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RELATIVE TATE OBJECTS AND BOUNDARY MAPS IN
THE K-THEORY OF COHERENT SHEAVES
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Abstract
We investigate the properties of relative analogues of admis-

sible Ind, Pro, and elementary Tate objects for pairs of exact
categories, and give criteria for those categories to be abelian.
A relative index map is introduced, and as an application we
deduce a description for boundary morphisms in the K-theory
of coherent sheaves on Noetherian schemes.
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1. Introduction

If one knows the category Coh(X) of coherent sheaves of a scheme, the quasi-
coherent sheaves are just the category of Ind objects QCoh(X) � Inda (Coh(X)), i.e.,
they arise from an entirely formal categorical process. What is the geometric role of
the Pro object analogue?
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Two examples: (1) For j : U ↪→ X open, Deligne [Del66] defines an extension-by-
zero functor j!, a type of left adjoint for the pull-back j∗, or (2) for i : Z ↪→ X a closed
immersion, the adic completion naturally outputs a Pro-coherent sheaf:

j! : Coh(U) −→ Pro Coh(X) CZ : Coh(X) −→ Pro Coh(X).

Both functors “need” Pro objects and cannot be defined inside coherent sheaves alone,
e.g., for j! this is forced by the adjunction property. Although both functors are very
natural, Pro-coherent sheaves are used far less often than their Ind-counterpart in
practice. Two natural questions arise:

1. Is there a natural framework allowing one to view both Ind- and Pro-coherent
sheaves as objects in one category?

2. How do the notions of Ind- and Pro-coherent sheaves generalise for sheaves with
support?

This article proposes an answer to these questions and studies the effect of these
functors on algebraic K-theory. We summarize our answers:

(1) For this there would trivially be a boring answer by just taking an extremely
large category. However, we shall argue that the category of so-called Tate objects
Tateel(Coh(X)), originally introduced by Beilinson [Bĕı87] and Kato [Kat00] for
different reasons, is an interesting candidate. This is an exact category whose K-
theory has close ties to that of Coh(X), and its objects are precisely extensions of
quasi-coherent sheaves by Pro-coherent sheaves. So, in a way it provides the minimal
solution to our question. However, while CZ takes values in this category, this is not
the case for Deligne’s j!. See Equation (1), and the paragraph after Theorem 1.1 for
a precise explanation of how this functor is related to our work.

(2) There are several ways to weave support constraints into these categories, e.g.,
Inda (CohZ X) are Ind objects from coherent sheaves supported in Z, while we shall
also introduce a category Inda(Coh(X),CohZ X), which contains Ind objects built of
arbitrary coherent sheaves, but so that the Ind-system has relative quotients with
supports in Z. There are a number of further variations of the theme of support
and we investigate the relations between these categories. Ultimately, this requires a
relative Tate category Tateel(D,C), which gives this article its name.

Once these categories are properly constructed, we use them to address a question
in algebraic K-theory. Namely, any open-closed complement U ↪→ X ←↩ Z gives rise
to a localization sequence

· · · −→ Gi(Z) −→ Gi(X) −→ Gi(U)
∂−→ Gi−1(Z) −→ · · ·

in the K-theory of coherent sheaves, i.e., Gi(X) := πi(KCoh(X)).

Theorem 1.1. Suppose X is a Noetherian scheme, U
j
↪→ X an open subscheme and

Z its reduced closed complement. Then there is a canonical homotopy commutative
triangle

ΩKCoh(U)

TZ

��

∂ �� KCoh(Z)

ΩKTateel(Coh(X),CohZ(X)),

∼
i

��
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where

1. the map TZ is the “open complement” to the adic completion functor CZ ; it
will be defined below in Corollary 3.26 (or see Equation (1) below),
and

2. i is an equivalence of K-theory spaces, given as a concrete zig-zag of simplicial
maps in § 4.

