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Abstract
We give a simple algebraic model for rational G-spectra over

an exceptional subgroup, for any compact Lie group G. More-
over, all our Quillen equivalences are symmetric monoidal, so as
a corollary we obtain a monoidal algebraic model for rational
G-spectra when G is finite. We also present a study of the rela-
tionship between induction-restriction-coinduction adjunctions
and left Bousfield localizations at idempotents of the rational
Burnside ring.

1. Introduction

Modelling the category of rational G-spectra

G-spectra are representing objects for cohomology theories designed to take sym-
metries of spaces into account. Rationalizing this category removes topological com-
plexity, but leaves interesting equivariant behaviour. In order to understand this
behaviour, we try to find a purely algebraic description of the category, i.e. an alge-
braic model category Quillen equivalent to the category of rational G-spectra, which
we call an algebraic model for rational G-spectra. As a result, the homotopy category
of an algebraic model is equivalent to the rational stableG-homotopy category. Having
an actual zig-zag of Quillen equivalences between model categories ensures that the
equivalence of homotopy categories is a triangulated equivalence and makes it easier
to perform constructions and calculations on the algebraic side of the zig-zag. It also
ensures that invariants such as homotopy types of mapping spaces or the algebraic
K-theory of the subcategory of compact, cofibrant objects (see [8, Proposition 3.6])
are preserved.

For a compact Lie group G, the category of rational G-spectra is the category of
G-spectra, but with the model structure that is a left Bousfield localization of the sta-
ble model structure at the rational sphere spectrum, see, for example, [1, Section 2.2].
Thus the weak equivalences are maps which become isomorphisms after applying the
rational homotopy group functors, i.e. πH

∗ (−)⊗Q for all closed subgroups H in G.
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Existing work

It is expected that for any compact Lie group G, there exists an algebraic category
A(G) which is Quillen equivalent to that of rational G-spectra.

There are many partial results and examples for specific Lie groups G for which an
algebraic model has been given. An algebraic model for rational G-equivariant spectra
for finite G is described in [26, Example 5.1.2]. It was shown in [27, Theorem 1.1]
that rational (non-equivariant) spectra are monoidally Quillen equivalent to chain
complexes of Q-modules. An algebraic model for rational torus equivariant spectra
was presented in [12], whereas a new approach in [5] gives a symmetric monoidal
algebraic model for SO(2). Also, an algebraic model for free rational G-spectra was
given in [13] for any compact Lie group G.

However, there is no algebraic model known for the whole category of rational G-
spectra for an arbitrary compact Lie group G. The present paper establishes the first
part of a general result, providing a model for rational G-spectra over an exceptional
subgroup (see Definition 2.1), for any compact Lie group G.

The approach to the algebraic model for rational G-spectra, where G is finite, in
[2] relies on the equivariant version of [9, Chapter VIII, Theorem 2.2], which dis-
cusses localizations of commutative ring G-spectra. However, the equivariant version
of this theorem has counterexamples, see [22]. The correct rephrasing of an equiv-
ariant localization theorem, and thus good foundations for [2] may need the work of
Blumberg and Hill [7]. Thus, in its current foundations, [2] does not provide monoidal
Quillen equivalences.

The method of this paper avoids such subtleties and thus presents a more imme-
diate and easier proof of a zig-zag of symmetric monoidal Quillen equivalences in the
case where G is a finite group.

Main result

We call a subgroupH ⩽ G exceptional ifNGH/H is finite andH can be completely
separated from other subgroups of G in a sense that there is an idempotent e(H)G

in the rational Burnside ring A(G)Q corresponding to the conjugacy class of H in G
and H does not contain a subgroup K such that H/K is a (non-trivial) torus (see
Definition 2.1).

If H is an exceptional subgroup of G then the homotopy category of rational
G-spectra with geometric isotropy H is a particularly nicely behaved part of the
homotopy category of rational G-spectra, which in its structure resembles (or gener-
alizes) rational Γ-spectra for finite Γ. It is modelled by the left Bousfield localization
of rational orthogonal G-spectra at the idempotent e(H)G and we call this localization
a category of rational G-spectra over an exceptional subgroup H (see Definition 3.3).

Before we give the statement of the main result recall from [25] that a symmetric
monoidal Quillen pair is a Quillen pair L : C ⇄ D :R between monoidal model cate-
gories, such that the right adjoint is lax symmetric monoidal and two conditions are
satisfied:

• for any cofibrant objects A and B in C the comonoidal map ϕ̃ : L(A⊗B) −→
L(A)⊗ L(B) is a weak equivalence in D, where ϕ̃ is the adjoint of the composite
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A⊗B
ηA⊗ηB // RL(A)⊗RL(B)

ϕL(A),L(B) // R(L(A)⊗ L(B))

(ϕ is a natural transformation, since R is a lax monoidal functor) and

• for some cofibrant replacement of the unit q : ĨC −→ IC the composite map

L(ĨC)
L(q) // L(IC)

ν̃ // ID

is a weak equivalence (ν̃ is the adjoint of ν, which exists since R is lax monoidal).

A strong symmetric monoidal Quillen pair is a symmetric monoidal Quillen pair,
for which the above maps are isomorphisms. A (strong) symmetric monoidal Quillen
equivalence is a (strong) symmetric monoidal Quillen pair which is also a Quillen
equivalence.

Theorem 1.1. Suppose G is any compact Lie group and H is an exceptional sub-
group of G. Then there is a zig-zag of symmetric monoidal Quillen equivalences from
rational G-spectra over H to

Ch(Q[NGH/H]−mod),

with the projective model structure.

Many compact Lie groups G contain exceptional subgroups, for example all sub-
groups of a finite group are exceptional, all finite dihedral subgroups of O(2) are
exceptional and see Lemma 2.3 for some exceptional subgroups of SO(3). When such
a subgroup exists, it has a corresponding idempotent in the rational Burnside ring
for G, and the category of rational G-spectra splits into a part over the exceptional
subgroup and the part over the remaining subgroups. In this situation, any algebraic
model for rational G-spectra will have a factor given by Theorem 1.1. In particular,
the algebraic model for rational SO(3)-spectra has such a factor (see [19]). Hence
this paper is a necessary step in finding an algebraic model for an arbitrary compact
Lie group G.

If G is finite then every subgroup of G is exceptional and there are finitely many
conjugacy classes of subgroups of G, so by the splitting result of [3] the category
of rational G-spectra splits into a finite product (over conjugacy classes (H) of sub-
groups of G) of rational G-spectra over H. Thus our approach gives a new method
of obtaining an algebraic model. What is more, this method gives a monoidal alge-
braic model for rational G-spectra for finite G, that is, all Quillen equivalences in the
zig-zag preserve monoidal structure (see Section 5.4).

Corollary 1.2. Suppose G is a finite group. Then there is a zig-zag of symmetric
monoidal Quillen equivalences from rational G-spectra to∏

(H),H⩽G

Ch(Q[NGH/H]−mod),

with the (objectwise) projective model structure.

Results above were obtained using an analysis of the interplay between left Bous-
field localizations at idempotents of the rational Burnside ring and the induction –
restriction – coinduction adjunctions in Section 4. This analysis is similar in flavour
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to the one presented in [14] for the inflation-fixed point adjunction. The point is
to recognize when these adjunctions become Quillen equivalences in situations that
are of interest to us. Similar analysis is used to obtain an algebraic model for ratio-
nal SO(3)-spectra in [19] and also for the toral part of rational G-spectra, for any
compact Lie group G in [4].

