
Homology, Homotopy and Applications, vol. 19(1), 2017, pp.371–389

BOUSFIELD LOCALIZATION OF GHOST MAPS

MARK HOVEY and KEIR LOCKRIDGE
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Abstract
In homotopy theory, a ghost map is a map that induces the

zero map on all stable homotopy groups. Bousfield localization
is the homotopy-theoretic analogue of localization for rings and
modules. In this paper, we consider the Bousfield localization of
ghost maps. In particular, we pose the question: for which local-
ization functors is it the case that the localization of a ghost is
always a ghost? On the category of p-local spectra, we conjecture
that the only localizations satisfying this property are the zero
functor, the identity functor, and localization with respect to
the rational Eilenberg–Mac Lane spectrum HQ. We significantly
narrow the field of possible counter-examples (one interesting
outstanding possibility is the Brown–Comenetz dual of the
sphere) and we consider a weaker version of the question at hand.

1. Introduction

In algebra, localization is a useful tool for studying rings and their categories
of modules. Often a given property of a ring holds if and only if it holds for the
ring’s localization at every prime, or perhaps maximal, ideal. The localization Rp of
a commutative ring R at a prime ideal p is a local ring whose maximal ideal is the
localization of p; this provides access to the extensive theory of commutative local
rings. The functor (−)p from the category of R-modules to the category of Rp-modules
enjoys many desirable properties. In particular,

Mp
∼= Rp ⊗R M,

and localization is exact since Rp is flat over R.
In stable homotopy theory, a common – and extraordinarily useful – analogue

of algebraic localization is Bousfield localization. For every spectrum E, there is an
associated Bousfield localization functor L = LE that inverts E-homology equiva-
lences and kills E-homology acyclics (see [Bou79] for details). For every spectrum
X, there is a cofiber sequence

CLX
j �� X

i �� LX

such that i is an E-equivalence that is weakly initial among E-equivalences out of X.
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The spectrum CLX is E-acyclic, meaning E ∧CLX = 0, and j is weakly final among
maps from an E-acyclic spectrum into X. A spectrum is called L-local if it lies in the
image of L.

In the ring π∗S, the stable homotopy groups of the sphere spectrum, the only
non-trivial prime ideals are of the form (p) for p a prime integer. For each such ideal
there is a Bousfield localization functor L(p) that gives rise to its algebraic cousin:
one has

π∗L(p)X = Z(p) ⊗ π∗X, (1)

for all spectra X. For a general Bousfield localization functor L, the relationship
between π∗X and π∗LX can be far more mysterious, and such behavior is extremely
rare. It is therefore also difficult in general to determine the effect of localization on
maps of spectra on the level of homotopy groups.

The concern of this paper is what Bousfield localizations do to ghost maps. A map
g is called a ghost if π∗g = g∗ = 0. An important open question in homotopy theory
pertains to the existence of ghost maps: Freyd’s generating hypothesis [Fre66] states
that any ghost map between finite spectra is null homotopic. However, ghost maps
involving infinite spectra abound. They play a central role in the homological algebra
of modules over a ring spectrum, for example (see [HL09, HL11, HL13]). For a
functor such as L(p), it is clear by (1) that the localization of a ghost must always
be a ghost. We suspect that these are essentially the only such localizations, and this
paper grew out of an attempt to prove it.

Fix a localization functor L. We say that a spectrum X is L-ghost-preserving
if the L-localization of every ghost with source X is also a ghost. Refer to L as
ghost-preserving if all spectra are L-ghost-preserving, and call L weakly ghost-
preserving if all finite spectra are L-ghost-preserving. We begin by establishing some
general facts about L-ghost-preserving spectra in §2. In that section, we work in the
derived category of an S-algebra R. This is with a view toward the study of ghost-
preserving localizations in other stable homotopy categories; however, the remainder
of this paper concerns the case R = S. In §3, we observe that p-localization is ghost-
preserving and p-completion is weakly ghost-preserving, but not ghost-preserving. In
fact, localization with respect to any connective spectrum is weakly ghost-preserving.
In §4, we relegate any non-obvious ghost-preserving localizations to the fringes of
homotopy theory (Proposition 4.3). We eliminate all ring spectra other than S and
HQ, but we do not know, for example, whether LI is ghost-preserving, where I is the
Brown–Comenetz dual of the sphere. Our arguments make use of nilpotence technol-
ogy and the Bousfield lattice. In §5, we prove that Ln is not weakly ghost-preserving
for n � 1, and in §6, we prove that LK(1) is not weakly ghost-preserving. Though we
suspect that K(n)-localization is not weakly ghost-preserving for n > 1, we are not
yet able to prove it. In §7, we briefly consider spectra X such that the localization of
any ghost into X is a ghost. This is automatically a more difficult task, as it seems
to require one to work with injective spectra, which are not well understood.
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of the main theorem in §4, and simplified the proof of Proposition 5.2.

2. Generalities

Let R be an S-algebra. In this section, we work in D(R), the derived category of
left R-module spectra [EKMM97]. There are Bousfield localizations

L = LE : D(R) −→ D(R),

for any right R-module spectrum E. The localization of an S-algebra is again an
S-algebra, and the localization of a left R-module is a left LR-module. The category
of L-local R-modules is equivalent to the full subcategory of D(LR) of objects that
are L-local as R-modules. We will write D(R)(X,Y ) for the set of R-module maps
from X to Y , and π∗(−) = [S,−]∗ = D(R)(R,−). The observations and definitions
made in §1 apply in this context. All R-modules are left modules unless otherwise
indicated.

Every localization L comes equipped with a natural transformation i from the
identity functor to L. For any R-module X, let i also denote the localization map
iX : X −→ LX. This localization map induces an isomorphism

i∗ : D(R)(LX,LY ) �� D(R)(X,LY ), (2)

for all modules Y . For any map g : X −→ Y , we have i∗Lg = (Lg)i = ig. Hence,

ig � 0 if and only if Lg � 0.