The functor TZ is in general only exact if the inclusion j : U → X is affine. How-
ever, exactness fails only up to a part irrelevant to K-theory, which allows us to
state the theorem without imposing this assumption. See Corollary 4.9 for the full
formulation

It is the functor TZ which is related to Deligne’s j!. As we will see in Equation (7),
there is a short exact sequence of (not necessarily admissible) Ind Pro objects

0 −→ j! F −→ j∗ F −→ TZ(F) −→ 0. (1)

Let us explain the simplicial map of the theorem a little more. We keep the
assumptions as said, and we will follow the convention of not distinguishing be-
tween a groupoid and the geometric realization of its nerve. Denote by Gr�•,•(X,Z)
the bi-simplicial space given by the groupoids of collections of coherent sheaves
(Fpq)p�n, q�m with inclusions Fpq ⊂ Frs for p � r and q � s. Moreover, we assume
that j∗ Fpq = j∗ Frq for p � q. We will comment on the bi-simplicial structure in the
paragraph below. Consider the span of maps

S• Coh(U)× ←− Gr�•,•(X,Z) −→ S•S• CohZ(X),

where the left-pointing arrow sends the above diagram to the simplicial diagram ob-
tained by restriction along j∗. The notation S• refers to Waldhausen’s S-construction
[Wal85]. The rightward arrow maps the above to (Fpq /F0q) ∈ CohZ(X).

The bi-simplicial structure of Gr�•,•(X,Z) is defined by viewing Gr�•,•(X,Z) as
a bi-simplicial subobject of F•S• Coh(X), where we use the convention that for an
exact category C the simplicial category F•C is defined by Fn = Sn+1C, and omits
the boundary map from S•C which takes quotients. In other words, objects in FnC
are length n+ 1 strings of admissible inclusions X0 ↪→ · · · ↪→ Xn, and the simplicial
structure is the canonical one which omits or repeats objects.

In particular, we have that for each fixed index p, the map (Frq)r,q �→ (Fpq)q de-

fines a map Gr�•,•(X,Z) → S•(Coh(X))×. We now obtain the following reformulation
of Theorem 1.1.

Theorem 1.2. Taking geometric realizations of the aforementioned map, and apply-
ing the double loop space functor Ω2, we obtain the following homotopy commutative
diagram:

Ω2|Gr�•,•(X,Z)|
�

�� ��

ΩKCoh(U)
∂ �� KZ ,

where ∂ : KCoh(U) → BKZ is the boundary map of Theorem 1.1, resp. in the G-theory
localization sequence.
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In order to establish our main result we continue the investigations of our article
[BGW16], which was devoted to a detailed analysis of the exact categories of el-
ementary Tate objects. For an exact category D, together with an extension-closed
full subcategory C ⊂ D, we define and study exact categories of relative Tate objects
Tateel(D,C) ⊂ Tateel(D); as well as their cousins Inda(D,C) and Proa(D,C) of rela-
tive admissible Ind and Pro objects. We also give necessary and sufficient criteria for
categories of relative admissible Ind objects to be abelian, namely that C and D are
abelian and satisfy a relative analogue of the Noetherian condition; dually, relative
admissible Pro objects are abelian if and only if C and D satisfy a relative Artinian
condition. We refer the reader to Definitions 3.3 and 3.9 for a precise explanation of
those terms.

An example of particular interest to us is given by CohZ(X) ⊂ Coh(X), where
X is a Noetherian scheme, and Z a closed subscheme. We denote by CohZ(X) the
full subcategory of coherent sheaves on X with set-theoretic support at Z; and by
QCoh(X,X \ Z) the category of quasi-coherent sheaves on X, whose restriction to
X \ Z is coherent. The following statement is part of Proposition 3.23 in the main
body of the text.

Example 1.3. QCoh(X,X \ Z) ∼= Inda(Coh(X),CohZ(X)).

The study of elementary Tate objects in exact categories was pioneered by Beilin-
son [Bĕı87], who introduced this notion in order to study vanishing cycles. This di-
rection was then further pursued by Previdi [Pre11], and the authors in [BGW16].
We view the present article as a natural continuation of these investigations.

