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BOX COMPLEXES AND HOMOTOPY THEORY OF GRAPHS

TAKAHIRO MATSUSHITA

(communicated by J.F. Jardine)

Abstract
We introduce a model structure on the category of graphs,

which is Quillen equivalent to the category of Z2-spaces. A weak
equivalence is a graph homomorphism which induces a Z2-
homotopy equivalence between their box complexes. The box
complex is a Z2-space associated to a graph, considered in the
context of the graph coloring problem. In the proof, we discuss
the universality problem of the Hom complex.

1. Introduction

We consider the category of graphs from the viewpoint of homotopical algebra. As
a result, we construct a model structure on the category of graphs which is Quillen
equivalent to the category of Z2-spaces. A weak equivalence is a graph homomorphism
inducing a Z2-homotopy equivalence between their box complexes.

The box complex was introduced in the context of the graph coloring problem. An
n-coloring of a graph G is a map from the vertex set of G to the n-point set {1, . . . , n}
so that adjacent vertices have different values. The chromatic number χ(G) of G is
the smallest integer n such that G has an n-coloring. The graph coloring problem is
to determine the chromatic number, and this is one of the most classical problems in
graph theory.

The first application of algebraic topology to this subject is Lovász’s proof of
the Kneser conjecture [16]. Lovász introduced the neighborhood complex N(G) of
a graph G, and showed that if the neighborhood complex of G is n-connected, then
the chromatic number of G is greater than n+ 2. The box complex B(G) is a Z2-
space which is homotopy equivalent to the neighborhood complex N(G). The precise
definition will be found in Section 2.

The Hom complex Hom(T,G) is a generalization of the box complex. If T is a
right Γ-graph, then the Hom complex Hom(T,G) becomes a left Γ-space and a graph
homomorphism f : G1 → G2 induces a Γ-map f∗ : Hom(T,G1)→ Hom(T,G2). Since
an n-coloring of a graph G is identified with a graph homomorphism from G to Kn,
we have that if there is no Γ-map from Hom(T,G) to Hom(T,Kn) then we have
χ(G) � n. In this context, the equivariant homotopy of the Hom complexes has been
extensively researched (see [1, 2, 10, 17, 20] for example).
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Therefore it is important to compare the category of graphs with the category of
Γ-spaces of some group Γ. This is the motivation of this research. Our main result
(Theorem 3.13) asserts that the category of graphs has a model structure whose
homotopy category is equivalent to the homotopy category of Z2-spaces.

1.1. Singular complex functor and its adjoint

Let Γ be a finite group and T a finite right Γ-graph. The functor G �→ HomT (G) =
Hom(T,G) has neither a left nor a right adjoint, and hence it is not a Quillen functor.
So we use the singular complex functor SingT (G) = Sing(T,G) introduced in [18]. It is
known that the singular complexes and the Hom complexes are homotopy equivalent
(see Theorem 3.1 and Corollary 3.2), and we will show that the functor

SingT : G −→ SSetΓ, G �→ Sing(T,G)

is a right adjoint functor (Proposition 3.3). Here G denotes the category of graphs and
SSetΓ is the category of Γ-simplicial sets. Let AT denote the left adjoint of SingT . In
the case of simplicial complexes, a similar construction AT (K) was obtained in [10]
(see the end of Section 3.1).

Consider the unit of the adjoint pair

(AT ◦ Sdk,Exk ◦ SingT ) : SSetΓ −→ G,
where Sd is the barycentric subdivision functor and Ex is Kan’s extension functor
(see Section 2.2). We take k to be sufficiently large. If this adjoint pair is a Quillen
equivalence between SSetΓ and G, then the unit

Id −→ Exk ◦ SingT ◦AT ◦ Sdk

must be a natural weak equivalence. The main task of Section 3 is to characterize the
condition of T that the unit is a natural Γ-weak equivalence.

For a right Γ-graph T and for an element γ of Γ, let αγ denote the graph homo-
morphism G → G, v �→ vγ. Consider the following two conditions concerning a finite
right Γ-graph T :

(A) For each subgroup Γ′ of Γ, the map Γ/Γ′ → Hom(T, T/Γ′), γΓ′ �→ p ◦ αγ is a
Γ-homotopy equivalence. The Γ-action on Hom(T, T/Γ′) will be described in
Section 2.1.

(B) The map Γ �→ Hom(T, T ), γ �→ αγ is a Γ-homotopy equivalence.

Here we consider Γ/Γ′ as a discrete space and p denotes the projection T → T/Γ′.
Clearly, (A) implies (B). The main structural results of Section 3 are the following
two theorems:

Theorem 1.1 (Theorem 3.4). Let Γ be a finite group and T a finite connected right
Γ-graph with at least one edge. Let k be an integer such that 2k−2 is greater than the
diameter of T . Then the following are equivalent:

(1) The unit of the adjoint pair (AT ◦ Sdk,Exk ◦ SingT ) is a natural Γ-weak equiv-
alence.

(2) The right Γ-graph T satisfies the condition (A).
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Theorem 1.2 (Theorem 3.5). Let Γ be a finite group and T a finite connected right
Γ-graph with at least one edge. Let k be an integer such that 2k−2 is greater than the
diameter of T . Then the following are equivalent:

(1) For a free Γ-simplicial set K, the unit map K → Exk ◦ SingT ◦AT ◦ Sdk(K) is
a Γ-weak equivalence.

(2) The right Γ-graph T satisfies the condition (B).

If the graph T is stiff (see Section 2.1 for the definition), then the condition
(B) has the following combinatorial characterization: Every endomorphism of T is
an automorphism and the group Γ is isomorphic to the automorphism group of T
(Lemma 3.6). Such examples are given by complete graphs, odd cycles, and stable
Kneser graphs (see Example 3.7).
Theorem 1.2 concerns the universality problem of the Hom complexes. Csorba [7]

showed that for every finite free Z2-complex X, there is a graph G such that
Hom(K2, G) and X are Z2-homotopy equivalent. Dochtermann and Schultz [10]
showed that for every free Sn-complex X, there is a graph G such that Hom(Kn, G)
and X are Sn-homotopy equivalent. Here Sn is the symmetric group of the n-element
set {1, . . . , n}. Thus Theorem 1.2 is a generalization of their results.
On the other hand, the condition (A) is rarely satisfied. I think that the following

are (essntially) only examples naturally arising:

(1) Γ is trivial and T is the graph 1 consisting of one looped vertex. This corresponds
to the clique complex of the maximal reflexive subgraph.

(2) Γ is the cyclic group Z2 of order 2 and T is K2 with the flipping involution.
This corresponds to the box complex.

This is a specific difference between the box complex and other Hom complexes.

1.2. Organization of the paper
In Section 2, we introduce the notation and the terminology, and review some

relevant facts. In Section 3, we state Theorem 1.1 and Theorem 1.2 and construct
the model structures on the category of graphs (Theorem 3.13 and Theorem 3.14).
Here we give their proofs based on some structural results (Lemma 3.10 and Proposi-
tion 3.11). These structural results are obtained in Section 4 by comparing (equivari-
ant) strong homotopy theory of simplicial complexes of Barmak and Minian [3] with
×-homotopy theory of graphs established by Dochtermann [8].
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2. Preliminaries

In this section we shall introduce the notation and terminology, and review relevant
facts which we will use in later sections.

Throughout the paper, Γ denotes a finite group unless otherwise stated. We con-
sider not only left group actions but also right group actions. However, we shall use
the term “a Γ-action” to mean “a left Γ-action”. For a category C, we write CΓ to
indicate the category of objects in C equipped with a Γ-action.

For a poset P , the classifying space of P is denoted by |P |. We often regard a poset
as a topological space by its classifying space, and assign topological terminology by
the classifying space functor. For example, two order-preserving maps f, g : P → Q
are homotopic if and only if |f | and |g| are homotopic.