Outline of the paper
This paper is structured as follows. In Section 2, we describe subgroups of a com-

pact Lie group G and discuss some related idempotents in the rational Burnside ring
of G. Section 3 recalls basic properties of orthogonal G-spectra that we will use later
on. In Section 4, we link the different behaviour of subgroups of G with the left
Bousfield localization and the induction-restriction-conduction adjunctions. This is
the heart of the paper and it allows us to provide a zig-zag of symmetric monoidal
Quillen equivalences in Section 5 that uses the inflation-fixed point adjunction which
is strong symmetric monoidal, instead of using the “Morita equivalences” presented
in [26].

Notation
We will stick to the convention of drawing the left adjoint above the right one in

any adjoint pair.
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2. Subgroups of a Lie group G

Recall that for H ⩽ G, NGH = {g ∈ G | gH = Hg} is the normalizer of H in G.
We use the notation W = WGH = NGH/H for the Weyl group of H in G.

Suppose F(G) is a space of closed subgroups of G with finite index in their nor-
malizer (i.e. all closed H ⩽ G such that NGH/H is finite) considered with topology
given by the Hausdorff metric. By the result of tom Dieck [28, 5.6.4, 5.9.13] there is
an isomorphism of rings

A(G)⊗Q ∼= C(F(G)/G,Q),

where A(G)⊗Q denotes the rational Burnside ring of G and C(F(G)/G,Q) denotes
the ring of continuous functions on the orbit space F(G)/G with values in discrete
space Q. From now on we will use notation A(G)Q for A(G)⊗Q.

From the ring isomorphism above, it is clear that idempotents of the rational
Burnside ring of G correspond to the characteristic functions on open and closed
subspaces of the orbit space F(G)/G (or equivalently, to open and closed subspaces of
F(G)/G). Thus it makes sense to refer to an idempotent eV , i.e. the one corresponding
to the subspace V in F(G)/G, provided that V is open and closed in F(G)/G.



AN ALGEBRAIC MODEL FOR RATIONAL G-SPECTRA 293

Every inclusion i : H −→ G gives a ring homomorphism i∗ : A(G)Q −→ A(H)Q.
Generally, it is difficult to see what is the image of an idempotent under
i∗ : C(F(G)/G,Q) −→ C(F(H)/H,Q), because of the construction of spaces F(H)/H
and F(G)/G. Before even taking conjugacy classes into account, notice that a sub-
group K ⩽ H with finite index in the normalizer NHK does not have to have a finite
index in the normalizer NGK. Thus the map i∗ : C(F(G)/G,Q) −→ C(F(H)/H,Q)
is not always induced by a map from F(H) to F(G).

To understand what an image of an idempotent under i∗ is, it is better to view
idempotents as subspaces of the space of all closed subgroups of G as follows. Suppose
Subf(G) is the topological space of all closed subgroups of G with the f -topology (see
[10, Section 8] for details). For a closed subgroup H ⩽ G and ϵ > 0 we define a ball

O(H, ϵ) = {K ∈ F(H)|d(H,K) < ϵ}

in F(H). Thus subgroups closed to H which have infinite Weyl groups are ignored,
for example if H is a torus then O(H, ϵ) is a singleton. Given also a neighbourhood
A of identity in G consider

O(H, ϵ,A) = ∪a∈AO(H, ϵ)a,

where O(H, ϵ)a is the set of a-conjugates of elements of O(H, ϵ). We define f-topology
to be generated by O(H, ϵ,A) as H, ϵ,A vary. See [10, Section 8] for more details and
results concerning this topology. The f-topology gives a new way of understanding
idempotents of the rational Burnside ring.

An idempotent in a rational Burnside ring A(G)Q corresponds to an open and
closed, G-invariant subspace of Subf(G) which is a union of ∼-equivalence classes
(where ∼ denotes the equivalence relation generated by K ∼ H, where K ∼ H iff
K ⩽ H and H/K is a torus).

Now, if V is an open and closed G-invariant set in Subf(G) which is a union of
∼-equivalence classes, then i∗(eV ) = ei∗V where i∗V is the preimage of V under the
inclusion on spaces of subgroups induced by i, i.e. Subf(H) −→ Subf(G).

Definition 2.1. Suppose G is a compact Lie group. We say that a closed subgroup
H ⩽ G is exceptional in G if WGH is finite, there exist an idempotent e(H)G in the
rational Burnside ring of G corresponding to the conjugacy class of H in G (via the
tom Dieck’s isomorphism) and H does not contain any subgroup cotoral in H, where
a subgroup K ⩽ H is cotoral in H if H/K is a (non-trivial) torus.

If H is exceptional in G then (H)G (all the subgroups conjugate to H in G) is
an open and closed G-invariant subspace of Subf(G), which already is a union of
∼-equivalence classes, since H does not contain any cotoral subgroup and WGH is
finite. The other implication also holds; if there is an idempotent corresponding to
(H)G in Subf(G), then H is an exceptional subgroup of G. Thus we could rephrase
the definition in terms of the space Subf(G), but we decided to use the more familiar
F(G)/G with the topology given by the Hausdorff metric.

It is easy to see that any subgroup of a finite group G is exceptional. In O(2)
only finite dihedral subgroups are exceptional; in particular, none of the finite cyclic
subgroups is exceptional (since finite cyclic subgroups do not have idempotents in the
rational Burnside ring of O(2)). The maximal torus SO(2) in O(2) has an idempotent
in the rational Burnside ring of O(2), however, it is not an exceptional subgroup, since
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it contains cotoral subgroups, for example the trivial one. In SO(3) all finite dihedral
subgroups are exceptional (except for D2, which is conjugate to C2 and therefore is
a subgroup of a torus), but we have more: there are four more conjugacy classes of
exceptional subgroups: A4,Σ4, A5 and SO(3), where A4 denotes rotations of a tetra-
hedron, Σ4 denotes rotations of a cube and A5 denotes rotations of a dodecahedron,
see [19].

If a trivial subgroup is exceptional in G then G has to be finite, since the normalizer
of a trivial subgroup is the whole G, WGe = G and the condition that the Weil group
is finite implies that G is a finite group.

We introduced the notion of an exceptional subgroupH because we will use the cor-
responding idempotent in the rational Burnside ring to split the category of rational
G-spectra into the part over an exceptional subgroup H and its complement. In this
paper we present the model for rational G-spectra over an exceptional subgroup H.

On the way towards the algebraic model different subgroups of G will behave
slightly differently. This behaviour is closely related to the following

Definition 2.2. Suppose K ⩽ H are closed subgroups of G such that K is excep-
tional in G. Suppose further that i : H −→ G is an inclusion. We say that K is H-good
in G if i∗(e(K)G) = e(K)H and H-bad in G if it is not H-good, i.e. i∗(e(K)G) ̸= e(K)H .

Notice that the above definition is all about subgroups conjugate to K in H and
in G and their relation to each other. If L ⩽ H is such that L is conjugate to K in
H, then it is also true that L is conjugate to K in G. Thus if K is H-bad in G it just
means that there exists K ′ ⩽ H such that (K ′)G = (K)G and (K ′)H ̸= (K)H .

There is a definition of good and bad subgroups in [11, Definition 6.3], however, it
was designed to capture different properties than our definition and thus they are not
the same. As an example, if a trivial subgroup is exceptional in G it is always H-good
in G for any H ⩽ G according to our definition and H-bad according to Greenlees’
definition (unless H is normal in G).

It is easy to see that any exceptional subgroup H in a compact Lie group G is
H-good in G. In further analysis, we will consider the relationship between H and
its normalizer, NGH in G, so we present some examples.