2. Recollection on exact categories

For the remainder of this section, we fix exact categories C, D. The basic definitions
and properties can be found in Bühler’s survey [Büh10]. We denote by LexC the

abelian category of left exact presheaves, that is functors Cop F−→ Ab, taking values in
the category of abelian groups, such that a short exact sequence X ↪→ Y � Z is sent
to an exact sequence

0 −→ F (Z) −→ F (Y ) −→ F (X).

We recall the following definition and lemma from [BGW16].

Definition 2.1. Fix an infinite cardinal κ, and consider a filtered poset I with |I|�κ.
An admissible Ind diagram is a functor X : I → C, such that for every i � j we have
that Xi ↪→ Xj is an admissible monomorphism. The full and extension-closed sub-
category of LexC, consisting of objects X which can be represented by lim−→i∈I Xi,

over an admissible Ind diagram with |I| � κ, will be denoted by Indaκ(C). It will be
referred to as the exact category of admissible Ind objects.

It is not obvious to see that Indaκ(C) ⊂ LexC is extension-closed (see [BGW16,
Theorem 3.7]). As a corollary one obtains a canonical structure of an exact category
on Indaκ(C), inherited from the abelian category LexC. We will often refer to the
following result, which is Lemma 3.11 in [BGW16].
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Lemma 2.2. If (Xi)i∈I is an admissible Ind diagram in an exact category C, then
for every i ∈ I the induced Xi ↪→ X is an admissible monomorphism in Inda(C).

The definition of admissible Pro, and elementary Tate objects will be evidently
modelled on this one. In fact, categorical duality allows one to define admissible Pro
objects at no extra cost. The concept of elementary Tate objects combines Ind and
Pro directions in a non-trivial manner.

Definition 2.3. We define Proaκ(C) = (Indaκ(C
op))op, and refer to it as the exact cat-

egory of admissible Pro objects. The full subcategory of Indaκ Pro
a
κ(C), consisting of

objects V which sit in an exact sequence

0 −→ L −→ V −→ V/L −→ 0,

with L ∈ Proaκ(C) and V/L ∈ Indaκ(C), will be referred to by Tateel(C), the category
of elementary Tate objects. Any such admissible subobject L of V is called a lattice
in V . We denote the set of lattices by Gr(V ).

There are several equivalent ways to introduce elementary Tate objects. In our
paper [BGW16, Definition 5.2], elementary Tate object were defined by means of
the property described in the remark below. The fact that the two viewpoints are
equivalent, is implied by [BGW16, Theorem 5.6].

Remark 2.4. Every elementary Tate object can be represented as a directed colimit
lim−→i∈I Xi ∈ Inda Proa(C) over a directed poset I, with Xi ∈ Proa(C), such that for

i � j we have Xj/Xi ∈ C.

We need to recall the notions of left and right s-filtering subcategories, which were
introduced in [Sch04, Definition 1.3 & 1.5]. The definition given below differs from
the one of loc. cit. The fact that the two definitions are equivalent is due to Bühler,
a proof is given in [BGW16, Appendix A].

Definition 2.5. Let C ↪→ D be a fully faithful, exact inclusion of exact categories.

(a) We say that C is left filtering in D, if every morphism X → Y in D, with X ∈ C
factors through an admissible monomorphism X ′ ↪→ Y with X ′ ∈ C. We say
that C ⊂ D is right filtering, if Cop ⊂ Dop is left filtering.

(b) The inclusion C ⊂ D is left special, if for every admissible epimorphism G � Z
in D, with Z ∈ C, there exists a commutative diagram with short exact rows

0 �� X ��

��

Y ��

��

Z �� 0

0 �� F �� G �� Z �� 0,

with the top row being a short exact sequence in C. We say that C is right
special in D if Cop ⊂ Dop is left special.

(c) If C ⊂ D is simultaneously left special and left filtering, then we refer to it as
left s-filtering. Dually, if Cop ⊂ Dop is left s-filtering, then we say that C ⊂ D is
right s-filtering.
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Left or right s-filtering inclusions enable us to define a quotient exact category
D /C (see [Sch04, Proposition 1.16]). Moreover, they play an important role in the
abstract study of elementary Tate objects. Before expanding on this, we have to
record an elementary property of s-filtering embeddings.