2.1. Box complexes and Hom complexes of graphs

For a concrete introduction to this subject, we refer to [15].

A graph is a pair G = (V (G), E(G)) consisting of a set V (G) together with a sym-
metric subset E(G) of V (G)× V (G), i.e. (x, y) ∈ E(G) implies (y, x) ∈ E(G). A graph
homomorphism is a map f : V (G)→ V (H) such that (f × f)(E(G)) ⊂ E(H). Let G
denote the category of graphs whose morphisms are graph homomorphisms. For a
vertex v ∈ V (G), the neighborhood NG(v) of v is the set of vertices of G adjacent
to v. We sometimes abbreviate NG(v) to N(v). Define the complete graph Kn with
n-vertices by V (Kn) = {1, . . . , n} and E(Kn) = {(x, y) | x �= y}. Then an n-coloring
of G is identified with a graph homomorphism from G to Kn, and the chromatic
number is

χ(G) = inf{n � 0 | There is a graph homomorphism from G to Kn}.

The box complex of a graph G is the Z2-poset

B(G) = {(σ, τ) | σ, τ ∈ 2V (G) \ {∅}, σ × τ ⊂ E(G)}
ordered by the product of the inclusion orderings. The Z2-action of B(G) is the
exchange of the first and second entries, i.e. (σ, τ)↔ (τ, σ).

A multi-homomorphism from G to H is a map η : V (G)→ 2V (H) \ {∅} such that
(v, w) ∈ E(G) implies η(v)× η(w) ⊂ E(H). For a pair of multi-homomorphisms η
and η′, we write η � η′ to mean that η(v) ⊂ η′(v) for every vertex v of G. The Hom
complex from G to H is the poset of the multi-homomorphisms from G to H, and
denoted by Hom(G,H).

This definition of the Hom complex is slightly different from the one of Babson
and Kozlov [1]. They define the Hom complex Hom(G,H) as a certain subcomplex
of a direct product of simplices when G and H are finite. Our Hom complex is the
face poset of theirs, and thus the topological types of these two definitions coincide.

Graph homomorphisms f, g : G → H are ×-homotopic (see [8]) if they belong to
the same connected component of Hom(G,H). We write f 
× g to mean that f and
g are ×-homotopic. A graph homomorphism f : G → H is a ×-homotopy equivalence
if there is a graph homomorphism h : H → G such that hf 
× idG and fh 
× idH .



BOX COMPLEXES AND HOMOTOPY THEORY OF GRAPHS 179

Let G, H, and K be graphs. Define the composition map

∗ : Hom(H,K)×Hom(G,H)→ Hom(G,K), (τ, η) �→ τ ∗ η
by

(τ ∗ η)(v) =
⋃

w∈η(v)

τ(w).

If f : G → H and g : H → K are graph homomorphisms, we write g∗(η) (or f∗(τ))
instead of g ∗ η (or τ ∗ f , respectively).
Let T be a right Γ-graph. For γ ∈ Γ, we write αγ to indicate the graph homomor-

phism T → T , v �→ vγ. Then we have a Γ-action on Hom(T,G) defined by γη = α∗
γ(η),

and a graph homomorphism f : G1 → G2 induces a Γ-poset map f∗ : Hom(T,G1)→
Hom(T,G2). Consider K2 as a Z2-graph by the flipping involution. Then it is clear
that Hom(K2, G) and B(G) are isomorphic as Z2-posets.

Lemma 2.1 (See Theorem 5.1 of [8]). Let f and g be graph homomorphisms from G
to H and suppose f 
× g. For a right Γ-graph T , the following hold:

(1) f∗, g∗ : Hom(T,G)→ Hom(T,H) are Γ-homotopic.

(2) f∗, g∗ : Hom(H,T )→ Hom(G,T ) are Γ-homotopic.

Proof. We only prove (1) since (2) is similarly proved. Let ϕ : [0, 1]→ |Hom(G,H)|
be a path joining f to g. Then the composition of

[0, 1]× |Hom(T,G)| ϕ×id−−−−→ |Hom(G,H)| × |Hom(T,G)| |∗|−−−−→ |Hom(T,H)|
is a Γ-homotopy from f∗ to g∗.

A vertex v of G is dismantlable if there is another vertex w of G with N(v) ⊂ N(w).
If v is dismantlable, then the inclusion G \ v ↪→ G is a ×-homotopy equivalence. Here
G \ v denotes the induced subgraph of G whose vertex set is V (G) \ {v}. In particular,
we have the following:

Corollary 2.2 (Kozlov [14]). Let G be a graph and v a dismantlable vertex of G. For
every right Γ-graph T , the inclusion Hom(T,G \ v) ↪→ Hom(T,G) is a Γ-homotopy
equivalence.

A graph G is stiff if G has no dismantlable vertices.

Lemma 2.3 (Lemma 6.5 of [8]). If G is a stiff graph, then every automorphism of
G is an isolated point of Hom(G,G).

2.2. Γ-simplicial sets
For a concrete explanation of simplicial sets, we refer to [11].
We write Δ to indicate the cosimplicial indexing category. Let SSet denote the

category of simplicial sets. The geometric realization of a simplicial set K is denoted
by |K|. A simplicial map f : K → L is called a weak equivalence if the map |f | : |K| →
|L| induced by f is a homotopy equivalence.
For a Γ-simplicial set K and a subgroup of Γ′, let KΓ′

denote the subcomplex of
K consisting of the simplices fixed by Γ′. A Γ-simplicial map f : K → L is a Γ-weak
equivalence if fΓ′

: KΓ′ → LΓ′
is a weak equivalence for every subgroup Γ′ of Γ.
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Then SSetΓ has the model structure described as follows (see [4] or [21]) whose
generating cofibrations is

IΓ = {(Γ/Γ′)× ∂Δ[n] ↪→ (Γ/Γ′)×Δ[n] | n � 0 and Γ′ is a subgroup of Γ}
and whose generating trivial cofibrations is

JΓ= {(Γ/Γ′)×Λr[n] ↪→ (Γ/Γ′)×Δ[n] | n� 1, 0� r�n, and Γ′ is a subgroup of Γ}.
Here Δ[n] is the Yoneda functor [m] �→ Δ([m], [n]) and Λr[n] is the r-horn. The class
of weak equivalences is the class of Γ-weak equivalences.

Let Ex denote Kan’s extension functor, and Sd the barycentric subdivision functor.
There is a natural weak equivalence Sd(K)→ K whose adjoint K → Ex(K) is also a
natural weak equivalence (Theorem 4.6 of [11]). The adjoint pair (Sd,Ex): SSet →
SSet gives rise to the adjoint pair (Sd,Ex): SSetΓ → SSetΓ. It is easy to see that
if K is a Γ-simplicial set, both of the above maps Sd(K)→ K and K → Ex(K) are
Γ-weak equivalences.

2.3. Bredon’s theorem

We will use the following proposition several times.

Proposition 2.4 (Bredon [6]). Let Γ be a finite group and f : X → Y a Γ-map
between Γ-CW-complexes. Then f is a Γ-homotopy equivalence if and only if
fΓ′

: XΓ′ → Y Γ′
is a homotopy equivalence for every subgroup Γ′ of Γ.

2.4. Some homotopy colimits

The following proposition is sometimes called the gluing lemma or cube lemma
(Lemma 8.8 of [11] or Proposition 15.10.10 of [12]).

Proposition 2.5. Let C be a model category and let

A
i←−−−− B −−−−→ C

fA

⏐⏐� ⏐⏐�fB

⏐⏐�fC

A′ i′←−−−− B′ −−−−→ C ′

be a commutative diagram in C. Suppose that the all vertical arrows are weak equiv-
alences, and the all objects appearing in the above diagram are cofibrant. If i and i′

are cofibrations in C, then the natural map

A ∪B C → A′ ∪B′ C ′

is a weak equivalence.

