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EXTENDING HOMOTOPY THEORIES ACROSS ADJUNCTIONS
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(communicated by Emily Riehl)

Abstract

Constructions of spectra from symmetric monoidal categor-
ies are typically functorial with respect to strict structure-
preserving maps, but often the maps of interest are merely
lax monoidal. We describe conditions under which one can
transport the weak equivalences from one category to another
with the same objects and a broader class of maps. Under
mild hypotheses this process produces an equivalence of homo-
topy theories. We describe examples including algebras over an
operad, such as symmetric monoidal categories and n-fold mon-
oidal categories; and diagram categories, such as I'-categories.

Introduction

The classifying space functor from categories to topological spaces provides a way
of constructing spaces with certain algebraic structure. Of particular importance are
infinite loop space machines, which construct spectra out of structured categories
such as symmetric monoidal categories [Sta71, Qui73, May74, Seg74, Wal85,
EMO06, May09, Oso12]. The discussion of the functoriality of these constructions
is somewhat nuanced due to the range of possible morphisms one might choose. These
morphisms differ in strength, the degree to which the underlying functors of structured
categories preserve the structure.

It is often the case that such machines are obviously functorial with respect to
maps that strictly preserve the ambient structure. This is the case, for example, for
the operadic machine and maps of symmetric monoidal categories. The maps that
arise in practice however—for example, the functors of module categories induced
by a morphism of commutative rings—are typically not strict, but strong or merely
lax, meaning that they preserve monoidal structure up to coherent isomorphism or
merely coherent morphism. One way to handle such variation is to construct variant
machinery for each type of morphism and prove that the corresponding constructions
are equivalent. This allows one to prove general theorems about the strict case, for
example, Segal machinery and strict maps of I'-categories, but apply them to the more
broadly useful strong or lax case, for example, Segal machinery and lax maps. Such
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an approach appears in a number of places in the literature, for example, in [Man10,
§3].

In this paper we consider a more systematic approach: a direct comparison of the
homotopy theories arising from structured categories and maps of various strength.
For this purpose, we discuss homotopy theory in the generality of relative categories.
A relative category is merely a category € equipped with a subcategory W containing
all of the objects. The morphisms in this subcategory then play the role of weak
equivalences. A pair (€, W) presents a homotopy theory [Rez01, BK12], and such a
presentation neatly hides, but crucially still retains, higher homotopical information,
such as mapping spaces, that is not present in the bare homotopy category.

The central problem we address in this paper may then be described as follows.

Problem. For a homotopy theory (C,' W), give criteria for enlarging the class of
morphisms in C to give a new category € with a larger class of weak equivalences W'
such that the inclusion (C, W) — (€', W') is an equivalence of homotopy theories.

In other words, how can we replace the morphisms in € with more flexible ones without
changing the homotopy theory? The advantages of such a strategy are well-known:
the smaller class of morphisms is likely more amenable to abstract manipulation,
while the larger class will often arise in examples of interest.

Our first main result, Theorem 1.11, gives general conditions under which one can
extend the class of weak equivalences via an adjunction

Q

i
with 4 the identity on objects. Moreover, we prove that this extension is unique
and that the resulting homotopy theories are equivalent. This should be seen as the
relative-categorical analogue of a very strong kind of transferred model structure for
Quillen model categories (see, for example, [Cra95]).

Our second main result, Theorem 2.8, takes C,, respectively Cy, to be categories of
algebras and strict, respectively lax, maps for a 2-monad T on a 2-category X. In par-
ticular, T’ may be the 2-monad on X = Cat whose algebras are symmetric monoidal
categories. This special case provides an enhancement of previous work in the case of
symmetric monoidal categories: Thomason and Mandell show that the correspond-
ing homotopy categories are equivalent after localizing stable equivalences [Tho95,
Lemma 1.9.2] and weak equivalences [Man10, Theorem 3.9], respectively. Many other
examples of interest arise in this way, and we describe a number of them in detail.

We choose the framework of relative categories, rather than Quillen model struc-
tures, as many of the categories we encounter are not well-behaved enough to con-
struct model structures. For example, one variant of our results (see Theorem 2.15)
shows that the homotopy theory of symmetric monoidal categories using strict sym-
metric monoidal functors and stable equivalences extends uniquely to an equivalent
homotopy theory on the category of symmetric monoidal categories using laz sym-
metric monoidal functors. While it is straightforward to define compatible weak equiv-
alences in these categories, the latter category is neither complete nor cocomplete so,
in particular, constructing a model structure via the small object argument is not
possible.
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Outline

In Section 1 we recall basic notions of relative categories and give our first main
result regarding equivalences of homotopy theories for strict and lax maps.

In Section 2 we apply the results of Section 1 to the different morphism variants
for algebras over a 2-monad using the factorization system techniques of Bourke
and Garner [BG16b]. We then go on to give the following examples: symmetric
monoidal categories and n-fold monoidal categories (Section 2.1); categories with
group actions (Section 2.2); and I'-categories or I'-2-categories (Section 2.3). In each
case we discuss interesting map variants, classes of weak equivalences, and explicitly
state the resulting equivalence of homotopy theories.

