of f is nonzero. Another surprising fact is that the analysis of f |A
1Moreover, the computability of well groups is only known in some special cases.
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needs to be done only up to homotopy.2 For, informally speaking, the notion of r-
perturbation can be replaced by a corresponding notion of homotopy r-perturbation,3

see Lemma 4.1. Consequently, we get that all the robust properties of f−1(0) are
determined by the homotopy class of f |A—a much more coarse and robust descriptor
than the original map f .

Theorem A. Let X be a compact Hausdorff space, and r > 0 be fixed. Then

(1) The family Z<r(f) is determined by A := {x : |f(x)| � r} and the homotopy
class of f̄ : A→ Sn−1 defined by f̄(x) := f(x)/|f(x)|.

(2) If the pair A ⊆ X can be triangulated and dimX � 2n− 3, then Z<r(f) is deter-
mined by A and the homotopy class of the quotient f/A : X/A→ Sn � Rn/{x :
|x| � r} induced by the map of pairs f : (X,A)→ (Rn, {x : |x| � r}).

The map X/A→ Sn defined in part (2) will be denoted by f/A further on. For
the set of all homotopy classes of maps from X to Y we will use the standard nota-
tion [X,Y ]. Part (2) strengthens the part (1), because the homotopy class of f/A is
always determined by the homotopy class of f̄ but not vice versa. In the dimension
range m := dimX � 2n− 4 the sets [X,Sn−1], [A,Sn−1] and [X/A, Sn] possess an
Abelian group structure and are called cohomotopy groups. Then there is a sequence
of homomorphisms

[X,Sn−1]
i∗−→ [A,Sn−1]

δ−→ [X/A, Sn], (1)

where i∗ is induced by restriction and δ maps [f̄ ] to [f/A]. Moreover, the sequence
is exact, that is, ker δ = Im(i∗). So [f/A] only determines a coset [f̄ ] + Im(i∗) in
[A,Sn−1]. The case m = 2n− 3 is more subtle but still [f/A] = δ[f̄ ] and it determines
Z<r(f) completely. The bound m � 2n− 3 from Theorem A (2) is sharp.4

We could replace strict inequality in the definition of perturbations by the non-
strict. Once the space B := {x : |f(x)| = r} is given in addition to A, then also
Z�r(f) := {g−1(0) : g : X → Rn such that ‖f − g‖ � r} is determined by the homo-
topy classes specified in (1) or (2). The proof of the non-strict version is, however,
much longer and more technical than in the strict case, so we refer an interested
reader to our extended version of the paper on arXiv [21] which covers this as well.

Persistence of robust properties of zero sets. We would like to understand
the families Z<r(f) not only for one particular r but for all robustness radii r > 0
simultaneously. The proper tool to describe it is the concept of persistence modules.

We define a pointed Abelian group to be a pair (π, a) where π is an Abelian group
and a ∈ π is its distinguished element. A homomorphism of pointed groups (π, a)→
(π′, a′) is a homomorphism π → π′ that maps a to a′. Under this definition, pointed

2We say that maps f, g : X → Y are homotopic whenever f can be “continuously deformed” into
g, that is, there is H : X × [0, 1]→ Y such that H(·, 0) = f and H(·, 1) = g.
3A map h : X → Rn is a homotopy perturbation of f whenever h|A is homotopic to f |A as maps
to Rn \ {0}, i.e., the homotopy avoids zero.
4Part (2) of the theorem may fail for m = 2n− 2. Let n = 6 and m = 10, X be a unit ball in

R10, A = S9 and f : X → R6 be defined by f(x) = |x|η(x/|x|) where η ∈ [S9, S5] is a nontrivial

element. Each 1-perturbation of f has a root in B10 but this information is lost in [X/A, S6] �
[S10, S6] � {0}.
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Abelian groups naturally form a category. We define a pointed persistence module to
be a functor from R+ (considered as a poset category) to the category of pointed
Abelian groups, explicitly ((πr, ar)r, (ϕs,r)0<r�s) where ϕs,r : (πr, ar)→ (πs, as) is
a homomorphism of pointed Abelian groups and ϕt,sϕs,r = ϕt,r for any 0 < r �
s � t. We define the interleaving distance between two pointed persistence modules
Π and Π′ in the usual way as the infimum over all δ such that there exist families
of morphisms ur : (πr, ar)→ (π′r+δ, a

′
r+δ) and vr : (π

′
r, a

′
r)→ (πr+δ, ar+δ) such that

vr+δur = ϕr+2δ,r and ur+δvr = ϕ′r+2δ,r for all r > 0 [13, 11].
We use the pointed cohomotopy groups naturally coming from Theorem A (2) as

there is less redundant information than in part (1) and the condition dimX � 2n− 3
will be needed for our computability results anyway. For r � s, let Ar and As be {x :
|f(x)| � r} and {x : |f(x)| � s}, respectively. We define a subgroup πr of [X/Ar, S

n]
by

πr :=
{
[g/Ar

] ∈ [X/Ar, S
n] : g : (X,Ar)→ (Rn, {x : |x| � r})}, (2)

that is, in the language of the sequence of homomorphisms (1), πr = Im δ. The quo-
tient map X/As → X/Ar induces a natural map ϕs,r : πr → πs that takes ar :=
[f/Ar

] to as := [f/As
]. Each quotient map X/At → X/Ar factorizes into quotient

maps through X/As for every r � s � t and thus the homomorphisms ϕs,r behave
as required. Therefore the collections

(
πr, [f/Ar

]
)
r>0

and
(
ϕs,r

)
s�r�0

form a pointed

persistence module that we will denote by Πf and referred to as cohomotopy persis-
tence module.

A simple observation is that the assignment f �→ Πf is stable with respect to the
interleaving distance dI : more precisely, it satisfies dI(Πf ,Πg) � ‖f − g‖. It even
holds that the interleaving distance is bounded by the so-called natural pseudo-
distance dN (f, g) between f and g, that is, the infimum of ‖f − gh‖ over all self-
homeomorphisms h : X → X (compare [9]).

If F is a field, then Πf ⊗ F is a pointed persistence module consisting of pointed vec-
tor spaces that are pointwise finite-dimensional. The distinguished elements ([f/Ar

]⊗
1)r generate a direct summand and the canonical decomposition of Πf ⊗ F into inter-
val submodules [15, 8] yields a pointed barcode: this is a multiset of intervals with
at most one distinguished interval. The distinguished interval corresponds to the dis-
tinguished direct summand whenever it is nontrivial. The usual notion of bottleneck
distance easily generalizes to pointed barcodes: it also holds that the bottleneck dis-
tance between Πf ⊗ F and Πg ⊗ F is bounded by ‖f − g‖. Formal definitions and
proofs containing justifications of these remarks are included in Section 5.

Theorem B (Computability). Let X be an m-dimensional simplicial complex,
f : X → Rn be simplexwise linear with rational values on the vertices and m � 2n− 3.
For each r > 0 let Ar := {x : |f(x)| � r} where | · | denotes �1, �2 or �∞ norm.

(1) The isomorphism type of the cohomotopy persistence module

Πf =
((

πr, [f/Ar
]
)
r>0

,
(
ϕs,r

)
s�r�0

)

can be computed. If n is fixed, the running time is polynomial with respect to
the size of the input data representing f : X → Rn.

(2) If F is Q or a finite field and n is fixed, then the pointed persistence barcode
associated with Πf ⊗ F can be computed in polynomial time.
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Remarks on the theorem follow:

• In the setting of the theorem, ϕs,r is an isomorphism whenever [r, s) contains
none of so-called critical values of f . There are only finitely many critical values
and the isomorphism type of the persistence module is determined by a tuple
of critical values s1, . . . , sk of f , a sequence

πr0

ϕr1,r0−−−−→ · · · ϕrk,rk−1−−−−−−→ πrk ,

for r0 < s1 < r1 < · · · < sk < rk and the “initial” homotopy class of f/A in πr0 .

• Under the assumptions of the theorem, for any simplicial subcomplex Y of X
and r > 0, the problem Y ∈ Z<r(f) is decidable.

5 In the special but important
case of Y = ∅, it is equivalent to the triviality of [f/Ar

]. Thus the “robustness of
the existence of zero” equals to the minimal sr such that [f/Ar

] = 0, equivalently,
the length of the distinguished bar in a suitable barcode representation.

• If h : X → X is a homeomorphism and r a rotation of Rn, then Πf and Πr◦f◦h
are isomorphic. From this viewpoint, the computable bottleneck distance be-
tween two barcode representations of Πf ⊗ F and Πg ⊗ F only measures “essen-
tial” differences between robust properties of f−1(0) and g−1(0).

• If dimX > 2n− 3, then we may still define a persistence structure via part (1)
of Theorem A using ([Ar, S

n−1], [f̄ ]) instead of (πr, [f/A]). In some particular
dimensions (such as n = 1, 2, 4, see below) this structure can be computed. The
interleaving distance can be defined in the usual way and dI(Πf ,Πg) � ‖f − g‖
still holds.

• We also remark that homotopy of two given maps can be algorithmically tested
in all dimensions [18] which can be used to verify the equality Z<r(f) = Z<r(g)
in some cases.

Low dimensional cases. If m = dimX < n, then Z<r(f) contains ∅ and, conse-
quently, all closed subsets of X contained in X \A, so there is not much to compute.
The condition n � m � 2n− 3 is never satisfied for n � 2 but in these cases the
element [f̄ ] ∈ [A,Sn−1] is computable and we may use part (1) of Theorem A.

The case n = 1 describes scalar valued functions. Then the homotopy class f̄ : Ar →
S0 consists of a set of pairs (Aj

r, s
j
r) where A

1
r, . . . , A

n(r)
r are the connected components

of Ar and sjr is the sign of f on Aj
r. If r < s, each Ak

s is a subset of a unique Aj
r and

the sign is inherited. The structure of these components and signs can clearly be
computed from the input such as in Theorem B.

The case n = 2 is also easy to handle. If Ar is a simplicial complex of any dimension,
[Ar, S

1] is an Abelian group naturally isomorphic to the cohomology group H1(Ar,Z)
[24, II, Thm. 7.1] which can easily be computed by standard methods [16]. The inclu-
sion As ↪→ Ar induces a homomorphism [Ar, S

1]→ [As, S
1] and the whole persistence

module consisting of these groups and homomorphisms is computable.