Lemma 2.3. For exceptional subgroups in G = SO(3) we have the following relation
between H and its normalizer NGH:

1. A5 is A5-good in SO(3).

2. Σ4 is Σ4-good in SO(3).

3. A4 is Σ4-good in SO(3).

4. D4 is Σ4-bad in SO(3).

Proof. We only need to prove Parts 3 and 4, since any exceptional subgroup H in a
compact Lie group G is H-good in G. Part 3 follows from the fact that there is one
conjugacy class of A4 in Σ4, as there is just one subgroup of index 2 in Σ4. Part 4
follows from the observation that there are two subgroups of order 4 in D8 (so also in
Σ4) and they are conjugate by an element g ∈ D16, which is the generating rotation
by 45 degrees (thus g /∈ D8 and thus g /∈ Σ4).
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3. Orthogonal G-spectra, left Bousfield localization and
splitting

There are many constructions of categories of spectra (G-spectra) equipped with
model structures, such that the homotopy category is equivalent to the usual stable
homotopy category of spectra (G-spectra, respectively). However, since we are inter-
ested in modelling the smash product as well, we choose to work with a model with
a strictly associative, symmetric monoidal product compatible with model structure
so that its homotopy category is equivalent to the usual stable homotopy category
with the smash product known in algebraic topology.

When we work with non-equivariant spectra, there are several categories having
this property, and we choose to work with the category of symmetric spectra defined
in [18] and discussed in detail in [24]. We will use it briefly towards the end of
Section 5.3. Whenever we are interested in modelling the category of G-equivariant
cohomology theories we choose to work with the category of orthogonal G-spectra
defined and described in [21], for which we use the notation G–SpO.

The construction of both categories is similar and we refer the reader to the papers
above for details. The idea is to first construct a diagram of spaces (or simplicial sets)
indexed by some fixed category, then to define a tensor product on the category
of diagrams and choose a monoid S (sphere spectrum). Spectra are defined to be S-
modules. Depending on the indexing category we get symmetric spectra or orthogonal
G-spectra.

In this section, we recall briefly some properties of the category of orthogonal G-
spectra after Chapter II of [21]. We stress that unless otherwise stated, we use the
term of orthogonal G-spectra to implicitly mean the ones indexed on a complete G
universe. By [21, Theorem 4.2.] there is a model structure on orthogonal G-spectra
called the stable model structure where a map of orthogonal spectra f : X −→ Y is a
weak equivalence if it is a π∗-isomorphism (i.e. it is a πH

∗ -isomorphism for all H ⩽ G).
This model structure is cofibrantly generated, stable, monoidal, proper and cellular
(see [21, Theorem III 4.2]).

What is more, we have a good way of checking that a map in G–SpO is a weak
equivalence. For any closed subgroupH inG, any orthogonal spectrumX and integers
p ⩾ 0 and q > 0

[ΣpS0 ∧G/H+, X]G ∼= πH
p (X) [FqS

0 ∧G/H+, X]G ∼= πH
−q(X), (3.1)

where the left hand sides denote morphisms in the homotopy category of G–SpO

and Fq(−) is the left adjoint to the evaluation functor at Rq, EvRq (X) = X(Rq) (for
example Fq(S

0) models S−q).

There is one more property which makes the stable model structure on G–SpO easy
to work with, namely it has a set of compact generators. By [16, Definition 7.1.1] a
homotopy category of a stable model category is triangulated and in this setting we
can make the following definitions after [26, Definition 2.1.2].

Definition 3.1. Let C be a triangulated category with infinite coproducts. A full
triangulated subcategory of C (with shift and triangles induced from C) is called
localizing if it is closed under coproducts in C. A set P of objects of C is called a set of
generators if the only localizing subcategory of C containing objects of P is the whole
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of C. An object X in C is compact if for any family of objects {Ai}i∈I the canonical
map ⊕

i∈I

[X,Ai]
C −→ [X,

⨿
i∈I

Ai]
C

is an isomorphism. An object of a stable model category is called a compact generator
if it is so when considered as an object of the homotopy category.

The set of suspensions and desuspensions of G/H+, where H varies through all
closed subgroups of G, is a set of compact generators in the stable model category
G–SpO. Those objects are compact since homotopy groups commute with coproducts
and it is clear from [26, Lemma 2.2.1] and (3.1) that this is a set of generators for
G–SpO.

There is an easy-to-check condition for a Quillen adjunction between stable model
categories with sets of compact generators to be a Quillen equivalence:

Lemma 3.2. Suppose F : C ⇄ D :U is a Quillen pair between stable model categories
with sets of compact generators, such that the right derived functor RU preserves
coproducts (or equivalently, such that the left derived functor sends compact generators
to compact objects). Then to know (F,U) is a Quillen equivalence it is enough to check
that a derived unit and counit are weak equivalences for generators.

Proof. The result follows from the fact that the homotopy category of a stable model
category is a triangulated category. First notice that since the derived functor RU
preserves coproducts, then the derived unit and counit are triangulated transforma-
tions. If the derived unit and counit conditions are satisfied for a set of objects K

then they are also satisfied for every object in the localizing subcategory for K. Since
we assume that K consists of compact generators, the localizing subcategory for K is
the whole category and the result follows.

Our basic category to work with is the category G–SpO of orthogonal G-spectra.
However, in this paper we are interested only in the homotopy category of rational
G-spectra with geometric isotropy in an exceptional subgroup H. Localization is our
main tool to make the model category of G-spectra easier, so that it models exactly
the part that we want. We obtain it by firstly rationalizing the stable model category
of G-spectra using the localization at an object SQ, which is the rational sphere
spectrum. Then, we localize it further to extract the behaviour of an exceptional
subgroup. The notation used in the definition below is explained in the rest of this
section.

Definition 3.3. Let H ⩽ G be an exceptional subgroup of G. Then we call the model
category Le(H)G

SQ(G–SpO) rational G-spectra over an exceptional subgroup H.

By considering the geometric fixed point functors, it is clear that the homotopy
category of Le(H)G

SQ(G–SpO) is the homotopy category of rational G-spectra with

geometric isotropy concentrated over the exceptional subgroup H (and its conju-
gates), which justifies the name.

For details on left Bousfield localization at an object we refer the reader to [21].
We recall the following result, which is [21, Chapter IV, Theorem 6.3].
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Theorem 3.4. Suppose E is a cofibrant object in G–SpO or a cofibrant based G-
space. Then there exists a new model structure on the category G–SpO, where a map
f : X −→ Y is

– a weak equivalence if it is an E-equivalence, i.e. IdE ∧ f : E ∧X −→ E ∧ Y is
a weak equivalence

– cofibration if it is a cofibration with respect to the stable model structure

– fibration if it has the right lifting property with respect to all trivial cofibrations.

The E-fibrant objects Z are the underlying fibrant, E-local objects, i.e. [f, Z]G : [Y, Z]G

−→ [X,Z]G is an isomorphism for all E-equivalences f . E-fibrant approximation
gives Bousfield localization λ : X −→ LEX of X at E.

We use the notation LE(G–SpO) for the model category described above and will
refer to it as a left Bousfield localization of the category of G-spectra at E.

Recall that, an E-equivalence between E-local objects is a weak equivalence (see
[15, Theorems 3.2.13 and 3.2.14]). All our localizations are smashing (see [23] and
[17]) because they are defined using idempotents of rational Burnside ring, thus
they preserve compact generators (since the fibrant replacement preserves infinite
coproducts).