Certainly, i∗ preserves ghosts: if h : LX −→ LY is a ghost, then so is i∗h = hi. In
particular, if Lg is a ghost, then ig is a ghost. The converse is always true for ghost-
preserving localizations (see Proposition 2.1 below).

An R-module P is projective if and only if P is a retract of a coproduct of
suspensions of R, if and only if P∗ is a projective R∗-module. Further, every projective
R∗-module is realizable as the homotopy of a projective module, and whenever P is
projective, D(R)(P, Y ) ∼= HomR∗(P∗, Y∗) via the obvious natural map. See [HL13]
for details. Now, let ηX : PX −→ X be a map out of a projective module such that
π∗ηX is surjective. Form the cofiber sequence

PX
ηX �� X

ΦX �� CX . (3)

To standardize this choice, one could take ηX = ∨ηα, where {ηα} is the set of homo-
geneous elements in X∗. The map ΦX is called a universal ghost out of X.

Proposition 2.1. Let L be a localization functor, and fix an R-module spectrum X.
The following statements are equivalent:

A. The module X is L-ghost-preserving.

B. For all maps g : X −→ Y , the map ig is a ghost if and only if Lg is a ghost.

C. For all maps g : X −→ Y with L-local target, the map g is a ghost if and only
if Lg is a ghost.

D. The map LΦX is a ghost.
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E. For all objects Y , the isomorphism i∗ from (2) induces an isomorphism

i∗ : D(R)(LX,LY )gh �� D(R)(X,LY )gh ,

where D(R)(A,B)gh denotes the set of ghost maps from A to B.

Consequently, L is ghost-preserving if and only if the above statements are true for
all X, and L is weakly ghost-preserving if and only if the above statements are true
for all finite X.

Proof. To see that (A) =⇒ (B), observe that if ig is a ghost, then it is a ghost
out of X, so L(ig) = Lg is a ghost by (A). The implication (B) =⇒ (C) follows
from the fact that localization is idempotent, and therefore ig = g in (C). For the
implication (C) =⇒ (D), note that (LΦX)i = iΦX is a ghost to an L-local spectrum
since ΦX is a ghost, so L((LΦX)i) = LΦX is a ghost by (C).

Turning to the implication (D) =⇒ (E), we have already observed that i∗ pre-
serves ghosts. Consider h : LX −→ LY and suppose i∗h = hi is a ghost. Then, hiηX =
0, and there is a factorization hi = kΦX , where k : CX −→ LY . Localizing, we obtain

h = Lh = L(hi) = L(kΦX) = LkLΦX .

Consequently, if LΦX is a ghost, then h is a ghost as well.
Finally, we prove that (E) =⇒ (A). Assume (E) holds and let g : X −→ Y be a

ghost map. Then, iY g = (Lg)iX = i∗Lg is also a ghost. By (E), Lg is a ghost as well.
This completes the proof.

Remark 2.2. Since any ghost out of a projective module is trivial, it follows that the
projective modules are L-ghost-preserving for any L. This means that L is weakly
ghost-preserving if and only if the class of finite L-ghost-preserving spectra is thick,
and L is ghost-preserving if and only if the class of L-ghost-preserving spectra is
localizing.

Remark 2.3. It is true by definition that if L is not weakly ghost-preserving, then
it is not ghost-preserving. But it is perhaps worth pointing out that if there is a
finite spectrum X that is not L-ghost-preserving, then there is an infinite spectrum
that is not L-ghost-preserving, namely an infinite coproduct of copies of X. This
observation follows from the fact that the retract of an L-ghost-preserving spectrum
is again L-ghost-preserving.

For any spectrum X, consider the following composite of evident π∗LR-module
maps:

π∗LR⊗π∗R π∗X
μX �� π∗(LR∧RX)

νX �� π∗LX.

The restriction of νXμX to π∗X = 1⊗π∗R π∗X is precisely i∗, so since iΦX = (LΦX)i
is a ghost, we have (LΦX)∗νXμX = 0. We say thatX is L-dense if νXμX is surjective.
If X is L-dense, then LΦX is a ghost, so X is L-ghost-preserving by Proposition 2.1.
This establishes the following proposition.

Proposition 2.4. Let L be a localization functor. Every L-dense R-module is L-
ghost-preserving. In particular, if every R-module is L-dense, then L is ghost-pre-
serving, and if every finite R-module is L-dense, then L is weakly ghost-preserving.
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Though not every L-ghost-preserving spectrum is L-dense in general (see Re-
mark 2.10), it is useful to isolate situations where it suffices to find an object that is
not L-dense in order to prove that L is not ghost-preserving. The following proposition
addresses objects that are as far away as possible from being L-dense.

Proposition 2.5. Let L be a localization functor. If there exists a non-L-acyclic
module X such that i : X −→ LX is a ghost, then X is not L-ghost-preserving, so L
is not ghost-preserving. If X is also finite, then L is not weakly ghost-preserving.

Proof. The module X in the statement of the proposition is not L-ghost-preserving
because Li = 1LX �= 0 is not a ghost.

Example 2.6. The ghost-preserving localization of a ghost must also be a ghost,
but this is not true in general. The localization map i : HZ/p∞ −→ (HZ/p∞)∧p is a
ghost, yet Li � 1(HZ/p∞)∧p is not a ghost since (HZ/p∞)∧p = ΣHZ∧

p �= 0 (see Propo-

sition 3.1(B) for more details).

We also have the following two propositions concerning smashing localizations.
A localization functor L is smashing if the natural map

LR∧RX �� LX (4)

is an equivalence for all X (note that this map induces νX above). L is smashing if
and only if L preserves coproducts (see [HPS97, 3.3.2]; the proof there is valid in this
context), if and only if every object in D(LR) is E-local as an R-module [EKMM97,
VIII.3]. Call L weakly smashing if the map (4) is an isomorphism for all projective
R-modules. If L is weakly smashing, it follows that the map (4) is an isomorphism
for all objects in the thick subcategory generated by the projective modules. This is
the collection of all objects of finite projective dimension. If X has finite projective
dimension, then any sufficiently long sequence of ghosts out of X will be null. In the
stable category, there are spectra of infinite projective dimension (for example, there
are arbitrarily long products of Steenrod operations that are non-trivial). If R has
finite global dimension, then weakly smashing localizations are also smashing.