In Section 3 we recall Bourke’s theory of 2-dimensional monadicity [Boul4]. We
use this theory to recognize some naturally-occurring morphisms as the lax algebra
morphisms for various 2-monads, thus completing the proofs required for some of the
examples in Section 2.
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1. Adjunctions creating weak equivalences

In this section we develop the fundamental machinery to extend a notion of weak
equivalence from a given category to one with the same set of objects and a larger
class of morphisms. We give conditions which guarantee that this extension yields an
equivalence of homotopy theories.

To begin, we recall the elementary notions of relative categories. For more details,
see [DK80, Rez01, BK12].

Definition 1.1. A relative category is a pair (€, W) in which C is a category and W
is a subcategory of C containing all of the objects. A relative functor F: (C, W) —
(€, W) is a functor F': € — €’ such that F restricts to a functor W — W'. A relative
adjunction is an adjunction

F

ew)”— L (D,v), (1.2)

U

where F and U are relative functors.

Definition 1.3. A category with weak equivalences is a relative category (C,'W),
where W contains all isomorphisms and satisfies the 2-out-of-3 property. We infor-
mally refer to a category with weak equivalences as a homotopy theory.

Definition 1.4. Let (C,' W) and (D, V) be categories with weak equivalences. We say
a functor F': C — D creates weak equivalences if for each morphism f of C, f € W if
and only if Fif € V.
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We now recall the definition of equivalence between homotopy theories [Rez01].
This notion is equivalent to the requirement that the induced map on hammock
localizations be a DK-equivalence, and implies that the induced map on categorical
localizations is an equivalence [BK12].

Definition 1.5. A relative functor F': (€, W) — (D, V) is an equivalence of homotopy
theories if, in the complete Segal space model structure, the induced map on fibrant
replacements of classification diagrams is a weak equivalence.

Convention 1.6. Given a collection of weak equivalences, W, and a natural trans-
formation 7, we say that 7 is a weak equivalence and write n € W if each component
of nisin W.

For reference, we record the following observation. Further discussion appears
in [GJO17, 2.9].

Lemma 1.7. A relative adjunction whose unit and counit are weak equivalences
induces an equivalence of homotopy theories.

This lemma motivates the following definition.

Definition 1.8. We say that a relative adjunction is an adjoint equivalence of homo-
topy theories if the components of its unit and counit are weak equivalences.

We are interested in the interplay between different types of morphisms between
given objects, and thus make the following definition.

Definition 1.9. A map extension of a category €, is an inclusion i: €, < €, which
is the identity on objects. We refer to the morphisms of C, as tight, and those of C)
as loose.

For example, one might take the tight maps between monoidal categories to be
the strict monoidal functors and the loose maps to be the lax monoidal functors, the
oplax monoidal functors, the strong monoidal functors, etc. A map extension is a
special case of what [LS12] call an #-category.

Definition 1.10. Let

Q
—
(eT7WT) 1 (GMWA)
\_‘M
1
be a relative adjunction. We say Q -t creates weak equivalences if both ¢ and @
create weak equivalences.

It is generally not the case that a relative adjunction creates a class of weak equiv-
alences in this sense. We will, however, describe useful hypotheses which guarantee
this in a number of interesting examples.

Theorem 1.11. Let (C,,W,), (Cx, W,) be categories with weak equivalences and let
e, 5 e,

be a map extension. Assume there is a left adjoint QQ 411 with counit € and unit 7.
Then the following are equivalent:
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1. 1 creates weak equivalences and € € W,
2. i creates weak equivalences and n € Wiy,
3. @ creates weak equivalences and € € W..
Moreover, these conditions imply the following:
4. @ creates weak equivalences and n € Wi.

Consequently,

Q
—
(67—7W7) 1 (e,\7W)\)
B J

%

is an adjoint equivalence of homotopy theories.

Proof. With @ - ¢, we have the following triangle identities for A € €, and B € Cj.

OB —2"% 0iQB iA —QQ@'A

QB iA

We first show (1) < (2) and (3) = (4): If ¢ creates weak equivalences and e4 € W,
then ic 4 € W) and therefore n;4 € Wy by the 2-out-of-3 property. But since ¢ is the
identity on objects, we have that n € W,. Conversely, n € W, implies each ic 4 € W),
and therefore e € W, since i creates weak equivalences. Likewise, if ) creates weak
equivalences and € € W,, then n € W,.

Now we show (1) and (2) together imply (3). To do so, we need only show that
Q@ creates weak equivalences. Let f: A — B in €. The naturality square for n at f
together with the 2-out-of-3 property imply that f € W, if and only if iQf € W,.
Therefore, since i creates weak equivalences, so does Q.

A similar argument using naturality of e shows (3) and (4) together imply (1). O

Note. We emphasize that condition (4) does not generally imply the others.

Remark 1.12. In practice, we have a notion of weak equivalences in C, and want to
extend this notion to the more general maps in C) in a conservative way: we do not
want a tight map to become a weak equivalence when considered as a loose map. The
fact that conditions (1) and (3) in Theorem 1.11 are equivalent means that whenever
€ is a weak equivalence we can achieve this by creating Wy via Q.

The same reasoning above, applied to different triangle identities, yields the follow-
ing version of Theorem 1.11 when i has a right adjoint. We will not use this version,
but include it for completeness.

Theorem 1.13. Let (C., W), (Cx, W)) be categories with weak equivalences and let

C, = @y be a map extension. Assume there is a right adjoint i 4 Q with counit and
unit € and n, respectively. The following are equivalent:
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1. i creates weak equivalences and n € W,

2. i creates weak equivalences and € € W,

3. Q creates weak equivalences and n € W,.
Moreover, these conditions imply the following:

4. Q creates weak equivalences and € € W,
Consequently,

Q
(€, W;) T (Cx, Wy)
\72

is an adjoint equivalence of homotopy theories.