For n = m = 3, the condition m � 2n− 3 is satisfied. However, if the input is a
4-dimensional finite simplicial complex X and a simplexwise linear map f : X → R3,

5This amounts to the extendability of ḡ : Ar → Sn−1 to the closure of the complement of certain
regular neighborhood of Y whenever Y ∩Ar = ∅ and [ḡ] ∈ δ−1[f/Ar ] is arbitrary.
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then we may only hope for partial and incomplete algorithmic results, because ∅ ∈
Z<r(f) is then an undecidable problem by [19].

Surprisingly, n = 4 is a special case because [Y, S3] is an Abelian group for any
simplicial complex Y : the group operation can be derived from the quaternionic multi-
plication in the unit sphere S3. The cases m = dimY � 5 are covered in our theorems
above and the computability of [Y, S3] for higher-dimensional Y is a work in progress.

Additional information contained in [f/A]. Theorem A cannot be fully reversed.
If Z<r(f) is given, then A = X \ ∪Z<r(f) can be reconstructed, but the corresponding
element in πr ⊆ [X/A, Sn] is not uniquely determined.6 In general, there is a many-
to-one correspondence between πr and the collection {Z<r(f) : f : X → Rn with {x :
|f(x)| � r} = A}: the distinguished elements in πr still carry more information than is
needed to determine Z<r(f). A natural question is, how to understand this additional
information and its geometric meaning?

We will show that we can achieve a one-to-one correspondence between homotopy
classes and zero sets if we enrich the family of zero sets with an additional structure
that carries a directional information associated to the zero sets. For any x ∈ f−1(0),
this structure contains gradients of the components of f in x, see Figure 2 for an
illustration.

0

r

−r

A

A∂X

∂A

g−1(0)

Figure 2: Smooth zero sets with a framing. The map f : X → R is a projection to the
vertical dimension and the zero set of each regular r-perturbation g of f is a smooth
submanifold of X disjoint from A = {x : |f(x)| � r}. The vector field represents the
gradient of g on its zero set.

To formalize this, assume that X is a smooth compact m-manifold, f is smooth
and 0 is a regular value of f : that is, the differential df(x) has (maximal) rank n for
each x ∈ f−1(0). This implies that f−1(0) is an m− n dimensional submanifold of X.
Assume further that 0 is also a regular value of f |∂X . We will call such functions
f regular : these properties are by no means special but rather generic by Sard’s
theorem [29]. A regular function g : X → Rn such that ‖g − f‖ < r will be called a
regular r-perturbation of f . Now we are ready to define the enriched version of the

6If f is the identity on a unit n-ball, we have Z<r(f) = Z<r(−f) for each r ∈ (0, 1] but if n is
odd, then [f/A] �= [(−f)/A].
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family of zero sets

Zfr
r (f) :=

{(
g−1(0), dg|g−1(0)

)
: g is a regular r-perturbation of f

}
.

Each element of Zfr
r (f) carries the information about the zero set of some g and

the differential dg at this zero set. The submanifold g−1(0) together with dg|g−1(0)

is called a framed submanifold and can be geometrically represented via n gradient
vector fields on g−1(0) such as in Figure 2.

Two framed k-submanifolds N1 and N2 of X are framed cobordant, if there exists
a framed (k + 1)-dimensional submanifold C of X × [0, 1] such that C ∩ (X × {0}) =
N1 × {0}, C ∩ (X × {1}) = N2 × {1} and the framing of C in X × {0, 1} is mapped
to the framing of N1, N2 via the canonical projection X × [0, 1]→ X. The manifold
C is called a framed cobordism: see Figure 3 for an illustration and Section 7 for
a precise definition in case when X is a manifold with boundary.

graph
of f

graph
of g

r

−r

X × [0, 1]

X

0

0

x y z

x y z

C

Figure 3: The framed zero set of a perturbation g of f consists of three points x, y
and z and a framing indicating the directions in which g is increasing. It is framed
cobordant to the framed zero set (0,→) of f .

Theorem C. Assume that X is a smooth compact m-manifold, r > 0, A ⊆ X is
closed, m � 2n− 3, and πr be the subgroup of [X/A, Sn] defined by (2). Then there
is a bijection{

Zfr
r (f) : f : X → Rn such that A = {x : |f(x)| � r}}←→ πr

satisfying that each Zfr
r (f) is mapped to [f/A]. Moreover, each Zfr

r (f) is a framed
cobordism class of framed (m− n)-submanifolds disjoint from A. Here the framed
cobordisms are also required to be disjoint from A× [0, 1].

If A is given, then any framed zero set determines its framed cobordism class
Zfr
r (f) and hence [f/A]. It follows that [f/A] is a property common to all elements of

Zfr
r (f), that is, an invariant of Zfr

r (f). This invariant is complete, as it determines all
of Zfr

r (f).
In its special case, Theorem C claims that whenever f : X → Rn is such that

[f/A] = 0, then Zfr
r (f) consists exactly of all framed (m− n)-submanifolds that are

framed null-cobordant in X \A. This particular claim can also be derived from [26,
Theorem 3.1].
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If m � 2n− 3 is violated, then the framed zero sets of regular perturbations are
still framed cobordant but Zfr

r (f) is only a subset of the full framed cobordism class.
It is an interesting question for further research to find the additional invariants of
framed zero sets in these cases.

Related work. One of the roots of our research comes from zero verification. If X is
a product of intervals and f : X → Rn is defined in terms of interval arithmetic,7 then
the nonexistence of zeros of f can often be verified by interval arithmetic alone [30].
However, the proof of existence requires additional ingredients such as Brouwer fixed
point theorem [32] or topological degree computation [14, 20]. These techniques are
applicable for domains X of dimension n and succeed only if the zero is r-robust for
some r > 0. Naive applications of these techniques fail in the case of “underdetermined
systems” f(x) = 0 where the dimension of the domain X of f is larger than n. In [19]
we analyzed the problem of existence of an r-robust zero of functions f : X → Rn

where X is a simplicial complex of arbitrary dimension.

Another parallel line of related research is the field of persistent homology which
analyzes properties of scalar functions (rather than their zero sets) via persistence
modules build up from the homologies of their sublevel sets f−1(−∞, r] for all r ∈ R.
Persistent homology has been generalized to the case of Rn-valued functions [7, 9,
10, 6].

Well groups. Well groups associated to f : X → Y and a subspace Y ′ ⊆ Y describe
homological properties of the preimage f−1(Y ′) which persist if we perturb the input
function f . We include a formal definition for the case of Y = Rn and Y ′ = {0}. Let
W be the space of potential zeros of all r-perturbations, that is, {x : |f(x)| � r}.
Then the well groups U∗(f, r) are subgroups of homology groups H∗(W ) consisting
of classes supported by the zero set of each r-perturbation g of f . Formally,

U∗(f, r) :=
⋂

Z∈Z�r(f)

Im
(
H∗(Z ↪→W )

)
,

where Z ↪→W is the inclusion and H∗ is a convenient homology theory. Most notably,
U0(f, r) = 0 whenever f has no r-robust zero, i.e., ∅ ∈ Z�r(f) and therefore the same
undecidability result [19] applies to well groups. Obviously, each well group is a
property of Z�r(f) and is therefore “encoded” in the homotopy class of f̄ .8 However,
the decoding seems to be a difficult problem, see [22] for some partial results and
[2, 12] for previous algorithms for special cases n = 1 and dimX = n.

Well groups for various radii r fit into a certain zig-zag sequence that yields so-
called well diagrams—a multi-scale version of well groups that is provably stable
under perturbations of f [17].

Summarizing our opinion, well diagrams provide very general tool for robust anal-
ysis that uses accessible and geometrically intuitive language of homology theory. In
addition, they present a challenging computational problem deeply interconnected

7That is, there is an algorithm that computes a superset of f(X ′) for any subbox X ′ ⊆ X with
rational vertices.
8Well groups are defined via non-strict perturbations as an intersection over Z�r(f). In this paper,

we only show that the homotopy class of f̃ determines Z<r(f) but as mentioned on page 315, it
determines Z�r(f) (and hence the well group) as well.
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with homotopy theory. However, their computability status is worse than that of
cohomotopy groups and they fail to capture some properties of Z�r(f) [22].

3. Illustrating examples

Intermediate value theorem. In the motivating example from Figure 1, the family
Z<r(f) is characterized by the map A→ S0 = {+,−} such that each component of A
is mapped to a different element of S0. By the intermediate value theorem, any curve
connecting the two components of A intersects the zero set of any r-perturbation
of f . The set Z<r(f) is determined by the element of [A,S0] � [S0, S0], illustrating
Theorem A (1).

There are two non-constant elements of [A,S0], represented by f and −f . They
give rise to identical sets Z<r(f) = Z<r(−f). However, the framed version Zfr

r (f) and
Zfr
r (−f) are different, as the gradient information encodes on which side of the zero

set is the function positive, resp. negative.

Topological degree. Consider functions Rn → Rn and r > 0 such that W := {x :
|f(x)| < r} is a topological n-disc. In this case, Z<r(f) is determined by the degree
of

∂W � Sn−1 f−→ Rn \ {0} � Sn−1.

If this degree is nonzero, then f is not extendable to all of W and each r-perturbation
of f has a root in W . It is not hard to show that Z<r(f) then consists of all non-
empty closed sets contained in W . On the other hand, if the degree is zero, then some
r-perturbation of f avoids zero and Z<r(f) consists of all closed sets contained in W .
The degree is clearly determined by the homotopy class of the map [f̄ ] ∈ [Ar, S

n−1]
where Ar = {x : |f(x)| � r}.

While Z<r(f) does not distinguish various nonzero degrees, the refined version
Zfr
r (f) from Theorem C does.9 If the degree is k ∈ Z, then Zfr

r (f) consists of all finite
framed point sets in W such that the difference between positively and negatively
oriented points is exactly k. Thus not only does Zfr

r (f) determine the degree, but so
does each element of Zfr

r (f).

Higher order obstructions. The following example, taken from [22], illustrates the
strength of Theorem A in a situation where well groups (based on homology theory)
are not sufficient to describe Z<r(f). Let X = S2 ×B4 where S2 is the standard unit
sphere, and f : X → R3 is defined by f(x, y) = |y| η(y/|y|) where η : S3 → S2 is the
Hopf fibration.

The Hopf map η cannot be extended to B4 → S2, and so each 1-perturbation of
f has a root in each section {x} ×B4. In particular, the zero set of a perturbation
cannot be discrete.