Proposition 2.7. Let L be a localization functor. The following statements are equiv-
alent:

A. The functor L is weakly smashing.

B. Every projective R-module is L-dense.

C. Every free R-module is L-dense.

D. The functor L takes free R-module spectra to free LR-module spectra.

Proof. First, we prove that (A) and (B) are equivalent.
Let P be a projective R-module and suppose L is weakly smashing. The map μP

is an isomorphism since P is projective and the map νP is an isomorphism since L is
weakly smashing. This implies that P is L-dense.

Conversely, suppose that every projective module is L-dense. To prove that L is
weakly smashing, it suffices to prove that (4) is an equivalence for coproducts of
suspensions of R (i.e., for free R-modules) since localization commutes with finite
coproducts. Let P =

∨
α ΣdαR be such a coproduct. The map μP is an isomorphism,
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and since P is L-dense, νP is surjective. To complete the proof, we must show that νP
is injective. In what follows, we will ignore the suspensions in P to make the notation
less complicated. Consider the diagram

∨
α
LR

κ �� L(
∨
α
LR)

j �� ∏
α
LR.

The localization map κ is precisely the map (4), and κ∗ = νP . The map j is determined
by the natural map from the coproduct to the product which must factor through κ
since a product of L-local modules is L-local. The map κ∗ = νP is injective since jκ
induces the natural injection

π∗jκ :
⊕
α

π∗LR −→
∏
α

π∗LR.

Hence κ is an equivalence, as desired.
That (B) implies (C) is obvious. To see that (C) implies (B), simply use the fact

that the localization commutes with finite coproducts.
Statement (A) implies statement (D) by definition of weakly smashing, so it

remains to show that (D) implies (A). Given a coproduct
∨
α
R for α in an index

set A, we need to prove that
∨
α
LR is L-local. It suffices to do this for index sets A of

sufficiently large cardinality, so assume |A| > |π∗LR|. By (D), the localization of this
spectrum is a free LR-module

∨
β

LR for β in an index set B. Since the localization

map induces an injection

π∗
∨
α

LR −→ π∗
∨
β

LR

(this was observed above), the cardinality of the source may not exceed the cardinality
of the target. This forces |B| � |A|. But then since the coproduct

∨
β

LR is L-local,

any retract is also L-local, so
∨
α
LR is L-local, as desired.

As an example, we next prove that neither p-completion nor K(1)-localization is
weakly smashing.

Proposition 2.8. Neither p-completion nor K(1)-localization is weakly smashing.

Proof. In both cases, it suffices to find a coproduct of spheres that is not L-dense.
Consider the countable coproduct of spheres

∨
k

S, where no copy of S is suspended.

The p-completion map factors as
∨
k

S �� ∨
k

S∧
p

�� (
∨
k

S∧
p )

∧
p
∼= (

∨
k

S)∧p .

On π0, this map induces
⊕
k

Z �� ⊕
k

Z∧
p

�� Ext(Z/p∞,
⊕
k

Z∧
p )
∼= (

⊕
k

Z∧
p )

∧
p

(Ext-p-completion and completion coincide for abelian groups whose p-torsion has
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bounded order; see [MP12]), and the image of the second map in the above com-
posite does not generate the target as a Z∧

p -module. A similar proof works for K(1)-
localization, since

π0(
∨
k

LK(1)S)
∧
p
∼= (

⊕
k

Z∧
p )

∧
p ⊕Hom(Z/p∞,

⊕
k

Z∧
p )
∼= (

⊕
k

Z∧
p )

∧
p .

Remark 2.9. Any finite projective module is automatically L-dense for any L, because
localization commutes with finite coproducts. This is little help in studying weakly
ghost-preserving localizations when R = S, however, since there are no known exam-
ples of non-projective finite spectra X such that X∗ is finitely generated, and if the
generating hypothesis is true, then no such examples exist. Any of the statements in
Proposition 2.7 imply that L takes projective R-modules to projective LR-modules,
but we do not know whether the converse is true. We also do not know whether there
are weakly smashing localizations that are not smashing.

Remark 2.10. One consequence of Proposition 2.7 is that the converse of Proposi-
tion 2.4 is not true in general. For if every L-ghost-preserving spectrum were L-dense,
then the projective spectra would always be L-dense, and every localization functor
would be weakly smashing. This is not true, by Proposition 2.8.

Proposition 2.11. If L is a weakly smashing localization, then a spectrum X is L-
ghost-preserving if and only if it is L-dense. In particular, if L is weakly smashing,
then

A. L is ghost-preserving if and only if every spectrum is L-dense.

B. L is weakly ghost-preserving if and only if every finite spectrum is L-dense.

Note that the previous two statements apply to smashing localizations.

Proof. In light of Proposition 2.4, it suffices to prove that every L-ghost-preserv-
ing spectrum is L-dense. Suppose X is L-ghost-preserving. By localizing the cofiber
sequence in (3), we obtain a cofiber sequence

LPX
LηX �� LX

LΦX �� LCX ,

where LΦX is a ghost and LηX is π∗-surjective. We now have the following commu-
tative diagram:

π∗LR⊗π∗R π∗PX

μPX ��

��

π∗(LR∧RPX)
νPX ��

��

π∗LPX

(LηX)∗
��

π∗LR⊗π∗R π∗X
μX �� π∗(LR∧RX)

νX �� π∗LX,

where (LηX)∗ is surjective, μPX is an isomorphism since PX is projective, and νPX is
an isomorphism since PX is L-dense (see Proposition 2.7). This implies that νXμX

is surjective, so X is L-dense, as desired.

In the next few sections, we work entirely with the case R = S; i.e., we work in
the usual stable homotopy category of spectra.