The next result shows that if weak equivalences in the category of tight maps are

detected via some underlying data, then the same is true for the loose maps. This is
the most common situation in examples of interest.

Theorem 1.14. Assume the hypotheses and any of the equivalent statements of The-
orem 1.11. Furthermore, let (X,V) be a category with weak equivalences with a com-
mutative triangle of underlying categories as below.

Cr %GA

P

Then U, creates W, if and only if Uy creates Wy.

Proof. One implication is obvious: if Uy creates weak equivalences then so does U, .
Now for the converse assume that U, creates weak equivalences. We first show that
Uxn € V. Applying Uy to one of the triangle identities shows that

idy,a=UxieaoUxnia = UreaoUrnja,

so 2-out-of-3, the fact that ¢ is the identity on objects, and the assumption that U
creates weak equivalences shows Uyn € V.

Now let f be a morphism of €. Naturality of n shows that n o f = iQf on. Apply-
ing U, to this equation gives

UsnoUxf =UxiQf oUxn=U,Qf o Uxn.

By Theorem 1.11, @ creates weak equivalences. So f € W, if and only if U,Qf € V
and, so the result follows by 2-out-of-3 and Uyn € V. O

Definition 1.15. We say that @ -7 is an adjoint equivalence of homotopy theories
over (X, V) and write

Q
—
€ W) 1L L (EWy)
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to mean:
1. @ -1 is an adjoint equivalence of homotopy theories,
2. Uyoi=U,, and
3. both Uy and U, create weak equivalences.

Note in particular that the triangle involving @) does not generally commute.

2. Applications to algebras over 2-monads

We will apply the results on homotopy theories in the previous section to various
categories of algebras over 2-monads. We assume the reader is familiar with basic
2-monad theory as developed in, e.g., [KS74, BKP89].

Throughout this section we let X be a complete and cocomplete 2-category (in
the Cat-enriched sense), and let T': X — X be a 2-monad. Let T- 4ly_ denote the 2-
category whose O-cells are T-algebras, 1-cells are strict algebra maps, and 2-cells are
T-algebra transformations. There are also notions of lax, oplax and pseudo algebra
maps, which are, respectively, the 1-cells in the 2-categories T-4ly,, T- ﬂ[gop, and
T- ﬂ(gps.

In examples, T' might describe (symmetric) monoidal structures, n-fold monoidal
structures, diagrams in a 2-category, or G-equivariant structures for a group G. In
the monoidal case, the four kinds of maps are:

e strict monoidal, with axioms like F'(z) ® F(y) = F(z ® y);

e lax monoidal, with additional data like F'(x) ® F(y) — F(x ® y), subject to new
coherence axioms;

e oplax monoidal, with additional data like F'(z ® y) — F(z) ® F(y), subject to
the “backwards” version of the lax axioms; and

e strong monoidal (pseudo algebra maps), with additional data like F/(z) ® F(y)
F(z ®y), once again subject to new coherence axioms.

Definition 2.1 (2-monadic). A 2-functor is called 2-monadic if it is monadic in the
Cat-enriched sense.

Let Uy : T- 4y, — X denote any of the functors which give the underlying objects
and morphisms, where w denotes any of s, [, op, or ps. The functor U, is then
2-monadic, and any 2-monadic functor is of this form (up to 2-equivalence of 2-
categories); in particular, one should note that 2-monadicity does not capture the
structure of any of the non-strict variants.

The Cat-enriched monadicity theorem [Dub70] gives three essential conditions
which imply that a 2-functor U: X — Y is 2-monadic. First, it must have a left 2-
adjoint. Second, it must be conservative (see below). Third, X must have, and U
must preserve, certain coequalizers.

Definition 2.2 (Conservative). A functor is called conservative if it reflects isomor-
phisms.

Definition 2.3 (Accessible). A functor is accessible if it preserves rk-filtered colimits
for some regular cardinal x. A monad is called accessible if its underlying functor is
accessible.
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Theorem 2.4 ([BKP89]). If T is an accessible 2-monad on a complete and cocom-
plete 2-category K, then the inclusion

i: T-ay, — T-A4l,
has a left 2-adjoint Q.

Remark 2.5. The above result holds when lax is replaced with oplax or pseudo.

Bourke and Garner show in [BG16b] that @) arises from an algebraic weak factor-
ization system using the class of lalis. Here we are required to use the additional power
of an algebraic weak factorization system over the more traditional weak factorization
systems. Algebraic refers to additional structure we require our factorization system
to possess. Instead of having left and right classes of maps satisfying factorization
and lifting axioms, we have a functorial factorization f— Rf o Lf equipped with
the structure of a monad on the functor R and a comonad on the functor L. The
coalgebras for L play the role of left maps, and the algebras for R play the role of right
maps. A (co)algebra structure is just that: additional structure. Thus we talk about
right map structures on a given morphism, meaning a choice of algebra structure for
the monad R. While the proofs of the results quoted here depend heavily on this extra
algebraic structure, the theory of algebraic weak factorization systems can be taken
as a black box for our purposes. For further reading, see [GT06, BG16a, BG16b].