Consider another map g : S2 ×B4 → R3 defined by g(x, y) := |y|ϕ(x, y/|y|) where
ϕ : S2 × S3 → S2 is defined as the composition S2 × S3 ∧→ (S2 × S3)/(S2 ∨ S3) �
S5 ν→ S2 where ν is a homotopically nontrivial map. In this case, we showed in [22]
that every 1-perturbation of g has a zero but it may be a singleton. Thus Z<r(f) �=
9The degree determines and is determined by the image of [Ar, S

n−1] in [X/Ar, S
n] �

[Sn, Sn] � Z.
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Z<r(g) and the map (x, y) �→ η(y) is not homotopic to (x, y)→ ϕ(x, y) as maps from
A := S2 × S3 to S2. Note that the sphere-valued map g|A is extendable to the 5-
skeleton of X, while f |A is only extendable to the 3-skeleton of X.

However, f and g give rise to isomorphic well groups which are both zero in all
positive dimensions. While the zero set of f is the two-sphere S2 × {0}, there exist
arbitrarily small perturbations of f having the zero set homeomorphic to S3, killing
a potential nontrivial element of the second homology of the zero sets of perturbations.

Less technically, the information that “the zero set of each r-perturbation of f
intersects each section {x} ×B4” is lost in the well group description of Z<r(f).

Cohomotopy barcode. The example from the previous heading immediately gen-
eralizes to f, g : S2 ×Bn+1 → Rn defined via nontrivial elements

η ∈ πn(S
n−1) � Z2 and ν ∈ πn+2(S

n−1) � Z24,

for large enough n. It was shown in [22] that the well groups and well modules
associated to f, g are trivial in all positive dimensions, although Z<r(f) �= Z<r(g) for
r ∈ (0, 1].

For each r ∈ (0, 1], the exact cohomotopy sequence

0 = [X,Sn−1]→ [Ar, S
n−1]

δ−→ [X/Ar, S
n]→ [X,Sn] = 0

shows that we have an isomorphism

πr = Im(δ) = [X/Ar, S
n−1] � [Ar, S

n−1] � [S2 × Sn, Sn−1]

and ϕr,s : πr → πs is the identity (under the above identification). The group [S2 ×
Sn, Sn−1] equals10 πn(S

n−1)× πn+2(S
n−1) � Z2 × Z24 and tensoring with the field

Z3 would yield diagrams with one bar only. This bar would be distinguished in the
diagram of g but not so in the diagram of f . Thus a pointed cohomotopy barcode
can distinguish two functions f and g with equal well groups and well modules.

4. Proof of Theorem A

The proof of Theorem A utilizes certain properties of compact Hausdorff spaces. We
say that a pair of spaces (Y, Z) satisfies the homotopy extension property with respect
to a space T whenever each map H ′ : Y × {0} ∪ Z × [0, 1]→ T can be extended to
H : Y × [0, 1]→ T . The map H ′ as above will be called a partial homotopy of H ′|Y
on Z. It follows from [24, Prop. I.9.3] that, once K is compact Hausdorff and T
triangulable, every pair of closed subsets (Y, Z) of K satisfies the homotopy extension
property with respect to T .

In addition, for every two disjoint closed subsets V and W in a compact Hausdorff
space X there is a separating function χ : X → [0, 1]. That means, there is a function
χ : X → [0, 1] that is 0 on V and 1 on W . It is easily seen that the values 0 and 1
above can be replaced by arbitrary real values s < t.

Finally, every homotopy H : Y × [0, 1]→ T of the form H(y, t) = H(y, 0) will be
called stationary.

10It follows from the exact sequence presented in [33, Problem 18.31] and the relatively easy facts
that the second arrow of this sequence is a surjection and the sequence splits.
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Lemma 4.1 (From perturbations to homotopy perturbations). Let f : X → Rn be a
map on a compact Hausdorff space X and let A := {x : |f(x)| � r|}. Then the families

{g−1(0) : g is a strict r-perturbation of f}, (A)

{h−1(0) : h : (X,A)→ (Rn,Rn \ {0}), h|A ∼ f |A} and (B)

{e−1(0) : e : X → Rn is an extension of f |A} (C)

are all equal. Moreover, if an extension e : X → Rn of f |A is given, then the strict
r-perturbation g of f such that g−1(0) = e−1(0) can be chosen to be a multiple of e
by a positive scalar function.

Proof. We will prove that the sequence of inclusions (A) ⊆ (B) ⊆ (C) ⊆ (A) holds.
The additional relation between e and g will be shown in the construction of g in the
(C)⊆ (A) part.

(A) is a subset of (B): Each strict r-perturbation g of f is nowhere zero on A and
the straight line homotopy F (a, t) = t g(a) + (1− t)f(a) satisfies F (t, a) �= 0 for any
(a, t) ∈ A× [0, 1]. Indeed, each line shorter than r starting at a point at least r away
from zero has to avoid zero.

(B) is a subset of (C): We start with a map of pairs h : (X,A)→ (Rn,Rn \
{0}) such that h|A is homotopic to f |A and want to construct an extension e of
f |A such that e−1(0) = h−1(0). To that end, let us choose a value ε > 0 such that
minx∈A |h(x)| � 2ε and let us define Y := |h|−1[ε,∞). The partial homotopy of h on
|h|−1(ε) ∪A that is stationary on |h|−1(ε) and equal to the given homotopy h|A ∼ f |A
on A can be extended to H : Y × [0, 1]→ Rn \ {0} by the homotopy extension prop-
erty. The homotopy extension property holds because all the considered maps take
values in a triangulable space {x ∈ Rn : |x| ∈ [ε,M ]} for some M ∈ R.

The desired extension e can be defined to be equal to h on |h|−1[0, ε] and equal to
H(·, 1) on Y .

(C) is a subset of (A): We start with an extension e : X → Rn of f |A and want to
construct a strict r-perturbation g of f such that g−1(0) = e−1(0).

The set U := {x ∈ X : |e(x)− f(x)| < r/2} is an open neighborhood of A. Due to
the compactness of X, there exists ε ∈ (0, r/2) such that |f |−1[r − ε,∞) ⊆ U (other-
wise, there would exist a sequence xn /∈ U with |f(xn)| → r and a convergent subse-
quence xjn → x0, where x0 ∈ A ⊆ U , contradicting xjn /∈ U).

Let χ : X → [ε/(2‖e‖), 1] be a separating function for A and W := |f |−1[0, r − ε],
that is, a continuous function that is ε/(2‖e‖) on W and 1 on A. The map g : X → Rn

defined by

g(x) := χ(x)e(x)

is a strict r-perturbation of f . Indeed, for x ∈ A, f(x) = g(x) by definition and for
x ∈W , we have |g(x)− f(x)| � ε/2 + (r − ε) < r. Otherwise, x ∈ U \A and then

|g(x)− f(x)| � χ(x) |e(x)− f(x)|︸ ︷︷ ︸
�r/2

+(1− χ(x)) |f(x)|︸ ︷︷ ︸
�r

< r.
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Proof of Theorem A, Part (1). This follows directly from the equality between (A)
and (B) in Lemma 4.1: clearly the definition of the family (B) depends on the homo-
topy class of f |A : A→ Rn \ {0} only. This homotopy class is uniquely determined by
the homotopy class of f̄ : A→ Sn−1.

Cohomotopy groups. For Part (2) of the Theorem, we need the Abelian group
structure of [A,Sn−1] and [X,Sn−1] (see [24, Chapter 7] for more details). Assume
first that m � 2n− 4 which will make the proof easier: we will comment on the
special case m = 2n− 3 at the end. If A ⊆ X are simplicial complexes of dimen-
sion � 2n− 4, then both [A,Sn−1] and [X,Sn−1] are Abelian groups with the group
operation defined as follows. Let f, f ′ be maps A→ Sn−1. The image of the cellu-
lar approximation a of (f, f ′) : A→ Sn−1 × Sn−1 misses the top (2n− 2)-cell, hence
a(A) ⊆ Sn−1 ∨ Sn−1. The sum f � f ′ : A→ Sn−1 is defined as the composition ∇a
where ∇ : Sn−1 ∨ Sn−1 → Sn−1 is the folding map. The homotopy class [f � f ′] is
independent of the choice of representative f of [f ] and f ′ of [f ′] and is independent
of the choice of the cellular approximation a as well. It induces a binary operation in
[A,Sn−1] which is associative and commutative, the element [const] is neutral with
respect to this operation and the inverse element to f is obtained by composing f
with a map Sn−1 → Sn−1 of degree −1 that will be denoted by �f . The inclusion
i : A ↪→ X induces a homomorphism i∗ : [X,Sn−1]→ [A,Sn−1] whose image is a sub-
group of [A,Sn−1] that consists of homotopy classes of maps that are extendable to
X → Sn−1. In particular, once f : A→ Sn−1 is extendable to X ⊇ A, then �f is as
well. By [24, Chapter VII], there is an exact sequence of cohomotopy groups

[X,Sn−1]
i∗−→ [A,Sn−1]

δ−→ [(X,A), (Sn, ∗)] � [X/A, Sn], (3)

where δ maps the homotopy class [f̄ ] ∈ [A,Sn−1] to [f/A] defined in Theorem A.
The exactness of this sequence11 implies that the δ-preimage of [f/A] is [f̄ ] + Im(i∗).
To prove our statement, we need to show that this coset in [A,Sn−1] uniquely deter-
mines Z<r(f). For maps f1, f2 : X → Rn by f1 � f2 we will denote an arbitrary exten-
sion X → Rn of a representative f̄1 � f̄2 of [f̄1]� [f̄2]. By Theorem A (1) the family
Z<r(f1 � f2) is independent of the choices of the representative and of the extension.