As mentioned above, the first simplification of a category of G-spectra is ratio-
nalisation, i.e. localization at an object SQ, which is a rational sphere spectrum (the
Moore spectrum for Q, see, for example, [3, Definition 5.1]). This spectrum has the
property that π∗(X ∧ SQ) = π∗(X)⊗Q. We refer to this model category as rational
G-spectra.

The next step on the way towards the algebraic model is to split the category
of rational G-spectra using idempotents of the rational Burnside ring A(G)Q. We
know that idempotents of the (rational) Burnside ring split the homotopy category
of (rational) G-spectra. Barnes’ result [3] allows us to perform a compatible splitting
at the level of model categories. We want to use the idempotent e(H)G corresponding
to the (conjugacy class of the) exceptional subgroup H in G (see Definition 2.1) and
the idempotent corresponding to its complement, 1− e(H)G . By [3, Theorem 4.4] this
gives a monoidal Quillen equivalence.

Proposition 3.5. There is a strong symmetric monoidal Quillen equivalence:

△ : LSQ(G− SpO)
//
Le(H)G

SQ(G–SpO)× L(1−e(H)G
)SQ(G–SpO) : Π,oo

where the left adjoint is a diagonal functor, the right adjoint is a product and the
product category on the right is considered with the objectwise model structure (a map
(f1, f2) is a weak equivalence, a fibration or a cofibration if both factors fi are).

From now on we will work only with the category Le(H)G
SQ(G–SpO) as this is our

model for rational G-spectra over an exceptional subgroup H. We use the name H-
equivalence for a weak equivalences in the category Le(H)G

SQ(G–SpO) and H-fibrant
replacement for the fibrant replacement there. These names are motivated by the
following

Lemma 3.6. A map f between e(H)GSQ-local objects in Le(H)G
SQ(G–SpO) is a weak

equivalence iff πH
∗ (f) is an isomorphism.
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Proof. By definition, f is an H-equivalence iff πK
∗ (e(H)GSQ ∧ f) is an isomorphism

for all closed subgroups K ⩽ G. This holds iff ΦK(eHSQ ∧ f) is a non-equivariant
equivalence for all K ⩽ G. As geometric fixed point functor commutes with smash
product that is equivalent to ΦH(e(H)GSQ ∧ f) being a non-equivariant equivalence,
i.e. π∗(Φ

H(e(H)GSQ ∧ f)) being an isomorphism. Since f is a map between e(H)GSQ-
local objects

π∗(Φ
H(e(H)GSQ ∧ f)) ∼= πH

∗ (f),

which finishes the proof.

4. Change-of-group functors and localizations using
idempotents

Since later we will be interested in taking H-fixed points of G-spectra when H
is not necessary normal in G, we need to pass to N = NGH-spectra first. Suppose
we have an inclusion i : N ↪→ G of a subgroup N in a group G. This gives a pair
of adjoint functors at the level of orthogonal spectra (see, for example, [21, Section
V.2]), namely induction, restriction and coinduction as below (the left adjoint is above
the corresponding right adjoint):

G–SpO i∗ // N − SpO

FN (G+,−)

kk

G+∧N−
ss

.

We assume both categories of spectra are over complete universes and we slightly
abuse the notation by not mentioning the change of universe functors. See [21, Sec-
tion V.2] for details.

These two pairs of adjoint functors are Quillen pairs with respect to stable model
structures, see [21, Chapter V, Propositions 2.3 and 2.4]. The restriction functor
as a right adjoint is used for example when we want to take (both categorical and
geometric) H-fixed points of G-spectra, where H is not a normal subgroup of G. The
first step to take H-fixed points of G-spectra is to restrict to NGH-spectra and then
take H-fixed points. This is usually done in one go, since the restriction and H-fixed
points are both right Quillen functors.

It is natural to ask when the pair of adjunctions above passes to the localized
categories, in our case localized at e(H)GSQ and e(H)NSQ, respectively. The answer is
related to H being an N -good or bad subgroup in G. It turns out that the induction-
restriction adjunction does not always induce a Quillen adjunction on the localized
categories, unless H is N -good in G. However, the restriction-coinduction adjunc-
tion induces a Quillen adjunction on the localized categories, for all exceptional sub-
groups H. Before we discuss this particular adjunction we state a general result.

Lemma 4.1. Suppose that F : C ⇄ D :R is a Quillen adjunction of model categories
where the left adjoint is strong monoidal. Suppose further that E is a cofibrant object
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in C and that both LEC and LF (E)D exist. Then

F : LEC
//
LF (E)D :Roo

is a strong monoidal Quillen adjunction. Moreover, if the original adjunction was a
Quillen equivalence then the one induced on the level of localized categories is as well.

Proof. Since the localization did not change the cofibrations, the left adjoint F still
preserves them. To show that it also preserves acyclic cofibrations, take an acyclic
cofibration f : X −→ Y in LEC. By definition f ∧ IdE is an acyclic cofibration in C.
Since F was a left Quillen functor before localization F (f ∧ IdE) is an acyclic cofi-
bration in D. As F was strong monoidal we have F (f ∧ IdE) ∼= F (f) ∧ IdF (E), so
F (f) is an acyclic cofibration in LF (E)D which finishes the proof of the first part.

To prove the second part of the statement we use Part 2 from [16, Corollary 1.3.16].
Since F is strong monoidal and the original adjunction was a Quillen equivalence F
reflects F (E)-equivalences between cofibrant objects. It remains to check that the
derived counit is an F (E)-equivalence. F (E)-fibrant objects are fibrant in D and
the cofibrant replacement functor remains unchanged by localization. Thus the claim
follows from the fact that F,R was a Quillen equivalence before localizations.

We will use this result in several cases for the following two adjoint pairs of orthog-
onal G-spectra. Notice that since both left adjoints are strong monoidal, the results
below follow from Lemma 4.1.

Corollary 4.2. Let i : N −→ G denote the inclusion of a subgroup and let E be a
cofibrant object in G–SpO. Then

i∗ : LE(G–SpO)
//
Li∗(E)(N–SpO) :FN (G+,−)oo

is a strong monoidal Quillen pair.

Corollary 4.3. Let ϵ : N −→ W denote the projection of groups, where H is normal
in N and W = N/H. Let E be a cofibrant object in W–SpO. Then

ϵ∗ : LE(W–SpO)
//
Lϵ∗(E)(N–SpO) : (−)Hoo

is a strong monoidal Quillen pair.

The following two results describe the behaviour of the restriction-induction ad-
junction at the level of localized categories.

Proposition 4.4. Suppose H is an exceptional subgroup of G which is N = NGH-
good in G. Then

i∗ : Le(H)G
SQ(G–SpO) // Le(H)N

SQ(N–SpO) :G+ ∧N −oo

is a Quillen adjunction.

Proof. This was a Quillen adjunction before localization by [21, Chapter V, Propo-
sition 2.3] so the left adjoint preserves cofibrations. It preserves acyclic cofibrations
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as G+ ∧N − preserved acyclic cofibrations before localization and we have a natural
(in an N -spectrum X) isomorphism (see [21, Chapter V, Proposition 2.3]):

(G+ ∧N X) ∧ e(H)GSQ ∼= G+ ∧N (X ∧ i∗(e(H)GSQ)).

Note that, since H is N -good in G, i∗(e(H)G) = e(H)N , where the latter is the idem-
potent corresponding to (H)N in A(N)Q.

Proposition 4.5. Suppose H is an exceptional subgroup of G which is N = NGH-
bad in G. Then

i∗ : Le(H)G
SQ(G–SpO) // Le(H)N

SQ(N − SpO) :G+ ∧N −oo

is not a Quillen adjunction.