378 MARK HOVEY and KEIR LOCKRIDGE

3. Moore spectra

We have two results concerning Moore spectra and a corollary for connective spec-
tra. Localization with respect to a Moore spectrum MG is determined by the acyclic-
ity type of G. Any abelian group G has the acyclicity type of either G = Z(J) or
G =

⊕
p∈J Z/(p) for some set of primes J . Call localization with respect to the Moore

spectrum MZ(J) J-localization, and let X(J) denote the J-localization of X. Call

localization with respect to the Moore spectrum M
(⊕

p∈J Z/(p)
)

J-completion,

and let X∧
J denote the J-completion of X. Note that J-localization includes rational-

ization (localization with respect to MQ = HQ, where HQ is the rational Eilenberg–
Mac Lane spectrum).

Proposition 3.1. Let J be a set of primes.

A. J-localization is ghost-preserving.

B. J-completion is weakly ghost-preserving, but not ghost-preserving.

C. If E is a connective spectrum, then LE is weakly ghost-preserving.

Proof. First consider (A). By Proposition 2.4, it suffices to prove that every spectrum
is (−)J -dense. For any spectrum X,

π∗X(J)
∼= Z(J) ⊗X∗,

where π0S(J)
∼= Z(J), so νXμX is surjective and every spectrum is indeed (−)J -dense.

For (B) it suffices to prove that every finite spectrum is (−)∧p -dense, again by
Proposition 2.4. Any finite spectrum X has finitely generated homotopy groups in
each degree (though the converse is not true; consider HZ, for example). Conse-
quently,

π∗X∧
J
∼= π∗

∏
p∈J

X∧
p
∼=

∏
p∈J

π∗X∧
p
∼=

∏
p∈J

(
Z∧
p ⊗X∗

) ∼=
⎛
⎝∏

p∈J

Z∧
p

⎞
⎠⊗X∗.

The first and third isomorphisms come from [Bou79]. The last isomorphism uses the
fact that πkX is finitely presented for each integer k. Now, π0S

∧
J
∼= ∏

p∈J Z∧
p , and

νXμX is surjective, so every finite spectrum is indeed (−)∧p -dense.
To see that J-completion is not ghost-preserving, we first show that p-completion

is not ghost-preserving. From [Bou79, 2.5], we have a split short exact sequence

0 �� Ext(Z/p∞, πkX) �� πkX
∧
p

�� Hom(Z/p∞, πk−1X) �� 0.

Take X = HZ/p∞, the Eilenberg–Mac Lane spectrum associated to Z/p∞. Since

Ext(Z/p∞,Z/p∞) = 0

and

Hom(Z/p∞,Z/p∞) ∼= Z∧
p ,

we obtain that (HZ/p∞)∧p ∼= ΣHZ∧
p . Hence, the p-completion map

HZ/p∞ −→ ΣHZ∧
p

is a ghost, and p-completion is not ghost-preserving by Proposition 2.5. For any prime



BOUSFIELD LOCALIZATION OF GHOST MAPS 379

q �= p, (HZ/p∞)∧q = 0, so (HZ/p∞)∧J = (HZ/p∞)∧p for any p ∈ J , and the existence
of the above ghost implies that J-completion is not ghost-preserving.

Finally, we turn our attention to (C). If E is a connective spectrum, then for all
connective spectra X, LEX � LMGX, where G has the acyclicity type of E∗ as an
abelian group [Bou79, 3.1]. Since every finite spectrum is connective, every finite
spectrum is LE-dense if and only if every finite spectrum is LMG-dense. Since every
finite spectrum is LMG-dense by the above proofs of (A) and (B), LE is weakly
ghost-preserving by Proposition 2.4.

Remark 3.2. Another way to see that J-localization is ghost-preserving and J-com-
pletion is weakly ghost-preserving is to observe that, given the above calculations, in
both cases π∗Lf has the form 1⊗ f∗, so if f is a ghost then Lf is a ghost as well.

4. Ghost-preserving localizations

If E is a spectrum, then

LE(p)
= LE ◦ (−)(p) = (−)(p) ◦ LE .

A map h is a ghost if and only if h(p) is a ghost for all primes p. Consequently, LE

is ghost-preserving if and only if LE(p)
is ghost-preserving on the category of p-local

spectra for all primes p. In this section, we assume all spectra are p-local. We have
the following conjecture.

Conjecture 4.1. On the category of p-local spectra, the only ghost-preserving local-
izations are the zero functor, the identity functor, and LHQ.

We cannot prove this conjecture, but we are able to eliminate practically every
other interesting possibility (see Proposition 4.3). (A notable exception is LI, localiza-
tion with respect to the Brown–Comenetz dual of the p-local sphere.) This conjecture
might be interpreted to say that the ghost preserving localizations coincide with the
localizations which are ‘purely algebraic,’ giving rise to localization at a prime ideal
of π∗S.

We will need to make use of the technology surrounding the Nilpotence Theorem;
see [HS98, Hov95] for more details. Let K(n) denote the nth Morava K-theory with
K(n)∗ = Fp[vn, v

−1
n ]. These spectra are algebraic localizations of certain modules over

the Brown–Petersen spectrum BP with BP∗ = Z(p)[v1, v2, . . . ] and |vn| = 2(pn − 1).
If a p-local finite spectrum is K(n)-acyclic for some n, then it is K(i)-acyclic for all
i < n. A finite spectrum has type n if n is the smallest non-negative integer such that
K(n)∗X �= 0, and every spectrum is type n for some n. Let Cn denote the spectra of
type at least n. There is a sequence of proper inclusions

· · · ⊆ Cn+1 ⊆ Cn ⊆ Cn−1 ⊆ · · · ⊆ C0,
and the Nilpotence Theorem [HS98, Theorem 7] implies that every non-trivial thick
subcategory of C0 is equal to Cn for some n. Every type n spectrum determines
the same Bousfield class 〈F (n)〉. The type n spectrum F (n) admits a vn self-map
inducing an isomorphism on K(m)∗F (n) if m = n and zero otherwise. The Bousfield
class 〈Tel(n)〉 of the telescope of this map is independent of both the choice of F (n)
and the choice of vn self-map. Further, K(m)∧ Tel(n) = 0 if m �= n.
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We will also make use of the mod (p) Eilenberg–Mac Lane spectrum K(∞) = HFp

and I, the Brown–Comenetz dual of the (p-local) sphere. The Brown–Comenetz dual
IX of a spectrum X is the representing spectrum for the cohomology theory

Hom(π0(X ∧ (−)),Q/Z(p)).