Lemma 4.2. Let A ⊆ X be cell complexes of dimension at most 2n− 4 and let
f1, f2 : X → Rn be such that A = |f1|−1[r,∞) = |f2|−1[r,∞). Then

Z<r(f1 � f2) ⊇ {Z1 ∪ Z2 : Z1 ∈ Z<r(f1) and Z2 ∈ Z<r(f2)}.
Proof of Lemma 4.2. Let gi be a strict r-perturbation of fi and Zi = g−1(0) for
i = 1, 2. We want to find a strict r-perturbation g of f1 � f2 with g−1(0) = Z :=
Z1 ∪ Z2. Let as represent the functions gi in polar coordinates as gi = ḡi |gi| where
ḡi : X \ Zi → Sn−1 is defined by gi/|gi|. The map g will be constructed in polar coor-
dinates as g = ḡ n for ḡ : X \ Z → Sn−1 and n : X → R+

0 such that n will be zero on
Z. The map ḡ will be essentially ḡ1 � ḡ2. The only issue is that the definition of �
requires the domain to be a cell complex (because it uses a cellular approximation
of the map (ḡ1, ḡ2)) which Y := X \ Z is not. Thus we will need a sequence of cell
complexes Y0 ⊆ Y1 ⊆ · · · contained in Y such that

⋃
Yi = Y . Let dist be a metriza-

tion of X and for each i = 1, 2, . . . let di : X → R be PL functions less than 2−i−2

11That is, ker δ = Im(i∗).
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far from dist(Z, ·) in the max-norm. By PL we mean that each di is simplexwise
linear on some triangulation of X. Let Oi := d−1

i [0, 2−i) and Yi := X \Oi. We have
that Yi ⊇ Yi−1 as sets and after a possible subdivision of these cell complexes we
may assume that Yi−1 is a subcomplex of Yi. Let ai : Yi → Sn−1 × Sn−1 be a cellu-
lar approximation of ((ḡ1)|Yi , (ḡ2)Yi) that extends ai−1 if i > 1. Define h̄ :=

⋃
i∇ai

and n := dist(Z, ·). Then Z is the zero set of h = h̄ n and the restriction of h̄ to A
equals (ḡ1)|A � (ḡ2)|A. Under the assumption dimA � 2n− 4, (ḡ1)|A � (ḡ2)|A is well
defined up to homotopy, is homotopic to f̄1 � f̄2 and it follows from Lemma 4.1 that
Z ∈ Z<r(f1 � f2).

Proof of Theorem A, Part (2). Assume first that dimX � 2n− 4. For f̄2 : A→ Sn−1

extendable to X → Sn−1 (i.e., ∅ ∈ Z<r(f2)), we obtain Z<r(f1 � f2) ⊇ Z<r(f1) by
Lemma 4.2. Consequently, since �f̄2 is also extendable,

Z<r(f1) = Z<r

(
(f1 � f2)� (�f2)

) ⊇ Z<r(f1 � f2).

Hence Z<r(f1) = Z<r(f1 � f2) for any f2 such that f̄2 is extendable to a map X →
Sn−1. It follows that Z<r(f) only depends on the coset [f̄ ] + Im i∗ in [A,Sn−1].

Finally, we discuss the special case m = 2n− 3 that goes along the same lines
with the following differences. We replace A by A′ := ∂A, X by X ′ := X \A and
f by f ′ := f |X′ . Clearly Z<r(f) = Z<r(f

′). The space X ′ is still at most 2n− 3
dimensional but A′ is at most 2n− 4 dimensional. Instead of (3) we consider the
sequence

[X ′, Sn−1]
i′∗−→ [A′, Sn−1]

δ′−→ [X ′/A′, Sn]
ι∗←− [X/A, Sn],

which are all Abelian groups possibly except [X ′, Sn−1] which is only a set. The map
ι∗ is induced by the inclusion ι : (X ′, A′)→ (X,A) and is an isomorphism by excision
[24, Chapter VII, Theorem 3.2]. By [24, Chapter VII, Lemma 9.1] this sequence is still
exact at [A′, Sn−1], that is, ker δ′ = Im(i′∗). In particular, this implies that Im(i′∗) is a
subgroup of [A′, S−1] and δ′ maps the quotient [A′, Sn−1]/Im(i′∗) isomorphically onto
Im(δ′), so that the preimage of [f ′/A′ ] is [f̄ ′] + Im(i′∗) which determines Z<r(f

′) as

above. It remains to check is that ι∗([f/A]) = [f ′/A′ ]. This follows from the naturality

of the exact sequence (3), in particular, the commutativity of the square

[A,Sn−1]

ι∗|A′
��

δ �� [X/A, Sn]

ι∗

��
[A′, Sn−1]

δ′ �� [X ′/A′, Sn]

as in [24, Chapter VII, Proposition 4.1], and from observing that ι∗|A′ [f̄ ] = [f̄ ′].

5. Cohomotopy persistence modules

Stability of cohomotopy persistence modules. Let

Π =
(
ϕs,r : (πr, ar)→ (πs, as)

)
s�r>0

and Π′ =
(
ϕ′s,r : (π

′
r, a

′
r)→ (π′s, a

′
s)
)
s�r>0

be two pointed persistence modules. We define their interleaving distance dI(Π,Π′)
as the infimum over all δ > 0 such that there exists a family of homomorphisms
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ur : (πr, ar) → (π′r+δ, a
′
r+δ) and vr : (π

′
r, a

′
r) → (πr+δ, ar+δ) such that vr+δur =

ϕr+2δ,r and ur+δvr = ϕ′r+2δ,r holds for all r > 0.

The first observation on cohomotopy persistence modules is that the assignment
f �→ Πf is stable with respect to perturbations of f , namely, the interleaving dis-
tance of Πf and Πf ′ is bounded by ‖f − f ′‖. Let Ar = {x : |f(x)| � r} and A′r = {x :
|f ′(x)| � r} for all r and assume that ‖f − f ′‖ < δ for some δ > 0. This immediately
implies A′r+δ ⊆ Ar. The straight line homotopy between f and f ′ is nowhere zero
on A′r+δ and it induces a homotopy between the sphere-valued functions f̄ |A′

r+δ
and

f̄ ′|A′
r+δ

. The inclusion ι : (X,A′r+δ) ↪→ (X,Ar) induces a commutative diagram12

[Ar, S
n−1]

δ ��

ι∗

��

[X/Ar, S
n]

ι∗/A
��

[A′r+δ, S
n−1]

δ �� [X/A′r+δ, S
n]

and the equality ι∗[f̄ ] = [f̄ ′] immediately implies that ι∗/A maps [f/Ar
] to [f ′/A′

r+δ
].

So, the inclusion ι induces an interleaving morphism ur : πr → π′r+δ that maps the
distinguished element to the distinguished element. The other interleaving morphism
vr : π

′
r → πr+δ is defined similarly and the compositions vr+δur and ur+δvr behave

as required.

We claim that dI(Πf ,Πf ′) is even bounded by ‖f − f ′h‖ where h is any self-
homeomorphism of X and hence the interleaving distance is bounded by the natural
pseudo-distance between f and f ′. Let Ar := {x : |f ′(x)| � r}, A′r := h−1(Ar), πr and
π′r be the image of the connecting homomorphism δ : [Ar, S

n−1]→ [X/Ar, S
n] and

δ′ : [A′r, S
n−1]→ [X/A′r, S

n] respectively. The homeomorphism h induces a homotopy
equivalence h : (X,A′r)→ (X,Ar) and for any 0 < r � s and

(X,As)
� � i �� (X,Ar)

(X,A′s)

h

��

� � i �� (X,A′r)

h

��

induces a commutative diagram on the level of cohomotopy groups. Using the nat-
urality of the sequence (1), h∗ maps πr isomorphically to π′r and it maps [f ′/Ar

] to

[(f ′h)/A′
r
] by definition of the induced map. It follows that Πf ′ and Πf ′h are isomor-

phic and

dI(Πf ,Πf ′) = dI(Πf ,Πf ′h) � ‖f − f ′h‖.
It is an elementary observation that Πf and Πrf are also isomorphic for any rotation
r of Rn.

Construction of pointed barcode. Let I be an interval and F a field. An interval
module C(I) is by definition an (unpointed) persistence module (Vr, ϕs,r)s�r>0 such
that Vr � F for r ∈ I, Vr is trivial for r /∈ I, ϕs,r is the identity if r, s ∈ I and the zero

12See [24, Chapt. VII, Prop. 4.1] for the naturality of δ and [24, Lemma 3.1] for the isomorphism
[(X,A), (Sn, ∗)] � [X/A, Sn].
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map otherwise. Any pointwise finite dimensional persistence module consisting of vec-
tor spaces over F is isomorphic to a direct sum of interval modules, the corresponding
intervals as well as their multiplicities being uniquely determined [15, 11].

Let X,n, f,F be such as in Theorem B. We will show in Lemma 6.2 that there are
only finitely many critical values s1, . . . , sk such that ϕs,r is an isomorphism whenever
[r, s) is disjoint from {s1, . . . , sk}. Cohomotopy groups of finite simplicial complexes
are finitely generated and it follows that Πf ⊗ F is a pointwise finite dimensional
pointed persistence module, that is, each πr ⊗ F is a finite dimensional vector space.

Under these assumptions, we have the following:

Lemma 5.1. The distinguished elements [f/Ar
]⊗ 1 in Πf ⊗ F generate a direct sum-

mand of Πf ⊗ F.

Proof. The distinguished submodule generated by the distinguished element is iso-
morphic to an interval module C(I), as it consists of at most one-dimensional vec-
tor spaces and ϕs,r maps a generator to a generator. For simplicity, let us denote
[f/Ar

]⊗ 1 by ar for all r > 0. The corresponding (possibly empty) interval I consists
of all r for which ar �= 0.

If C(I) = 0, then C(I) is trivially a direct summand. Otherwise I contains a posi-
tive r > 0 and, consequently, all t ∈ (0, r). Let t > 0 be smaller than any of the critical
values si of f . It follows that ϕt,s is an isomorphism for all 0 < s � t.

Choose a decomposition Πf ⊗ F � ⊕λ∈ΛC(λ) of Πf ⊗ F into interval modules,
where Λ is a multiset of intervals. The inclusion maps at into a finite combination∑k

j=1(vj)t where 0 �= (vj)t ∈ C(λj)t for some λ1, . . . , λk ∈ Λ (some λj ’s may be equal
to each other but we assume that the number of intervals equal to λi is at most the
multiplicity of λi in Λ).

We claim that for all j = 1, . . . , k, λj has the form (0, lj) or (0, lj ] for some lj
such that λj ⊆ I. Assume, for contradiction, that some λj does not contain a number
s ∈ (0, t). Then the projection of a to the direct summand C(λj) is zero in time s
and nonzero in time t which contradicts the commutativity of

C(λj)s
ϕ �� C(λj)t

C(I)s

∈

as

��

ϕ �� C(I)t.