Proof. It is enough to show that G+ ∧N − does not preserve acyclic cofibrations.
Firstly, since H is N -bad in G there exists H ′ ⩽ N such that (H)G = (H ′)G and
(H)N ̸= (H ′)N .

Take f to be the inclusion into the coproduct N/H+ −→ N/H+ ∨N/H ′
+. This is

a weak equivalence in Le(H)N
SQ(N − SpO) since ΦH(N/H+) = ΦH(N/H+ ∨N/H ′

+).

It is also a cofibration as a pushout of a cofibration ∗ −→ N/H+ along the map ∗ −→
N/H ′

+. Applying the left adjoint gives the inclusion G+ ∧N f : G/H+ −→ G/H+ ∨
G/H ′

+. Now ΦH(G/H+ ∨G/H ′
+)

∼= N/H+ ∨N/H ′
+ ̸∼= N/H+ since H is N -bad by

assumption and (H)G = (H ′)G. Thus G+ ∧N f is not a weak equivalence in
Le(H)G

SQ(G–SpO) which finishes the proof.

Proposition 4.5 shows that i∗ is not always a right Quillen functor, when consid-
ered between categories localized at corresponding idempotents. However, it is a left
Quillen functor and the restriction and function spectrum adjunction gives a Quillen
adjunction under general conditions, which we proceed to discuss.

Lemma 4.6. Suppose G is any compact Lie group, i : N −→ G is an inclusion of a
subgroup and V is an open and closed G-invariant set V in Subf(G) which is a union
of ∼-equivalence classes (see Section 2). Then the adjunction

i∗ : LeV SQ(G–SpO)
//
Lei∗V SQ(N − SpO) :FN (G+,−)oo

is a Quillen pair.

Proof. Before localizations on both sides this was a Quillen pair by [21, Chapter V,
Proposition 2.4]. It is a Quillen pair after localization by Corollary 4.2, and the fact
that i∗ is strong symmetric monoidal. We use the notation i∗V for the preimage of V
under the inclusion on spaces of subgroups induced by i, i.e. Subf(N) −→ Subf(G),
see Section 2.

We will repeatedly use the lemma above, mainly in situations where after further
localization of the right hand side we will get a Quillen equivalence.



AN ALGEBRAIC MODEL FOR RATIONAL G-SPECTRA 301

Corollary 4.7. Suppose G is a compact Lie group and H is an exceptional subgroup
of G. Then

i∗ : Le(H)G
SQ(G–SpO)

//
Le(H)N

SQ(N − SpO) :FN (G+,−)oo

is a Quillen adjunction.

Proof. For N = NGH-good H the result follows from the fact that the idempotent
on the right hand side satisfies e(H)N = i∗(e(H)G) = ei∗((H)G). For N -bad H it is

true since the left hand side is a further localization of Lei∗((H)G)SQ(N–SpO) at the
idempotent e(H)N :

Le(H)G
SQ(G–SpO)

i∗ //
Li∗(e(H)G

)SQ(N–SpO)
FN (G+,−)
oo

Id //
Le(H)N

SQ(N–SpO).
Id

oo

Note that since H is N -bad, e(H)N ̸= i∗(e(H)G) and e(H)N i∗(e(H)G) = e(H)N .

In the next two theorems we show that the Quillen adjunction above is, in fact,
a Quillen equivalence.

Theorem 4.8. Suppose N = NGH and H is an exceptional subgroup of G that is
N -good. Then the adjunction

i∗ : Le(H)G
SQ(G–SpO)

//
Le(H)N

SQ(N–SpO) :FN (G+,−)oo

is a strong symmetric monoidal Quillen equivalence.

Proof. Firstly, if H is an N -good exceptional subgroup of G with an idempotent
e(H)G then e(H)N = i∗(e(H)G) in A(N)Q.

The above is a Quillen adjunction by Corollary 4.7 and we claim that i∗ preserves
all H-equivalences. Suppose f : X −→ Y is an H-equivalence in Le(H)G

SQ(G–SpO),
i.e. Ide(H)G

SQ ∧ f : e(H)GSQ ∧X −→ e(H)GSQ ∧ Y is a π∗-isomorphism. As i∗ is strong
monoidal it follows that

i∗(Ide(H)G
SQ ∧ f) ∼= Idi∗(e(H)G

SQ) ∧ i∗(f) ≃ Ide(H)N
SQ ∧ i∗(f).

Since i∗ preserves π∗-isomorphisms we can conclude.
To show this is a Quillen equivalence we will use Part 2 from [16, Corollary 1.3.16].

It is easy to see that i∗ reflects H-equivalences using the fact it is strong monoidal
and the isomorphism [N/H+, i

∗(X)]N∗
∼= [G/H+, X]G∗ .

As i∗ preserves all H-equivalences it is enough to check that for every fibrant
Y ∈ Le(H)N

SQ(N–SpO) the counit map εY : i∗FN (G+, Y ) −→ Y is an H-equivalence

(in N -spectra), i.e. it is a πH
∗ -isomorphism of N -spectra.

First we check that domain and codomain have isomorphic stable H homotopy
groups:

πH
∗ (i∗FN (G+, Y )) ∼= πH

∗ (FN (G+, Y )) ∼= [G/H+, FN (G+, Y )]G∗
∼= [i∗(G/H+), Y ]N∗

∼= [N/H+, Y ]N∗
∼= πH

∗ (Y ).
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The next-to-last isomorphism follows from the fact that the map N/H+ −→ G/H+

(induced by inclusion N −→ G) is an H-equivalence in N -spectra, i.e. a weak equiv-
alence in Le(H)N

SQ(N–SpO).

By Lemma 3.2 to show that the restriction-coinduction adjunction is a Quillen
equivalence it is enough to check the counit condition for a generator of
Le(H)N

SQ(N–SpO). We will check it for the spectrum i∗(f̂G/H+) (where f̂ denotes

fibrant replacement in Le(H)G
SQ(G–SpO)). This is a compact generator for localized

N -spectra (it is H-equivalent to N/H+ and it is compact, since the localization is
smashing). The stable H-homotopy groups of this generator are Q[WGH] in degree 0
(where WGH is the Weyl group for H in G, so, in particular, Q[WGH] is a finite
dimensional vector space by assumption that H is exceptional in G) and 0 in other
degrees.

Now it is enough to show that [N/H+, εi∗(f̂G/H+)]
N
∗ is surjective. One of the tri-

angle identities on i∗(f̂G/H+) for the adjunction requires that the following diagram
commutes

i∗(f̂G/H+)

Id

**

i∗(ηf̂G/H+
)

��
i∗FN (G+, i

∗(f̂G/H+)) εi∗(f̂G/H+)

// i∗(f̂G/H+).

Thus postcomposition with εi∗(f̂G/H+) is surjective on the homotopy level. It fol-

lows that the counit map is an H-equivalence of N -spectra for every fibrant Y , which
finishes the proof.

The argument above will not work in the context where i∗ does not preserve fibrant
objects and all weak equivalences. We used these two facts to know that we can work
with the counit, rather than the derived counit and that i∗(f̂G/H+) is a fibrant object
in Le(H)N

SQ(N–SpO) and thus we can use the triangle identity in the last part of the

proof (without having to fibrantly replace i∗(f̂G/H+)). We found the proof above
amusing, so we decided to present it, even though the proof below can be applied
also in the case where H is an exceptional NGH-good subgroup of G.

