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Abstract
We explore the Mayer-Vietoris sequence developed by

Chiswell for the fundamental group of a graph of groups when
vertex groups satisfy some vanishing assumption on the first
cohomology (e.g. property (T), or vanishing of the first ℓ2-Betti
number). We characterize the vanishing of first reduced coho-
mology of unitary representations when vertex stabilizers have
property (T). We find necessary and sufficient conditions for
the vanishing of the first ℓ2-Betti number. We also study the
associated Haagerup cocycle and show that it vanishes in first
reduced cohomology precisely when the action is elementary.

1. Introduction

1.1. 1-cohomology
The first cohomology of a locally compact group G with coefficients in a unitary

representation π : G → U(H) is an object whose study encompasses many interesting
themes, such as property (T), the Haagerup property, and other relatives, as well as
the first ℓ2-Betti number. For a discrete group G acting on a tree, Chiswell introduced
a Mayer-Vietoris sequence for the cohomology of G, in terms of the cohomologies of
the vertex groups and edge groups [Chi76]. The class of groups which admit such
actions is quite large and includes limit groups and non-finitely generated countable
groups, among others.

In this paper, we first extend Chiswell’s sequence, in low degrees, to arbitrary
topological groups acting on trees. We study these under the assumption that vertex
stabilizers satisfy some condition on the vanishing of H1 (property (T) or vanishing
of the first ℓ2-Betti number), which leads to two major applications that we now
discuss. One concerns the first ℓ2-Betti number β1(G); the other, the fact that the first
cohomology of PSL2Qp is non-vanishing precisely when the irreducible representation
is special (which is a result of Nebbia [Neb12]).

Let G be a topological group acting without inversion on a tree T , with quotient
graph X =: G\T . Classical by now is the fact that G admits a graph of groups
decomposition π1(G, X, T ), where T ⊂ X is a maximal tree and G represents the
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local groups (see Section 2 for more details on Bass-Serre theory). Throughout this
paper, we will take such actions and decompositions as interchangeable. Also, in
order to avoid cumbersome notation, we assume the graph of groups to be reduced
(see Definition 5.5 in Section 5.3).

Theorem 1.1. Let X be a graph, T a maximal tree in X, (G, X) a reduced graph of
discrete groups, and G = π1(G, X, T ). Assume that β1(Gv) = 0 for every v ∈ V and∑

1
|Ge|

< ∞. Then β1(G) = 0 if and only if G belongs to one of the following cases:

1. The graph X is a single vertex and G = Gv.

2. The graph X is a single loop and G = Z ⋉Gv.

3. The graph X is a single edge and there is an exact sequence

1 → Ge → G → Z/2 ∗ Z/2 → 1.

4. Every edge group is infinite.

For a locally compact group G, we denote the collection of irreducible unitary
representations (up to unitary equivalence) of G by Ĝ. The second main result is an
elementary proof of the following theorem, the hypotheses of which guarantee that
there is a unique special representation of G (see Section 6 for more details).

Theorem 1.2 ([Neb12]). Let T be a locally finite, bi-regular tree. Let G be a closed
subgroup of Aut(T ), acting transitively on ∂T and with two orbits on V . Let σ denote

the special representation of G on the first ℓ2-cohomology on T . If π ∈ Ĝ \{σ} then
H1(G, π) = 0; on the other hand H1(G, σ) is one-dimensional.

1.2. Chiswell’s Mayer-Vietoris sequence
If G is a discrete group acting on a tree without inversion, and M is any G-module,

the cohomology H∗(G,M) can be computed by means of a Mayer-Vietoris sequence
due to Chiswell [Chi76]:

0 −→ MG ∆
−→

∏

v∈V

MGv
ι

−→
∏

e∈A

MGe
∂

−→ H1(G,M)

∆
−→

∏

v∈V

H1(Gv,M)
ι

−→
∏

e∈A

H1(Ge,M) −→ · · · ,
(1)

where:

• V (resp. E) is the vertex set (resp. oriented edge set) of X, and A is an orienta-
tion, i.e. a choice of one edge in every pair of two edges with opposite orientation
in E;

• Gv (resp. Ge) is the vertex group (resp. edge group) attached with v ∈ V (resp.
e ∈ E);

• for every subgroup H ⊂ G, the sub-module of H-fixed points in M is MH .

The maps ∆, ι, ∂ will be described later.
For a topological group G, a G-module M is unitary if M is a Hilbert space on

which G acts through a strongly continuous unitary representation. In that case,
we also consider the reduced cohomology H

∗
(G,M), i.e. the quotient of cocycles by
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the closure of coboundaries, where the closure is taken in the topology of uniform
convergence on compact subsets.

The Delorme-Guichardet Theorem (see [Gui72], or Section 2.12 in [BdlHV08])
says that, for a locally compact, second-countable group G, Kazhdan’s property (T)
is equivalent to H1(G,M) = 0 for every unitary G-module M . Since then,
Shalom [Sha00] proved that, for G compactly generated, property (T) is equivalent

to the vanishing of H
1
(G,V ), for every unitary G-module M . (The relative analogue

of Shalom’s theorem fails in general [FVM12].)
A locally compact group G has Serre’s property (FA) if every continuous, isometric

action of G on a tree preserves a vertex or an edge. It is a result by Watatani [Wat82]
that property (T) implies property (FA) (see also Lemma 3.2 below).

As a consequence, the fundamental group G of a graph of groups, provided it
does not coincide with some vertex group, does not have property (T), as G acts
without fixed point on the universal cover of the graph of groups (see [Ser77, Sec-
tion 5.4]). The Mayer-Vietoris sequence (1) allows in principle to characterize the
unitary G-modules M for which H1(G,M) 6= 0. One question we address in this

paper is to characterize the unitary G-modules M such that H
1
(G,M) 6= 0. It is

possible to write down the analogue of (1) in reduced cohomology, but easy examples
show that it will not in general be exact. However, when the vertex groups have
property (T) (in particular, when they are compact, so that our result covers the
case of locally compact groups acting properly on trees), we can characterize those

unitary G-modules M with H
1
(G,M) 6= 0:

Theorem 1.3. Let G be a locally compact group acting without inversion on a tree,
with vertex stabilizers having property (T); let M be a unitary G-module.

i) H1(G,M) = 0 if and only if the map ι :
∏

v∈V MGv →
∏

e∈A MGe is onto;

ii) H
1
(G,M) = 0 if and only if the map ι :

∏
v∈V MGv →

∏
e∈A MGe has dense

image (where
∏

v∈V MGv and
∏

e∈A MGe are endowed with the product topol-
ogy).

Of course the first part of Theorem 1.3 is an immediate consequence of the Mayer-
Vietoris sequence (1), we record it only to contrast it with the second part. As semi-
direct products by Z can be viewed as particular HNN-extensions, we may apply
Theorem 1 to them. We will prove:

Corollary 1.4. Let θ be an automorphism of a locally compact group Γ with property
(T). Let M be a unitary G-module, with G =: Γ⋊θ Z. Let t be the generator of Z
such that tht−1 = θ(h) (h ∈ Γ).

i) H1(G,M) = 0 if and only if 1 is not a spectral value of t|MΓ ;

ii) H
1
(G,M) = 0 if and only if 1 is not an eigenvalue of t|MΓ .

This paper is organized as follows. Section 2 gives a direct construction of Chiswell’s
Mayer-Vietoris sequence, in degrees 0 and 1: this does not seem to appear explicitly
in the literature and is needed for our computations. In Section 3, we study a specific
1-cocycle b ∈ Z1(G, ℓ2(E)), where E is the set of oriented edges of T : it is the cocycle
such that ‖b(g)‖2 = 2d(gx0, x0), used to prove that a group acting properly on a tree
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has the Haagerup property; we call b the Haagerup cocycle. We re-prove the known
fact that b is trivial in H1(G, ℓ2(E)) if and only if G has a fixed vertex; our proof
provides a cohomological characterization of Serre’s property (FA). We also prove

that b is trivial in H
1
(G, ℓ2(E)) if and only if the G-action on T is elementary, i.e. G

has a finite orbit in T ∪ ∂T . Section 4 is dedicated to the proof of Theorem 1.3 and
Corollary 1.4. In Section 5, we study the consequences of the Mayer-Vietoris sequence
on the vanishing of the first ℓ2-Betti number for discrete groups acting on trees; in
particular we prove Theorem 1.1. Section 6 studies the connection with “large” closed
groups of automorphisms of a locally finite tree, and it is there that one will find the
proof of Nebbia’s Theorem 1.2.
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2. Preliminaries

The natural framework for our study is Bass-Serre Theory (Section 5 in [Ser77]),
of which we first recall the relevant parts.