∈

at

��

Similarly, r ∈ λj is impossible for t < r /∈ I, because ar = 0 contradicts (vj)r �= 0.

Further we claim that at least one λj is equal to I. Otherwise we could find an
s ∈ I that is disjoint from all λj and derive a contradiction with 0 =

∑
j(vj)s =

ϕs,tat = as �= 0. Suppose, without loss of generality, that λk = I. Summarizing our

construction, we have that at =
∑k

j=1(vj)t holds for each t > 0 and (vk)t is nonzero
iff t ∈ I.

We claim that in the decomposition to interval modules, we may replace C(λk)
with C(I) and obtain another decomposition: this will prove that C(I) is a direct
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summand. More formally, we claim that

Πf ⊗ F � C(I)⊕
⎛
⎝ ⊕

λ∈Λ\{λk}
C(λ)

⎞
⎠ ,

where Λ \ {λk} is a multiset where the multiplicity of λk is one less than its mul-
tiplicity in Λ. Let wr ∈ (Πf ⊗ F)r be arbitrary. There is a unique decomposition

wr =
∑k

j=1 cj(vj)r + w′ where cj ∈ F and w′ is a combination of elements in the inter-
val modules C(λ) for λ /∈ {λ1, . . . , λk}. Another way to write this is wr = ck(v1 + · · ·+
vk)r + (

∑k−1
j=1 (cj − ck)(vj)r) + w′, or equivalently ckar + (

∑k−1
j=1 (cj − ck)(vj)r) + w′

which yields the projections to the new decomposition.

We define a pointed barcode to be a pair (Λ, I) where Λ is a multiset of intervals
and I is an interval that occurs in B at least once.13 We may represent Πf ⊗ F via
a pointed barcode, the multiset Λ corresponding to the unpointed decomposition of
Πf ⊗ F into interval modules, and the interval I corresponding to the direct summand
generated by the distinguished elements.

The usual bottleneck distance generalizes to this structure as follows.

Definition 5.2. The bottleneck distance dB((Λ1, I1), (Λ2, I2) between two pointed
barcodes is the infimum of all δ such that there exists a matching14 between Λ1 and
Λ2 such that:

• All intervals of length at least 2δ are matched;

• The matching shift end-points of intervals at most δ-far;

• If either of the distinguished intervals I1, I2 is matched, then both of them are
matched and they are matched together.

Note that if both distinguished bars have lengths smaller than 2δ, then they are
allowed to be unmatched. The next lemma addresses the stability of the bottleneck
distance of pointed modules.

Lemma 5.3. Let f, f ′ be as in Theorem B and let (Λ, I) and (Λ′, I ′) be the pointed
barcode representing Πf ⊗ F and Πf ′ ⊗ F, respectively. Then the bottleneck distance
dB((Λ, I), (Λ′, I ′)) is bounded by the interleaving distance dI(Πf ⊗ F,Πf ′ ⊗ F).

The chain of inequalities

dB((Λ, I), (Λ′, I ′)) � dI(Πf ⊗ F,Πf ′ ⊗ F) � dI(Πf ,Πf ′) � ‖f − f ′‖
then implies the stability of the bottleneck distance with respect to perturbations
of f .

Proof. Assume that Πf ⊗ F and Πf ′ ⊗ F are δ-interleaved and let ur : (πr ⊗ F,
[f/Ar

]⊗ 1)→ (π′r+δ, [f
′
/A′

r+δ
]⊗ 1) and vr : (π

′
r ⊗ F, [f ′/A′

r
]⊗ 1)→ (πr+δ, [f/Ar+δ

]⊗ 1)

be the families of interleaving morphisms.

13If I occurs k > 1 times in B, then we cannot distinguished which of the k copies of I is the
distinguished intervals.
14For a rigorous definition of barcode matching, see e.g. [1]. Note that there a barcode is defined to
be a set that represents the multiset Λi.
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Using the decompositions from Lemma 5.1, we have that Πf ⊗ F � C(I)⊕D
and Πf ′ ⊗ F � C(I ′)⊕D′ where C(I), C(I ′) are the distinguished submodules and
D, D′ their complements. The interleaving morphisms ur and vr map C(I)r to
C(I ′)r+δ and C(I ′)r to C(I)r+δ, respectively. The interleaving ur, vr then induce the

maps u
(1)
r : C(I)r → C(I ′)r+δ between the distinguished submodules and u

(2)
r : (πr ⊗

F)/C(I)r → (π′r+δ ⊗ F)/C(I ′)r+δ between the factor modules, and similarly, vr

induces analogous maps v
(1)
r and v

(2)
r . The factor modules (Πf ⊗ F)/C(I) and (Πf ′ ⊗

F)/C(I ′) are isomorphic to the complementary modules D and D′ respectively.
The families u

(1)
r and v

(1)
r define a δ-interleaving between the distinguished sub-

modules that can be represented each by at most one bar in the barcode repre-
sentation. By the standard stability theorem for unpointed barcodes [1, Thm. 6.4],

there exists a δ-matching between {I} and {I ′}.15 Similarly, u
(2)
r and v

(2)
r define a

δ-interleaving between the quotients (Πf ⊗ F)/C(I) and (Πf ′ ⊗ F)/C(I ′) that are
represented by the multiset of intervals complementary to I and I ′ respectively, and
they induce a δ-matching between these complementary barcodes. The disjoint union
of these δ-matchings gives an upper bound on the bottleneck distance between the
pointed barcodes.

6. Proof of Theorem B

Star, link and subdivision of simplicial complexes. Let A ⊆ X be simplicial
complexes. We define the star(A,X) to be the set of all faces of all simplices in X
that have nontrivial intersection with |A|, and link(A,X) := {σ ∈ star(A,X) |σ ∩
|A| = ∅}. Both star(A,X) and link(A,X) are simplicial complexes. The difference
star◦(A,X) := |star(A,X)| \ |link(A,X)| is called the open star. A simplicial com-
plexX ′ is called a subdivision ofX whenever |X ′| = |X| and each Δ′ ∈ X ′ is contained
in some Δ ∈ X. If a ∈ |X|, than we may construct a subdivision of X by replacing
the unique Δ containing a in its interior by the set of simplices {a, v1, . . . , vk} for
all {v1, . . . , vk} that span a face of Δ, and correspondingly subdividing each simplex
containing Δ. This process is called starring Δ at a. If we fix a point aΔ in the interior
of each Δ ∈ X, we may construct a derived subdivision X ′ by starring each Δ at aΔ,
in an order of decreasing dimensions.

Computability of cohomotopy groups. The crucial external ingredient for the
proof is the polynomial-time algorithm for computing cohomotopy groups [3, Theo-
rem 1.1], see [28, Theorem 3.1.2] for the running time analysis.

Proposition 6.1 ([28, Theorem 3.1.2]). For every fixed k � 2, there is a polynomial-
time algorithm that:

1. Given a finite simplicial complex (or simplicial set) X of dimension k and a d-
connected S, where k � 2d, computes the isomorphism type of [X,S] as a finitely
generated Abelian group.

2. When, in addition, a simplicial map f : X → S is given, the algorithm expresses
[f ] as a linear combination of the generators.

15Here we have the convention that if I is empty, then {I} represents the empty multiset.
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3. Finally, when, in addition, a simplicial map g : X → X ′ with dimX ′ � 2d is
given, the algorithm computes the induced homomorphism g∗ : [X ′, S]→ [X,S].

The item 3 above is not explicitly stated in [28, Theorem 3.1.2] but the compu-
tation simply amounts to composing the simplicial map g with the representatives
of the generators computed by item 1 (see [28, Theorem 3.6.1] for the details on
the representation) and applying item 2 on the composition. See also [5, Proof of
Theorem 1.4] for an explicit computation of an induced homomorphism.

We will split the proof of Theorem B in two parts: first we show the polyno-
mial computability of the cohomotopy persistence module and then the polynomial
complexity of the computation of the pointed barcode associated to Πf ⊗ F. In the
analysis of the running time, n is supposed to be fixed and the polynomiality is with
respect to the size of the input that defines the simplicial complex X and the simplex-
wise linear function f . The simplicial complex is encoded by listing all its simplices
so the size of the input size is at least the number of simplices |X|. We do not present
an estimate of how the complexity depends on n.

Proof of Theorem B, part (1): Computability of the cohomotopy persistence module.
First we focus on the computation of each particular π := πr and [f/A] := [f/Ar

]
for any fixed r > 0. We need the following segment of the long exact sequence of
co-homotopy groups [24, Chapter VII]

[A,Sn−1]
δ−→ [X/A, Sn]

j∗−→ [X,Sn].

The desired π = Im δ can be computed in various ways: we will use the exactness at
[X/A, Sn], that is, Im δ = ker j∗.

The outline of the algorithm is as follows:

1. Discretize the pair (X,A) by a homotopy equivalent pair of simplicial complexes
(X ′, A′).

2. Using simplicial approximation theorem, discretize the map f̄ : A→ Sn−1 by a
simplicial map f̄ ′ : A′ → Σn−1 where Σn−1 is the boundary of the n-dimensional
cross polytope.

3. Construct a discretization f ′ : X ′ → ConeΣn−1 of f as an extension

f̄ ′ : A′ → Σn−1 ⊆ ConeΣn−1

by sending each vertex in X ′ \A′ to the apex of the cone. Use the simplicial
quotient operation on f ′ : (X ′, A′)→ (ConeΣn−1,Σn−1) to get the discretiza-
tion

f ′/A : X ′/A′ → ConeΣn−1/Σn−1 =: Σn,

of f/A : X/A→ Sn.

4. Apply Proposition 6.1 (1) to get [X ′/A′,Σn] and [X ′,Σn], Proposition 6.1 (2)
to get [f ′/A] ∈ [X ′/A′,Σn] and Proposition 6.1 (3) to obtain the induced homo-

morphism j′∗ : [X ′/A′,Σn]→ [X ′,Σn].

5. Compute the kernel of j∗ and express the element [f ′/A] in terms of the generators

of ker j∗ [28, Lemma 3.5.2].
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The details follow.

Step 1. First we need to “discretize” the pair (X,A) by a homotopy equivalent pair
of simplicial complexes (X ′, A′).