Theorem 4.9. Suppose H is an exceptional subgroup of G. Then the composite of
adjunctions

Le(H)G
SQ(G–SpO)

i∗N //
Li∗(e(H)G

SQ)(N–SpO)
FN (G+,−)
oo

Id //
Le(H)N

SQ(N–SpO)
Id

oo

is a strong symmetric monoidal Quillen equivalence, where e(H)N denotes the idempo-
tent of the rational Burnside ring A(N)Q corresponding to the characteristic function
of (H)N . Notice that if H is N -good then the middle model category and the right
hand side model category are the same.

Proof. Firstly, if H is N -bad then i∗N (e(H)GSQ) ̸≃ e(H)NSQ are not equivalent (as
localized N -spectra). The reason for that is that (H)G restricts to more than one
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conjugacy class of subgroups of N . That is why we need a further localization – we
only want to consider (H)N .

The composite above forms a Quillen adjunction by Corollary 4.7. We use Part 3
from [16, Corollary 1.3.16] to show that it is a Quillen equivalence. Observe that
FN (G+,−) preserves and reflects weak equivalences between fibrant objects by the
following argument. Firstly, if f is a map between fibrant objects in Le(H)N

SQ(N–SpO)

then it is a weak equivalence if and only if [N/H+, f ]
N
∗ is an isomorphism by Lem-

ma 3.6. Similarly, if f is a map between fibrant objects in Le(H)G
SQ(G–SpO) then it

is a weak equivalence if and only if [G/H+, f ]
G
∗ is an isomorphism.

Let X be a fibrant object in Le(H)N
SQ(N–SpO). Then FN (G+, X) is also fibrant in

Le(H)G
SQ(G–SpO) and thus we have the first isomorphism:

[G/H+, e(H)GFN (G+, X)]G∗
∼= [G/H+, FN (G+, X)]G∗

∼= [i∗N (G/H+), X]N∗
∼= [e(H)N i∗N (G/H+), e(H)NX]N∗

∼= [N/H+, e(H)NX]N∗ .

The last isomorphism follows from the fact that N/H+ −→ e(H)N i∗N (G/H+) is an H-
equivalence (since it is a πH

∗ -isomorphism) and e(H)NX is an e(H)NSQ-local object.
Since all isomorphisms above are natural, we can conclude that [N/H+, f ]

N
∗ is an

isomorphism iff [G/H+, FN (G+, f)]
G
∗ is an isomorphism, so FN (G+,−) preserves and

reflects weak equivalences between fibrant objects.

Now we need to show that the derived unit is a weak equivalence on the cofibrant
generator for Le(H)G

SQ(G–SpO), which is e(H)GG/H+. This is

e(H)GG/H+ −→ FN (G+, e(H)N i∗N (e(H)GG/H+)).

To check that this is a weak equivalence in Le(H)G
SQ(G–SpO), by Lemma 3.6 it is

enough to check that on the homotopy level the induced map

[G/H+, e(H)GG/H+]
G
∗ −→ [G/H+, FN (G+, e(H)N i∗N (e(H)GG/H+))]

G
∗

is an isomorphism. This map fits into a commuting diagram:

[G/H+, e(H)GG/H+]
G
∗

Li∗N

++��
[G/H+, FN (G+, e(H)N i∗N (e(H)GG/H+))]

G
∗

∼= // [i∗NG/H+, e(H)N i∗N (e(H)GG/H+)]
N
∗ ,

where Li∗N denotes the left derived functor of i∗N .

Since the horizontal map is an isomorphism it is enough to show that Li∗N is an
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isomorphism. This follows from the commutative diagram:

[S0, i∗(e(H)N i∗N (e(H)GG/H+))]
H
∗

[G/H+, e(H)GG/H+]
G
∗

∼= //

��
Li∗N

""

[S0, i∗H(e(H)GG/H+)]
H
∗

∼=

OO

[i∗NG/H+, i
∗
N (e(H)GG/H+)]

N
∗

j∗ //

��

[N/H+, i
∗
N (e(H)GG/H+)]

N
∗

∼=

OO

��
[i∗NG/H+, e(H)N i∗N (e(H)GG/H+)]

N
∗ j∗

∼= // [N/H+, e(H)N i∗N (e(H)GG/H+)]
N
∗ ,

∼=

]]

where j : N/H+ −→ i∗NG/H+ is a weak equivalence in Le(H)N
SQN − SpO and i∗H

denotes the restriction functor from G-spectra toH-spectra and i∗ denotes the restric-
tion functor from N -spectra to H-spectra. The top right hand side isomorphism fol-
lows from the fact that restriction from G-spectra to N -spectra followed by restriction
from N -spectra to H-spectra is the same as the restriction from G to H-spectra and
the fact that

i∗(e(H)N i∗N (e(H)GG/H+)) ≃ i∗(i∗N (e(H)GG/H+)) ≃ i∗H(e(H)GG/H+)

in H-spectra.

5. A monoidal algebraic model for rational G-spectra over an
exceptional subgroup

The category of rational G-spectra over an exceptional subgroup H is modelled by
the left Bousfield localization at an idempotent e(H)G corresponding to the conjugacy
class of H in G. Thus from now on we will use the notation H for an exceptional
subgroup of G, and we will work with the category Le(H)G

SQ(G–SpO).

To provide an algebraic model for the category Le(H)G
SQ(G–SpO) we construct

a zig-zag of Quillen equivalences as follows. First we move from the category
Le(H)G

SQ(G–SpO) to the category Le(H)N
SQ(N–SpO) using the restriction-coinduction

adjunction. Recall that N denotes the normalizer NGH.
The second step is to use the inflation-fixed point adjunction between

Le(H)N
SQ(N–SpO) and Le1SQ(W–SpO), whereW denotes the Weyl groupN/H. Recall

that W is finite as H is an exceptional subgroup of G and e1 denotes the idempotent
in A(W )Q corresponding to the trivial subgroup.

Next we use the restriction of universe functor to pass from Le1SQ(W–SpO) to the

category SpOQ [W ] of rational orthogonal spectra with W -action. Note that we could
have combined the two steps above into one since both left adjoints point the same
way, however, for the clarity of the arguments we decided to treat them separately.

Now we pass to symmetric spectra with W -action using the forgetful functor from
orthogonal spectra. Next we move to HQ-modules with W -action in symmetric spec-
tra. From here we use the result of [27, Theorem 1.1] to get to Ch(Q)[W ], the category
of rational chain complexes with W -action, which is equivalent as a monoidal model
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category to Ch(Q[W ]), the category of chain complexes of Q[W ]-modules with a
projective model structure. That gives an algebraic model which is compatible with
the monoidal product, i.e. the zig-zag of our Quillen equivalences induces a strong
symmetric monoidal equivalence on the level of homotopy categories.

To illustrate the whole path we present a diagram which shows every step of this
comparison. The reader may wish to refer to this diagram now, but the notation will
be introduced as we proceed. Left Quillen functors are placed on the left. Recall that
N = NGH and W = WGH = NGH/H.

Le(H)G
SQ(G–SpO)

i∗ ��
Le(H)N

SQ(N − SpO)

FN (G+,−)
OO

(−)H��
Le1SQ(W − SpO)

ϵ∗
OO

res��
SpOQ [W ]

Ict

OO

Sing◦U
��

SpΣQ[W ]

P◦|−|
OO

HQ∧−
��

(HQ−mod)[W ]

U
OO

zig-zag of ��
Ch(Q[W ])

Quillen equivalences
OO

5.1. The category Ch(Q[W ]-mod)
Before we start describing the zig-zag of Quillen equivalences towards the algebraic

model for rational G-spectra over an exceptional subgroup, we briefly describe the
algebraic model. Suppose W is a finite group. In this section, we discuss the category
of chain complexes of left Q[W ]-modules.