For an ordinal λ, the minimum of λ is denoted by 0.

Proposition 2.6. Let C be a model category, X• : λ → C, Y• : λ → C functors from
an ordinal λ, and f• : X• → Y• a natural transformation. Suppose the following con-
ditions are satisfied:

(1) fα : Xα → Yα is a weak equivalence for every α < λ.
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(2) For each α < λ, the map

colimβ<αXβ −→ Xα

is a cofibration of C. In particular, X0 is cofibrant.

Then the colimit fλ : Xλ → Yλ of f• is a weak equivalence.

Proof. The proof is similar to Proposition 15.10.12 of [12].

3. Simplicial methods

Let Γ be a finite group and T a right Γ-graph. Let P denote the category of posets.
As was mentioned in Section 1, the functor

HomT : G −→ PΓ, G �→ Hom(T,G)

is neither a left nor right adjoint functor. So we use the singular complex functor
SingT : G → SSetΓ, which is reviewed in Section 3.1. This is a right adjoint functor
(Proposition 3.3) and let AT denote the left adjoint. Then we have an adjoint pair

(AT ◦ Sdk,Exk ◦ SingT ) : SSetΓ −→ G,
for k > 0. In Section 3.2, we characterize the condition that the unit

Id −→ Exk ◦ SingT ◦AT ◦ Sdk,
of the adjunction is a natural Γ-weak equivalences for sufficiently large k (Theo-
rem 3.4). In this section we give the proof of Theorem 3.4 based on some structural
results proved in Section 4. In Section 3.3, we construct a model structure on G which
is Quillen equivalent to SSetZ2 (Theorem 3.13).

3.1. Singular complexes

For a non-negative integer n, define the graph Σn by V (Σn) = [n] and E(Σn) =
V (Σn)× V (Σn). For a pair of graphs T and G, the singular complex (see [18]) is the
simplicial set Sing(T,G) whose n-simplices are the graph homomorphisms from T ×
Σn to G, i.e. Sing(T,G)n = G(T × Σn, G). The face and degeneracy maps are defined
in an obvious way. A 0-simplex of Sing(T,G) is identified with a graph homomorphism
from T to G. A fundamental result of singular complexes is the following:

Theorem 3.1 (Matsushita [18]). There is a homotopy equivalence

Φ: |Sing(T,G)| −→ |Hom(T,G)|,
which is natural with respect to both T and G. Moreover, for a graph homomorphism
f : T → G, we have Φ(f) = f .

Corollary 3.2. Let Γ be a finite group and T a right Γ-graph. Then the map

Φ: |Sing(T,G)| −→ |Hom(T,G)|
in Theorem 3.1 is a Γ-homotopy equivalence.
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Proof. The naturality with respect to T implies that Φ: |Sing(T,G)| → |Hom(T,G)|
is Γ-equivariant. It suffices to show that, for every subgroup Γ′ of Γ, the map

ΦΓ′
: |Sing(T,G)|Γ′ −→ |Hom(T,G)|Γ′

is a homotopy equivalence (see Proposition 2.4).
Since the geometric realization preserves equalizers, we have

|Sing(T,G)|Γ′ ∼= |Sing(T,G)Γ′ |, |Hom(T,G)|Γ′ ∼= |Hom(T,G)Γ′ |.
Let p : T → T/Γ′ be the quotient map. Clearly, the maps

p∗ : Sing(T/Γ′, G) −→ Sing(T,G),

p∗ : Hom(T/Γ′, G) −→ Hom(T,G)

are monomorphisms and their images coincide with Sing(T,G)Γ
′
and Hom(T,G)Γ

′
,

respectively. Since Φ: |Sing(T/Γ′, G)| → |Hom(T/Γ′, G)| is a homotopy equivalence
(Theorem 3.1), this completes the proof.

Proposition 3.3. Let Γ be a group and T a right Γ-graph. Then the functor

SingT : G −→ SSetΓ, G �−→ Sing(T,G)

has a left adjoint.

I am pleased to mention that Shouta Tounai provides me the following sophisti-
cated proof.

Proof of Proposition 3.3. Let Γ be a group and consider Γ as a small category in the
usual way. Namely, the object set is the one point set {∗}, the set of endomorphisms
of ∗ is Γ, and the composition is the multiplication of Γ.
A right Γ-graph is identified with a functor from Γop to G. Thus we have a functor

from Γop ×Δ→ G, [n] �→ T × Σn. The associated functor

G(T × Σ•,−) : G −→ SetΓop×Δ = SetΓ×Δop ∼= SSetΓ

coincides with SingT . Thus the left Kan extension of T × Σ• along the Yoneda functor
Γop ×Δ→ Set is the left adjoint of SingT .

Let T be a right Γ-graph. Let AT denote the left adjoint of the functor SingT : G −→
SSetΓ. We shall precisely describe the graph AT (K) for a Γ-simplicial set K. First
we construct a Γ-graph A(K). The vertex set of A(K) is the set K0 of 0-simplices of
K, and two 0-simplices v and w of K are adjacent in A(K) if and only if there is a
1-simplex connecting them. The group Γ acts on T ×A(K) by γ(x, v) = (xγ−1, γv).
Then the graph AT (K) is the quotient graph Γ\(T ×A(K)).
In the case of simplicial complexes, the following similar construction AT (K) was

known: We first construct a Γ-graph A(K) for a Γ-simplicial complex K. The vertex
set of A(K) is the vertex set V (K) of K. Two vertices v and w of K are adjacent in
A(K) if and only if the set {v, w} is a simplex of K. Then the graph AT (K) is the
quotient AT (K) = Γ\(T × A(K)). This construction was first considered by Csorba [7]
in case T is K2, and was later generalized in Dochtermann and Schultz [10].
Let K be a simplicial set whose cell structure is isomorphic to some simplicial

complex K. Then it is clear that the graphs AT (K) and AT (K) are isomorphic.
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3.2. Unit of the adjoint pair
Throughout this section, T is a finite connected right Γ-graph with at least one

edge. We characterize the condition that the unit

Id −→ Exk ◦ SingT ◦AT ◦ Sdk (1)

is a natural Γ-weak equivalence for sufficiently large k (Theorem 3.4).
First we consider the following two conditions concerning a finite right Γ-graph T .

Here we consider a Γ-set X as the simplicial set whose 0-simplices are the elements
of X and which has no other non-degenerate simplices. Recall that for an element γ
of Γ, the graph homomorphism T → T, x �→ xγ is denoted by αγ .

(A) For each subgroup Γ′ of Γ, the map

Γ/Γ′ −→ Sing(T, T/Γ′), γΓ′ �−→ p ◦ αγ

is a Γ-weak equivalence.

(B) The map

Γ −→ Sing(T, T ), γ �→ αγ

is a Γ-weak equivalence.

The condition (A) implies the condition (B). One can show that the map

Γ/Γ′ −→ Sing(T, T/Γ′) = SingT ◦AT (Γ/Γ
′)

in the condition (A) is the unit map of (AT , SingT ). Thus if the unit (1) is a natural
Γ-weak equivalence for every Γ-simplicial setK, then the condition (A) holds (see also
(4) of Section 2.3). On the other hand, the following result asserts that the converse
also holds:

Theorem 3.4. Let Γ be a finite group and T a finite connected right Γ-graph having
at least one edge and diameter r. Let k be a positive integer such that 2k−2 > r. If T
satisfies the condition (A), then the unit map

uK : K −→ Exk ◦ SingT ◦AT ◦ Sdk(K)

is a Γ-weak equivalence for every Γ-simplicial set K.