Lemma 2.6. Let C ↪→ D be left, respectively right s-filtering, then the inclusion re-
flects admissible monomorphisms and admissible epimorphisms.

Proof. By categorical duality we may assume that C ⊂ D is left s-filtering. If X ↪→
Y � Z is a short exact sequence in D, and Y ∈ C, then one obtains that X,Y ∈ C.
Indeed, this is demanded by Schlichting’s definition [Sch04, Definition 1.3 & 1.5], or
follows from [BGW16, Appendix A], for the definition we stated above. In particular,
if X ↪→ Y is an admissible monomorphism in D with X and Y in C, it fits in a short
exact sequence X ↪→ Y � Z with Z ∈ C as well. But, the proof of Lemma 2.14 in
[BGW16] shows that this short exact sequence is also a short exact sequence in C.
Hence, we obtain that X ↪→ Y is also an admissible monomorphism in C. Similarly,
one deals with the case of admissible epimorphisms.

It was shown in [BGW16, Proposition 5.10] that Pro objects are left filtering in
Tateel(C) and Ind objects right filtering. The following result strengthens these two
facts. It develops the idea of the proof of [BGW16, Prop. 5.8], and is a statement of
independent interest:

Proposition 2.7. Let C be an exact category.

1. Every morphism Y
a−→ X in Tateel(C) with Y ∈ Proa(C) can be factored as

Y
ã−→ L ↪→ X with L a lattice in X.

2. Every morphism X
a−→ Y in Tateel(C) with Y ∈ Inda(C) can be factored as

X � X/L
ã−→ Y with L a lattice in X.

Proof. (1) By Remark 2.4 the elementary Tate object X can be represented as a
formal colimit lim−→i∈I Xi, where I is a filtered poset, and I → Proaκ(C) a diagram

which satisfies the two conditions

– For every pair i � j in I the induced morphism Xi → Xj is an admissible
monomorphism in Proaκ(C),

– such that the quotient Xj/Xi lies in the full subcategory C.

By virtue of the definition of morphisms in categories of Ind objects we see that
Y → X factors through an Xi → X. It remains to show that the latter map is an
inclusion of a lattice. Lemma 3.11 of [BGW16] implies that Xi ↪→ X is an admis-
sible monomorphism. The quotient object X/Xi is represented by the Ind system
lim−→j�i

Xj/Xi, and is hence an admissible Ind object in C. (2) Since Ind objects are

right filtering in Tateel (C) [BGW16, Proposition 5.10], it suffices to deal with the
case X � Y . We pick some lattice L in X, and by the right filtering of Ind objects
again, we get an object C ∈ Inda (C) so that the diagram



RELATIVE TATE OBJECTS 347

L

X

� �

��

C

Y
��

X Y�� ��

L C�� ��

X

X/L
����

commutes. Being a quotient of a Pro object at the same time, we must have C ∈ C,
since Proa(C) ⊂ Inda Proa(C) is left s-filtering by [BGW16, Proposition 3.10]. Let
W := ker(L � C) and complete the diagram to

L

X

� �

��

W L� � ��W

X

� �

��

C

Y
��

X Y�� ��

L C�� ��

X/W.X/L ��

X

X/L
����

X

X/W.
�� ��

X/W.

Y		

The existence of the arrows originating fromX/W follows from the universal property
of cokernels. In the idempotent completion X/W → X/L must be an admissible epic
by [Büh10, Prop. 7.6] and the Snake Lemma applied to

W X� � �� X X/W�� ��

L X� � �� X X/L�� ��

W

L

� �

��

X/W

X/L
����

X

X

provides us with an isomorphism ker(X/W � X/L) ∼= L/W ∼= C. We conclude that
C ↪→ X/W � X/L is exact already in elementary Tate objects, since inclusion in the
idempotent completion of an exact category reflects exactness (see [Büh10, Propo-
sition 6.13]). Since X/L is an Ind object and C ∈ C, it follows that X/W is an Ind
object. Moreover, W is a subobject of L, so W is a Pro object and therefore a lattice.
The factorization X � X/W → Y proves the claim.