A graph is a pair X = (V,E) where V is the set of vertices, E is the set of oriented
edges; E is equipped with a fixed-point free involution e 7→ e and with maps E → V :
e 7→ e+ and E → V : e 7→ e− (e− is the initial vertex and e+ the terminal vertex of
the edge e), such that e+ = e− for every e ∈ E. An orientation of X is the choice of
a fundamental domain for the involution on E.

A graph of groups (G, X) is the data of a connected graph X = (V,E) and, for
every v ∈ V a discrete group Gv, for every edge e ∈ E a discrete group Ge such that
Ge = Ge and a monomorphism σe : Ge → Ge+ .

Let T be a maximal tree in X. Let F (E) = 〈te (e ∈ E) | ∅〉 be the free group
on E. The fundamental group G =: π1(G, X, T ) is the quotient of the free product
(∗v∈V Gv) ∗ F (E) by the following set of relations:





teσe(ge)t
−1
e = σe(ge) (e ∈ E, ge ∈ Ge);

tete = 1 (e ∈ E);
te = 1 (e ∈ E(T )),

where E(T ) is the edge set of T . Assume that some orientation A has been chosen.
For e ∈ A, we shall identify Ge with σe(Ge), and we shall denote by θe (instead of σe)
the monomorphism Ge → Ge− . Then G can also be described (see [Chi76, p. 67]) as
the quotient of the free product (∗v∈V Gv) ∗ F (A) by the relations:

{
teget

−1
e = θe(ge) (e ∈ A, ge ∈ Ge);

te = 1 (e ∈ E(T ) ∩A).

Recall from [Ser77] that the universal cover T of X has vertex set Ṽ = ⊔
v∈V

G/Gv

and oriented edge set Ã = ⊔
e∈A

G/Ge. Furthermore, if π : T → X denotes the canonical
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projection, then there is a lifting X → T denoted by x 7→ x̃ such that π(x̃) = x, and

T̃ , the lift of the maximal tree T is a subtree of T . With this notation in place, we
have that,1 for e ∈ A:

(gẽ)+ = gẽ+ and (gẽ)− = gt−1
e ẽ−. (2)

This gives rise to the following short exact sequences of G-modules

0 −→ Z(Ã)
δ

−→ Z(Ṽ )
q

−→ Z −→ 0. (3)

As G-modules, these decompose as Z(Ã) = ⊕
e∈A

Z(G.ẽ) and Z(Ṽ ) = ⊕
v∈V

Z(G.ṽ), so

that δ(g.ẽ) = gẽ+ − gt−1
e ẽ− is just the boundary operator on the tree T , and q is the

augmentation defined by q(g.ṽ) = 1.

Now, for two vertices v, w ∈ V , we denote by [v, w] (respectively [gṽ, g′w̃]), the
unique oriented edge path from v to w (respectively from gṽ to g′w̃) in the maximal
tree T , (respectively in T ).

For e ∈ E or e ∈ Ẽ, we define

εvw(e) =





0 if e /∈ [v, w];
+1 if e ∈ [v, w] and e points away from v;
−1 if e ∈ [v, w] and e points towards v.

Note that if e ∈ E \ E(T ) then εvw(e) = 0 for every v, w ∈ V . Furthermore, since

T lifts to T̃ we have that [̃v, w] = [ṽ, w̃] and so π[ṽ, w̃] = π[̃v, w] = [v, w], in particular,
εṽw̃(ẽ) = εvw(e) for every v, w ∈ V and e ∈ E.

Remark 2.1. Observe that the following hold for all vertices u, v, w ∈ V , or u, v, w∈ Ṽ :

εvw = −εwv;

εuv + εvw = εuw.

This allows us to define
∫ w

v
[v, w] =

∑
εvw(e)e, where the sum is taken over e ∈ A,

or e ∈ Ã, according to whether v, w ∈ V or Ṽ .

Using this, we fix a base vertex v0 ∈ V and define s : Z(Ṽ ) → Z(Ã) by

s(gṽ) =

∫ gṽ

ṽ0

[ṽ0, gṽ].

It is then straightforward to verify that s is a left-inverse to δ:

s ◦ δ(gẽ) =

∫ (gẽ)+

ṽ0

[ṽ0, (gẽ)+]−

∫ (gẽ)−

ṽ0

[ṽ0, (gẽ)−] = gẽ.

Now, for abelian groups C,D denote by hom(C,D) the abelian group of all homo-
morphisms C → D. If furthermore, C and D are G-modules, then hom(C,D) is also

1We note that our convention here does not agree with Serre’s, who identifies edge groups Ge with
their image in Ge+

.



256 TALIA FERNÓS and ALAIN VALETTE

a G-module by taking g.f := g ◦ f ◦ g−1 and so hom(C,D)G is the collection of G-
equivariant homomorphisms (i.e. intertwiners) from C to D. For f : C → D a homo-
morphism, and M an abelian group, the transposed homomorphism

f t : hom(D,M) → hom(C,M)

is defined by f t(g) = g ◦ f .
Let M be a G-module. Transposing the exact sequence (3), we get a new exact

sequence:

0 −→ M = hom(Z,M)
qt

−→ hom(Z(Ṽ ),M)
δt

−→ hom(Z(Ã),M) −→ 0, (4)

where (qt(m))(gṽ) ≡ m, and (δt(f))(gẽ) = f(δ(gẽ)) = f((gẽ)+)− f((gẽ)−). Further-

more, we have for ω ∈ hom(Z(Ã),M)

(st(ω))(gṽ) =

∫ gṽ

ṽ0

ω := ω(

∫ gṽ

ṽ0

[ṽ0, gṽ]).

We note that for ω = (ωe)e∈A ∈
∏

e∈A MGe , and any three vertices u, v, w ∈ V , we
then have that

∫ w

v

ω =

∫ w̃

ṽ

ω,

∫ w

v

ω = −

∫ v

w

ω,

∫ v

u

ω +

∫ w

v

ω =

∫ w

u

ω.

Furthermore, if e ∈ E(T ) ∩A then
∫ e+

e−

ω = ωe. (5)

Let Ck(G,M) be the space of k-cochains on G with coefficients in M , i.e. the set
of maps Gk → M . Applying the functor C∗(G, ·) to the short exact sequence (4), we
get a commutative diagram:

x
x

x
0 −→ C1(G,M) −→ C1(G, hom(Z(Ṽ ),M)) −→ C1(G, hom(Z(Ã),M)) −→ 0x ∂0

x
x

0 −→ M −→ hom(Z(Ṽ ),M) −→ hom(Z(Ã),M) −→ 0,

where ∂0 : hom(Z(Ṽ ),M) → C1(G, hom(Z(Ṽ ),M)) is the map given by (∂0φ)(g) =
(g − 1)φ. This in turn yields the long exact sequence [Chi76, Theorem 2]:

0 −→ MG qt∗−→ hom(Z(Ṽ ),M)G
δt∗−→ hom(Z(Ã),M)G

∂
−→ H1(G,M) −→ · · · ,

where the connecting map is given by the Snake Lemma:

∂̃ω = ((qt∗)
−1 ◦ ∂0 ◦ (δ

t
∗)

−1)(ω).

The decomposition of Ṽ and Ã into G orbits yields that Hk(Z(Ṽ ),M) =
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∏
v∈V

Hk(Z(G/Gv),M) and Hk(Z(Ã),M) =
∏
e∈A

Hk(Z(G/Ge),M). By Shapiro’s Lem-

ma [Bro94, Proposition 6.2] we have that for any x ∈ V ⊔A

Hk(Gx,M) ∼= Hk(G, hom(Z(G/Gx),M)).

Hence, recalling that MGx ∼= hom(Z(G/Gx),M)G and setting ∆ = qt∗ and ι = δt∗ we
get Chiswell’s Mayer-Vietoris sequence:

0 −→ MG ∆
−→

∏

v∈V

MGv
ι

−→
∏

e∈A

MGe
∂

−→ H1(G,M) −→ · · · .