If we restrict our attention to free Γ-simplicial sets, the following holds:

Theorem 3.5. Let Γ be a finite group and T a finite connected right Γ-graph having
at least one edge and diameter r. Let k be an integer with 2k−2 > r. If T satisfies the
condition (B), then the unit map

uK : K −→ Exk ◦ SingT ◦AT ◦ Sdk(K)

is a Γ-weak equivalence for every free Γ-simplicial set K.

Before giving the proofs, we consider when the right Γ-graph T satisfies the above
conditions. In fact, the condition (A) is a quite strong requirement. I think that the
following are the only examples naturally arising:

(1) Γ is trivial and T is the graph 1 consisting of one looped vertex.

(2) Γ is Z2 and T is K2 with the Z2-action which flips the edge of K2.
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Of course, if T is ×-homotopy equivalent to 1 or Z2-×-homotopy equivalent to K2,
then T satisfies the condition (A). Note that Hom(1, G) is the face poset of the clique
complex of the maximal reflexive subgraph of G, i.e. the induced subgraph of G whose
vertices are looped vertices of G. On the other hand, the case (2) corresponds to the
box complex B(G) = Hom(K2, G).

On the other hand, there are several graphs such that the condition (B) is satisfied.
In case the graph T is stiff (see Section 2.1), the condition (B) has the following
combinatorial characterization. Here Aut(T ) denotes the automorphism group of T .

Lemma 3.6. Suppose that T is stiff. Then T satisfies the condition (B) if and only
if the homomorphism α : Γ→ Aut(T ), γ �→ αγ is an isomorphism and every endo-
morphism of T is an automorphism.

Proof. Recall that the composition of

Γ −→ Aut(T ) −→ Sing(T, T )

coincides with the unit map. Suppose that the homomorphism Γ→ Aut(T ) is an
isomorphism and every endomorphism of T is an automorphism. Lemma 2.3 implies
Aut(T ) ∼= Hom(T, T ) and hence the unit Γ→ Sing(T, T ) 
 Hom(T, T ) is a Γ-weak
equivalence. The proof of the converse is similar and is omitted.

Example 3.7. The following are examples satisfying the condition (B):

(1) Γ is the symmetric group Sn of the n-element set {1, . . . , n}, and T is the
complete graph Kn for n � 2.

(2) Γ is the dihedral group D2n+1 of order (4n+ 2), and T is the odd cycle C2n+1

with length 2n+ 1 for n � 1.

(3) A subset σ of the cyclic group Zn of order n is stable if x ∈ σ implies x+ 1 �∈ σ.
The stable Kneser graph SGn,k is the graph whose vertex set consists of the
stable k-subsets of Zn and two stable k-subsets are adjacent if and only if they
are disjoint. The stable Kneser graphs were introduced by Schrijver [19], and
he showed that these graphs are vertex critical, i.e. every subgraph G of SGn,k

such that V (G) � V (SGn,k) has a chromatic number smaller than χ(SGn,k).
It is easy to see that the vertex critical finite graph satisfies the condition of
Lemma 3.6. Braun [5] showed that the group of automorphisms of SGn,k is
isomorphic to the dihedral group Dn of order 2n.

Csorba [7] showed that for every Z2-CW-complex X, there is a simple graph G
such that Hom(K2, G) and X are Z2-homotopy equivalent. Theorem 3.4 implies that
the free assumption is redundant:

Corollary 3.8. For every Z2-CW-complex X, there is a graph G such that X and
Hom(K2, G) are Z2-homotopy equivalent.

Let Sn be the symmetric group of the n-element set {1, . . . , n}. Then Sn acts onKn

in an obvious way. Dochtermann and Schultz [10] proved that for every free Sn-CW-
complex X, there exists a graph G such that Hom(Kn, G) and X are Sn-homotopy
equivalent [10]. The following is a generalization of [10].
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Corollary 3.9. Suppose that a finite connected right Γ-graph T with at least one edge
satisfies the condition (B). Then for every free Γ-complex X, there is a graph G such
that Hom(T,G) and X are Γ-homotopy equivalent.

Here we need the assumption that the group action is free. In fact, Hom(Kn, G)
is free if and only if G has no looped vertices. On the other hand, if G has looped
vertices, then Hom(Kn, G) has fixed points.
The converse of Corollary 3.9 is false. In fact, Dochtermann [9] showed that for

every finite connected graph T with at least one edge and for every CW-complex X,
there is a graph G such that Hom(T,G) and X are homotopy equivalent.
Now we turn to the proofs of Theorem 3.4 and Theorem 3.5. Let Δn to indicate the

simplicial complex ([n], 2[n]). For n > 0 and 0 � r � n, define Λn
r to be the simplicial

complex whose vertex set is [n] and whose simplex is a subset σ with σ ∪ {r} �= [n].
Clearly, we have

AT (Δ[n]) = AT (Δ
n), AT (Λr[n]) = AT (Λ

n
r ).

Let k be an integer such that 2k−2 is greater than the diameter of T . In the rest
of this section, we write ÂT instead of AT ◦ Sdk and ŜT instead of Exk ◦ SingT . For
a subgroup Γ′ of Γ and a simplicial set K, we write KΓ′ instead of (Γ/Γ′)×K.
Now we turn to the proof of Theorem 3.4. The proof is based on the following two

assertions which will be proved in Section 4.

Lemma 3.10. Let Γ′ be a subgroup of the finite group Γ, and suppose that T satisfies
the condition (A). Then the following hold:

(1) The inclusion ÂT (Γ/Γ
′) ↪→ ÂT ((Γ/Γ

′)× Λr[n]) induced by the inclusion
Γ/Γ′ ↪→ (Γ/Γ′)× Λr[n], γ �→ (γ, r) is a ×-homotopy equivalence.

(2) The inclusion ÂT (Γ/Γ
′) ↪→ ÂT ((Γ/Γ

′)×Δ[n]) is a ×-homotopy equivalence.

(3) The unit map Λr[n]Γ′ −→ ŜT ◦ ÂT (Λr[n])Γ′ is a Γ-weak equivalence.

(4) The unit map Δ[n]Γ′ −→ ŜT ◦ ÂT (Δ[n]Γ′) is a Γ-weak equivalence.

For a Γ-simplicial set K, we write uK to indicate the unit K → ŜT ◦ ÂT (K).

Proposition 3.11. Let (K,L) be a pair of Γ-simplicial sets, f : L → L′ a Γ-simplicial
map, and let K ′ = K ∪L L′. If the unit maps uL, uK , uL′ are Γ-weak equivalences,
then the unit map uK′ is a Γ-weak equivalence.

Corollary 3.12. Suppose that T satisfies the condition (A). For n � 0, the unit map
u∂Δ[n] : (Γ/Γ

′)× ∂Δ[n]→ ŜT ◦ ÂT ((Γ/Γ
′)× ∂Δ[n]) is a Γ-weak equivalence for every

subgroup Γ′.

Proof. We show this by the induction on n. The case n = 0 is obvious. Suppose
n > 0. Regard Δ[n− 1] as a subcomplex of Δ[n] by the map induced by the inclusion
[n− 1] ↪→ [n]. Apply Proposition 3.11 to the case of K = Λn[n], L = ∂Δ[n− 1], and
L′ = Δ[n− 1].