As in [19, Proof of Theorem 1.2] we compute a subdivision X ′ of X such that for
each simplex Δ ∈ X ′ we have that minx∈Δ |f(x)| is attained in a vertex of Δ. This can
be done by starring each Δ in argminx∈Δ|f(x)| whenever it belongs to the interior
of Δ. The polynomial-time computability (when m is fixed) of argminx∈Δ|f(x)| is
our only requirement on the norm | · | in Rn; it is satisfied for all norms �1, �∞ (via
a linear program with a fixed number of variables and inequalities) and �2 (Lagrange
multipliers). We will refer to the values minx∈Δ |f(x)| for Δ ∈ X as critical values
of f . Moreover, for the next step we will require that for each component fi of f
the preimage f−1

i (0) intersects each edge of X ′ in a vertex (or not at all). Thus for
each i = 1, . . . , n we do starring in an arbitrary order of each edge ab in f−1

i (0) ∩ ab
whenever the intersection consist of a single interior point of the edge. Note that this
does not destroy the property that the minimum of |f | on each simplex is attained
in a vertex. In the end, the number of starring is bounded by a constant multiple of
the number of simplices of X.

We define the discretization A′ ⊆ X ′ of A ⊆ X as in the following lemma.

Lemma 6.2. Let A′ be the simplicial subcomplex of X ′ that is spanned by the vertices
x of X ′ such that |f(x)| � r. Then A′ is a strong deformation retract of A = Ar :=
{x : |f(x)| � r}.
Proof. The strong deformation retraction (that is, a map H : A× [0, 1]→ A with
H(·, 0) = id, ImH(·, 1) ⊆ A′ and H(·, t) being identity on A′) is constructed simplex-
wise. Namely for each Δ ∈ X ′ it is the straightline homotopy between identity on
Δ ∩A and p|Δ∩A where p is the projection of Δ ∩ star◦(σ) onto the maximal face σ
of Δ that is contained in A′. We claim that the image of H is contained in A. The
image of H(a, ·) is certainly contained in the segment between a and p(a) which is a
subsegment of a segment between s and p(a) where s is a unique point on the face
of Δ that is complementary to σ. Because s is not contained in A and because of
the convexity of the complement of A (that follows from the convexity of the norm),
each point between a and p(a) has to be contained in A. Finally, it is routine to check
that the definition of H on each Δ is compatible with its definition on every face
Δ′ < Δ.

Step 2. Next we “discretize” the map f̄ : A→ Sn−1 by a simplicial map f̄ ′ : A′ →
Σn−1 where Σn−1 is the boundary of the n-dimensional cross polytope—a convenient
discretization of Sn−1. By discretization we mean that we get commutativity up to
homotopy in the diagram

A
f̄ ��

p

��

Sn−1

��
A′

f̄ ′
�� Σn−1,

where the vertical map p : A→ A′ is the homotopy equivalence from the previous
step and Sn−1 → Σn−1 is the homeomorphism defined by x �→ x/|x|1.
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The construction of the simplicial approximation f ′ : A′ → Σn−1 of f̄ follows exact-
ly the procedure from [19, Proof of Theorem 1.2]. Due to the second subdividing
step from above, for each vertex v ∈ X ′, there is i ∈ {1, . . . , n} such that fi has a
constant sign s ∈ {+,−} on star◦(v,A′). We prescribe f ′(v) := sei where sei is a
vertex of Σn−1. By the simplicial approximation theorem (f maps each star◦(v,A′)
into star◦(f ′(v),Σn−1)), the map f ′ is homotopic to the map A′ → Σn−1 defined
by x �→ f(x)/|f(x)|1. By the deformation retraction above, f ′p is also homotopic to
A→ Σn−1 defined again by x �→ f(x)/|f(x)|1.
Step 3. Next we construct a simplicial approximation f ′ : X ′ → ConeΣn−1 of f as
an extension of

f̄ ′ : A→ Σn−1 ⊆ ConeΣn−1

by sending each vertex in X ′ \A′ to the apex of the cone. Further, we use the sim-
plicial “quotient operation” on

f ′ : (X ′, A′)→ (ConeΣn−1,Σn−1)

to get the simplicial approximation

f ′/A′ : X ′/A′ → ConeΣn−1/Σn−1 of f/A : X/A→ Sn.

The quotient operation, strictly speaking, exists for simplicial sets but not for
simplicial complexes. However, all simplicial complexes and maps can be canonically
converted into simplicial sets and maps of simplicial sets [5, Section 2.3] after fixing
arbitrary orderings of all the vertices of each simplicial complex that are compati-
ble with the given maps. First we choose an ordering of the vertices of ConeΣn−1

arbitrarily, and then an ordering of the vertices of X ′ such that f ′(u) < f ′(v) implies
u < v.

By construction, [f ′/A′ ] = δ
(
[f̄ ′]

)
and thus [f ′/A′ ] is a simplicial approximation of

δ[f̄ ].

Step 4. Apply Proposition 6.1 (1) to get [X ′/A′,Σn] and [X ′,Σn] where

Σn = ConeΣn−1/Σn−1.

Then apply Proposition 6.1 (2) to get [f ′/A] ∈ [X ′/A′,Σn]. The simplicial quotient map

j′ : X ′ → X ′/A′ is a discretization of j : X → X/A and we use Proposition 6.1 (3) to
obtain the induced homomorphism

j′∗ : [X ′/A′,Σn]→ [X ′,Σn].

The polynomial running time of this step amounts to Proposition 6.1.

Step 5. Finally, we compute π as the kernel of j∗ and express the element [f ′/A] in
terms of the generators of ker j∗. The correctness and polynomial running time of
this step amounts to [28, Lemma 3.5.2].

Further, assume that r is not fixed.

Lemma 6.3. If an interval [r, s) ⊆ R+ is disjoint from {minx∈Δ |f(x)| : Δ ∈ X},
then ϕs,r : (πr, [f/Ar

])→ (πs, [f/As
]) is an isomorphism.

Proof. Let [r, s) be disjoint from {minx∈Δ |f(x)| : Δ ∈ X}. Then for each vertex v ∈
X ′ we have that |f(v)| � r iff |f(v)| � s and so both Ar and As deformation retract
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to A′ by Lemma 6.2. Thus the inclusions

ir : (X,A′) ↪→ (X,Ar) and is : (X,A′) ↪→ (X,As)

induce isomorphisms of the pointed cohomotopy groups

(πr, [f/Ar
])→ (π′, [f/A′ ]) and (πs, [f/As

])→ (π′, [f/A′ ]),

where π′ is the corresponding subgroup of [X/A′, Sn]. The inclusion

i : (X,As) ↪→ (X,Ar)

satisfies ir ◦ i = is which immediately implies the isomorphism.

As follows from Lemma 6.3, the homotopy type of Ar can only change when r
passes through one of the critical values s1, . . . , sk of f . Therefore, we only have to
compute groups πr0 , . . . , πrk for arbitrary values r0, . . . , rk such that r0 < s1 < r1 <
· · · < rk−1 < sk < rk. The number of critical values is bounded by the number of
simplices of X therefore this can be done in polynomially many repetitions of the
above algorithm.

The remaining step is to compute the homomorphisms ϕi = ϕri+1,ri induced by
the quotient maps X/Ari+1 → X/Ari for i = 0, . . . , k. This is another application of
Proposition 6.1 (3) on the discretization X ′/A′ri+1

→ X ′/A′ri of the above quotient
map.

Proof of Theorem B, part (2): Computation of the pointed barcode. Assume that the
isomorphism type of Πf has been computed and is represented as a sequence of

pointed Abelian groups πri
ϕ→ πri+1

and an initial element [f/A] ∈ πr0 . Tensoring the
cohomotopy persistence module with Q converts each Z-summand of the Abelian
groups into a Q-summand and kills the torsion, while tensoring with a finite field
F of characteristic p converts each Z-summand and each Zpk -summand into an F -
summand and kills all Z(p′)k′ for p′ �= p. The induced F-linear maps

ϕF

ri+1,ri : πri ⊗ F→ πri+1
⊗ F

can easily be represented via matrices, if the action of ϕri+1,ri on generators has been
precomputed. The number of critical values s1, . . . , sk is bounded by the size of the
input data defining the simplicial complex X. Each interval in the pointed barcode
representation is either (si, sj ] or (0, sj ] for some 1 � i, j � k and the number of such
pairs is bounded by k2. Finally, the multiplicity of the interval spanned between si
and sj can be computed from a simple rank formula

rankϕF

ri−1,rj − rankϕF

ri,rj + rankϕF

ri,rj−1
− rankϕF

ri,rj−1

and similarly for the pairs 0, sj . Each rank computation has polynomial complexity
with respect to the dimension of the matrices. These dimensions are bounded by the
ranks of πr, which in turn depend polynomially on the number of simplices in X [28,
Theorem 3.1.2 and Chapter 1.1.2]. The distinguished barcode is empty iff [f/Ar0

]⊗ 1
is trivial, and otherwise spanned between 0 and the minimal si such that [f/Ari

]⊗ 1
is trivial.
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7. Proof of Theorem C

We start with some definitions and simple statements from the field of differential
topology. The domain X in Theorem C is assumed to be a smooth manifold, possible
with non-empty boundary: in that case, X × [0, 1] is a manifold with corners.

Manifolds with corners. A smooth n-manifold with corners is a second-countable
Hausdorff spaceM with an atlas consisting of charts ϕa : Ua → [0,∞)k × Rn−k, where
Ua ⊆M are open, {Ua}a is a covering of M and the transition maps ϕa ◦ ϕ−1

b are
smooth. Common notion of smooth maps, tangent spaces and diffeomorphism easily
generalize to manifolds with corners, see [25] for a detailed exposition. For each
x ∈M , the depth of x is equal to l s.t. for some chart ϕa the image ϕa(x) ∈ [0,∞)k ×
Rm−k has exactly l coordinates among the first k coordinates equal to zero: this is
independent on the choice of the chart. If the depth is at most 1 for all x, then this
reduces to the common notion of a smooth manifold with boundary. We will use the
notation

∂lM := {x ∈M | depth(x) = l}.
Its closure ∂lM = ∪j�l ∂jM is naturally an n− l dimensional manifold with corners.

The category of manifolds with corners is closed with respect to products. In this
work, we will only consider (sub)manifolds with corners of depth at most 2: they
naturally arise as “regular” preimages of submanifolds with boundary in a manifold
with boundary. One example is the case of f−1[0,∞) for smooth f : M → R such
that both f and f |∂M are transverse to 0.