Firstly, this category may be equipped with the projective model structure, where
weak equivalences are homology isomorphisms and fibrations are levelwise surjections.
Cofibrations are levelwise split monomorphisms with cofibrant cokernel. This model
structure is cofibrantly generated by [16, Section 2.3].

Note that Q[W ] is not generally a commutative ring, however, it is a Hopf algebra
with cocommutative coproduct given by

∆: Q[W ] −→ Q[W ]⊗Q[W ] , g 7→ g ⊗ g.

This allows us to define an associative and commutative tensor product on Ch(Q[W ]-
mod), namely tensor over Q, where the action on X ⊗Q Y is diagonal. The unit is a
chain complex with Q at the level 0 with trivial W -action and zeros everywhere else
and it is cofibrant in the projective model structure. The monoidal product defined
this way is closed, where the internal hom is given by an internal hom over Q with W -
action given by conjugation, i.e. for X,Y ∈ Q[W ]-mod, f ∈ HomQ(X,Y ) and w ∈ W
we define the action of w on f by (w ◦ f)(x) = wf(w−1x).
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This category is equivalent (as a monoidal model category) to the category of W -
objects in a category of Ch(Q-mod) with the projective model structure, i.e. this is a
model structure which is a transfer of the projective model structure on Ch(Q-mod)
to the category of W objects there, using the forgetful functor as a right adjoint. We
discuss the category of W -objects in a general category C in more detail in the next
section.

It is shown in [2, Proposition 4.3] that Ch(Q[W ]-mod) is a monoidal model category
satisfying the monoid axiom.

5.2. W -objects in a category C

In this section, we recall the category of W -objects in a category C, where W is
a finite group and C is any category. Material presented here will be used at the
end of next section, where C will be for example a category of symmetric spectra or
orthogonal spectra.

We denote the category of W -objects in a category C by C[W ]. We can think
of C[W ] as a category of functors from W , which is a one object category with
Hom(∗, ∗) = W to C, also known as CW . The inclusion j of a terminal category 1
into W gives two adjoint pairs (Lanj , j

∗) and (j∗,Ranj). We will use notation UC for
j∗, since it is just a forgetful functor.

If C is a cofibrantly generated model category, then C[W ] can be equipped with a
model structure by applying transfer [15, Theorem 11.3.2] to the adjunction below:

Lanj : C
//
C[W ] :UCoo

where weak equivalences and fibrations in C[W ] are these maps, that forget down to
weak equivalences and fibrations in C (respectively).

Here Lanj is the left Kan extension along j. Notice, that in this case it is sending
X to a coproduct of X indexed by elements of W , with W acting by permuting the
factors. It is a straightforward observation that UC preserves colimits and cofibrations,
as generating cofibrations in C[W ] are just images of the generating cofibrations in C

under Lanj .
If C is a closed symmetric monoidal model category then C[W ] is as well, by

analogous observations to those in Section 5.1. Notice that the monoidal product
on W -objects in C is the one from C with the diagonal W -action. Notice also that
UC is strong monoidal. It is enough to check the pushout-product axiom in C[W ]
for generating cofibrations and acyclic cofibrations, and since they are the images
of the generating cofibrations and acyclic cofibrations (respectively) under Lanj the
pushout-product axiom follows from the one in C. The unit axiom follows from the
unit axiom in C and the fact that UC preserves cofibrations.

For a finite group W , a Quillen equivalence between categories C and D induces a
Quillen equivalence between W -objects in C and D.

Proposition 5.1. Suppose

F : C
//
D :Goo

is a Quillen equivalence and W is a finite group. Then this adjunction induces a
Quillen equivalence at the level of W -objects in C and D (with model structures trans-
ferred from that on C and D, respectively). Moreover, if (F,G) is a monoidal Quillen
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equivalence between monoidal model categories then it is so when induced to the level
of W -objects in C and D.

Proof. We have the following diagram

C[W ]

UC

��

FW //
D[W ]

UD

��

GW

oo

C
F //

D,
G

oo

where the functors UC and UD commute with both left and right adjoints. More-
over, UC and UD create weak equivalences and fibrations and they preserve cofi-
brant objects (they preserve cofibrations and initial objects) and fibrant objects. It is
straightforward to check the condition from the definition of Quillen equivalence for
the adjunction (FW , GW ) using the above diagram.

For the monoidal consideration, recall that the monoidal product on W -objects in
C is the one from C with the diagonal W -action. Moreover, UC is strong monoidal.
If (F,G) is a monoidal Quillen pair then it is again a diagram chase to show that
(FW , GW ) is also a monoidal Quillen pair.

Now we are ready to establish the zig-zag of Quillen equivalences.

5.3. Monoidal comparison
Recall, that we want to provide a monoidal algebraic model for Le(H)G

SQ(G–SpO),
where H is an exceptional subgroup of G.

At the beginning of this approach we would like to use the inflation-fixed point
adjunction. However, as H is not necessary normal in G first we need to move to the
category of orthogonal N -spectra, where N = NGH. Notice that for our purpose this
passage needs to be monoidal.

The inclusion of a subgroup i : N −→ G induces two adjoint pairs between corre-
sponding categories of orthogonal spectra that we discussed earlier. The first choice
would be to work with the induction and restriction adjunction. However, in case of
our localizations, this is not always a Quillen adjunction as we discussed in detail in
Section 4. The restriction functor i∗ is strong monoidal, so we choose to work with
it as a left adjoint, where the right adjoint is the coinduction functor. We showed in
Section 4 that this is always a strong monoidal Quillen adjunction for localizations
at idempotents corresponding to conjugacy classes of exceptional subgroups. Thus
Theorem 4.9 gives the first step of the zig-zag:

Theorem 4.9. (Recap) Suppose H is an exceptional subgroup of G. Then the com-
posite of adjunctions

Le(H)G
SQ(G–SpO)

i∗ //
Li∗(e(H)G

SQ)(N–SpO)
FN (G+,−)
oo

Id //
Le(H)N

SQ(N–SpO)
Id

oo

is a strong symmetric monoidal Quillen equivalence. Notice that if H is N -good then
i∗(e(H)G) = e(H)N and the right adjunction is trivial.
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Now we use the inflation–fixed point adjunction. Recall that W below denotes the
Weyl group NGH/H and by the assumption on H, it is finite. Moreover, there is a
projection map ϵ : N −→ W which induces the left adjoint below.

Theorem 5.2. The adjunction

ϵ∗ : Le1SQ(W–SpO)
//
Le(H)N

SQ(N–SpO) : (−)Hoo

is a strong monoidal Quillen equivalence. Here e1 is the idempotent of the rational
Burnside ring A(W )Q corresponding to the trivial subgroup.

Proof. To prove this is a Quillen pair we refer to [14, Proposition 3.2] which states
that (in notation adapted to our case):

ϵ∗ : (W–SpO)
//
LẼ[ ̸⊇H](N–SpO) : (−)Hoo

is a Quillen equivalence. Recall that Ẽ[ ̸⊇ H] is a cofibre of a map E[ ̸⊇ H] −→ S0

where [ ̸⊇ H] denotes the family of subgroups of N not containing H (for definition
of EF, where F is a family of subgroups of G see, for example, [20, Chapter II,
Definition 2.10]). Now we localize this result further at e1SQ on the side of W -spectra
and e(H)NSQ on the side of N -spectra. Since e(H)NSQ ≃ ϵ∗(e1SQ) in LẼ[ ̸⊇H](N–SpO),

it follows from Lemma 4.1 and the fact that ϵ∗ is strong monoidal that the resulting
adjunction is a Quillen equivalence. The right hand side after this localization is just
Le(H)N

SQ(N–SpO), since e(H)NSQ ∧ Ẽ[ ̸⊇ H] ≃ e(H)NSQ (which can be checked using

fixed points).