Central to the theory of elementary Tate objects is the main result of [BGW16,
Theorem 6.7]. For convenience of the reader we recall the main idea behind the
argument. For an elementary Tate object V ∈ Tateel(C) we denote by Gr(V ) the
poset of lattices L ⊂ V , with the partial ordering given by inclusion. We refer to
Gr(V ) as the Sato Grassmannian of V .

Theorem 2.8. If C is an idempotent complete exact category and V ∈ Tateel(C), then
the Sato Grassmannian Gr(V ) is a directed and co-directed poset.
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Sketch. Suppose L1, L2 ↪→ V are lattices. Then L1 ⊕ L2 → V is a morphism from
a Pro object to an elementary Tate object. Thus, by Proposition 2.7 there exists a
factorization

L1 ⊕ L2 −→ L′ ↪→ V,

with L′ a lattice in V . Invoking the non-trivial result [BGW16, Lemma 6.9] implies
that the morphisms Li → L′ must be admissible monics.

3. Relative Tate objects

In this section, we introduce relative versions of Ind, Pro, and Tate objects. This
will allow us to give an index-theoretic description of boundary maps in algebraic
K-theory. We begin by stating two lemmas on ordinary admissible Ind objects.

Lemma 3.1. Let C and D be exact categories, and let C ↪→ D be an exact, fully faithful
embedding. Then C � Inda(C) ∩ D ⊂ Inda(D).

Proof. Let X ∈ Inda(C) be the colimit of an admissible Ind diagram X : I → C. Let

Y ∈ D be such that there exists Y
∼=−→ X in Inda(D). By the definition of morphisms

in Indaκ(D), there exists i ∈ I, such that we have a factorization

Y
∼= ��

��

X

Xi.
� �





The diagonal arrow is an admissible monic in Inda(C) by construction [BGW16,
Lemma 3.11]; and the commutativity of the above diagram implies that it is also an
(not necessarily admissible) epic. It is therefore an isomorphism.

The next lemma is a slight generalization of [BGW16, Proposition 5.10(1)]; to
shake things up, we give a different proof.

Lemma 3.2. Let D be an exact category, and let C ⊂ D be a right (or left) s-filtering
subcategory. Then for any short exact sequence in Inda(D)

X ↪→ Y � Z

we have that Y ∈ Inda(C) if and only if X and Z are.

Proof. We will show that the category Inda(C) is equivalent to the fibre product

Inda(C) ��

��

0

��

Inda(D)
F �� Inda(D /C),

that is, it is the full subcategory ofX ∈ Inda(D), which are mapped to a zero object by
F , i.e., F (X) ∼= 0 ∈ Inda(D /C). Taking this for granted, we observe that for an exact
sequence X ↪→ Y � Z, we have F (Y ) ∼= 0, if and only if F (X) ∼= 0 and F (Z) ∼= 0.
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Because F is an exact functor, this implies that Y ∈ Inda(C) if and only ifX ∈ Inda(C)
and Z ∈ Inda(C).

Using [BGW16, Proposition 3.16], we have a fully faithful functor Inda(C) ↪→
Inda(D), therefore it suffices to show that its essential image is precisely the kernel of
the functor F : Inda(D) → Inda(D /C). If (Xi)i∈I is an admissible Ind diagram in C,
then we have F (Xi) ∼= 0 for every i ∈ I. In particular, F (Xi)i∈I ∼= 0 ∈ Inda(D /C).

Vice versa, if (Xi)i∈I is an admissible Ind diagram in D, which is mapped to 0 ∈
Inda(D /C), then the fact that the induced maps F (Xi) ↪→ 0 are admissible monomor-
phisms (see Lemma 2.2) implies that F (Xi) = 0 for every i ∈ I. In particular, we see
that every Xi ∈ C. Admissible monomorphisms are reflected by right/left s-filtering
inclusions (Lemma 2.6), which implies that (Xi)i∈I ∈ Inda(C).

Having dealt with the technicalities above, we are ready to define relative Ind, Pro
and Tate objects.