Definition 2.6. A left-adjoint left-inverse, or lali, in X is an adjunction (f g,
e: fg=1id,n: id = gf) such that ¢ is the identity.

Proposition 2.7 ([BG16b]). Let T be an accessible 2-monad on a complete and
cocomplete 2-category K.

1. There is an algebraic weak factorization system on the underlying category of K
such that a right map structure on a map f is a lali structure (f 4g,e =1id,n).

2. There is an algebraic weak factorization system on the underlying category of
T-Aaly, such that a right map structure on a strict algebra map f: A — B in
T-A4ly_ is a lali structure on the underlying 1-cell in X.

3. The inclusion ¢ has a left adjoint Q

Q
—

T- A4y \iﬂ T-Aaly,

S

i
and the counit € of this adjunction has a right map structure as in (2).

We combine the previous result with the theory of Section 1 to prove the following.
This is the theorem we use most frequently in examples.

Theorem 2.8. Let T' be an accessible 2-monad on a complete and cocomplete 2-
category K. Let W4 be a collection of 1-cells which make the underlying 1-category
of T-Alg, a category with weak equivalences and assume Wy contains all 1-cells f
such that Us f admits a lali structure. Then there exists a left adjoint Q and a unique
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collection of 1-cells Wy created by @ - 1i. Consequently,

Q
L
(-2, W) T L (-, W)

i

establishes an adjoint equivalence of homotopy theories.
Proof. This follows by combining Theorem 1.11 and Proposition 2.7. O

Remark 2.9. There is a version of this theory that works with oplax morphisms
instead of lax ones, and the algebraic weak factorization system involved uses ralis
(right adjoint, left inverse) for its right maps instead of lalis. Alternatively, there
is a pseudo-strength version, using pseudomorphisms, and the corresponding alge-
braic weak factorization system is that for retract equivalences. See [BG16b] for
more details. In each case we have a corresponding version of Proposition 2.7 and
Theorem 2.8.

2.1. Monads on X = Cat

Let X = Cat and let T be any accessible 2-monad, for example, the 2-monad arising
from an operad. Let (Cat,V) be any weak equivalence structure for which V contains
all adjunctions. Such classes of weak equivalences arise naturally in homotopy theory.
Examples include the class of functors for which the induced map on nerves is a weak
homotopy equivalence and the class of functors for which the induced map on nerves
is an E-(co)homology isomorphism for some spectrum E.

Let W be the weak equivalence structure on T- 4lg_ created by
Us: T-Alg, — Cat

and let w be any of I, op, or ps. Then, by the appropriate variant of Theorem 2.8,
the category T-A4ly  has the weak equivalence structure created by @ -4 and we
have an adjoint equivalence of homotopy theories. The hypothesis that V contains all
adjunctions ensures that the counit € is a weak equivalence. By Theorem 1.14 this is
also the weak equivalence structure created by the forgetful functor U, : T- aly  —
Cat.

Notation 2.10. Let we denote the class of weak homotopy equivalences in (Cat,
i.e., those functors which induce a weak homotopy equivalence on nerves. We abu-
sively use this notation for any class of weak equivalences created by a functor to
(Cat, we).

Ezample 2.11 (Symmetric monoidal categories). The prototypical example of this
kind is when 7" is the 2-monad for symmetric monoidal categories. Then T- 4ly _is the
2-category of symmetric monoidal categories, symmetric strict monoidal functors, and
monoidal transformations, while T- 4fy, has the same objects but symmetric lax mon-
oidal functors. Let V = we and let the underlying category functor SymMonCat . — Cat
create weak equivalences. By Theorem 2.8 we have the following adjoint equivalence
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of homotopy theories over (Cat, we).

{/\
(SymMoncCat _, we) 1 (SymMonCat,, we)

_—
7
Us Uy

(Cat, we)

As noted above, one also has pseudo and oplax variants of this example which likewise
give adjoint equivalences of homotopy theories. The pseudo algebra maps in this case
are the strong symmetric monoidal maps.

Ezample 2.12 (Symmetric monoidal categories and normal functors). A slight variant
of our first example uses a different 2-monad T on Cat, whose algebras are still
symmetric monoidal categories. In this case, the specified base point becomes the
unit object of the symmetric monoidal structure. The category T-A4ly  consists of
symmetric monoidal categories and symmetric strict monoidal functors, while T- 4fy,
is now the category of symmetric monoidal categories and normal (i.e., strictly unit
preserving) symmetric lax monoidal functors. We take V = we in Cat, to be the class
of unbased weak homotopy equivalences (created by the forgetful functor to Cat).
By Theorem 2.8 we have the following adjoint equivalence of homotopy theories over
(Cat., we).

—
(SymMonCat , we) 1 (SymMonCat

SN
%
Us U

(Cat., we)

a0 We)

We also have oplax and pseudo variants of the previous examples. Combining these
yields the following strengthening of [Man10, 3.9].

Theorem 2.13. The homotopy theory of (SymMonCat
topy theory of each of the following.

we) is equivalent to the homo-

s?