We proceed to record the maps ∆ and ι appearing in the Mayer-Vietoris sequence
(1) and observe that these are well defined for G a topological group.

• The map ∆: Hk(G,M) →
∏

v∈V Hk(Gv,M) arises by restricting the action
from G to the Gv’s; in particular, ∆: MG →

∏
v∈V MGv is given by (∆m)v = m

(where m ∈ MG, v ∈ V ).

• The map ι :
∏

v∈V Hk(Gv,M) →
∏

e∈A Hk(Ge,M) is given at the level of k-
cocycles by

(ιω)e = ωe+ |Ge
− t−1

e (ωe− ◦ θe),

where e ∈ A, ω ∈
∏

v∈V Zk(Gv,M). In particular, ι :
∏

v∈V MGv →
∏

e∈A MGe

is given by (ιf)e = fe+ − t−1
e fe− , for f ∈

∏
v∈V MGv .

Example 2.2. Let G = F2 = 〈t1, t2 | ∅〉 be the free group on two generators, viewed
as the fundamental group of the graph of groups with one vertex and two edges, and
all groups trivial. For M a G-module, the map ι : M → M ⊕M is given by f 7→ ((1−
t−1
1 )f, (1− t−1

2 )f). If M is a unitary G-module, it was shown by Guichardet [Gui72]
that ι is not onto, so that H1(F2,M) 6= 0 for every unitary G-module M . Note that

examples of unitary, irreducible G-modules M with H
1
(G,M) = 0 were constructed

in [MV10].

Next we consider the connecting map ∂ :
∏

e∈A MGe → H1(G,M): it is not de-
scribed explicitly in Chiswell’s paper [Chi76], nor are we aware of any published
description of this map,2 although it might of course be known to experts. It is
important for our main results to have this map explicitly, where we will also not
assume that groups are discrete; we therefore will spend some time developing it.

Let ω ∈ hom(Z(Ã),M)G so that

((∂ ◦ st)(ω)(g1))(gṽ) = ((g1 − 1)st(ω))(gṽ) = g1(

∫ g
−1

1
gṽ

ṽ0

ω)−

∫ gṽ

ṽ0

ω

=

∫ gṽ

g1ṽ0

ω +

∫ ṽ0

gṽ

ω = −

∫ gṽ0

ṽ0

ω,

that is,

∂̃ω(g) := ((qt∗)
−1 ◦ ∂ ◦ ((δt∗)

−1)(ω))(g) = −

∫ gṽ0

ṽ0

ω. (6)

2Chiswell’s paper was preceded by papers of Swan [Swa69] where (1) is established for amalgamated
products, and Bieri [Bie75] where (1) is established for HNN extensions. But these papers do not
contain any explicit description of ∂ either.



258 TALIA FERNÓS and ALAIN VALETTE

However, we would like to have a description of ∂̃ purely in terms of the graph of
groups data.

Proposition 2.3. Let ω ∈
∏

e∈A MGe .

1. For v ∈ V and gv ∈ Gv, we have: (∂ω)(gv) = (gv − 1)
∫ v

v0
ω.

2. For e ∈ A\E(T ), we have: (∂ω)(te) = te
∫ e+

v0
ω − teωe −

∫ e−

v0
ω.

Proof. Fix ω ∈
∏

e∈AM
Ge ; the canonical isomorphism

∏
e∈AM

Ge → hom(Z(Ã),M)G

maps ω to ω̃ where ω̃gẽ = gωe for e ∈ A and g ∈ G.

1. If gv ∈ Gv then using the fact that gv.ṽ = ṽ we have by (6):

(∂ω)(gv) = −

∫ gv ṽ0

ṽ0

ω̃

=

∫ ṽ

gv ṽ0

ω +

∫ ṽ0

ṽ

ω̃

= (gv − 1)

∫ ṽ

ṽ0

ω̃ = (gv − 1)

∫ v

v0

ω,

where we have used π[̃v, w] = [v, w], as observed earlier.

2. For e ∈ A\E(T ), we have by (6):

(∂̃ω)(te) =

∫ ṽ0

teṽ0

ω̃

=

∫ teẽ+

teṽ0

ω̃ +

∫ ẽ−

teẽ+

ω̃ +

∫ ṽ0

ẽ−

ω̃

= te

∫ ẽ+

ṽ0

ω̃ + te

∫ t−1
e ẽ−

ẽ+

ω̃ −

∫ ẽ−

ṽ0

ω̃.

But ẽ+ = ẽ+ and t−1
e ẽ− = ẽ− by (2), so (∂̃ω)(te) = te

∫ e+

v0
ω − te

∫ e+

e−
ω −

∫ v0

e−
ω.

Finally,
∫ e+

e−
ω = ωe by (5), which concludes the proof.

Lemma 2.4. The class of ∂̃ω is independent of choice of the base-vertex v0.

Proof. Consider ∂̃′ω defined similarly to ∂̃ω but with respect to a base vertex v1. It is
a straightforward computation, which uses Remark 2.1, that for each g ∈ (⊔v∈V Gv) ⊔
{te : e ∈ A} the difference is a co-boundary. Namely,

∂̃ω(g)− ∂̃′ω(g) = (g − 1)

∫ v1

v0

ω.

Then, ∂ :
∏

e∈A MGe → H1(G,M) as the composition of ∂̃ with the canonical map
Z1(G,M) → H1(G,M).
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3. On the Haagerup cocycle

Let G be a topological group acting without inversion on the tree T . Denote by
V and E the set of vertices and oriented edges, respectively, of the tree T . We then
have a natural action of G on ℓ2(E) which we will now study.

Recall that the removal of an (open) edge disconnects the tree into two connected
components, called half-trees. To each h ∈ E , we will associate the connected com-
ponent which contains h+. This way, we identify E with the set of half-trees: as a
half-tree, the edge h corresponds to {x ∈ V : d(x, h+) < d(x, h−)}. This allows us to
write: x ∈ h.

Let x ∈ V and consider the characteristic function 1x = {h ∈ E : x ∈ h} of the set
of edges pointing towards x. With this notation, we fix an initial vertex x0 ∈ V and
consider

b(g) = (g − 1) · 1x0
= 1gx0

− 1x0
.

Since b is a formal cocycle, the observation that ‖b(g)‖22 = 2d(gx0, x0) shows imme-
diately that [b] ∈ H1(G, ℓ2(E)). Furthermore, b is bounded if and only if G has a fixed
vertex, and similarly, G acts properly on T if and only if b is proper on G. We note
that the class of b is independent of the base vertex x0. We will call b the Haagerup
cocycle with respect to the base vertex x0. This cocycle is a witness to the fact that
groups that admit a proper action on a tree have the Haagerup property. Note that
the class [b] is clearly independent of the choice of x0; this will allow us to choose x0

in an appropriate way, when studying cohomological properties of b.

We wish to now understand when this cocycle is trivial in the context of Chiswell’s
Mayer-Vietoris sequence. Let X = (V,E) be the quotient graph G\T . Fix a base
vertex v0 ∈ V , a maximal tree T of X, and an orientation A of E. As before, denote
by π : T → X the quotient map, with section x 7→ x̃ for x ∈ V ∪ T . This lifting has
the property that ẽ+ = ẽ+. Note that ẽ = ẽ.

For e ∈ A ∩ E(T ), let us denote by ϑe : Ge → Ge− the natural inclusion. For e ∈
A\E(T ), recall that ẽ− = t−1

e ẽ−, and we set ϑe(ge) = teget
−1
e for ge ∈ Ge.

We now observe that b is clearly bounded, hence cohomologically trivial on each
vertex group Gv (v ∈ V ). This means that [b] is in the kernel of ∆: H1(G, ℓ2(E)) →∏

v∈V H1(Gv, ℓ
2(E)), so by the Mayer-Vietoris sequence (1) it is in the image of ∂.

We explicitly describe an element of
∏

e∈A ℓ2(E)Ge that maps to [b].

Let us define ωe = δ
ẽ
− δẽ for e ∈ A; observe that ω ∈

∏
e∈A ℓ2(E)Ge .

Lemma 3.1. Let b ∈ Z1(G, ℓ2(E)) be the Haagerup cocycle with respect to the base
vertex ṽ0. Then ∂̃(ω) = b, with ω as above.