Definition 3.3. Let D be an exact category, and let C ⊂ D be an extension-closed
subcategory. Let κ be an infinite cardinal.

(a) Define the category of relative admissible Ind objects Indaκ(D,C) to be the full
subcategory of Indaκ(D) consisting of objects that admit a presentation by an
admissible Ind diagram X : I → D (cf. [BGW16, Def. 3.2]) such that for all
i < j in I, we have Xj/Xi ∈ C.

(b) Define the category of relative admissible Pro objects Proaκ(D,C) by

Proaκ(D,C) := (Indaκ(D
op,Cop))op.

(c) Define the category of relative elementary Tate objects Tateelκ (D,C) to be the
category Indaκ(Pro

a
κ(D),C).

(d) For C and D idempotent complete, define the category of relative Tate objects
Tateκ(D,C) to be the idempotent completion Tateelκ (D,C)

ic.

Remark 3.4. In the language of Definition 3.3, the category of elementary Tate objects
in C can be written as

Tateelκ (C) = Indaκ(Pro
a
κ(C),C).

We begin with a formal observation, which characterizes relative admissible Ind
objects in categorical terms. Often it can be used to shorten proofs, provided one
accepts stronger assumptions for the embedding C ↪→ D.

Lemma 3.5. Assume that C ↪→ D is a left or right s-filtering inclusion of exact cate-
gories. Then, we have Indaκ(D,C)

∼= Indaκ(D)×Indaκ(D /C) D /C ↪→ Indaκ(D) as a full sub-
category of Indaκ(D).

Proof. Let (Xi)i∈I be an Ind diagram, representing an objectX of Indaκ(D). We denote
the exact functor Indaκ(D) → Indaκ(D /C) by F . If (Xi)i∈I is relatively admissible, then
(F (Xi))i∈I is a constant diagram, since the transition maps Xi → Xj are mapped
to equivalences in D /C. Conversely, if lim−→I

F (Xi) ∼= Y for some Y ∈ D /C, then the

isomorphism Y → lim−→I
F (Xi) factors through the inclusion F (Xi) ↪→ lim−→I

F (Xi) for
some i. By Lemma 2.2, this inclusion is therefore an epic admissible monic, and
thus an isomorphism. Because D /C ↪→ Indaκ(D /C) is left s-filtering by [BGW16,
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Proposition 3.10], we can also conclude that F (Xj) ∈ D /C for all j � i in I, and
that F (Xj)j�i is isomorphic in D /C to a constant diagram. We conclude that, for all
j � i, Xj/Xi ∈ C and thus that (Xj)j�i is an admissible relative Ind-diagram.

If the reader is willing to work instead with the assumption that C ↪→ D is left or
right s-filtering, the next lemma is a direct consequence of the result proven above.

Lemma 3.6. Let C ⊂ D be an extension-closed full subcategory. For any cardinal κ,
Indaκ(D,C) is closed under extensions in Indaκ(D). Similarly, Proaκ(D,C) is closed under
extensions in Proaκ(D) and Tateelκ (D,C) is closed under extensions in Indaκ(Pro

a
κ(D)).

Consequently, we obtain an exact structure on the categories Indaκ(D,C), and sim-
ilarly for relative admissible Pro objects, and relative elementary Tate objects.

Corollary 3.7. The categories Indaκ(D,C), Pro
a
κ(D,C) and Tateelκ (D,C) are exact cat-

egories.

Proof of Lemma 3.6. The statements about relative Pro and relative elementary Tate
objects are special cases of the statement about relative Ind objects. In all cases, the
lemma follows from the straightening construction for exact sequences [BGW16,
Prop. 3.12] and the fact that C is closed under extensions in D.

In more detail, consider an exact sequence in Indaκ(D)

0 −→ X̂ −→ Ŷ −→ Ẑ −→ 0,

with X̂ and Ẑ in Indaκ(D,C). Let

X : J −→ D , and

Z : I −→ D

be admissible relative Ind diagrams. The straightening construction for exact se-
quences [BGW16, Proposition 3.12] shows that there exists a directed partially or-
dered set K with final maps K → J and K → I such that the exact sequence above
is isomorphic to the colimit of an admissible Ind diagram of exact sequences

K

⇒

��

K

��

K.