Next we move from Le1SQ(W–SpO) to SpOQ [W ] (where SpOQ = LSQSp
O) using the

restriction and extension of W -universe from the complete to the trivial one.

Lemma 5.3. The adjunction

Ict : Sp
O
Q [W ]

//
Le1SQ(W–SpO) : Itc = resoo

is a strong monoidal Quillen equivalence. We use Itc to denote the restriction (denoted
also res above) from the complete W -universe to the trivial one. Ict denotes the exten-
sion from the trivial W -universe to the complete one.

Proof. This adjunction is actually a composite of the following

SpOQ [W ]
≃ of cat // free-W–SpOQt
oo

Ict //
free-W–SpOQ

Id //
res

oo Le1SQ(W–SpO).
Id

oo

Before we proceed to discussing the adjunctions and proving that they are Quillen
equivalences let us first define the model category of free W–SpOQ . This is a special
case of F-model structure in [21, Chapter IV, Theorem 6.5] where we take the family
F = {1}, consisting just of the trivial subgroup of W . Thus recall that a free model
structure on rational orthogonal W -spectra is defined as follows.

– A map f is a weak equivalence in free-W–SpOQ iff π1
∗Q(f) is an isomorphism.

1 denotes the trivial subgroup in W (equivalently, f is a weak equivalence in
free-W–ISQ iff e1SQ ∧ f is a π∗ rational isomorphism).
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– A cofibration is a map obtained from the original generating cofibrations by
restricting to the orbit W+.

– Fibrations are defined via right lifting property.

Starting from the right hand side in the diagram above we have an identity adjunc-
tion between Le1SQ(W–SpO) and a model category of free-W–SpOQ . This is a strong
monoidal Quillen equivalence by [21, Chapter IV, Theorem 6.9].

The second adjunction is just the restriction and extension of universe adjunction
from the complete universe (on the right) to the trivial one (on the left, indicated by
a subindex t). This is a strong monoidal adjunction by [21, Chapter V, Theorem 1.5].
Now we note that the left adjoint preserves generating cofibrations and generating
acyclic cofibrations since IctFV

∼= FV by [21, Chapter V, 1.4].
The right adjoint res preserves and reflects all weak equivalences since in both

model structures they are defined as those maps which after forgetting to non-
equivariant spectra are rational π∗-isomorphisms. The derived unit for the cofibrant
generator W+ (in this case categorical unit is also the derived unit) is an isomorphism
which follows from [21, Chapter V, Theorem 1.5], and thus for any cofibrant object it
is a weak equivalence. By Part 3 of [16, Corollary 1.3.16] this is a Quillen equivalence.

It remains to show that the equivalence of categories on the right is an equivalence
of monoidal model categories. Note that weak equivalences on both sides are just
non-equivariant rational π∗-isomorphisms and generating cofibrations in both model
structures are the same. This is enough to deduce that these two model categories
are the same, which finishes the proof.

We removed all difficulties coming from the equivariance with respect to a topo-
logical group. What is left now is a finite group action on rational orthogonal spectra.

To apply the result of [27, Theorem 1.1] and pass to the category of chain complexes
we need to work with rational symmetric spectra in the form of HQ-modules (where
HQ is the Eilenberg-MacLane spectrum for Q). We pass to this category using the
next two results, which are direct corollaries of Proposition 5.1 and corresponding
known results for spectra (see, for example, Section 7 in [25] and recall that HQ is
weakly equivalent to SQ).

First we pass from rational orthogonal spectra withW -action to rational symmetric
spectra with W -action using the composition of the forgetful functor and the functor
induced by the singular complex functor:

Corollary 5.4. The adjunction

P ◦ | − | : SpΣQ[W ]
//
SpOQ [W ] : Sing ◦ Uoo

is a strong symmetric monoidal Quillen equivalence.

Next we move to HQ-modules in symmetric spectra with W -action.

Corollary 5.5. The adjunction

HQ ∧ − : SpΣQ[W ]
//
(HQ-mod)[W ] :Uoo

is a strong symmetric monoidal Quillen equivalence. Here U denotes the forgetful
functor and the model structure on HQ-mod is the one created from SpΣ by the right
adjoint U .
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From here we use the result of [27, Theorem 1.1] for R = Q and Proposition 5.1
to get to Ch(Q)[W ] with the projective model structure, which is equivalent as a
monoidal model category to Ch(Q[W ]) with the projective model structure (see Sec-
tion 5.1).

Corollary 5.6. There is a zig-zag of monoidal Quillen equivalences between the cat-
egory (HQ-mod)[W ] and the category Ch(Q[W ]) with the projective model structure.

We can summarize the results of this section in the theorem below.

Theorem 5.7. There is a zig-zag of symmetric monoidal Quillen equivalences from
Le(H)G

SQ(G–SpO) to Ch(Q[W ]-mod) with the projective model structure, where W =

NGH/H.

An example of an application of the result above is to rational SO(3)-spectra
over an exceptional subgroup, see [19]. In general, if a compact Lie group G has an
exceptional subgroup, any algebraic model for rational G-spectra will split and will
have a factor given by Theorem 5.7.

5.4. Finite G
If G is finite then every subgroup of G is exceptional and there are finitely many

conjugacy classes of subgroups of G, thus by splitting result of [3, Theorem 4.4]
and Proposition 3.5 the category of rational G-spectra splits as a finite product of
categories, each localized at an idempotent corresponding to the conjugacy class of a
subgroup of G.

Proposition 5.8. [3, Theorem 4.4] Suppose G is a finite group. Then there is a
strong symmetric monoidal Quillen equivalence:

△ : LSQ(G–SpO)
// ∏

(H)G,H⩽G Le(H)G
SQ(G–SpO) : Π,oo

where the left adjoint is a diagonal functor, the right one is a product and the product
category on the right is considered with the objectwise model structure.

This observation allows us to deduce the following

Corollary 5.9. Suppose G is a finite group. Then there is a zig-zag of symmetric
monoidal Quillen equivalences from LSQ(G–SpO) to∏

(H)G,H⩽G

Ch(Q[WGH] :mod).

Proof. This follows from Proposition 5.8 and Theorem 5.7.

We remark that this is not a new result, as for a finite group G an algebraic model
was given in [26] and monoidal consideration was presented in [2]. However, the use of
localizations of commutative ring G-spectra in the proof of [2] (see [2, Lemma 5.10])
requires reformulations of equivariant version of [9, Chapter VIII, Theorem 2.2] and
use of suitable foundations. Thus, [2] does not provide monoidal Quillen equivalences.
Our proof avoids these issues.
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The main difference between this approach and what appears in the literature is
in replacing “Morita equivalence” used in [26] and in [2] by the inflation-fixed point
adjunction. This became possible after analysing an interplay of induction-restriction-
coinduction adjunctions with left Bousfield localizations in Section 4.

Remark 5.10. The result of Corollary 5.9 does not imply comparison of commuta-
tive algebras. The comparison of commutative algebras on both sides of the zig-zag
requires more care. This is done in [6].
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