Proof. Observe first that for e ∈ A:

ωe = 1ẽ− − 1ẽ+ .

Formally ω|T = df , where fv = −1ṽ (v ∈ V ). So:
∫ v

v0

ω = −1ṽ + 1ṽ0
.
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Now, for gv ∈ Gv we have:

∂̃ω(gv) = (gv − 1)

∫ v

v0

ω

= (gv − 1)(−1ṽ + 1ṽ0
)

= (gv − 1)1ṽ0

= b(gv).

Now, let e ∈ A; using ẽ+ = ẽ+ and te(ẽ−) = ẽ−:

(∂̃ω)(te) = te

∫ e+

v0

ω −

∫ e−

v0

ω − teωe

= te(−1ẽ+ + 1ṽ0
) + 1ẽ− − 1ṽ0

− te(1ẽ− − 1ẽ+)

= (te − 1)1ṽ0

= b(te).

Since ∂̃ω agrees with b on the generators (⊔v∈V Gv) ⊔ {te : e ∈ A} by Lemma 2.4 we
have that ∂̃ω = b.

Lemma 3.2. Let G be a topological group acting on a tree T without inversion. The
following are equivalent:

a) [b] = 0 in H1(G, ℓ2(E));

b) G has a fixed vertex;

c) ∆: H1(G, ℓ2(E)) →
∏

v∈V H1(Gv, ℓ
2(E)) is injective.

Proof. (a) ⇔ (b) Using the fact that

‖b(g)‖2 = 2d(gx0, x0),

we see that [b] = 0 if and only if b is bounded, if and only if G admits a bounded
orbit on vertices. By a standard argument (see, for example, [BH99, Proposition 2.7,
Chapter II.2]), this is equivalent to G fixing a vertex.

(c) ⇒ (a) Follows immediately from the already observed fact that [b] ∈ ker∆.
(b) ⇒ (c) G admits a globally fixed vertex x0, so that G = Gv0

, where v0 = π(x0).
Since G is equal to a vertex stabilizer, the restriction of ∆ to the corresponding factor
of

∏
v H

1(Gv, ℓ
2(E)) is the identity, and ∆ is injective.

Remark 3.3. Assume that [b] = 0. Then, by the exact sequence (1), the vector
ω ∈

∏
e∈Aℓ

2(E)Ge from Lemma 3.1 is in the image of ι :
∏

v∈V ℓ
2(E)Gv →

∏
e∈Aℓ

2(E)Ge.
This can be seen explicitly as follows. Suppose G fixes the vertex x0 in T , set
v0 = p(x0). Then X = G\T is a tree. Set then fv =

∫ v

v0
ω; then fv ∈ ℓ2(E)Gv , since

Gv pointwise fixes the geodesic [x0, ṽ]; and clearly ι(f) = df = ω (which is essentially
Poincaré’s lemma).

From Lemma 3.2 and the Delorme-Guichardet Theorem, we immediately deduce
the following cohomological characterization of Serre’s property (FA):

Corollary 3.4. A topological group G has Serre’s property (FA) if and only if, for
any action of G without inversion on a tree T , the map

∆: H1(G, ℓ2(E)) →
∏

v∈V

H1(Gv, ℓ
2(E))
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is injective. In particular, if G is locally compact with Kazhdan’s property (T), then
G has Serre’s property (FA).3 �

We now explore the triviality of the Haagerup cocycle in reduced cohomology.

Lemma 3.5. Suppose that F2 6 Aut(T ) acts freely. Then ℓ2(E) does not have F2-
almost invariant vectors.

Proof. Let C denote a choice of one representative in each F2-orbit in E . Since the
F2-action is free, this choice identifies the ℓ2(E) ∼= ⊕

c∈C
ℓ2(F2), as an F2-module, where

the direct sum is endowed with the diagonal left regular representation of F2. So
the result follows from the observation that ℓ2(F2) does not have F2-almost invariant
vectors, which is guaranteed by the non-amenability of F2.

Definition 3.6. A group G acting on a tree T is said to be elementary if it has a
finite orbit in T or ∂T .

If one has a finite orbit in ∂T but not in T , then the orbit must have size at
most 2. This follows, for example, from Propositions 1 and 2 of [PV91] along with
the classification of isometries.

We now recall a little about the structure of the stabilizers Aut(T )ξ0 and
Aut(T ){ξ0,ξ1} where ξ0, ξ1 ∈ ∂T . The group Aut(T )ξ0 contains the collection of its
elliptic elements as a normal subgroup Rξ0 = ∪v∈T stab[v, ξ0). The map that asso-
ciates to each element in Aut(T )ξ0 its signed translation length is a homomorphism
to Z with kernel Rξ0 , see [PV91, Lemme 4]; we call it the Busemann homomor-
phism. Choosing a ∈ Aut(T )ξ0 a hyperbolic element with minimal translation length
(or setting a = 1 otherwise) describes an isomorphism

Aut(T )ξ0
∼= 〈a〉⋉Rξ0 .

This provides Aut(T )ξ0 with a normal form, i.e. for each g ∈ Aut(T )ξ0 there is a
unique n ∈ Z and r ∈ Rξ0 such that g = anr.

Next, consider G = Aut(T ){ξ0,ξ1}; observe that it contains, as a subgroup of index
at most two, G0 = Aut(T )ξ0 ∩Aut(T )ξ1 and G0

∼= 〈a〉⋉ (Rξ0 ∩Rξ1).
Finally, we observe that these descriptions and canonical forms hold by restriction

to any subgroup or Aut(T )ξ0 or Aut(T ){ξ0,ξ1}.
To simplify notation which will quickly become cumbersome, let

2x,y = 1[x,y] − 1[y,x].

The fact that ‖2x,y‖
2 = 2d(x, y) should give the reader an idea of why the notation

was chosen this way. Observe that if b is the Haagerup cocycle with respect to base
point x0 then

b(g) = 2x0,gx0
.

Theorem 3.7. Let G be a discrete group acting on T without inversion. Let b ∈

Z1(G, ℓ2(E)) denote the Haagerup cocycle. Then [b] is trivial in H
1
(G, ℓ2(E)) if and

only if the G-action is elementary.

3The latter statement was first proved by Watatani [Wat82].
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Proof. Assume the G-action is non-elementary. Then, by [PV91] there exists a freely
acting F2 6 G. By Lemma 3.5, ℓ2(E) has no F2-almost invariant vectors, hence no

G-almost invariant vectors. By Guichardet’s result: H
1
(G, ℓ2(E)) = H1(G, ℓ2(E)); so

it is enough to show that [b] 6= 0 in H1(G, ℓ2(E)), i.e. that b is unbounded on G. But
b is already unbounded on F2, as it acts freely.

Conversely, suppose that the action is elementary. If there is a finite orbit in T ,

then by Lemma 3.2, [b] is trivial in H1(G, ℓ2(E)) and hence in H
1
(G, ℓ2(E)).

Therefore, assume that G does not have a finite orbit in T . Then, either G has
a fixed point in ∂T or there is a G-invariant set {ξ0, ξ1} ⊂ ∂T such that G0 := G ∩
Aut(T )ξ0 ∩Aut(T )ξ1 has index 2 in G.

Case 1: G fixes ξ0.

Choosing a hyperbolic isometry a ∈ G of minimal translation length ℓ(a), every
element of Gmay be described uniquely as aNr for N ∈ Z and r ∈ Rξ0 ∩G. Replacing
a by a−1 if necessary, we may assume that ξ0 is a contracting fixed point for a.

Let F ⊂ G be a finite set. Then F ⊂ {aNr : M ′ 6 N 6 M, r ∈ F0} where F0 is a
finite subset of Rξ0 , with 1 ∈ F0. We begin by considering the case where F = {aNr :
0 6 N 6 M, r ∈ F0}.

Let A be the axis of a. The elements of the finite set F0 ⊂ Rξ0 must have a common
fixed point t which allows us to choose x0 ∈ [t, ξ0) ∩A, that we take as base-point
for the Haagerup cocycle. To simplify notation, let xn = anx0 for n ∈ Z and observe
that if ℓ(a) is the translation length of a then ‖2xk,xk+1

‖2 = 2ℓ(a). With this, we have
that, for N ∈ Z and r ∈ F0

b(aNr) = 2x0,xN
.