° (SymMOﬂCthps, '111(3) i (SymMonCatnps’ we)
o (SymMonCat,, we) * (SymMonCat,, we)
° (SymeonCatOp, we) L (5ymM0”Catnop’ we)

Ezample 2.14 (Stable equivalences of symmetric monoidal categories). For a final
variant concerning symmetric monoidal categories, we take the normal, oplax ver-
sion of the above example. For the “underlying” category we now take the category
of T-categories, with V = st eq being the class of stable equivalences [BF78]. This
example differs from the previous ones in that we do not know whether K satisfies
monadicity and therefore cannot apply Theorem 2.8. However we can apply Theo-
rems 1.11 and 1.14 directly. Let Uy = K be the K-theory functor for normal, oplax
symmetric monoidal functors from [Man10], and let U, = K be the restriction to
strict functors.
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Let W4 = st eq be the weak equivalences created by K. Then the left adjoint @
arises as in the previous examples but via the oplax variant of Theorem 2.4. We
therefore have the following adjoint equivalence of homotopy theories over (I'- Cat,
st eq).

k—\
(SymMonCat , st eq) 1 (SymMoncat ,  , st eq)

(T- Cat, st eq)

op’

Once again we can consider other variants, making use of the alternative definitions
of K given in [Man10]. Together these give the following generalization of [Tho95,
Man10].

Theorem 2.15. The homotopy theory of (SymMonCat, st eq) is equivalent to the
homotopy theory of each of the following.

. (SymMonCatpS7 st eq) . (SymMonCatnps, st eq)
o (SymMonCat,, st eq) o (SymMonCat ,, st eq)
o (SymMonCat . st eq) o (SymMoncCat,, . st eq)

Our next examples concern n-fold monoidal categories for n > 1. These were intro-
duced by Balteanu-Fiedorowicz-Schwénzl-Vogt [BFSV03] and are the algebras over
an operad .4, whose geometric realization is equivalent to the little n-cubes operad.

Alternatively, an n-fold monoidal category can be defined iteratively as a monoid
in the category (n — 1)-Mon Cat,; of (n — 1)-fold monoidal categories and normal lax
monoidal maps. Laxity of the monoid structure map gives rise to interchange maps
between the n different monoidal products and also to a hexagonal interchange axiom.
A 1-fold monoidal category is simply a monoidal category. The notion of braided
monoidal category is equivalent to that of a 2-fold monoidal category where both
products are the same and their interchange transformation is invertible.

To apply our general theory we must identify the lax maps of n-fold monoidal
categories as the lax algebra maps for the 2-monad associated to .. This does
not appear in the literature, but follows from Bourke’s 2-dimensional monadicity
(see Section 3).

Proposition 2.16. Let n > 1. The 2-category n-MonCat; of n-fold monoidal categor-
ies and lax maps is 2-equivalent to the 2-category of algebras and lax algebra maps
associated to the 2-monad M., .

We prove Proposition 2.16 in Section 3.2.
Ezample 2.17 (Iterated monoidal categories). Let T' be the 2-monad on Cat associ-

ated to the operad .. Let V = we and let W, be created by the forgetful functor.
By Proposition 2.16 and Theorem 2.8 we have the following adjoint equivalence of
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homotopy theories over (Cat, we).

&/—\
(n-MonCat s, we) 1 (n-MonCat;, we)

[
7
Us Uy

(Cat, we)

One also has a normal version of the previous example, similar to Example 2.12.
The lax algebra maps in this case correspond to the n-fold monoidal category maps
considered in [BFSV03].

Ezample 2.18 (Group completion equivalences of iterated monoidal categories). Let
V = gc eq be the class of weak equivalences upon group completion of nerves. For
n = 1 this means equivalence after applying QB as discussed in [Seg74, BFSV03].
Applying Theorem 1.11 we have the following adjoint equivalence of homotopy the-
ories.

—
(n-MonCat s, gc eq) s (n-MonCat;, gc eq)
- 5

i

2.2. Diagrams in a 2-category

Let I be a small 2-category and let K be a complete and cocomplete 2-category.
Let obl denote the discrete 2-category with the same objects as I. The inclusion
obl — I induces a 2-functor

U: [I,X] — [obl,X],

where [—, —] denotes the 2-category of 2-functors, 2-natural transformations, and
modifications.

This U has left and right adjoints given by Kan extensions and is conservative so
is 2-monadic. The associated 2-monad 7' = U o Lan can be computed using a coend
formula. Now since U has both adjoints it preserves all limits and colimits. The left
Kan extension is a left adjoint so preserves colimits. Therefore T' preserves all colimits
and hence is accessible. We summarize this discussion in Proposition 2.19.

Proposition 2.19. The 2-functor
U: [I,X] < [obl,X]
is 2-monadic and the associated 2-monad is accessible.
The next result recognizes [I, K]; as the 2-category of algebras and lax maps over 7.

Proposition 2.20. Let I, X, and T be as above. Then T- Ay, = [I,X];, the 2-catego-
ry of diagrams, lax transformations, and modifications.

We prove Proposition 2.20 simultaneously with a reduced version, Proposition 2.27,
using Bourke’s 2-dimensional monadicity in Section 3.2. One also has pseudo and
oplax versions of Proposition 2.20 giving -4y, = [I,X]ps and T- 2l = [I, K]op.
These facts are well-known in the 2-categorical literature [BKP89, Example 6.6] and
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follow from a straightforward, if uninteresting, calculation. The reduced version does
not appear in the literature to our knowledge, but is the case of interest for topological
applications.

Our next examples concern categories with group actions. Let G be a discrete
group, and let I = BG be the small category with one object having automorphisms
given by G and let X = Cat. A diagram BG — Cat is precisely a category with a
G-action, and strict diagram maps are G-equivariant functors. For any morphism
variant w we denote G- Cat,, = [BG, Cat],,. Note that [obBG, Cat] is Cat.