Some relevant properties of I are summarized in [HP99, 7.1]. In particular, 〈HFp〉 �
〈I〉. Our next goal is to prove Proposition 4.3, which narrows the class of possible
ghost-preserving localizations. First, we have the following useful observation.

Proposition 4.2. Let LE be a ghost-preserving localization. If there exists a π∗-
injective map X −→ Y where Y is E-acyclic, then X is E-acyclic.

Proof. Let L = LE be a ghost-preserving localization and let f : X −→ Y be π∗
injective. Since the fiber of f is a ghost, and L is ghost-preserving, the map Lf
is π∗-injective. Hence, if LY = 0, then LX = 0.

A spectrum X is dissonant if it is acyclic with respect to the wedge of Morava
K-theories ∨

0�n<∞
K(n).

Spectra that are local with respect to this wedge are called harmonic. See [Rav84]
for a discussion of harmonic and dissonant spectra.

Proposition 4.3. Let E be a spectrum and let D = E ∧M(p). If LE �= LS is ghost-
preserving, then D is a BP -acyclic dissonant spectrum and 〈E〉 = 〈D〉 or 〈E〉 =
〈D〉∨〈HQ〉.
Proof. In general,

〈E〉 = 〈E ∧HQ〉∨〈E ∧M(p)〉.
So 〈E〉 = 〈D〉 if E ∧HQ = 0 and 〈E〉 = 〈HQ〉∨〈D〉 otherwise.

First, suppose E ∧HQ = 0. The rationalization map BP −→ BP ∧HQ is π∗-
injective and E ∧BP ∧HQ = 0, so E ∧BP = 0 by Proposition 4.2. This implies that
E ∧A = 0 for the BP -module spectra A = K(n) and A = HFp. In particular, E and
E ∧M(p) are BP-acyclic dissonant spectra, 〈E〉 = 〈D〉, and E ∧HFp = 0.

Next, suppose E ∧HFp �= 0. By the previous paragraph, E ∧HQ �= 0. Since HFp

and HQ are both field spectra, we then have 〈E〉 � 〈HQ〉∨〈HFp〉 = 〈HZ(p)〉. For any
spectrum X, the Postnikov cover X[d,∞) −→ X is π∗-injective. If E ∧X = 0, then
E ∧X[d,∞) = 0 by Proposition 4.2. This forces HZ(p) ∧X[d,∞) = 0, so πdX = 0.
Since d was arbitrary, this forces π∗X = 0 and hence X is trivial. Since the trivial
spectrum is the only E-acyclic spectrum, LE is the identity functor.

Finally, suppose E ∧HFp = 0 and E ∧HQ �= 0. We will now make use of the
BP -module (and ring spectrum) BP 〈1〉 with coefficient ring BP 〈1〉∗ = Z(p)[v1]. By
[Rav84, 2.1(f)],

〈BP 〈1〉〉 = 〈HQ〉∨〈K(1)〉∨〈HFp〉.
Smashing with E, we obtain that 〈E ∧BP 〈1〉〉 = 〈HQ〉 or

〈E ∧BP 〈1〉〉 = 〈HQ〉∨〈K(1)〉 = 〈E(1)〉.
We claim that 〈E ∧BP 〈1〉〉 �= 〈E(1)〉; to prove this, we use the following lemma.
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Lemma. If T is a ring spectrum, then LEM = LE ∧TM for all left T -module
spectra M .

Proof. Certainly, 〈E〉 � 〈E ∧T 〉, so LE ∧TM is E-local for any M . If M is a left
T -module, then the map

E ∧M E ∧ i �� E ∧LE ∧TM

is a retract of the equivalence

E ∧T ∧M ≈
E ∧T ∧ i �� E ∧T ∧LE ∧TM

via the module structure maps (both M and LE ∧TM are left T -module spectra).
The map E ∧ i is therefore an equivalence, making i and E-equivalence, so LE ∧TM =
LEM as desired.

The rationalization map f : BP 〈1〉 −→ BP 〈1〉∧HQ is a π∗-injective map of left
BP 〈1〉-modules, so by the lemma LEf = LE ∧BP 〈1〉f is π∗-injective since LE is ghost-
preserving. However, LE(1)f is not π∗-injective since

LE(1)BP 〈1〉∧HQ = BP 〈1〉∧HQ

is connective and LE(1)BP 〈1〉 is not connective. Therefore 〈E ∧BP 〈1〉〉 = 〈HQ〉 and
E ∧K(1) = 0. Now, since 〈v−1

1 BP 〉 = 〈HQ〉∨〈K(1)〉, we have 〈E ∧v−1
1 BP 〉 = 〈HQ〉

and thus

E ∧v−1
1 BP ∧M(p) = 0.

Since the map BP −→ v−1
1 BP is π∗-injective, Proposition 4.2 implies that

E ∧M(p)∧BP = 0.

This means E ∧M(p) is a BP -acyclic dissonant spectrum, and the proof of the propo-
sition is complete.

Remark 4.4. Note that E �= S in the above proposition cannot be a ring spectrum,
for if E were a ring spectrum then E ∧M(p) would be a dissonant, HFp-acyclic ring
spectrum, but every ring spectrum is detected by some Morava K-theory.

Given a p-local spectrum E, let

FA(E) = {X |X is finite and E ∧X = 0}
denote the finite acyclics of E. One of the equivalent forms of the Telescope Conjecture
(believed to be false for n � 2, but true for n = 0, 1) is that 〈Tel(n)〉 = 〈K(n)〉.