Proof of Theorem 3.4. Let K be a Γ-simplicial set. Recall that a generating cofibra-
tions IΓ of SSetΓ (Section 2.2) is described as follows:

IΓ = {(Γ/Γ′)× ∂Δ[n] ↪→ (Γ/Γ′)×Δ[n] | n � 0 and Γ′ is a subgroup of Γ}.
Since every Γ-simplicial set is an IΓ-cell complex, there exist an ordinal λ and a
colimit preserving functor X• : λ → SSetΓ such that X0 = ∅, the colimit Xλ of X• is
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isomorphic to K, and Xα → Xα+1 is a pushout of an element of IΓ for every α < λ.
We want to show that the unit map Xλ → ŜT ◦ ÂT (Xλ) is a Γ-weak equivalence by
the transfinite induction on α0 < λ. Suppose that for every α < α0, the unit map
Xα → ŜT ◦ ÂT (Xα) is a Γ-weak equivalence. If α0 − 1 exists, then it follows from
Lemma 3.10, Proposition 3.11, and Corollary 3.12 that the unit Xα0 → ŜT ◦ ÂT (Xα0)
is a Γ-weak equivalence. If α0 is a limit ordinal, then Proposition 2.6 implies that
Xα0 → ŜT ◦ ÂT (Xα0) is a Γ-weak equivalence since SingT and Ex preserve sequential
colimits. This completes the proof of Theorem 3.4.

We can prove Theorem 3.5 in a similar way. Define the small family I ′
Γ of Γ-

simplicial maps as follows:

I ′
Γ = {Γ× ∂Δ[n] ↪→ Γ×Δ[n] | n � 0}.

Then a Γ-simplicial set K is free if and only if K is an I ′
Γ-cell complex. Thus, in the

proof of Theorem 3.4, replacing “condition (A)” to “condition (B)” and considering
only the trivial subgroup 1, we have the proof of Theorem 3.5.

3.3. Model structure
In this section, we introduce two model structures on the category of graphs.

Theorem 3.13. The category G of graphs has the cofibrantly generated model struc-
ture with generating cofibrations AK2 ◦ Sd3(IZ2) and with generating trivial cofibra-
tions AK2

◦ Sd3(JZ2
) (see Section 2.2). A graph homomorphism f : G → H is a weak

equivalence if and only if the map f∗ : B(G)→ B(H) induced by f is a Z2-homotopy
equivalence. Moreover, the adjoint pair

(AK2 ◦ Sd3,Ex3 ◦ SingK2
) : SSetZ2 −−−−→ G

is a Quillen equivalence.

In the case of Sing1, we have the following theorem. Note that the Hom complex
Hom(1, G) is the face poset of the clique complex of the maximal reflexive subgraph
of G. We write I and J for IΓ and JΓ if the group Γ is the trivial group 1.

Theorem 3.14. The category G of graphs has the cofibrantly generated model struc-
ture with generating cofibrations A1 ◦ Sd2(I) and with generating trivial cofibrations
A1 ◦ Sd2(J ). A graph homomorphism f : G → H is a weak equivalence if and only if
f∗ : Hom(1, G)→ Hom(1, H) induced by f is a homotopy equivalence. Moreover, the
adjoint pair

(A1 ◦ Sd2,Ex2 ◦ Sing1) : SSet −−−−→ G
is a Quillen equivalence.

We only give the proof of Theorem 3.13 since the other is similar.
First we show that G has the model structure described in Theorem 3.13. It is

clear that every object of G is a small object in the sense of Definition 10.4.1 of [12].
Thus by Theorem 11.3.2 of [12], it suffices to show that Ex3 ◦ SingK2

takes a pushout

of an element of AK2 ◦ Sd3(JZ2) to a Γ-weak equivalence. But this follows from (3)
of Lemma 3.10 and Proposition 3.11. Thus G has the model structure described in
Theorem 3.13.
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Next we show that the adjoint pair (ÂK2 , ŜK2) = (AK2 ◦ Sd3,Ex3 ◦ SingK2
) is a

Quillen equivalence. By Corollary 1.3.16 of [13], it suffices to verify the following:

(1) Let f : X → Y be a graph homomorphism between fibrant objects in G. If
ŜK2(f) is a Z2-weak equivalence, then f is a weak equivalence.

(2) For every Z2-simplicial set K, the composition of

K → ŜK2ÂK2(K)→ ŜK2RÂK2(K)

is a Γ-weak equivalence. Here R denotes a fibrant replacement functor of SSetΓ.

The definition of weak equivalences of G follows (1) and that the right arrow in (2)
is a Γ-weak equivalence. Thus (2) follows from Theorem 3.4 since K2 satisfies the
condition (A) in Section 3.2. This completes the proof.

4. Strong homotopy theory

The purpose of this section is to show Lemma 3.10 and Proposition 3.11. Lem-
ma 3.10 is proved in Section 4.4 and Proposition 3.11 is proved in Section 4.6.
The difficulty of the proofs seems to lie in the following fact: LetK be a Γ-simplicial

set and L a Γ-subcomplex of it. In general, |SingT ◦AT (L)| is not a deformation
retract of |SingT ◦AT (K)| even if |L| is a deformation retract of |K|. On the other
hand, the strong collapses of Γ-complexes and ×-homotopy deformation retracts,
which will be introduced later, have the following important properties:

• If a graph H is a ×-deformation retract of G, then |SingT (H)| is a deformation
retract of |SingT (G)| (Lemma 2.1).

• If a Γ-simplicial complex K strongly Γ-collapses to its Γ-subcomplex L, then
AT (L) is a ×-deformation retract of AT (K) (Proposition 4.12).

• For any pair of (K, L) of finite Γ-simplicial complexes, Sdk(L) has a large neigh-
borhood in Sdk(K) which strongly Γ-collapses to Sdk(L) if we take k to be
sufficiently large (Corollary 4.18).

4.1. Simplicial complexes
An (abstract) simplicial complex consists of a family K of finite subsets of a set

S such that σ ∈ K and τ ⊂ σ imply τ ∈ K. The vertex set V (K) of K is the union of
the all simplices of K. Let K and L be simplicial complexes. A simplicial map from
K to L is a map f : V (K)→ V (L) such that σ ∈ K implies f(σ) ∈ L. The geometric
realization of K (see [15]) is denoted by |K|. We assign the topological terminology to
simplicial complexes by the geometric realization functor. For example, a simplicial
map f : K → L is a homotopy equivalence if and only if the continuous map |f | : |K| →
|L| induced by f is a homotopy equivalence.
Let K and L be simplicial complexes. A map η : V (K)→ 2V (L) \ {∅} is a simplicial

multi-map if, for every simplex σ of K, the subset
⋃

v∈σ η(v) of V (L) is a simplex of L.
For a pair of simplicial multi-maps η and η′, we write η � η′ to mean that η(v) ⊂ η′(v)
for every v ∈ V (K). The poset of simplicial multi-maps from K to L is denoted by
Map(K, L). A simplicial map is identified with a minimal point of Map(K, L). Two
simplicial maps f and g are strongly homotopic if they belong to the same connected
component of Map(K, L).
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Recall that two simplicial maps f, g : K → L are contiguous if σ ∈ K implies f(σ) ∪
g(σ) ∈ L. Hence f and g are contiguous if and only if there is an element η of Map(K, L)
such that f � η and g � η. Thus our definition of strong homotopy coincides with
the original one of [3].
Let K and L be Γ-simplicial complexes. A simplicial multi-map η ∈ Map(K, L) is

Γ-equivariant if γ(η(v)) = η(γv) for each v ∈ V (K) and γ ∈ Γ. The induced subposet
of Map(K, L) consisting of the Γ-equivariant multi-maps is denoted by MapΓ(K, L).
Two Γ-simplicial maps are strongly Γ-homotopic if they belong to the same connected
component of MapΓ(K, L).