The pseudonatural maps are functors that preserve equivariance only up to coher-
ent natural isomorphisms. These appear naturally in examples, for instance, in Mer-
ling’s study of equivariant algebraic K-theory [Mer17]. There are several notions of
weak equivalence in the category of small G-categories and strict equivariant maps
that are of interest to algebraic topologists and we discuss these below.

Ezample 2.21 (G-categories with underlying weak equivalences). In this example we
consider G- Cat with weak equivalences being the equivariant functors that are weak
homotopy equivalences on underlying categories. Let we denote this class. Combin-
ing Propositions 2.19 and 2.20 with Theorem 2.8, we have the following adjoint equiv-
alence of homotopy theories over (Cat, we).

Q
P
(G- cat, we) 1 (G- Catyps, we)
R

(Cat, we)

Non-ezample 2.22 (G-categories with G-weak equivalences). Let G-we denote the
class of G-weak equivalences, i.e., the equivariant functors F': ¢ — D that induce weak
homotopy equivalences on fixed points € — D for all subgroups H of G' [May96,
BMOT15]. These are the weak equivalences of primary homotopical interest.

The counit of the adjunction

Q
G-cat,” L G-Catps
\‘_z

(]
is not a G-weak equivalence unless G is trivial. Indeed, for the terminal category x
with trivial G-action, Q(x) = EG, the category with set of objects equal to G and a
unique morphism between any two objects. The action of G on EG is given by left
multiplication. The counit EG — * is a non-equivariant weak homotopy equivalence
but not a G-weak equivalence since EGH is the empty category for all nontrivial
subgroups. This means that ) 44 is not an adjoint equivalence of homotopy theories
between (G- Cats, G-we) and (G- Catps, Wps) for any choice of W,,s.

2.3. Reduced diagrams in a 2-category

Note. We remind the reader that all limits and colimits are to be interpreted in the
Cat-enriched sense. Thus a terminal object * in X is one such that K(xz,x) is the
terminal category for all objects x.



102 NICK GURSKI, NILES JOHNSON aND ANGELICA M. OSORNO

In this section, let I be a small 2-category with a zero object 0 and let X be a
complete and cocomplete 2-category with terminal object *.

Definition 2.23. A reduced diagram is a 2-functor X : I — X such that X (0) & .

Let [I,K]reqa denote the 2-category of reduced 2-functors, all 2-natural transforma-
tions, and modifications. Let

VE [I;:K:]red — [I,Jq
denote the inclusion of reduced diagrams into all diagrams. We define
R: [I,X] = [I,X]rea

using a quotient construction as follows. If X is any diagram and a € I, define RX (a)
by the pushout below.

x(0) Y x(a)

* ——— RX(a)
This levelwise pushout is a pushout in the 2-category [I, X] as we now explain. Let ¢y X

be the constant diagram on X (0). The maps X (0 — a) for a € I are the components
of a map of diagrams cpX — X. The diagram RX is then the pushout below.

X — X

|

* — RX

This construction is reduced because a pushout along an isomorphism is an isomor-
phism. The universal property of the 2-categorical pushout shows that R is a 2-functor
[I, jq — [I, :K]red-

Proposition 2.24. The construction R above is left 2-adjoint to the inclusion
J: U, Klrea = [I,X].
Proof. For any diagram X we have 1-cells
X(a) = RX(a),
which form a 2-natural transformation
nx: X = jRX

by the 2-dimensional nature of the universal property of the pushout. As X varies in
[1,X], these assemble into a 2-natural transformation 7 from the identity to jR.

If Y is reduced, these 1-cells are isomorphisms because each pushout along the
isomorphism Y (0) & % is an isomorphism. Their inverses give a 2-natural transforma-
tion

ey: RjY =Y,

which will assemble into a 2-natural transformation from Rj to the identity 2-functor
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on [I,X]eqa- One of the triangle identities is immediate from the definition of . To
prove the other, that

RX — RiRX

RX

commutes, we prove that for an object a of I, the 1-cells (Rnx), and (ngx). are
equal. Now (Rnx), is defined as the unique dotted 1-cell that makes the diagram

x(0) 2 x(a)

nX)a
(nx)a
* X(a

— R

N (MRX)a
(Rnx )a

*%RRX( )

commute, but (nrx ), is also such a morphism so (Rnx)s = (Nrx)q- This verifies the
second triangle identity, since € was defined as the inverse of 7. O

Proposition 2.25. Let K be a complete and cocomplete 2-category. Then the inclu-
ston

J: I, Klrea = [I,X]
ts 2-monadic and the associated 2-monad is accessible.

Proof. We apply the Cat-enriched version of Beck’s monadicity theorem [Dub70].
To do this, we have only to check that j is conservative, has a left adjoint, and
preserves certain coequalizers. We have already constructed the left adjoint above.
Isomorphisms of diagrams are levelwise isomorphisms in both categories, so j is con-
servative. One can easily verify that coequalizers in [I, X],.q are computed levelwise,
hence they exist and j preserves all of them. The same is also true for filtered colim-
its (in fact all connected colimits), so j preserves them and therefore the associated
2-monad is accessible. O

The 2-category [I,K]red is also complete and cocomplete as a 2-category since it
is a full reflective 2-category of a complete and cocomplete 2-category: limits are
computed levelwise, and colimits are computed by first applying j, then taking the
colimit in [/,X], and then applying R to get a reduced diagram. For the remainder
of this section we let U denote the composition of j with pullback along the inclusion
obl < I. The same arguments as above prove the next result.