Proposition 4.5. Assume the Telescope Conjecture is true for all n. Let E be a non-
trivial p-local spectrum with FA(E) �= 0. If LE is ghost-preserving, then 〈E〉 = 〈HQ〉.
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Proof. By assumption, FA(E) = Cn+1 for some n � 0. As observed in [Hov95], re-
peated application of [Rav84, 1.34] yields

〈S〉 = 〈Tel(0)〉∨ · · · ∨〈Tel(n)〉∨〈F (n+ 1)〉.
Consequently,

〈E〉 =
n∨

i=0

〈E ∧ Tel(i)〉

becauseF (n+1) isE-acyclic. If theTelescopeConjecture is true, then 〈Tel(n)〉=〈K(n)〉.
By Proposition 4.3, we obtain 〈E〉 = 〈E ∧HQ〉 = 〈HQ〉 since E is non-trivial.

Since the telescope conjecture is true for n = 1, we may conclude that for E in
the proposition, if 〈E〉 �= 〈HQ〉, then FA(E) ⊆ C3. In sum, it seems that the only
(p-local) examples of ghost-preserving localizations are L = 0, LS and LHQ, though
we have not proved this. Noteworthy among the outstanding possibilities is local-
ization with respect to I. We conclude this section with a general statement about
weakly ghost-preserving localizations, which are far more common (recall that local-
ization with respect to a connective spectrum is always weakly ghost-preserving by
Proposition 3.1 (C)).

Proposition 4.6. If E is a p-local spectrum with a non-trivial, finite, L-local object
(e.g., a ring spectrum with no finite acyclics), then E is weakly ghost-preserving.

Proof. By [Hov95, 3.7], LE must be the identity on finite spectra if E ∧HQ �= 0,
and p-completion on finite spectra otherwise. In the proof of [Hov95, 3.6] it is shown
that a ring spectrum without finite acyclics has a finite local object.

In particular, LI is weakly ghost-preserving.

5. E(n)-localization

Proposition 4.3 implies that the functor Ln (localization with respect to K(0)∨ · · ·
∨K(n)) is not ghost-preserving for n � 1. This is the same as E(n)-localization, where
E(n)∗ = Z(p)[v1, · · · , vn, v−1

n ]. (The spectrum E(1) is a summand of (non-connective)
p-local complex K-theory.) We will now prove that Ln is not weakly ghost-preserving
for n � 1. We will make use of the following analogue of Nishida’s Theorem.

Proposition 5.1. In the rings π∗LnS and π∗LK(n)S, every element of non-zero
degree is nilpotent.

Proof. First, we consider π∗LnS. Since LnS is a ring spectrum, it suffices to prove
that every self-map f : LnS −→ LnS of non-zero degree is nilpotent. To do so, we use
[HS99, 6.6], which says that f is nilpotent if and only if K(i)∗f is nilpotent for all
i � n. Since K(i)∗LnS = K(i)∗ for i � n, f is nilpotent if and only if K(i)∗f = 0 for
all i � n, if and only if the cofiber X of f is not K(i)-acyclic for all i � n. Since f has
positive degree, K(0)∗f = 0, so X is not K(0)-acyclic and hence not K(i)-acyclic for
any i � n by [HS99, 6.8]. Thus f is nilpotent.

For π∗LK(n)S, we take a different approach that makes slight use of a spectral
sequence converging to it; see [DH04, DH95] for more details. Let En denote Morava
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E-theory, with En∗ = WFpn [[u1, . . . , un−1]][u, u
−1]. The ringWFpn is the ring of Witt

vectors with coefficients in Fpn , and the degrees of the coordinates are |ui| = 0 and
|u| = −2. There is an action of the Morava stabilizer group Sn on En∗ and a spectral
sequence

H∗
c (Sn, En∗)Gal =⇒ π∗LK(n)S.

Here, the Galois group Gal = Gal(Fpn/Fp) of automorphisms of Fpn acts trivially
on the ui and u. This spectral sequence is isomorphic to the K(n)-local En-Adams
spectral sequence from the E2 page onward.

Any element f ∈ π∗LK(n)S of positive filtration induces the zero map in En-
homology, hence its telescope is En-acyclic. Since 〈En〉 = 〈E(n)〉, this telescope is
a ring spectrum that is K(i)-acyclic for all i, hence trivial. Thus any element with
positive filtration is nilpotent. It remains to consider maps with filtration zero. Such
maps are detected by elements inH0

c (Gn, En∗), the Gn-invariants of En∗. To complete
the proof, we need only prove that every such invariant has degree zero.

To do so, we will make slight use of [DH95, 3.3], where Devinatz and Hopkins
describe an aspect of the action of Sn on En∗. The action there is given in terms
of a different set of coordinates for En∗, but if t ∈ (Z∧

p )
× ⊆ Sn is a p-adic unit (in

the context of the proposition, a0 = t and ai = 0 for i = 1, . . . , n− 1), then t acts as
multiplication by tk in degree −2k. This is enough to show that En∗ has no invariants
of non-zero degree, and the proof is complete.

Proposition 5.2. For n � 1, there exists a finite spectrum that is neither Ln-dense
nor LK(n)-dense.

Proof. Let L = Ln or L = LK(n). For any n � 1, there is a type n ring spectrum V
with πkV = 0 for k < 0 [Dev92]. The ring spectrum V admits a vn-self map ρ such
that K(n)∗ρ is an isomorphism and K(i)∗ρ = 0 for i < n. Hence Lρ is an invertible
element of π∗LV of non-zero degree. Let J be the ideal of elements of π∗LS of non-
zero degree; by Proposition 5.1, J is nilpotent. Consequently, J ⊗π∗S π∗V maps to
zero via the composite

π∗LS ⊗π∗S π∗V
νV μV �� π∗LV �� K(n)∗LV.

This composite now factors through the connective ring (π∗LS)/J ⊗π∗S π∗V , so its
image is connective. Thus, for k sufficiently large, (Lρ)−k cannot be in the image of
νV μV . This proves that the finite spectrum V is not L-dense.

Corollary 5.3. The E(n)-localization functor Ln is not weakly ghost-preserving for
n � 1.

Proof. Since Ln is smashing, it suffices to exhibit a finite spectrum that is not Ln-
dense by Proposition 2.11. This was done above.