⇒

��
C

For any map i � j in K, the 3× 3-Lemma [Büh10, Cor. 3.6] shows that we have a
diagram with exact rows and columns

Xi
� � ��
� �

��

Yi� �

��

�� �� Zi� �

��

Xj
� � ��

����

Yj

����

�� �� Zj

����

Xj/Xi
� � �� Yj/Yi

�� �� Zj/Zi.

Because X : J → D is an admissible relative Ind diagram, so is K → J
X−→ D, and

similarly for K → I
Z−→ D. In particular, Xj/Xi and Zj/Zi are both objects in C.
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Because C is closed under extensions in D, we conclude that Yj/Yi is also in C, and
thus that Y : K → D is an admissible relative Ind diagram.

Lemma 3.8 (Straightening). Every morphism f : X → Y in Inda(D,C) (see Defini-
tion 3.3) can be represented (that is, straightened) by a colimit of morphisms in D,
(Xi → Yi)i∈I , where (Xi)i∈I , (Yi)i∈I are relative admissible Ind diagrams.

Proof. We choose presentations (Xi)i∈K , (Yi)i∈K′ for Y as a relative admissible Ind
diagram. According to [BGW16, Lemma 3.9] there exist cofinal maps I → K, I →
K ′, such that the induced relative admissible Ind diagram (Yi)i∈I fits into a diagram
of morphisms

(Xi −→ Yi)i∈I .

This concludes the argument.

Henceforth, we omit the cardinality bound κ from our notation.
Under favourable conditions, the exact categories of relative Ind and Pro objects

Inda(D,C) and Proa(D,C) are abelian.

Definition 3.9. (a) An abelian category A is said to be Noetherian if for every
object X ∈ A, an ascending countable sequence of subobjects

X0 ⊂ X1 ⊂ · · · ⊂ X

eventually stabilizes, that is, there exists an index i ∈ N, such that Xj+1 = Xj

for all j � i. It is said to be Artinian if every descending countable sequence of
subobjects stabilizes.

(b) Let A1 ⊂ A2 be an exact, fully faithful inclusion of abelian categories. We say
that the pair (A2,A1) is Noetherian, if for every object X ∈ A2, every count-
able sequence of subobjects Xi ⊂ X as above having Xi+1/Xi ∈ A1 eventually
stabilizes. Analogously for Artinian.

Example 3.10.

1. For a Noetherian commutative ring R, the abelian category of finitely generated
R-modules is Noetherian. If R is Artinian as a ring, the category is also an
Artinian.

2. An abelian category C is Noetherian if and only if Cop is Artinian.

Proposition 3.11. Let D be an abelian category, and C ⊂ D a Serre subcategory.
Then,

(1) the exact category Inda(D,C) is equivalent to an abelian category with the max-
imal exact structure if and only if the pair (D,C) is Noetherian.

(2) the exact category Proa(D,C) is equivalent to an abelian category with the max-
imal exact structure if and only if the pair (D,C) is Artinian.

Here Noetherian and Artinian are to be understood in the sense of Definition 3.9(b).

Proof. We shall only deal with the case of Inda(D,C), for Pro objects it suffices to
invert arrows. Freyd has shown in [Fre66, Prop. 3.1] that an exact category is abelian
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if and only if every morphism X → Y is admissible, that is, admits a factorization

X � I ↪→ Y,

where the first morphism is an admissible epimorphism, and the second one an ad-
missible monomorphism.

For a morphism X
f−→ Y in Indaκ(D,C) ⊂ Indaκ(D) we may choose a straightening

by Lemma 3.8, that is, a presentation as a map of diagrams (fi : Xi → Yi)i∈I , where
each (Xi)i∈I and (Yi)i∈I is a relative admissible Ind diagram in D. In particular,
we may assume that the transition maps Xi → Xj and Yi → Yj are monomorphisms
with quotients in D.