Let vn = −
n∑

k=0

(1− k
n
)2xk,xk+1

and bn(g) = gvn − vn. Now, if 0 6 N 6 M , n > M ,

r ∈ F0 then

bn(a
Nr) = −

n+N∑

k=N

(
1−

k −N

n

)
2xk,xk+1

+

n∑

k=0

(
1−

k

n

)
2xk,xk+1

=

N−1∑

k=0

(
1−

k

n

)
2xk,xk+1

−

n∑

k=N

N

n
2xk,xk+1

−

n+N∑

k=n+1

(
1−

k −N

n

)
2xk,xk+1

.

So, observing that b(aNr) =
N−1∑
k=0

2xk,xk+1
and that 2xk,xk+1 is orthogonal to

2xk′ ,xk′+1
for k 6= k′:

‖b(aNr)− bn(a
Nr)‖2

=

∥∥∥∥∥

N−1∑

k=0

2xk,xk+1
−

N−1∑

k=0

(
1−

k

n

)
2xk,xk+1

+

n∑

k=N

N

n
2xk,xk+1

+

n+N∑

k=n+1

(
1−

k −N

n

)
2xk,xk+1

∥∥∥∥∥

2
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=

∥∥∥∥∥

N−1∑

k=0

k

n
2xk,xk+1

+
N

n

n∑

k=N

2xk,xk+1
+

n+N∑

k=n+1

(
1−

k −N

n

)
2xk,xk+1

∥∥∥∥∥

2

= 2ℓ(a)

[
1

n2

N−1∑

k=1

k2 +
N2

n2
(n−N + 1) +

1

n2

n+N∑

k=n+1

(n+N − k)2

]

6
2ℓ(a)

n2

(
M3 +M2n+M3

)

6
6ℓ(a)M2

n
.

This part is concluded by observing that, if K is an arbitrary finite subset of G,
then for N ≫ 0, the set aNK is contained in a finite set F of the above form. Defining
the 1-cocycle cn as cn = b− bn, we then have, for h ∈ F :

cn(a
−Nh) = a−N (cn(h)− cn(a

N )),

so by the triangle inequality: ‖cn(g)‖ 6

√
12ℓ(a)

n
M −→

n→∞
0 for every g ∈ K.

Case 2: G does not have a fixed point in ∂T but preserves {ξ0, ξ1} ⊂ ∂T .

Let G0 = G ∩Aut(T )ξ0 ∩Aut(T )ξ1 and observe that G0 has index 2 in G. By the

first case, [b] is trivial in H
1
(G0, ℓ

2(E)). By Lemma 3.8 just below, [b] is also trivial

in H
1
(G, ℓ2(E)).

Lemma 3.8. Let H be a finite index subgroup in the discrete group G. For any uni-

tary G-module M , the restriction map RestHG : H
1
(G,M) → H

1
(H,M) is injective.

Proof. Let g1, . . . , gN be representatives for the left cosets ofH inG. Let b∈Z1(G,M)
be a 1-cocycle such that b|H is a limit of coboundaries. We must show that b is a
limit of coboundaries. Passing to the associated affine action α(g)v = gv + b(g) (g ∈
G, v ∈ M): under the assumption that there is a sequence (vk)k>0 ∈ M such that
limk→∞ ‖α(h)vk − vk‖ = 0 for every h ∈ H, we must show the existence of a sequence
(wk)k>0 ∈ M such that limk→∞ ‖α(g)wk − wk‖ = 0 for every g ∈ G. So, fix g ∈ G.
There exists a permutation σ of {1, 2, . . . , N} and elements h1, . . . , hN ∈ H such that

ggi = gσ(i)hi for every i = 1, . . . , N . Set wk = 1
N

∑N
i=1 α(gi)vk. Then, using the fact

that α(s)x− α(s)y = s(x− y) for every s ∈ G, x, y ∈ M :

α(g)wk − wk =
1

N
(

N∑

i=1

α(ggi)vk)− wk =
1

N

N∑

i=1

α(gσ(i)hi)vk −
1

N

N∑

i=1

α(gσ(i))vk

=
1

N

N∑

i=1

gσ(i)(α(hi)vk − vk).

Since

lim
k→∞

‖α(hi)vk − vk‖ = 0

for i = 1, . . . , N , we deduce

lim
k→∞

‖α(g)wk − wk‖ = 0.



264 TALIA FERNÓS and ALAIN VALETTE

4. Proof of Theorem 1.3 and one application

4.1. Proof of Theorem 1.3(ii)

We first assume that ι :
∏

v∈V MGv →
∏

e∈A MGe has dense image. Now, observ-

ing the explicit formula for ∂̃ we see that ∂ :
∏

e∈A MGe → H1(G,M) is continuous
for the product topology. Furthermore, the assumption of property (T) for the vertex
groups implies that H1(Gv,M) = 0 for each v. This means that ∂ is onto, by the
Mayer-Vietoris sequence (1). We therefore have that ∂̃ :

∏
e∈A MGe → Z1(G,M) is

onto. Furthermore, im(ι) = ker(∂) is dense in
∏

e∈A MGe , which means ∂̃|ker(∂) has
dense image in B1(G,M). This of course means that B1(G,M) is dense in Z1(G,M)

and hence H
1
(G,M) = 0.

Conversely, assume that H
1
(G,M) = 0. Continuing to assume that all vertex

groups have property (T), the Mayer-Vietoris sequence yields that ∂̃ :
∏

e∈A MGe →
Z1(G,M) is onto and that im(ι) = ker(∂). Therefore, choosing ω ∈

∏
e∈A MGe , we

must show that ω can be approximated by elements in the image of ι. By assumption,
there exists a sequence (mk)k>1 of vectors in M with ∂̃ω(g) = limk→∞ gmk −mk.

By definition of ∂̃ω|Gv
, the sequence (−mk +

∫ v

v0
ω)k>1 is almost Gv-invariant, for

all v ∈ V . Denote by Pv the orthogonal projection of M onto MGv , and define
fk ∈

∏
v∈V MGv by (fk)v = Pv(−mk +

∫ v

v0
ω) (for v ∈ V ).

Claim. limk→∞ ‖(fk)v − (−mk +
∫ v

v0
ω)‖ = 0 for every v ∈ V .

Suppose this does not hold for some v ∈ V . Passing to a subsequence, we may
assume that ‖(fk)v − (−mk +

∫ v

v0
ω)‖ is bounded below by a positive constant. But

(fk)v − (−mk +
∫ v

v0
ω) belongs to the orthogonal complement (MGv )⊥. So the se-

quence

(
(fk)v−(−mk+

∫
v

v0
ω)

‖(fk)v−(−mk+
∫

v

v0
ω)‖

)

k>1

is an almost Gv-invariant sequence of unit vectors

in (MGv )⊥, which clearly has no non-zero Gv-invariant vector. This contradicts prop-
erty (T) for Gv, establishing the claim.

The proof of the theorem is then finished by showing that ω = limk→∞ ι(fk). But,
for e ∈ A:

ωe − ι(fk)e = ωe − (fk)e+ + t−1
e (fk)e−

= ωe − (−mk +

∫ e+

v0

ω) + t−1
e (−mk +

∫ e−

v0

ω)

+[(−mk +

∫ e+

v0

ω)− (fk)e+ ] + t−1
e [(fk)e− − (−mk +

∫ e−

v0

ω)].

By the claim, the two terms in brackets go to 0 for k → ∞. It remains to show
that limk→∞ ‖ωe − (−mk +

∫ e+

v0
ω) + t−1

e (−mk +
∫ e−

v0
ω)‖ = 0. But

ωe − (−mk +

∫ e+

v0

ω) + t−1
e (−mk +

∫ e−

v0

ω)

= ωe − t−1
e (mk − temk) + t−1

e (

∫ e−

v0

ω)−

∫ e+

v0

ω
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= ωe − t−1
e (mk − temk)− t−1

e (∂̃ω(te))− ωe

= −t−1
e [∂̃ω(te) + (mk − temk)] → 0,

where the last line converges to 0 by assumption. This concludes the proof. �

4.2. The case of HNN-extensions
Let G = HNN(Γ, A, θ) be an HNN-extension, where A is a subgroup of Γ and

θ : A → Γ is a monomorphism. Recall from [Ser77] that G can be seen as the funda-
mental group of a graph of groups with one vertex, with group Γ, and one edge, with
group A. Let t be the stable letter in G corresponding to the unique edge, satisfying
tat−1 = θ(a), for every a ∈ A. If A = Γ and θ is an automorphism of Γ, then G is the
semi-direct product Γ⋊θ Z.