4.2. Posets
For a poset P , the order complex Δ(P ) of P is the abstract simplicial complex

whose vertex set is the underlying set of P and whose simplices are the finite chains
of P . The classifying space of P is the geometric realization of Δ(P ), and is denoted
by |P |. It is easy to see that this definition coincides with the usual definition of the
classifying space, i.e. the geometric realization of the nerve of P .
Let f and g be order-preserving maps from P to Q. We write f � g to mean that

f(x) � g(x) for every element x of P . The poset of order-preserving maps from P to Q
is denoted by Poset(P,Q). The order-preserving maps f and g are strongly homotopic
if they belong to the same connected component of Poset(P,Q). If f and g are strongly
homotopic, then they are homotopic, i.e. |f |, |g| : |P | → |Q| are homotopic. In fact, f
and g induce simplicially homotopic maps between the nerves (see Proposition 14.2.10
of [12]), and many results concerning strong homotopy theory in this section and
Lemma 2.1 and Corollary 2.2 hold for simplicial homotopy.
We call a Γ-equivariant order-preserving map between Γ-posets a Γ-poset map,

for short. If P and Q are Γ-posets, then we denote by PosetΓ(P,Q) the induced
subposet of Poset(P,Q) consisting of Γ-poset maps. Two Γ-poset maps are strongly
Γ-homotopic if they belong to the same connected component of PosetΓ(P,Q). It is
easy to see that if f and g are strongly Γ-homotopic, then they are also Γ-homotopic.
The face poset of a simplicial complex K is the poset of non-empty simplices of K

ordered by inclusion, and is denoted by FK. For a simplicial map f : K → L, define
the order-preserving map Ff : FK → FL by the correspondence σ �→ f(σ).

Lemma 4.1 (Barmak-Minian [3]). Let K and L be Γ-simplicial complexes, f and g
Γ-simplicial maps from K to L, and suppose that f and g are strongly Γ-homotopic.
Then the order-preserving maps Ff and Fg are strongly Γ-homotopic.

Proof. This lemma clearly follows from the fact that the map

F : MapΓ(K, L) −→ PosetΓ(FK, FL), η �→
(
σ �→

⋃
v∈σ

η(v)
)

is an order-preserving map.

Thus if two simplicial maps f, g : K → L are strongly Γ-homotopic, then they are
actually Γ-homotopic, i.e. |f | and |g| are Γ-homotopic.

4.3. Strong collapse
In this section, we consider the notion of the deformation retracts in the sense

of the strong homotopy theory of Γ-posets and Γ-simplicial complexes. The goal of
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this section is Corollary 4.11. Although the precise statements of many of the results
given here did not appear in Barmak and Minian [3], the ideas of the proofs already
appearing there. However, for the reader’s convenience, we shall give precise proofs.

Definition 4.2. Let P be a Γ-poset and Q an induced Γ-subposet of P . Define
DefΓ(P,Q) to be the induced subposet of PosetΓ(P, P ) consisting of the Γ-poset
maps which fix each point of Q. P strongly Γ-collapses to Q if there is an element f
belonging to the identity component of DefΓ(P,Q) with image contained in Q.

Example 4.3. Let c : P → P be a Γ-equivariant closure operator, i.e. c2 = c and
either c � id or c � id holds. Then P strongly Γ-collapses to c(P ).

The associated notion of simplicial complexes is similarly defined:

Definition 4.4. Let L be an induced Γ-subcomplex of a Γ-simplicial complex K. Let
DefΓ(K, L) be the induced subposet of MapΓ(K,K) consisting of the Γ-equivariant
simplicial multi-maps η such that η(v) = {v} for every v ∈ V (L). K strongly collapses
to L if there is a simplicial map f belonging to the identity component of Def(K, L)
with image contained in L.

Remark 4.5. Let P be a poset and Q is an induced subposet of P . Then P strongly
collapses to Q if and only if there is a sequence (f0, . . . , fn) with finite length which
satisfies the following conditions:

(1) f0 = idP and fn(P ) ⊂ Q.

(2) fi(y) = y for every y ∈ Q and i = 0, 1, . . . , n.

(3) fi and fi−1 are comparable for i = 1, . . . , n.

Replacing “comparable” to “contiguous”, we have a similar formulation for simplicial
complexes.

Recall that the group Γ is assumed to be finite. Here we note the following obvious
lemma, whose proof is omitted.

Lemma 4.6. Let Γ be a finite group, and x an element of a Γ-poset P . If γx and x
are comparable, then we have γx = x.

Let P be a Γ-poset. Recall that a point x ∈ P is an upper beat point if P>x = {y ∈
P | y > x} has the minimum, and x is a lower beat point of P if P<x = {y ∈ P | y < x}
has the maximum. A point x is a beat point if x is either an upper or lower beat point
of P . If x is a beat point, then P strongly collapses to P \ Γx. In fact, if x is an upper
beat point and y is the minimum of P>x, then y does not belong the orbit Γx of x
(Lemma 4.6). Since the map

f : P → P, f(z) =

{
z (z �∈ Γx),

γy (z = γx, γ ∈ Γ)

is a closure operator and f(P ) = P \ Γx. Thus P strongly Γ-collapses to P \ Γx.
Lemma 4.7. Let Q ⊂ P ′ ⊂ P be a sequence of Γ-posets. Suppose that P strongly Γ-
collapses to P ′. Then P strongly Γ-collapses to Q if and only if P ′ strongly Γ-collapses
to Q.
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Proof. Let r : P → P ′ be a retract of the inclusion i : P ′ ↪→ P . Then the map

DefΓ(P,Q)→ DefΓ(P
′, Q), f �→ r ◦ f ◦ i

is an order-preserving map. This implies that P ′ strongly Γ-collapses to Q if P
strongly Γ-collapses to Q. It is easy to show the converse by Remark 4.5.

Proposition 4.8. Let Q be an induced Γ-subposet of a finite Γ-poset P . Then P
strongly Γ-collapses to Q if and only if there is a linear order {α1, . . . , αn} on Γ\(P \
Q) which satisfies the following: For each i = 1, . . . , n, αi is a family of beat points of
P \ (α1 ∪ · · · ∪ αi−1) of P (This order of Γ\(P \Q) is independent from the order of
P ).

Proof. By Lemma 4.7, it suffices to show the following claim: Suppose that a finite
poset P strongly Γ-collapses to an induced subposet Q of P and P �= Q. Then there
is a beat point of P not belonging to Q.
By the hypothesis, there is a map f ∈ DefΓ(P,Q) such that f < idP or f > idP .

If f > idP , a maximal element of {x ∈ P | f(x) > x} is an upper beat point of P not
belonging to Q. The case f < idP is similarly proved.

Let K be a finite simplicial complex. A vertex v of K is dominated (see Definition 2.1
of [3]) if there exists another vertex w which satisfies the following condition: If a
simplex σ of K contains v, then σ ∪ {w} is a simplex of K. It is easy to see that if v is
dominated in K, then K strongly collapses to K \ Γv. Here K \ Γv is the subcomplex
of K whose simplex is a simplex of K does not contain an element of Γv. On the other
hand, we have the following:

Proposition 4.9. Let P be a finite Γ-poset and Q an induced Γ-subposet of P . If P
strongly Γ-collapses to Q, then Δ(P ) strongly Γ-collapses to Δ(Q).

Proof. If x is a beat point of P , then x is dominated in Δ(P ). Thus this proposition
follows from Proposition 4.8.

Proposition 4.10. Let K be a Γ-simplicial complex and L an induced Γ-subcomplex
of K. Suppose that K strongly Γ-collapses to L. Then FK strongly collapses to FL.

Proof. It suffices to note that the order-preserving map

F : MapΓ(K, L) −→ PosetΓ(FK, FL)

in the proof of Lemma 4.1 maps DefΓ(K, L) to DefΓ(FK, FL).

Let K be a simplicial complex. The simplicial complex Δ(FK) is called the barycen-
tric subdivision of K, and is denoted by Sd(K).

Corollary 4.11. Let K be a finite Γ-simplicial complex and L a Γ-subcomplex of K.
If K strongly Γ-collapses to L, then Sd(K) strongly Γ-collapses to Sd(L).