Proposition 2.26. The composite
U: [I,X]yea = [I,XK] < [obl, K]

18 2-monadic and the associated 2-monad is accessible.
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Let T be the composite U o R o Lan, the 2-monad associated with the composite
adjunction. Then T- 4l is [I, K]req-

Proposition 2.27. The 2-category T- Aly, is [I, X]rca,i, the 2-category of reduced dia-
grams, lax transformations, and modifications.

We prove Proposition 2.27 using Bourke’s 2-dimensional monadicity in Section 3.2.

Ezample 2.28 (I-objects and levelwise weak equivalences). Let I be a skeleton of
the category of finite based sets considered as a discrete 2-category and let X be
either Cat or 2Cats, the 2-category of 2-categories, 2-functors, and 2-natural trans-
formations. Then [I, Cat];eq is the 2-category of I'-categories, I'-functors, and T'-
transformations [Seg74], while [I, 2Cat3]ea is the 2-category of I'-2-categories, I'-
2-functors, and I'-transformations studied in [GJO17].

By Propositions 2.20 and 2.27, these are 2-monadic over [obl, Cat] = [N, Cat]
and, respectively, [N, 2Cats]. The corresponding 2-categories with lax algebra
maps are, respectively, [I, Cat]rea,; and [I, 2Cats]req, - These are the 2-categories of
I'-(2-)categories, I'-lax (2-)functors, and I-transformations. Since the 2-monads for
these are accessible, we get a 2-adjunction @) - ¢ as in Proposition 2.7. The counit of
this adjunction is a right map as in Proposition 2.7 (2), and in particular a levelwise
left adjoint.

Let V = we be the class of levelwise weak homotopy equivalences, created by the
forgetful functors to [N, Cat] and [N, 2Cats], respectively. Being a levelwise adjoint, the
counit is a levelwise equivalence, so by Theorems 1.11 and 1.14 we have the following
adjoint equivalences of homotopy theories.

Q Q
— —
(T- Cats, we) 1 (T- Caty, we) (T- 2Cats, we) i (T- 2Cat;, we)
—_— —_—
K] 7
(IN, Cat], we) (IN, 2Cats], we)

Note that this is a stronger result than what we were able to achieve using direct
methods in [GJO17], namely it strengthens Theorem 4.37 and Corollary 4.47 of loc.
cit. to equivalences of homotopy theories rather than just of homotopy categories.

Ezample 2.29 (I'-objects and stable equivalences). We can also consider the class of
stable equivalences, V = st eq, which are now created by the levelwise nerve functor
to I'- sSet [BF78]. The counit of the adjunction between the categories with strict
and lax maps is a stable equivalence since, once again, it is a levelwise equivalence.
By Theorem 1.11 we have the following adjoint equivalences of homotopy theories.

Q Q
— —
(T- Cats, st eq) L (D-Caty, st eq) (D-2Cats, st eq) L (T-2Cat;, st eq)
- > -~

i %

This is a strengthening of [GJO17, Corollary 4.49).
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3. 2-dimensional monadicity

In this section we recall and apply the 2-dimensional monadicity of Bourke [Bou14].
This goes beyond elementary Cat-enriched monadicity as it accounts simultaneously
for both strict and lax algebra maps. This enables us to identify the bare-handed
notions of lax morphisms as the lax algebra morphisms for iterated monoidal cate-
gories (Examples 2.17 and 2.18) and for I'-(2-)categories (Examples 2.28 and 2.29).

3.1. The 2-dimensional monadicity theorem for lax maps
Throughout this section, let B be a 2-category and let j: A, — A, be a 2-functor
over B via 2-functors H,: A, — B and Hy: A, — B as below.

A, —T a4 (3.1)

\/

We further assume that j is:
1. the identity on objects,
2. locally full and faithful on 2-cells, and
3. faithful on 1-cells.

In particular j induces a map extension on underlying 1-categories. This is the notion
of F-category introduced in [LS12]. We will often suppress the subscripts on H as
they are clear from context.

Remark 3.2. For the remainder of this section we restrict to considering the strict/lax
case. Analogous versions of the theory for strict/pseudo and for strict/oplax can be
found in [Boul4].

Definition 3.3 (strict/lax monadic). We say that the pair (H,, H)) is strict/laz
monadic if there are 2-equivalences

A, =T-Aalg_
Ay = T- 2,
over B for some 2-monad T on B such that

AT%A,\

| |

T- ﬂ[gs — s T- ﬂl(gl
J
commutes.

Conditions for a given pair to be strict/lax monadic will be given below, and rely
on the following definitions. Note that we have suppressed the inclusion j in what
follows.
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Definition 3.4 (Colax limit). Given f: A — B in Ay, the colax limit of f consists
of 1-cells py and gy in A, and a 2-cell oy in Ay

Cy
pf af
/ 2 \
such that the following conditions hold.

1. Given l-cellsr: X — A, s: X — Bin Ay and a 2-cell a: s = fr in A) as shown
below, there is a unique t € A giving the indicated equalities.