The map ι : MΓ → MA is given by m 7→ (1− t−1)m.

Proof of Corollary 1.4. First observe that Ker(1− t) ∩MΓ = Ker(1− t−1) ∩MΓ =
MG, as Γ ∪ {t} generates G. In other words, 1 is not an eigenvalue of t|MΓ if and
only if MG = 0.

Claim. Let M be a unitary G-module; if MG 6= 0, then H
1
(G,M) 6= 0 (in particular,

H1(G,M) 6= 0).

To see it, let M⊥ be the orthogonal of MG in M ; from the decomposition M =

MG ⊕M⊥ we get a decomposition H
1
(G,M) = H

1
(G,MG)⊕H

1
(G,M⊥), and it is

enough to check thatH
1
(G,MG) 6=0. ButH

1
(G,MG)=H1(G,MG)= hom(G,MG),

which is non-zero as G maps onto Z.
We may now prove the first statement of Corollary 1.4. Assume first that

H1(G,M) = 0. By Theorem 1, the map (1− t−1)|MΓ is then onto. By the previous
claim, it follows that MG = 0 and so ι = (1− t−1)|MΓ is also injective and therefore
invertible, meaning that 1 is not a spectral value of t|MΓ . Conversely, if 1 is not a
spectral value of t|MΓ , then (1− t−1)|MΓ is invertible, in particular, it is onto, so
H1(G,M) = 0.

We now pass to the second statement of Corollary 1.4. If H
1
(G,M) = 0, then

by the claim, 1 is not an eigenvalue of t|MΓ . Conversely, if 1 is not an eigenvalue,
then (Im((1− t−1)|MΓ))⊥ = Ker((1− t−1)|MΓ) = 0, i.e. Im((1− t−1)|MΓ) is dense,

so H
1
(G,M) = 0 by Theorem 1.3.

5. The first ℓ
2-Betti number

5.1. Computing ℓ2-Betti numbers
Let G be a countably infinite group acting without inversion and co-compactly on

a tree T , with quotient graph X = (V,E) = G\T .
Let EG be a contractible CW-complex endowed with a proper, free G-action. For

a G-CW-complex Z, we may define

H
i

(2)(Z;G) := H
i

(2)(Z × EG;G)

(see [CG86, Proposition 2.2]) using the fact that the action of G on Z × EG is now

free. We denote by βi(G) := dimG H
i

(2)(EG,G) the i-th L2-Betti number.
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Let Y be the geometric realization of T , so that Y is a contractible, 1-dimensional
CW-complex. Let Y ′ be the set of vertices of T , viewed as a subcomplex of Y . Recall

that the relative L2-cohomology H
i

(2)(Y, Y
′;G) is the cohomology of the complex

C∗
(2)(Y, Y

′;G) := ker[C∗
(2)(Y × EG)

Rest
−→ C∗

(2)(Y
′ × EG)].

Lemma 5.1. i) dimG H
i

(2)(Y ;G) = βi(G) for i > 0.

ii) dimG H
i

(2)(Y
′, G) =

∑
v∈V βi(Gv) for i > 0.

iii) H
0

(2)(Y, Y
′;G) = 0 and dimG H

i

(2)(Y, Y
′;G) =

∑
e∈A βi−1(Ge) for i > 1.

Proof. i) Since Y is contractible, Y × EG is a contractible CW-complex on which
G acts properly freely. By uniqueness of EG, the space Y × EG isG-equivariant-
ly homotopic to EG. So

dimG H
i

(2)(Y ;G) = dimG H
i

(2)(Y × EG;G) = βi(G).

ii) Choosing a vertex ṽ in each G-orbit of Y ′, we get

dimG H
i

(2)(Y
′, G) =

∑

v∈V

dimG H
i

(2)(G · ṽ;G)

=
∑

v∈V

dimGṽ
H

i

(2)(ṽ;Gṽ) =
∑

v∈V

βi(Gv),

where the previous to last equality is [CG86, Proposition 2.5].

iii) In degree 0, we have C0
(2)(Y, Y

′;G) = 0, as Y × EG and Y ′ × EG have the same

vertices. In degree i > 1, denote by Z(i) the set of i-cells of the CW-complex Z.
Observe that

(Y × EG)(i) =

i∐

k=0

(Y (k) × EG(i−k)) = (Y (0) × EG(i))∐ (Y (1) × EG(i−1))

as Y is 1-dimensional. So

Ci
(2)(Y, Y

′;G) = ℓ2(Y (1) × EG(i−1)).

and the co-boundary operator d(i) : Ci
(2)(Y, Y

′;G) → Ci+1
(2) (Y, Y

′;G) coincides

with 1⊗ d(i−1). So dimG H
i
(Y, Y ′;G) = dimG ker(1⊗ d(i−1)) =

∑
e∈A βi−1(Ge)

by an argument similar to Part (ii) above (by choosing one representative for
each G-orbit in Y (1)).

The second part of Proposition 5.2 below, on amenable vertex-groups, was first
obtained by Schafer [Sch03, Corollary 3.12, (ii)].

Proposition 5.2. Assume that, for every vertex v of T the stabilizer Gv satisfies
βi(Gv) = 0 for i > 1. Then

β1(G) =
∑

e∈A

1

|Ge|
−

∑

v∈V

1

|Gv|

and βi(G) =
∑

e∈A βi−1(Ge) for i > 2. In particular, if Gv is amenable for every
v ∈ V , then βi(G) = 0 for i > 2.
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Proof. According to [CG86, Lemma 2.3], the relative L2-cohomology sequence:

0 −→ H
0

(2)(Y, Y
′;G) −→ H

0

(2)(Y ;G) −→ H
0

(2)(Y
′;G)

−→ H
1

(2)(Y, Y
′;G) −→ H

1

(2)(Y ;G) −→ H
1

(2)(Y
′;G) −→ · · ·

is weakly exact. Then by the rank theorem for von Neumann G-dimension, whenever
some space has G-dimension 0, the alternate sum of the G-dimensions of the previous
terms vanishes. The first statement then follows immediately from Lemma 5.1. If all
vertex-groups are amenable, then so are all edge-groups, hence βi−1(Ge) = 0 for i > 2
and e ∈ A.

Example 5.3. a) The Baumslag-Solitar group BS(1, 2) is the solvable group with
presentation

BS(1, 2) = 〈a, b | aba−1 = b2〉.

Consider then the group H with presentation

H = 〈a0, a1, a2 | a0a1a
−1
0 = a21; a1a2a

−1
1 = a22〉.

Clearly H is the amalgamated product of two copies of BS(1, 2) over Z:

H = BS(1, 2) ∗Z BS(1, 2),

so βi(H) = 0 for every i > 0 by Proposition 5.2.

b) Consider the famous Higman group H4 (see [Hig51]) with its presentation on
4 generators and 4 relations:

H4 = 〈a0, a1, a2, a3 | aiai+1a
−1
i = a2i+1, i ∈ Z/4Z〉.

Then the subgroups < a0, a1, a2 > and < a2, a3, a0 > are both isomorphic to the
group H above, while < a0, a2 > is free of rank 2, and H4 is an amalgamated
product of two copies of H over the free group F2:

H4 = H ∗F2
H.

By Proposition 5.2 we get βi(H4) = βi−1(F2) for i > 2, i.e.

βi(H4) =

{
0 if i 6= 2,
1 if i = 2.

5.2. Sufficient conditions for vanishing and non-vanishing
The following result will be important for the treatment of reduced graphs of

groups in the next section. Note that the assumption is satisfied if vertex groups have
property (T).

Proposition 5.4. Let G be a graph of groups with at least one edge, such that all
vertex groups satisfy H1(Gv, ℓ

2(G)) = 0. The following are true:

1. If for every edge e we have |Ge| = ∞, then H1(G, ℓ2(G)) = 0 and β1(G) = 0.

2. If there is an edge e ∈ A such that |Ge| < ∞ and e+ = e− then H1(G, ℓ2(G)) 6=
0. If, moreover, G is non-amenable, then β1(G) > 0.