4.4. ×-homotopy deformation retract
In this section, we introduce the ×-homotopy deformation retract of graphs and

prove Lemma 3.10.
Let G be a graph and H an induced subgraph of G. Define the poset Def(G,H)

to be the induced subposet of Hom(G,G) consisting of the multi-homomorphisms
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η such that η(w) = {w} for every vertex w of H. H is a ×-homotopy deformation
retract of G if there is a graph homomorphism f belonging to the identity component
of Def(G,H) such that f(v) ∈ V (H) for every v ∈ V (G).
Let G and H be left Γ-graphs. A multi-homomorphism η from G to H is Γ-

equivariant if γ(η(v)) = η(γv) for every v ∈ V (G) and γ ∈ Γ. We let HomΓ(G,H)
be the induced subposet of Hom(G,H) consisting of Γ-equivariant multi-homomor-
phisms. Then we have a poset map

Q : HomΓ(G,H) −→ Hom(Γ\G,Γ\H)

defined as follows: For a vertex v ∈ V (G), Q(η)(Γv) = {Γw | w ∈ η(v)}. Then we have
the following proposition. For the definitions of A(K) and AT (K), see the end of
Section 3.1.

Proposition 4.12. Let (K, L) be a pair of Γ-simplicial complexes such that L is K
strongly Γ-collapses to L, and let T be a right Γ-graph. Then AT (L) is a ×-homotopy
deformation retract of AT (K).

Proof. Consider the map

Φ: MapΓ(K,K) −→ HomΓ(A(K),A(K)), η �−→ (v �→ η(v)).

It is easy to see that Φ is well-defined and order-preserving. Next define the map
T × (−) : HomΓ(A(K),A(K))→ HomΓ(T × A(K), T × A(K)) by

(T × η)(x, v) = {x} × η(v).

Thus we have a sequence

MapΓ(K,K)
Φ−−−−→ HomΓ(A(K),A(K))

T×(−)−−−−→ HomΓ(T × A(K), T × A(K))

Q−−−−→ Hom(AT (K),AT (K)),

of order-preserving maps, where the last map Q is described in the previous para-
graph of this proposition. The composition of the above sequence maps DefΓ(K, L) to
Def(AT (K),AT (L)). Thus the proposition follows.

Proof of Lemma 3.10. Note that

ÂT ((Γ/Γ
′)× Λr[n]) = AT ◦ Sdk((Γ/Γ′)× Λr[n]) ∼= AT ◦ Sdk((Γ/Γ′)× Λn

r ).

Since any vertex of (Γ/Γ′)× Λr
n other than elements of (Γ/Γ′)× {r} is dominated,

(Γ/Γ′)× Λn
r strongly Γ-collapses to Γ/Γ′. Thus AT ◦ Sdk(Γ/Γ′) is a ×-deformation

retract of AT ◦ Sdk((Γ/Γ′)× Λn
r ) (Proposition 4.12). The proof of (2) is similar.

We now show (3). Consider the diagram

(Γ/Γ′) �Γ−−−−→ (Γ/Γ′)× Λr[n]⏐⏐� ⏐⏐�
ŜT ◦ ÂT (Γ/Γ

′) −−−−→ ŜT ◦ ÂT ((Γ/Γ
′)× Λr[n]),

where the vertical arrows are the unit maps. Since T satisfies the condition (A), the
left vertical arrow is a Γ-weak equivalence. By Lemma 2.1 and (1) of this proposition,
the lower horizontal arrow is a Γ-weak equivalence. The proof of (4) is similar.
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We need the following assertion later:

Lemma 4.13. Let H be a ×-deformation retract of a graph G, and f : H → Y a graph
homomorphism. Let X be the pushout G ∪f Y . If H is a ×-homotopy deformation
retract of G, then Y is a ×-deformation retract of X.

Proof. Let u : G → X be the natural map. Define Φ: Def(G,H)→ Def(X,Y ) by

Φ(η)(v) =

{
{v} (v ∈ V (Y )),

u(η(v)) (v ∈ V (G)).

It is easy to see that this map Φ is well-defined and order-preserving.

4.5. r-NDR of Γ-simplicial complex

In this section, we introduce the notion of r-NDR’s of Γ-simplicial complexes.
A pair of Γ-simplicial complexes is a pair (K, L) consisting of a Γ-simplicial complex
K together with a Γ-subcomplex L of K.

Let K be a simplicial complex. Recall that the star of v ∈ V (K) is the subcomplex
of K defined by

stK(v) = {σ ∈ K | σ ∪ {v} ∈ K}.

Definition 4.14. Let K be a finite Γ-simplicial complex and L a Γ-subcomplex of K.
The neighborhood of L in K is the Γ-subcomplex

νK(L) = ν(L) =
⋃

v∈V (L)

stK(v) ⊂ K.

For a positive integer r, define the r-neighborhood νr(L) inductively by ν1(L) = ν(L),
and νs+1(L) = ν(νs(L)).

A pair of Γ-simplicial complexes (K, L) is an r-NDR pair if there exists a Γ-
subcomplex A of K containing νr(L) such that A strongly Γ-collapses to L.

Proposition 4.15. If (K, L) is an r-NDR pair of finite Γ-simplicial complexes, then
the pair (Sd(K), Sd(L)) is a (2r)-NDR pair.

To prove Proposition 4.15, we use the following lemma:

Lemma 4.16. Let (K, L) be a pair of simplicial complexes. Then we have

ν2(Sd(L)) ⊂ Sd(ν(L)).

Proof. Recall that a simplex of Sd(K) = Δ(FK) is a chain of the face poset of K.
Let c be a simplex of ν2(Sd(L)) ⊂ Sd(K). By the definition of ν2, there is a vertex
σ of ν(Sd(L)) such that c ∈ stSd(K)(σ), namely, c ∪ {σ} is a chain of FK. Since σ ∈
V (ν(Sd(L))), there is τ ∈ V (Sd(L)) such that {σ} ∈ stSd(K)(τ), namely, {σ, τ} is a
chain in FK. Then the maximum σ′ of c ∪ {σ} contains some element v of τ , and
hence we have σ′ ∈ stK(v) ⊂ ν(L). Therefore every element of c ∪ {σ} belongs to ν(L),
and hence c ⊂ c ∪ {σ} ∈ Sd(ν(L)).
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Proof of Proposition 4.15. Suppose that (K, L) is an r-NDR pair of Γ-simplicial com-
plexes, and let A be a Γ-subcomplex of K containing νr(L) such that A strongly
Γ-collapses to L. By Lemma 4.16, we have

ν2r(Sd(L)) ⊂ Sd(νr(L)) ⊂ Sd(A).

Corollary 4.11 implies that Sd(A) strongly Γ-collapses to Sd(L). Therefore the pair
(Sd(K), Sd(L)) is a (2r)-NDR pair.

Theorem 4.17. Let K be a finite Γ-simplicial complex and L a Γ-subcomplex of K.
Then the pair (Sd2(K), Sd2(L)) is a 1-NDR pair.

Proof. Note that Sd(K) is the Γ-simplicial complex whose simplex is a finite chain of
K \ {∅} with respect to the inclusion ordering. Set

X = K \ L = {σ ∈ K | σ �∈ L}.
Then we have FSd(L) = {c ∈ FSd(K) | c ∩X = ∅}. Set

P = {c ∈ FSd(K) | there exists σ ∈ L with σ ∈ c}
= {c ∈ FSd(K) | c �⊂ X}.

Note that Δ(P ) is the 1-neighborhood of Sd2(L) in Sd2(K). Thus it suffices to show
that P strongly Γ-collapses to FSd(L) (Proposition 4.9).
Define the closure operator (see Example 4.3) f : P → P by f(c) = c ∩ L. Then

f(P ) = FSd(L). Thus the theorem follows.

Combining Proposition 4.15 and Theorem 4.17, we have the following:

Corollary 4.18. Let (K, L) be a pair of finite Γ-simplicial complexes. Then for r � 2,
the pair (Sdr(K), Sdr(L)) is a 2r−2-NDR.