Since LK(n) is not smashing for n � 1, we cannot use the proposition to immedi-
ately conclude that LK(n) is not weakly ghost-preserving. However, we are able to
prove this for n = 1; see §6.
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Remark 5.4. Since the n = 1 case is computationally accessible, we present it here.
For p an odd prime, let M denote the mod (p) Moore spectrum in the cofiber sequence

S
p �� S

ι �� M
∂ �� ΣS.

(For p = 2, one would need to work with, say, the mod (4) Moore spectrum.) We
need:

Proposition 5.5 ([Mil81]). Let σ = L1ν1ι and let ρ = L1ια1. Note that |σ| = q =
2(p− 1) and |ρ| = q − 1.

A. π∗L1M is ring isomorphic to Fp[σ, σ
−1]⊗ E(ρ).

B. The π∗L1S-module structure is determined by the fact that, for p � s, multipli-

cation by αspj/j+1 acts as multiplication by σspj−1ρ and π−2L1S · π∗L1M = 0.

The map ν1 induces multiplication by v1 in BP -homology, and α1 is the composite

Σ2(p−1)S
ι �� Σ2(p−1)M

ν1 �� M
∂ �� ΣS.

See [Dev90, 1.1] (a reformulation of [Rav84, 8.10]) for a description of π∗L1S and
the elements αspj/j+1, which generate πspjq−1L1S ∼= Z/(pj+1).

Now, i∗M∗ = Fp[σ]⊗ E(ρ) ⊆ π∗L1M , and by Proposition 5.5, the π∗L1S-submod-
ule generated by i∗M∗ is Fp[σ]⊗ E(ρ) ∪ Fp[σ, σ

−1]⊗ ρ. In particular, the submodule
is proper and does not contain any elements of the form σk for k < 0. So M is not
L1-dense, and L1 is not weakly ghost-preserving.

We also give an explicit map g such that ig is a ghost, yet neither g nor L1g =
L1(ig) is a ghost. We prove that L1g is not a ghost here; it is proved that g is not a
ghost in [Dev90, 1.7], though our g does not include the last map in the composite
defined there. Note the use of σ−1 below. Let g = α1∂. Now, π∗L1g �= 0 (ignoring
suspensions):

S
ι ��

i ��

M
i �� L1M

(L1ν1)
−1

�� L1M
L1∂ �� L1S

L1α1 �� L1S.

L1S

α−1

��

The bottom composition is non-zero by [Dev90, 1.1]; in π∗L1S, the product of α1

and α−1 is an element of order p in π−2L1S ∼= Q/Z(p). Yet, π∗ig = 0 (ignoring sus-
pensions):

S
η ��

��

M
∂ ��

��

S
α1 ��

��

S
i ��

��

L1S.

L1S
L1η

�� L1M
L1∂

�� L1S
L1α1

�� L1S

Without loss of generality, we may assume |η| � 0 since πkM = 0 for k < 0. Now,
iα1∂η = 0 if and only if L1α1 · L1(∂η) = 0. We have |L1(∂η)| � −1, but π−1L1S =
0, so, in fact, |L1(∂η)| � 0. But note that L1(∂η) is p-torsion because p∂ = 0, yet
π0L1S = Z(p) is torsion free. Consequently, L1(∂η) has positive degree. The product
of any such element with L1α1 is zero.
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6. Morava K-theories

Next, we consider the p-completion of L1, which is the same as K(1)-localization.
In general, (Ln(−))∧p is not the same as LK(n). It is localization with respect to
K(1)∨ · · · ∨K(n): since (−)∧p is localization with respect to the Moore spectrum of a
torsion group, by [Bou79, 2.11] (Ln(−))∧p is the same as E(n)∧M -localization. Since
〈E(n)〉 = 〈K(0)∨ · · · ∨K(n)〉, this is further the same as localization with respect to

(K(0)∧M)∨ · · · ∨(K(n)∧M).

Now, K(0)∧M = 0, and K(n)∧M is a free K(n)-module spectrum, so (Ln(−))∧p -
localization is the same as localization with respect to K(1)∨ · · · ∨K(n). We already
know that neither (Ln)

∧
p nor LK(n) is ghost-preserving by Proposition 4.3.

Our next goal is to prove that K(1)-localization is not weakly ghost-preserving.
We will use the following description of π∗LK(1)S, which follows from Ravenel’s com-
putation of π∗L1S in [Rav84, 8.10].

Proposition 6.1. Let p be an odd prime. Then,

πk(L1S)
∧
p = πkLK(1)S =

⎧⎪⎨
⎪⎩

Z∧
p if k = 0,−1,

Z/pi+1Z if k = spiq − 1, p � s,

0 otherwise.

The groups Z/pi+1Z are generated by the p-completions of the maps detected by
the elements αspi/i+1 described in [Dev90, 1.1]. The group π0L1S

∧
p is generated

by the unit map. A non-zero element h ∈ π−1(L1S)
∧
p is not in the image of the

p-completion map; it corresponds to a map h : Σ−1MZ/p∞ −→ Σ1L1S such that
π−1h ∈ Hom(Z/p∞,Z/p∞) ∼= Z∧

p . The product of any two elements of non-zero degree
is trivial, for degree reasons.

Proposition 6.2. At odd primes, the K(1)-localization functor LK(1) is not weakly
ghost-preserving.

Proof. It is not necessary to work with the cofiber sequence containing a universal
ghost out of X in §2. One may instead work with a similar sort of map out of LX
(which will not be a universal ghost in general). Let L = LK(1). Ignoring suspensions,
let h be a surjection from a (necessarily infinite) coproduct

∨
S∗ onto i∗M∗. The

map h lifts over the inclusion of i∗M∗ into π∗LM , and this lift is realizable as a map
η :

∨
S −→ LM . By construction, im η∗ = i∗M∗. Now consider the cofiber sequence

∨
S

η �� LM
Φ′

M �� C ′
M .

The map Φ′
M i is a ghost, so it factors through ΦM , and if LΦ′

M is not a ghost, then
neither is LΦM .