SR

A—>B A—>B

2. Let (r,s,«) and (r',s',&’) be as above and let 6,.: r =1/, 05: s = s’ be such
that o/0s = (f * 0,)a. Then there is a unique 6;: t = t’ such that ps x 6, = 6,
and g * 0; = 0.
3. The structure 1-cell ¢ is in A, if and only if r» and s are both in A,.
We say that j admits colax limits of arrows if the colax limit exists for every arrow
f in AA.

Remark 3.5. We can also consider the colax limit of a morphism in a mere 2-category
A, in which case A = A, = A, in the above definition and the third condition becomes
vacuous. We would then say that A admits colax limits of arrows.

Definition 3.6 (Lax doctrinal adjunction). We say that the pair (H,, H)) satisfies
lax doctrinal adjunction if given f: A — B in A, and an adjunction (H, f 4 g,¢,7) in
B, there is a unique adjunction (f 479,&,7) in Ay such that Hy(f 19,,7) = (H, f -
g,€,1).
Theorem 3.7 ([Boul4]). Let j: A, — Ax be a 2-functor over B as in (3.1). Now
suppose the following:

1. H, is 2-monadic with associated 2-monad T;

2. j admits colax limits of arrows in Ay ;

3. B admits colax limits of arrows;

4. Hy is locally faithful and reflects identity 2-cells; and

5. (Hr, H)y) satisfies lax doctrinal adjunction.

Then (H,, Hy) is strict/lax monadic with associated 2-monad T.
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Our goal is often to identify the lax morphisms without explicitly computing them.
Theorem 3.7 accomplishes this by identifying the lax morphisms as the 1-cells of Aj,
possibly up to a 2-equivalence of 2-categories.

3.2. Applications of 2-dimensional monadicity
We now give the proofs of Propositions 2.16, 2.20 and 2.27.

Proof of Proposition 2.16. We apply Theorem 3.7. Let A, and A, respectively, be
the 2-categories of n-fold monoidal categories with strict, respectively lax, maps and
n-fold monoidal transformations. Let B = Cat, let H, and H), be the respective forget-
ful functors and let j be the inclusion. The only conditions which are not immediate
are that (H,, H)) satisfies lax doctrinal adjunction and that j admits colax limits of
lax arrows. However both are straightforward to verify, as we now sketch.

To show that (H., H)) satisfies lax doctrinal adjunction, suppose that f: A — B
is a strict map of n-fold monoidal categories and that g: B — A is an adjoint to the
underlying functor of categories. Then one can construct a lax monoidal structure
map for g via the following composite

A Ny _ /Ny 9(E®ie) /
g(b) ®; g(b') = gf(g(b) ®i g(b)) = g(fg(b) ®; fg(V')) —— g(b®; V).
This is an instance of doctrinal adjunction for ®; [Kel74]. One uses the strict struc-
ture of f and the triangle identities to verify these lax monoidal structures are com-
patible with the interchange transformations.

To show that j admits colax limits of lax maps, one constructs the colax limit of
underlying categories and verifies that it is endowed with an n-fold monoidal struc-
ture. If f: A — B is a lax map of n-fold monoidal categories then the colax limit
in Cat is a category C whose objects are triples (a,b, o4 4) where a € A, b € B, and
Opq: b— f(a) is a morphism in B. The morphisms of C consist of pairs of mor-
phisms between the component objects such that the obvious squares in B commute.
For each index 4, the ith monoidal product on C' is determined componentwise by the
ith monoidal products on A and B and the lax monoidal structure maps for f. The
interchange maps are given pairwise by those in A and B. The compatibility of f
with interchange ensures that this defines a valid interchange for C. Verification of
the necessary axioms consists of routine diagram algebra which we omit for the sake
of brevity. O

Proofs of Propositions 2.20 and 2.27. We apply Theorem 3.7. Let A, be either
[I,X]seq or [I,X] and let B = [obl,X] and let H, be the map induced by the inclu-
sion obl < I. Let A be the category of reduced or, respectively, unreduced diagrams
with lax transformations, and let j: A, < A, be the inclusion.

We now verify the five conditions of Theorem 3.7. Condition (1) is proved in
Propositions 2.19 and 2.26. Condition (3) follows because I is small and X is cocom-
plete. Condition (2) is straightforward by computing colax limits levelwise; i.e., in
B = [obI,X] and verifying that these extend to a 2-functor on I. The 2-dimensional
aspect of the universal property for the levelwise colax limit ensures the universal
property of the colax limit in Aj.
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We verify condition (4) in the unreduced case, noting that this immediately implies
the same condition for the reduced case. The functor H) is the forgetful functor
[I,X]; — [obl,X]. This is clearly locally faithful and reflects identity 2-cells.

For condition (5), let f: X — Y be a 2-natural transformation of diagrams on I
and let f, 4 g, be an adjunction for each a € obI. We construct a lax transformation
g in the following way. For r: a — b in I, define a 2-cell g,.: X(r)g, = g,Y (r) as the
composite

11 "
X(r)ga 22 g0 o X (1) ga = GBY (F) faga == g,V (7),

where 7, respectively e, are the unit, respectively counit, for the object-wise adjunc-
tion between Hy f and g. The middle equality is given by the strict naturality of
f. To see that g satisfies the axioms of a lax transformation one uses the triangle
identities and 2-naturality of f. Now (f,7,&,n) gives the unique adjunction lifting

the object-wise adjunction and this completes the verification of (5). O
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