4.6. r-NDR for graphs
In this section, we introduce the r-NDR pair of graphs and prove Proposition 3.11.

Definition 4.19. Let G be a graph and H a subgraph of G. Let νG(H) = ν(H) be
the subgraph of G defined by

V (ν(H)) = {v ∈ V (G) | there is w ∈ V (H) such that (v, w) ∈ E(G)},
E(ν(H)) = {(v, w) ∈ E(G) | one of v and w is a vertex of H}.

For r � 1, define the r-neighborhood νrG(H) = νr(H) of H inductively by ν1(H) =
ν(H) and νs+1(H) = ν(νs(H)).

Proposition 4.20. Let (K, L) be a pair of Γ-simplicial complexes. Then

νrAT (K)(AT (L)) ⊂ AT (ν
r
K(L)).

Proof. The case r = 1 is deduced from the construction of AT (Section 3.1) and is
omitted. Thus we have

νrAT (K)(AT (K)) ⊂ νr−1
AT (K)(AT (νK(L))) ⊂ · · · ⊂ AT (ν

r
K(L)).

Corollary 4.21. If (K, L) is an r-NDR pair of Γ-simplicial complexes, then the pair
of graphs (AT (K),AT (L)) is an r-NDR pair of graphs.
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Proof. Let L′ be a subcomplex of K containing νrK(L) such that L
′ strongly Γ-collapses

to L. By Proposition 4.20, we have

νrAT (K)(AT (L)) ⊂ AT (ν
r
K(L)) ⊂ AT (L

′).

Proposition 4.12 implies that AT (L) is a ×-deformation retract of AT (L
′).

Corollary 4.22. Let (K, L) be a pair of finite Γ-simplicial complexes. Then for r � 2,
the pair (AT (Sd

r(K)),AT (Sd
r(L))) is a 2r−2-NDR pair of graphs.

Proof. This follows from Corollary 4.11, Proposition 4.12, and Corollary 4.21.

Let T be a finite connected right Γ-graph. The following theorem asserts that if r
is sufficiently large, then the class of r-NDR’s satisfies the gluing lemma with respect
to SingT -complexes.

Theorem 4.23. Let r be a positive integer, (G,H) an r-NDR pair of graphs, f : H →
Y a graph homomorphism, and X the pushout Y ∪H G. Suppose that the finite right
Γ-graph T has at least one edge and the diameter of T is smaller than r. Then the
diagram

SingT (H) −−−−→ SingT (G)⏐⏐� ⏐⏐�
SingT (Y ) −−−−→ SingT (X)

is a homotopy pushout square in the category SSetΓ of Γ-simplicial sets. In other
words, the natural map

|SingT (Y )| ∪|SingT (H)| |SingT (G)| −→ |SingT (X)|
is a Γ-homotopy equivalence. A similar assertion holds for HomT -complexes.

Proof. By Proposition 2.5 and Corollary 3.2, the case of HomT -complexes follows
from the case of SingT -complexes. Thus we only give the proof of the case of SingT .
Since (G,H) is an r-NDR pair, there is a subgraph H ′ of G containing νr(H) such
that H is a ×-deformation retract of H ′. Let Y ′ be the pushout Y ∪H H ′. Then Y is
a ×-deformation retract of Y ′.
Consider the commutative square

SingT (H
′) i∗−−−−→ SingT (G)

f ′
∗

⏐⏐� ⏐⏐�f̂∗

SingT (Y
′)

j∗−−−−→ SingT (X),

where f̂ : G → X = Y ∪H G and f ′ : H ′ → Y ′ = Y ∪H H ′ are the natural maps,
i : H ′ ↪→ G and j : Y ′ ↪→ X are inclusions. We claim that the above square is a pushout
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square. To see this, we want to show that the diagram

G(T × Σn, H ′) i∗−−−−→ G(T × Σn, G)

f ′
∗

⏐⏐� ⏐⏐�f̂∗

G(T × Σn, Y ′)
j∗−−−−→ G(T × Σn, X)

(2)

is a pushout diagram in the category SetΓ of Γ-sets. Let ϕ : T × Σn → X be a graph
homomorphism. If the image of ϕ does not intersect Y , then ϕ factors through G.
Suppose that there is a vertex v of T × Σn with ϕ(v) ∈ V (Y ). Since the diameter of
T × Σn is smaller than or equal to r and Y ′ is the r-neighborhood of Y in X, we
have that ϕ factors through Y ′. Thus we have shown that the map

f̂∗ � j∗ : G(T × Σn, G) � G(T × Σn, Y ′) −→ G(T × Σn, X)

is surjective. Next let ψ0 : T × Σn → G and ψ1 : T × Σn → Y ′ be graph homomor-
phisms with f̂ψ0 = jψ1. Since the image of f̂ψ0 is contained in Y ′, we have that ψ0

factors through H ′, and let ψ : T × Σn → H ′ with iψ = ψ0. Since

jf ′ψ = f̂ iψ = f̂ψ0 = jψ1

and j is a monomorphism, we have that f ′ψ = ψ1. Thus the diagram (2) is a pushout
diagram.
Next we consider the commutative diagram

SingT (Y ) ←−−−− SingT (H) −−−−→ SingT (G)

j∗

⏐⏐� i∗

⏐⏐� ∥∥∥
SingT (Y

′) ←−−−− SingT (H
′) −−−−→ SingT (G).

(3)

Since i and j are ×-homotopy equivalences, we have that the all vertical arrows in
the above diagram are Γ-weak equivalences (Lemma 2.1 and Corollary 3.2). Let E
(or E′) be the homotopy pushout (see Chapter 13 of [12]) of the upper (or lower,
respectively) horizontal arrows. Then we have a commutative diagram

E
�Γ−−−−→ SingT (Y ) ∪SingT (H) SingT (G)

�Γ

⏐⏐� ⏐⏐�
E′ �Γ−−−−→ SingT (X).

The left vertical arrow is a Γ-weak equivalence since the all vertical arrows in com-
mutative diagram (3) are Γ-weak equivalences (see Proposition 13.5.3 of [12]). The
horizontal arrows are Γ-weak equivalences since the map SingT (H)→ SingT (G) and
SingT (H

′)→ SingT (G) are cofibrations in SSetΓ, and

SingT (X) = SingT (Y
′) ∪SingT (H′) SingT (G)

as was proved (see Corollary 13.3.8 of [12]).

Proof of Proposition 3.11. By Proposition 2.5 and the hypothesis, the map

uK ∪uL uL′ : K ′ = K ∪L L′ → ŜT ◦ ÂT (K) ∪ŜT ◦ÂT (L) ŜT ◦ ÂT (L
′) (4)

is a Γ-weak equivalence. Since (ÂT (K), ÂT (L)) is a 2
k−2-NDR pair (Corollary 4.22),
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Theorem 4.23 implies that the map

ST ◦ ÂT (K) ∪ST ◦ÂT (L) ST ◦ ÂT (L
′)→ ST ◦ ÂT (K

′)

is a Γ-weak equivalence. Here we write ST instead of SingT . Consider the commutative
diagram

ST ◦ ÂT (K) ∪ST ◦ÂT (L) ST ◦ ÂT (L
′) �Γ−−−−→ ST ◦ ÂT (K

′)⏐⏐� ⏐⏐��Γ

ŜT ◦ ÂT (K) ∪ŜT ◦ÂT (L) ŜT ◦ ÂT (L
′) u′

−−−−→ ŜT ◦ ÂT (K
′).

Proposition 2.5 implies that the left vertical arrow is a Γ-weak equivalence. Thus the
lower horizontal arrow u′ is a Γ-weak equivalence. Since (4) is a Γ-weak equivalence,
we have that uK′ = u′ ◦ (uK ∪uL

uL′) is a Γ-weak equivalence.
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