3. If there is an edge e ∈ A such that |Ge| < ∞, e+ 6= e−, [Ge+ : Ge] > 2 and
[Ge− : teGet

−1
e ] > 2, then H1(G, ℓ2(G)) 6= 0. If, moreover, G is non-amenable,

then β1(G) > 0.
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Proof. (1) By Chiswell’s sequence (1), we have that H1(G, ℓ2(G)) = 0 if and only if
the map ι :

∏
v∈V ℓ2(G)Gv →

∏
e∈A ℓ2(G)Ge is onto.

If for every e ∈ A we have that |Ge| = ∞ then ℓ2(G)Ge = {0} and ι is onto.

(2) Assume that for every e ∈ A we have |Ge| < ∞ and e+ = e−. By contradiction
assume that H1(G, ℓ2(G)) = {0} then ι is onto by Chiswell’s sequence (1), and, in
particular, there is an f such that ι(f)e = χGe

. Let v := e+ = e−. Then, we have
that fv(x)− fv(tex) = χGe

(x), in particular, if x /∈ Ge then fv(x)− fv(tex) = 0, i.e.
fv(x) = fv(tex). Taking x = t±n

e for n ∈ N, a straightforward induction shows that
if n > 1 then fv(t

n
e ) = fv(te) and fv(t

−n
e ) = fv(1). Since fv ∈ ℓ2(G) and 〈te〉 is an

infinite subgroup of G, we conclude that fv(1) = fv(te) = 0.

On the other hand, fv(1)− fv(te) = χGe
(1) = 1 which means that either fv(1) 6= 0

or fv(te) 6= 0, a contradiction.

(3) Assume that there is e ∈ A such that |Ge| < ∞, e+ 6= e− and [Ge+ : Ge] > 2
and [Ge− : teGet

−1
e ] > 2.

Fix such an e and set v = e+ and u = e−. We may then take e to be in the maximal
spanning tree of the quotient graph so that Ge 6 Gv ∩Gu.

Observe that ι−1(ℓ2(G)Ge) = ℓ2(G)Gv ⊕ ℓ2(G)Gu . By contradiction, assume that
ι(fv, fu) = fv − fu = χGe

for some (fv, fu) ∈ ℓ2(G)Gv ⊕ ℓ2(G)Gu . This means that
fv(x) = fu(x) for every x /∈ Ge.

By assumption, there is a gv ∈ Gv \Ge and a gu ∈ Gu \Ge. Then, gvgu is a hyper-
bolic isometry of the tree (from which the graph of groups decomposition comes). This
means that for each n ∈ N the element (gvgu)

n ∈ G is distinct and not in Ge. We claim
that fv((gvgu)

−n) = fv(1) for every n ∈ N. Assume n = 1. Then, since (gvgu)
n /∈ Ge,

and fu and fv are Gu and Gv-invariant respectively, we have that

fv(g
−1
u g−1

v ) = fu(g
−1
u g−1

v )

= fu(g
−1
v )

= fv(g
−1
v )

= fv(1).

Assume that fv((gvgu)
−n) = fv(1). Then, again, we have that (gvgu)

n+1 /∈ Ge and so

fv(g
−1
u g−1

v (gvgu)
−n) = fu(g

−1
u g−1

v (gvgu)
−n)

= fu(g
−1
v (gvgu)

−n)

= fv(g
−1
v (gvgu)

−n)

= fv((gvgu)
−n)

= fv(1).

Therefore, the set {g ∈ G : fv(g) = fv(1)} is infinite. This means that fv(1) = 0.
A similar argument shows that fu(1) = 0. But this is impossible as fv(1)− fu(1) =
χGe

(1) = χGe
(1) = 1, a contradiction. Therefore, ι is not onto.

The statements regarding β1(G) follow from one of the possible definitions for

β1(G), namely the von Neumann dimension of H
1
(G, ℓ2(G)) (see Definition 1.30

in [Lüc02]), together with Guichardet’s classical result that H
1
(G, ℓ2(G)) =

H1(G, ℓ2(G)) when G is non-amenable.



THE MAYER-VIETORIS SEQUENCE FOR GRAPHS OF GROUPS 269

When vertex stabilizers Gv are non-amenable with β1(Gv) = 0, part (1) of Propo-
sition 5.4 appears as Theorem 4.1 in [MV07].

5.3. Reduced graphs of groups

Definition 5.5 ([Her88]). A graph of groups is said to be reduced if whenever e ∈ E
such that e+ 6= e− we have that [Ge+ : Ge] > 2 and [Ge− : teGet

−1
e ] > 2. Otherwise,

it is said to be unreduced.

One may pass from an unreduced graph of groups to a reduced one simply by
retracting edges e ∈ E such that e+ 6= e− and Ge = Ge+ without affecting the iso-
morphism type of the group. This was proven in successive generality in [Her88,
For02, dC09].

We make the important observation that the cases of Proposition 5.4 account for all
possibilities whenever the graph of groups is reduced. Indeed either |Ge| = ∞ for every
e ∈ A (which is case (1)), or there is an edge e ∈ A such that |Ge| < ∞. Then either
e+ = e− and we are in case (2) or for every e ∈ A such that |Ge| < ∞ we must have
that e+ 6= e−. For such edge e we must have [Ge+ : Ge] > 2 and [Ge− : teGet

−1
e ] > 2

(which is case (3)) because the graph of groups is reduced.
We now turn to the proof of Theorem 1.1. We recall the theorem (and slightly

rephrase one of the items):

Theorem 5.6. Let X be a graph, T a maximal tree in X, (G, X) a reduced graph of
groups, and G = π1(G, X, T ). Assume that β1(Gv) = 0 for every v ∈ V and

∑
1

|Ge|
<

∞. Then β1(G) = 0 if and only if G belongs to one of the following cases:

1. The graph X is a single vertex. Then G = Gv.

2. The graph X is a single loop and G = Z ⋉Gv.

3. The graph X is a single edge with |Ge| < ∞, e+ 6= e− and [Ge± : Ge] = 2.

4. Every edge group is infinite.

Proof. If X = {v} is a single vertex then G = Gv so β1(G) = 0.
Assume X is a single loop with G = Z ⋉Gv. Then, Ge

∼= Gv and we have that
β1(G) = 0 by Proposition 5.2.

If X is a single edge then G = Ge+ ∗Ge
Ge− is an amalgamated product. Assum-

ing that |Ge| < ∞ and [Ge± : Ge] = 2. Then we may again apply Proposition 5.2 to
deduce that

β1(G) =
1

|Ge|
−

1

|Ge+ |
−

1

|Ge+ |
= 0.

Finally, suppose that every edge group is infinite. It then follows that all vertex
groups are infinite as well, and hence by Proposition 5.2, we conclude that β1(G) = 0.

Conversely, suppose that β1(G) = 0. We may assume that we are not in case (1),
i.e. X has at least one edge. If G is non-amenable, then by Proposition 5.4 all edge
groups are infinite, i.e. we are in case (4). So assume G is amenable, and let G act
without inversion on the universal cover T of the graph of groups (G, X). By the
main result of [PV91], the action of G on T is elementary. If G fixes a vertex v, then
X = {v} as X is reduced, and we excluded this. If G fixes two boundary points of
T , then by Lemma 18 of [dC09], either X is a loop and G is a semi-direct product
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G = Z ⋉Gv (and we are in case (2)), or X is a segment and G is an amalgamated
product with both indices [Ge± : Ge] being equal to 2 (and we are in case (3)). If G
fixes exactly one boundary point of T , then by Lemma 17 of [dC09], X is a loop and
G is an ascending HNN-extension G = HNN(Gv, θ), where θ : Gv → Gv is injective
but not surjective. This of course implies that Gv is infinite. Since Ge ≃ Gv, we are
in case (4).

In Theorem 5.6, let T be the universal cover of the graph of groups (G, X). Assume
that T is locally finite and G acts properly on T . Then the assumption

∑
1

|Ge|
< ∞

guarantees that G is a lattice in the locally compact group Aut(T ).