To prove that LΦ′
M is not a ghost, we will prove that imπ∗Lη = im νMμM , which

implies π∗Lη is not surjective by Proposition 5.2 (the proof shows that M is not
K(1)-dense since it is a type 1 ring spectrum). The infinite wedge

∨
S will not be

L-dense (see the proof of Proposition 2.8), but since p annihilates π∗LM it suffices
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to prove that

i∗ : π∗
∨

S −→ π∗L(
∨

S)

is surjective mod (p). Now, L(
∨
S) = L(

∨
LS) = (

∨
LS)∧p since

∨
LS is already E(1)-

local. The group π∗(
∨
LS)∧p has two summands:

Ext(Z/p∞, π∗
∨

LS)

and

Hom(Z/p∞, π∗−1

∨
LS) = Hom(Z/p∞,

⊕
π∗−1LS).

The Hom group is zero: every summand of ⊕π∗−1LS is a copy of either Z∧
p or Z/pr for

some r, so it is the direct sum of a free abelian group and a p-torsion group that has
no infinitely p-divisible elements. Consequently, the localization map induces Ext-p-
completion

π∗
∨
LS �� π∗(

∨
LS)∧p = Ext(Z/p∞, π∗

∨
LS).

Though the image of this map will not generate the target as a π∗LS-module, this map
is surjective mod (p): for any abelian group A, there is a surjection Ext(Z/p∞, A) −→
A∧

p whose kernel consists of infinitely p-divisible elements, and so mod (p) we have
an isomorphism

Ext(Z/p∞, A)/(pExt(Z/p∞, A)) ∼= (A∧
p )/p(A

∧
p )
∼= A/pA.

This completes the proof.

Remark 6.3. The reader may wonder whether the map f in Remark 5.4 may be used
to show that M is not LK(1)-ghost-preserving. That map satisfies π∗if = 0, where i
is given by the localization LK(1), but unfortunately π∗LK(1)f = 0 as well: in order to
have π∗LK(1)f �= 0, one would need an element of π0L1S

∧
p (any element of non-zero

degree would have a trivial product with (L1α1)
∧
p ) that factors through (L1∂)

∧
p ; this

would require a non-trivial element of π1L1M
∧
p , but this group is zero.

Remark 6.4. Here is an explicit computation that shows M is not LK(1)-dense. The
spectrum L1M is already p-complete, so Proposition 5.5 gives the ring structure
of π∗LK(1)M . This proposition also gives the π∗LK(1)S-module structure, with the
exception of the action of π−1LK(1)S. The generator of this group acts as σ−1ρ, and
the π∗LK(1)S-submodule of π∗LK(1)M generated by i∗π∗M is still

Fp[σ]⊗ E(ρ) ∪ Fp[σ, σ
−1]⊗ ρ,

as in Remark 5.4. So, M is not LK(1)-dense.

7. Duality

In this section, we work in the environment described in §2. Refer to a spectrum
X as L-co-ghost-preserving if the localization of any ghost into X is also a ghost.
Refer to L as co-ghost-preserving if every spectrum is L-co-ghost-preserving; L is
ghost-preserving if and only if it is co-ghost-preserving, so this is nothing new. Call L
weakly co-ghost-preserving if every finite spectrum is L-co-ghost-preserving. For
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our universal example, we will use the obvious dualization of the construction in §2.
Let ξX : X −→ IX be a map to an injective R-module such that π∗ξX is injective.
Form a cofiber sequence

FX
ΨX �� X

ξX �� IX .

The map ΨX is a universal ghost into X.

Proposition 7.1. Let L be a localization functor, and fix an R-module spectrum X.
The following statements are equivalent:

A. The spectrum X is L-co-ghost-preserving.

B. The map LΨX is a ghost.

Either of the above equivalent statements is implied by

C. For all maps g : Y −→ X, the map ig is a ghost if and only if Lg is a ghost.

If X is L-local, then all of the above statements are equivalent.

Proof. It is clear that (A) =⇒ (B). For the converse, simply observe that any ghost
g into X factors through ΨX since there are no non-trivial ghost maps to an injective
spectrum. Hence, if LΨX is a ghost, then so is Lg. It is also clear that (C) =⇒ (A),
since ig is a ghost whenever g is a ghost. When X is L-local, (A) =⇒ (C) since
ig = g.

Remark 7.2. We have chosen the definition of co-ghost-preserving to be the more
natural one, though it is not equivalent to (C) in the above proposition, so far as we
know. Another option would be to take (C) as the definition. This is equivalent to
the map LΨ′

X being a ghost, where Ψ′
X is a universal ghost into LX, and there is a

factorization LΨ′
XLq = LΨX . The issue is that when ig is a ghost, it is not necessarily

a ghost into X.

Freyd’s generating hypothesis says that if f : X −→ Y is a ghost map between
finite spectra, then f = 0. We include an interesting consequence of the generating
hypothesis below. A map f : Y −→ X is phantom if, for all k : Z −→ Y with Z finite,
fk = 0. A map f is phantom if and only if π∗(Z ∧f) = 0 for all finite spectra Z, if
and only if π∗(Z ∧f) = 0 for all spectra Z.

Proposition 7.3. If the generating hypothesis is true, then every phantom-preserving
localization is weakly co-ghost-preserving.

Proof. Let L be a phantom-preserving localization and let f : Y −→ X be a ghost
map into a finite spectrum. For any map k : Z −→ Y with Z finite, fk is a ghost and
hence trivial by the generating hypothesis. This means f is phantom, so Lf is also
phantom. But every phantom map is a ghost, so Lf is, in fact, a ghost.

Many localizations preserve phantom maps, by the following proposition.

Proposition 7.4. Smashing localizations preserve phantom maps.

Proof. Let f : Y −→ X be a phantom map, and let L be a smashing localization.
Then, π∗(Z ∧Lf) = π∗((Z ∧LS)∧f) = 0 for all Z, hence Lf is phantom as well.
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In particular, if the generating hypothesis is true, then the mod (p) Moore spectrum
M(p) is Ln-co-ghost-preserving for all n, though it fails to be Ln-ghost-preserving for
n � 1.
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