A manifold will refer to a smooth manifold with (possibly non-empty) boundary.

Submanifolds. If M is a smooth m-manifold (or m-manifold with corners), then
a submanifold N will refer to a smooth embedded submanifold (with corners). If
M is a smooth manifold, then a neat submanifold is an embedded k-dimensional
submanifold N such that ∂N = N ∩ ∂M and for each x ∈ ∂N there exists anM -chart
ψ : Ux → [0,∞)× Rm−1 such that ψ−1([0,∞)× Rk−1 × {0}m−k) = N ∩ Ux. We will
extend this definition to manifolds with corners.

Definition 7.1. Let M be an m-manifold with corners. A neat k-submanifold N
with corners is a smooth embedded submanifold such that ∂jN = N ∩ ∂jM for each
j, and for each x ∈ ∂jN there exists an M -chart ψ : Ux → [0,∞)j × Rm−j such that
ψ−1([0,∞)j × Rk−j × {0}) = N ∩ Ux.

If N is a submanifold of M , then its boundary ∂N does not need to be equal to
the topological boundary of N ⊆M . We will use the notation ∂mN for the manifold-
boundary and ∂N for the topological boundary of N in M wherever some ambiguity
will be possible.

Transversality. The transversality theorem says that, roughly speaking, for smooth
maps M → N and submanifolds A ⊆ N , transversality to A is a generic property.
If M is compact and A ⊆ N is closed in N , then the subspace of all smooth maps
M → N transverse to A is both dense and open (see [23, Theorem 2.1] for the case
of boundary-free manifolds). If f : M → N is a smooth map between manifolds, n ∈
N \ ∂N and both f and f |∂M are transverse to {n} (equivalently, n is a regular value
of both maps), then f−1(n) is a neat submanifold of M [27, p. 27]. Similarly, if N ′ is
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a neat submanifold of N with corners and f |∂jM
is transverse to N ′ for each j, then

f−1(N ′) is a neat submanifold of M with corners.

Framed submanifolds. Assume thatX is a smooth orientedm-manifold. Let S ⊆ X
be a smooth (m− n)-submanifold of X. A framing of S is a trivialization T of the
n-dimensional quotient bundle (TX)|S/TS: that is, T (x) := (T1(x), . . . , Tn(x)) is a
basis of TxX/TxS in each x ∈ S. Any choice of a Riemannian metric on X induces
an isomorphism TxX/TxS � NxX, where NxS is the space of all vectors in TxX
orthogonal to TxS, so a framing can be understood as a trivialization of the normal
bundle.

Assume that X is a smooth manifold with boundary, f : X → Rn is smooth and
that 0 is a regular value of f . Then f−1(0) is naturally a framed (m− n)-submanifold,
Ti(x) being the unique element of TxX/Txf

−1(0) mapped by df to the ith basis
vector ei ∈ T0R

n. We will denote these vectors by f∗(ei). Such framing uniquely
determines—and is uniquely determined by—the differential df |f−1(0). If 0 is also
a regular value of f |∂mX , then f−1(0) is a neat submanifold of X and ∂f−1(0) =
f−1(0) ∩ ∂mX is an m− n− 1 dimensional submanifold of ∂mX with an n-framing
induced by f |∂mX .

Assume S ⊆ X a neat framed submanifold. For x ∈ S ∩ ∂mX, we can naturally
identify TxX/TxS � Tx(∂mX)/Tx(∂mS) [27, p. 53], so the framings on ∂mS induced
by f and f |∂mX are compatible. Any Riemannian metric on X in which S intersects
∂mX orthogonally (NxS ⊆ T (∂mX) for each x ∈ ∂S) can be used to represent the
framings of S and S ∩ ∂mX as compatible normal vectors to TS, resp. T (∂mS).
In particular, given such metric, if 0 is a regular value of both f and f |∂mX , then
the geometric representation of the framing of f−1(0) induced by f restricts on the
boundary to the geometric representation of the framing induced by f |∂mX .

Replacing r-perturbations by homotopy perturbations. In this paragraph we
will derive a smooth analogue of Lemma 4.1.

Definition 7.2. Let X be a smooth manifold, A ⊆ X closed and f : (X,A)→
(Rn,Rn \ {0}). A function h : (X,A)→ (Rn,Rn \ {0}) will be called a regular homo-
topy perturbation of f , if h is smooth, h and h|∂mX are transverse to 0 and f is
homotopic to h as maps (X,A)→ (Rn,Rn \ {0}).
Lemma 7.3. Let X be a smooth manifold, A its closed subset and f : X → Rn such
that A = {x : |f(x)| � r}. Then

Zfr
r (f) = {(h−1(0), h∗(ei)) | h is a regular homotopy perturbation of f}.

Proof. The inclusion ⊆ follows from the fact that a regular r-perturbation g of f is
straight-line homotopic to f : (X,A)→ (Rn,Rn \ {0}).

The other inclusion will also be proved analogously to Lemma 4.1. Choose an ε > 0
so that minx∈A |h(x)| � 2ε and ε is a regular value of |h|: then Y := |h|−1[ε,∞) is a
smooth manifold with corners in ∂Y ∩ ∂mX. We have assume that (f/|f |)|A is homo-
topic to (h/|h|)|A, so f |A and h|A are homotopic as maps to Rn \ {0}. The partial
homotopy of h on |h|−1(ε) ∪A that is stationary on |h|−1(ε) and equal to the given
homotopy h|A ∼ f |A on A can be extended to a homotopy H : Y × [0, 1]→ Rn \ {0}
by the homotopy extension property, so that H(·, 0) = h|Y and H(·, 1) coincides
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with f on A. Without loss of generality, we may assume that H is smooth (com-
pare [27, Col. III 2.6]).

We define a map e : X → Rn that equalsH(·, 1) on Y and h on |h|−1[0, ε]. This map
e is an extension of f |A and equals h in some neighborhood of h−1(0). It is smooth
everywhere except possibly on |h|−1(ε): if e is not smooth, we may slightly perturb it
in a neighborhood of |h|−1(ε) without changing its values in a neighborhood of 0 or
on A: assume further that e is smooth. As we have seen in the proof of Lemma 4.1,
some positive scalar multiple χ(x) e(x) =: g̃(x) satisfies ‖g̃ − f‖ < r. The map χ can
be chosen to be smooth. Multiplying g̃(x) by a positive smooth (0, 1]-valued function
that equals 1/χ in e−1[0, δ] and 1 in e−1[2δ,∞), we obtain a map g that still satisfies
‖g − f‖ < r, if δ is small enough. This map g coincides with h in a neighborhood of
h−1(0), hence both g and g|∂mX are transverse to 0 and g induces the same framing
of the zero set as h.

For the rest of the proof of Theorem C, we will use the characterization of Zfr
r (f)

from Lemma 7.3. Namely, Zfr
r (f) will refer to framed zero sets of regular homotopy

perturbation of f .

Product neighborhoods. If X is a manifold with boundary and C is a neat framed
submanifold of X of codimension n, then there exists a neighborhood N of C dif-
feomorphic to C × Rn (see [27, Theorem 4.2] for a slightly more general statement).
Similarly, it holds that a framed neat submanifold with corners of a manifold with
corners has a neighborhood diffeomorphic to a product of the submanifold and Rn.

Lemma 7.4. Let X be a manifold, possibly with corners, and C be a neat framed
submanifold of X of codimension n. Then there exists a neighborhood N of C diffeo-
morphic to C ×Bn where Bn is the closed n-ball, and a function F : N → Rn so that
F and F |∂mX are transverse to 0 and F−1(0) equals C with the induced framing.

The set N will be referred to as the product neighborhood of C. We only sketch
the proof, as it is an easy generalization of standard concepts.

Proof. In case of a manifold X with no boundary, the diffeomorphism S ×Bn � N is
constructed via geodesic flow of the geometric framing vectors (assuming the choice
of a smooth metric). The function F is then defined, after identifying N with C ×Bn,
as the projection C ×Bn → Bn.

If X has a boundary, then we need to choose the metric carefully so that the
geodesic flow of the geometric framing vectors in ∂mX ∩ C stays in ∂mX. This can
be done as follows. First we choose an arbitrary smooth metric on ∂mX and a vector
field v on ∂mX so that v points inwards to X and v|∂mC points inwards to C. We
extend v to a smooth vector field nonzero on some neighborhood of ∂mX: the flow of
v defines a collar neighborhood of ∂mX diffeomorphic to ∂mX × [0, 1]. We extend the
metric on ∂mX to a product metric on this collar neighborhood: finally, we extend
this arbitrarily to a smooth metric on all of X. In this metric, C intersects ∂mX
orthogonally and geodesics generated by tangent vectors in ∂mX remain in ∂mX.
We use this metric to convert the C-framing to a geometric framing. Its geodesic
flow is well defined and generates a diffeomorphism from C ×Bn(ε) to a product
neighborhood of C for ε small enough.
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For a general manifold with corners, we proceed analogously but need to define
the metric via a longer chain of extensions. First we define the metric on ∂lX for the
maximal l for which ∂lX is nontrivial. For each component of ∂lX, we extend the
metric step by step to all components of ∂l−1X that meet at the given component of
∂lX as follows. First, the intersection C ∩ ∂l−1X should intersect ∂lX orthogonally.
Next, we require that for each component Uij of ∂l−1X meeting a given component Vj

of ∂lX, there exist some neighborhood of Vj in Uij on which the metric is a product
metric. Inductively, we construct the metric on all ∂jX for j � l. Then the geometric
framing vectors of C in x ∈ C ∩ ∂jX are in T (∂jX) and there exists an ε > 0 so that
the geodesic flow of the framing vectors of C ∩ ∂jX stays in ∂jX for t ∈ [0, ε]. We
define the product neighborhood via geodesic flow as before.

Pontryagin-Thom construction. Let X be a smooth m-manifold with boundary
and N1, N2 be two neat framed (m− n)-submanifolds of X. We say that C is a
framed cobordism between N1 and N2 if C is a framed neat (m− n+ 1)-submanifold
of X × [0, 1] (with corners in C ∩ (∂mX × {0, 1})) such that

• C ∩ (X × {0}) = N1 × {0}, C ∩ (X × {1}) = N2 × {1}, and
• The N1 and N2 framing coincides with the C framing in C ∩X × {0} and

C ∩X × {1}, respectively. More precisely, if we identify N1 � N1 × {0}, then
the image of the N1-framing vectors Ti ∈ T (X × {0})/TN1 in T (X × [0, 1])/TC
coincide with the C-framing vectors, i = 1, . . . , n, and similarly for N2.