6. Large groups of automorphisms of T

In this section, we are concerned with closed subgroups G of the automorphism
group of a locally finite tree T , acting transitively on the boundary ∂T . It is known
(see Proposition I.10.2 in [FTN91]) that G has one or two orbits on the set V of

vertices of T , so that T is either regular or bi-regular. We denote by Ĝ the dual of
G, i.e. the set of irreducible unitary representations of G, up to unitary equivalence.

Pointwise stabilizers in G of finite subtrees of T , form a basis of compact open
neighborhoods of the identity in G; for J a finite subtree, let GJ be its pointwise sta-
bilizer in G. For π ∈ Ĝ, let Pπ,J be the orthogonal projection from the Hilbert space
of π, onto the subspace of π(GJ )-fixed vectors. We denote by ℓπ the minimum cardi-
nality of (the vertex set of) a finite subtree J such that Pπ,J 6= 0. Following [FTN91],
we say that:

• π is spherical if ℓπ = 1;

• π is special if ℓπ = 2;

• π is cuspidal if ℓπ > 2.

Note that π is spherical if and only if π is a spherical representation with respect to
the Gelfand pair (G,Ga), where Ga is the stabilizer of an arbitrary vertex a ∈ V .

Our aim, in this section, is to give a new proof of a result of Nebbia [Neb12]

describing H1(G, π), for π ∈ Ĝ; a feature of our proof is that Nebbia appeals to
Delorme’s theorem [Del75] for the vanishing of the first cohomology of a non-trivial
spherical representation associated with an arbitrary Gelfand pair. In our situation,
we bypass the use of Delorme’s result thanks to the concrete description of spherical
representations from [FTN91].

6.1. The case of two orbits on V

If G has two orbits on V , then G acts without inversion on T , with fundamental
domain an edge e = [a, b], so G appears as an amalgamated product G = Ga ∗Ge

Gb.
(Examples are provided by G = PSL2(F ), where F is a non-archimedean local field;
or by G = Aut+(T ), the subgroup generated by elliptic automorphisms.) In this case
G has a unique special representation σ (see Theorem III.2.6 in [FTN91], and the
comments following the proof).

We now turn to the proof of Theorem 1.2:
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Proof. Let Mπ be the Hilbert space of π. If ℓπ > 2, then MGe
π = {0}, so the result

follows from Theorem 1.3.
Assume ℓπ = 1; if π is the trivial representation, then H1(G, π) = 0, as G is gen-

erated by the union of two compact subgroups (so every homomorphism G → C is
trivial). So we may assume that π is non-trivial, and appeal to the realization of π
as a boundary representation, as in Chapter II of [FTN91]: the space Mπ is then a
suitable completion of the space of locally constant functions on ∂T , and there exists
s ∈]0, 1[∪( 12 + iR) such that the G-action is given by

π(g)ξ(ω) = P (g, ω)sξ(g−1ω),

where P (g, ω) is the Radon-Nikodym derivative
dνga

dνa
(ω), where νx, for x ∈ V , is the

unique Gx-invariant probability measure on ∂T .
Let ∂T = ∂Ta ∪ ∂Tb be the partition of ∂T induced by the edge e: so ∂Ta is the

set of ends ω such that the ray [a, ω[ does not contain b, and vice-versa. Then MGa
π

is 1-dimensional (it consists of constant functions on ∂T ), MGe
π is 2-dimensional (it

consists of functions constant on ∂Ta and ∂Tb), and MGb
π is 1-dimensional: the latter

consists of functions ξ constant on ∂Ta and ∂Tb, which, moreover, satisfy:

ξ|∂Tb
= q2sξ|∂Ta

,

where q + 1 is the degree of the vertex a; this follows from the computation of
dνy

dνx

in Section II.1 of [FTN91]. It is then clear that our map ι : MGa
π ⊕MGb

π → MGe
π is

onto, so by Theorem 1.3 we have H1(G, π) = 0.
Finally we deal with the special representation σ. Then MGa

σ = MGb
σ = {0} (since

ℓσ = 2), so by Theorem 1.3 we have: H1(G, σ) ≃ MGe
σ . By Proposition III.2.3 of

[FTN91]4 we have dimMGe
σ = 1, completing the proof.

6.2. The case of one orbit on V
In this case T is a (q + 1)-regular tree, on which G acts with inversions and transi-

tively on the vertex set of T . Examples of this situation are provided by G = Aut(T ),
orG = PGL2(F ), with F a non-archimedean local field; less classical examples appear
in [Ama96].

Since G acts with inversions on T , Theorem 1.3 does not apply immediately. To
remedy this, we pass to the first barycentric subdivision T1 of T , where the assump-
tions of Theorem 1.3 hold.

The new action of G on T1 has a single edge as a quotient with vertex set {a, b}
and edge set {e}. Say that a corresponds to some vertex ã of T , and b corresponds
to some edge ẽ of T , with ã ∈ ẽ.

With this notation, we have that Ga = stabG(ã) and Gb = stabG(ẽ) and Ge =
Ga ∩Gb. Here, stabG(ẽ) denotes those elements of G which preserve ẽ as a set whereas
Ge corresponds to the point-wise stabilizer of ẽ in G, so [stabG(ẽ) : Ge] 6 2. And so

G = Ga ∗Ge
Gb.

In this case, the pair (G,Gb) is a Gelfand pair (see Lemma II.4.1 in [FTN91]).

4Strictly speaking, this deals with groups having one orbit on vertices, but the comments following
Theorem III.2.6 in [FTN91] show how to modify it for two orbits.
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Moreover, up to unitary equivalence, G has two special representations σ+, σ−, dis-
tinguished by the fact that σ+ is a spherical representation for the Gelfand pair
(G,Gb), while σ− is not (see Theorem III.2.6 in [FTN91]).

The following result has been obtained by Amann [Ama03] for G = Aut(T ), and
by Nebbia [Neb12] in the general case.

Theorem 6.1. Let G be a closed subgroup of Aut(T ), acting transitively on ∂T

and V . If π ∈ Ĝ\{σ−}, then H1(G, π) = 0; on the other hand H1(G, σ−) is 1-dimen-
sional.

Proof. If ℓπ > 2 or if π is the trivial 1-dimensional representation, the proof is the
same as for the corresponding cases in Theorem 1.2.

If π is non-trivial and ℓπ = 1, the proof is analogous to the corresponding case
in Theorem 1.2: using the realization of π as a boundary representation, we have
that MGa

π is the 1-dimensional space of constant functions on ∂T , that MGe
π is the

2-dimensional space of functions constant on ∂Ta and ∂Tb. The only change is that
MGb

π is now the 1-dimensional space of functions ξ constant on ∂Ta and ∂Tb, such
that

ξ|∂Tb
= qsξ|∂Ta

.

So ι : MGa
π ⊕MGb

π → MGe
π is onto, and the result follows from Theorem 1.3.

For σ+, we haveMGa

σ+ = {0} (since ℓσ+ = 2), andMGb

σ+ is 1-dimensional (since σ+ is

spherical for (G,Gb)), andMGe

σ+ is 1-dimensional (by Proposition III.2.3 in [FTN91]);
so ι is onto and H1(G, σ+) = 0.

Finally, for σ− we have MGa

σ− = {0} (since ℓσ− = 2) and MGb

σ− = {0} (as σ− is

not spherical for (G,Gb)); so H1(G,Mσ−) ≃ MGe

σ− by Theorem 1. But MGe

σ− is 1-
dimensional, by Proposition III.2.3 in [FTN91].
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[Ama96] Olivier Éric Amann. Sur les représentations unitaires du groupe des
automorphismes de l’arbre homogène. Thesis (Master), Univ. de Lau-
sanne, 1996.
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Institut de Mathématiques – Unimail, Rue Emile Argand 11, CH-2000 Neuchâtel,
Switzerland

mailto:t_fernos@uncg.edu
mailto:alain.valette@unine.ch

	Introduction
	1-cohomology
	Chiswell's Mayer-Vietoris sequence

	Preliminaries
	On the Haagerup cocycle
	Proof of Theorem 1.3 and one application
	Proof of Theorem 1.3(ii)
	The case of HNN-extensions

	The first 2-Betti number
	Computing 2-Betti numbers
	Sufficient conditions for vanishing and non-vanishing
	Reduced graphs of groups

	Large groups of automorphisms of T
	The case of two orbits on V
	The case of one orbit on V