Under a suitable choice of metric, in which C intersects X × {0, 1} orthogonally, the
framing vectors of C, N1, N2 can be identified with normal vectors that coincide in
(N1 × {0} ∪N2 × {1}) ⊆ C. Being framed cobordant is an equivalence relation for
neat framed (m− n)-submanifolds of X.

One simple version of the Pontryagin-Thom construction yields a 1–1 correspon-
dence between the cohomotopy set [X,Sn] of a boundaryless smooth compact man-
ifold X, and the class of neat framed submanifolds of X of codimension n, framed
cobordant in X. This correspondence assigns to [ϕ] ∈ [X,Sn] the framed cobordism
class of (ϕ−1(v), ϕ∗(ei)i) where e1, . . . , en is a basis of TvS

n and ϕ is a smooth repre-
sentative of [ϕ] transverse to v ∈ Sn. The cobordism class is independent of the choice
of ϕ, v and the basis (e1, . . . , en) of TvS

n. A smooth homotopy F : X × [0, 1]→ Sn

transverse to v between two representatives ϕ and ψ of [ϕ] corresponds to the framed
cobordism F−1(v) ⊆ X × [0, 1] between ϕ−1(v) and ψ−1(v) with all framings induced
by the corresponding maps. Further, any neat framed submanifold of codimension n
is the preimage ϕ−1(v) for some ϕ : X → Sn transverse to v that induces the given
framing, see [29, Chapter 7] for details.

We will use a slight variation on this. Let X be a smooth compact m-manifold
with (possibly non-empty) boundary ∂mX and A be closed. Let v �= ∗ be two points
in Sn. Our correspondence assigns to any smooth map ϕ : (X,A)→ (Sn, ∗) such that
ϕ and ϕ|∂mX are transverse to v ∈ Sn the framed manifold (ϕ−1(v), ϕ∗(ei)i) where
ei ∈ TvS

n form a basis of the tangent space: note that this framed submanifold is
disjoint from A. A homotopy F : (X × [0, 1], A× [0, 1])→ (Sn, ∗) between ϕ and ψ,
such that F and F |∂mX×[0,1] are both transverse to v induces a framed cobordism
(F−1(v), F ∗(ei)i) between (ϕ−1(v), (ϕ∗(ei))i) and (ψ−1(v), (ψ∗(ei))i) that is disjoint
from A× [0, 1] and any such framed cobordism can be realized in this way. Similarly,
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any framed submanifold of X of codimension n that is disjoint from A can be realized
as (ϕ−1(v), (ϕ∗(ei))i) for some ϕ : (X,A)→ (Sn.∗) such that ϕ and ϕ|∂mX are trans-
verse to v. Similarly, any framed cobordism disjoint from A× [0, 1] can be realized as
the v-preimage of a smooth homotopy transverse to v.

Summarizing the above, there is a 1–1 correspondence between [(X,A), (Sn, ∗)]
and framed cobordism classes of framed submanifolds of X of codimension n, disjoint
from A via framed cobordisms in X × [0, 1] disjoint from A× [0, 1].

Zfr
r (f) is a subset of a framed cobordism class. Assume that f : X → Rn is

such that A = |f |−1[r,∞) and let h be a regular homotopy perturbation of f . Then
h−1(0) is disjoint from A and (h−1(0), h∗(ei)i) is a framed manifold.

Let F : (X × [0, 1], A× [0, 1])→ (Rn,Rn \ {0}) be the homotopy between f and h.
After multiplying F by a suitable positive scalar function that equals 1 in a neigh-
borhood of F−1(0), we get a homotopy

F ′ : (X × [0, 1], A× [0, 1])→ (Rn, {x : |x| � r})
between f and h′ so that h′ coincide with h in a neighborhood of h−1(0). The com-
position of F ′ with the quotient map

q : (Rn, {x : |x| � r})→ (Rn/{x : |x| � r}, {x : |x| � r}) � (Sn, ∗)
gives a homotopy between qf and qh′ as functions (X,A)→ (Sn, ∗). The framed
manifold (h−1(0), h∗(ei)) coincides with ((qh)−1(v), (qh)∗(ẽi)) where v = q(0) and
ẽi = q∗ei is the basis of the tangent space TvS

n. It follows that h−1(0) is framed
cobordant to f−1(0) by our relative version of the Pontryagin-Thom construction.

To summarize the above, any element of Zfr
r (f) can be expressed as h−1(0) for

some regular homotopy perturbation h : X → Rn and the framed cobordism class
induced by h−1(0) can be identified with [qh′] = [h′/A] = [f/A] which is in the image
of δ.

Surjectivity. Any homotopy class in the image of δ has a representative f/A that
comes from a map f : X → Rn that is nonzero on A and after multiplying f by a
suitable scalar valued function, we may achieve that A = |f |−1[r,∞). Then Zfr

r (f) is
a framed cobordism class corresponding to [f/A] ∈ Im(δ). This implies that the map

Zfr
r (f) �→ [f/A] from Theorem C is surjective.

From cobordism to homotopy perturbations. To complete the proof, we will
show that Zfr

r (f) is the full cobordism class corresponding to [f/A]. This also implies

the injectivity of the assignment Zfr
r (f) �→ [f/A] from Theorem C.

Thus we need to show that whenever g is a regular homotopy perturbation of
f and Z is a framed manifold framed cobordant to g−1(0) via a framed cobordism
disjoint from A× [0, 1], then Z can be realized as a zero set of some regular homotopy
perturbation h of f .

In what follows, we will exploit the constraint m � 2n− 3 for the first time.

Rest of the proof of Theorem C. Let C be the framed cobordism between the neat
(m− n)-submanifolds g−1(0) and Z, disjoint from A× [0, 1], such that C ∩ (X ×
{0}) = g−1(0)× {0}. With a slight abuse of notation, we will use the identification
X � X × {0} and write g : X × {0} → Rn.
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Our goal is to construct a smooth map F : X × [0, 1]→ Rn such that F and
F |∂mX are transverse to 0 and the zero set F−1(0) is the framed cobordism C. Using
Lemma 7.4, there exists a product neighborhood N1 of C diffeomorphic to C ×Bn

where Bn is the closed unit n-ball, and a function F : N1 → Rn so that its framed
zero set coincides with C.

We claim that there exists some ε > 0 such that the sub-neighborhood N � C ×
Bn(ε) satisfies that F |∂N∩(X×{0}) and g|∂N∩(X×{0}) are homotopic as maps to Rn \
{0}. This is because F and g have equal differentials on g−1(0) and if x is close enough
to g−1(0), then the straight-line between F (x) and g(x) avoids zero.

On ∂N , F has values in Rn \ {0} and we want to extend it to a function X → Rn

that is nonzero on X \ N . Let N0 := N ∩ (X × {0}). Exploiting that F is homotopic
to g on ∂N0 and g is nowhere zero on (X × {0}) \ N0, it follows that F |∂N can be
extended to a nowhere zero function

∂N ∪ ((X × {0}) \ N0)→ Rn \ {0}.
We want to show that it can be extended to a function (X × [0, 1]) \ N → Rn \ {0}.
To simplify notation, let U := (X × [0, 1]) \ N and V := ∂N ∪ ((X × {0}) \ N0). All
spaces here are smooth compact manifolds (possibly with corners) and can be trian-
gulated. Rn \ {0} can equivalently be replaced by a sphere Sn−1, so we may apply
obstruction theory to show that there are no obstructions to extendability. Assume
any triangulation of the spaces and assume that F has been extended to the (k − 1)-
skeleton U (k−1) ∪ V . We want to show that there is no obstruction in extending it
to the k-skeleton U (k) ∪ V . This obstruction is represented via an element of the
cohomology group Hk(U, V, πk−1(S

n−1)) and if this obstruction cohomology class
vanishes, then there is an extension to the k-skeleton after possibly changing the
extension to the (k − 1)-skeleton, see [31, Thm. 3.4] for details. We will show that
the relevant cohomology groups are all trivial.

N0

A× [0, 1]

A

Rn
N F

C

Figure 4: Illustration of our construction. The function F is defined so that F−1(0)
is the framed cobordism C and N is the product neighborhood of C.

The inclusion

(U, V ) = (X × [0, 1] \ N , ∂N ∪ ((X × {0}) \ N0)) ↪→ (X × [0, 1],N ∪ (X × {0}))
induces cohomology isomorphism by excision.16 The long exact sequence of the triple

16We excise the interior of N . The closure of this is N which is not contained in the interior of
N ∪ (X × {0}), so we cannot use the common excision theorem in singular cohomology. However,
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(X × [0, 1],N ∪ (X × {0}), X × {0}) implies that

Hk−1(N ∪ (X × {0}), X × {0}, π) � Hk(X × [0, 1],N ∪ (X × {0}), π),
because H∗(X × [0, 1], X × {0}, π) is trivial with any coefficient group π.

Using another excision, this time excising (X × {0}) \ N0, we may replace
Hk−1(N ∪ (X × {0}), X × {0}, π) by Hk−1(N ,N0, π). This last pair can further be
replaced by Hk−1(C,C0, π) where C is the cobordism and C0 := C ∩ (X × {0}).

We want to show that Hk−1(C,C0, πk(S
n−1)) is trivial for all k. For k < n− 1, it

follows from the triviality of πk(S
n−1). For k � n− 1, we note that dimC = m− n+

1 and the relative cohomology of (C,C0) is trivial in dimension exceeding m− n+ 1.
The constraint m � 2n− 3 can be rewritten to m− n+ 1 < n− 1, so any k � n− 1
is larger than dimC.

Triviality of the obstruction groups implies that F |∂N can be extended to a map
(X × [0, 1]) \ N → Rn \ {0}. Extending it further via the already defined map on N ,
we obtain F : X × [0, 1]→ Rn that is smooth in a neighborhood of C, its zero set is C
and it induces the framing of C. The map h := F (·, 1) is smooth in a neighborhood of
Z, induces the framing of Z, and (h/|h|)|A is homotopic to (g/|g|)A via the homotopy
F |A×[0,1]. Possibly replacing h with a perturbation that is smooth everywhere and
unchanged in a neighborhood of Z yields the desired homotopy perturbation of g.
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