Since D is abelian, we obtain a factorization Xi � Ii ↪→ Yi, where each Ii is the
image of the morphism fi. The equivalence

Ii ∼= coker(ker fi −→ Xi)

implies that we have a commuting diagram with exact rows

0 �� ker fi ��

��

Xi
��

��

Ii

��

�� 0

0 �� ker fj �� Xj
�� Ij �� 0,

for every pair of indices i � j, and, in particular, obtain canonical maps Ii → Ij . The
commutative square

Ii ��

��

Yi

��

Ij �� Yj

implies that Ii ↪→ Ij is an admissible monomorphism. Moreover, we see that Ij/Ii is
a quotient of Xj/Xi, thus belongs to C, since C is a Serre subcategory. We denote by
I = lim−→i∈I Ii the corresponding object of Inda(D,C).

So far we have produced a factorization X → I → Y . The morphism X → Ii is an
admissible epimorphism, since it fits into an exact sequence given by the colimit of

0 −→ ker fi −→ Xi −→ Ii −→ 0.

In order to conclude the proof, we need to show that I → Y is an admissible monomor-
phism in Inda(D,C). In LexD it fits into a short exact sequence given by the colimit of

0 −→ Ii −→ Yi −→ Yi/Ii −→ 0,

but the direct system (Yi/Ii)i∈I is not necessarily admissible. However, according
to Lemma 3.12 it admits a presentation by a relative admissible Ind diagram, which
concludes the proof of one direction. This is where the relative Noetherian assumption
is key.

Vice versa, assume that (D,C) is not Noetherian, that is, there exists an object
Y ∈ D and a sequence of subobjects

Xi ⊂ Y,
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such that Xi �= Xi+1, and Xi+1/Xi ∈ C. Let us denote by X = lim−→i∈I Xi the cor-

responding object of Inda(D,C). We have a morphism X
f−→ Y , induced by the in-

clusions Xi ↪→ Y . We claim that f does not have a cokernel in Inda(D,C). Indeed,
assume that f has a cokernel, which implies that f is an admissible monomorphism
in Inda(D,C). Hence, f is also an admissible monomorphism in Inda(D). However,
[BGW16, Proposition 3.10] shows that D ⊂ Inda(D) is left s-filtering. This implies
that every X ∈ Inda(D), such that X ⊂ Y , we have, in fact, X ∈ D. However, the
object X we have constructed above cannot belong to D because the sequence

· · · ⊂ Xi ⊂ Xi+1 ⊂ · · ·
does not stabilize. If X were in D, then the isomorphism X → lim−→i

Xi would factor
through a fixed Xi, in which case, we would have an epic admissible monic Xi → X,
and thus X would be isomorphic to Xi. We conclude that Inda(D,C) cannot be
abelian, if (D,C) is not relatively Noetherian.

Lemma 3.12. Let D be an abelian category with a Serre subcategory C ⊂ D, such
that the pair (D,C) satisfies the relative Noetherian condition of Definition 3.9. Under
these assumptions, every colimit in LexD

X = lim−→
i∈I

Xi,

where I is a directed poset, and ker(Xi → Xj), coker(Xi → Xj) ∈ C for every ordered
pair of indices i � j, is equivalent to an object in Inda(D,C).

Proof. If |I| is finite, the assertion follows, since X ∼= Xmax(I). In order to verify
the claim for infinite I we will produce a relatively admissible Ind system (Yi)i∈I ,
satisfying lim−→i∈I Yi

∼= X, such that for i � j we have Yi ↪→ Yj is a monomorphism

with Yj/Yi ∈ C. We will construct Yi = Xi/Ki as a quotient of Xi.
For i � j we denote by Kij the kernel of Xi → Xj . For j � k we have Kij ⊂ Kik ⊂

Xi. Moreover, the quotient Kik/Kij is a quotient of Kik ∈ C, and hence itself in C. We
conclude that the filtered poset of subobjects Kij ⊂ Xi must stabilize at a subobject
Ki ⊂ Xi.

Note that for every i1 � i2 we have an induced map Ki1 → Ki2 : indeed, there exist
indices j1, j2, such that Ki1 = ker(Xi1 → Xj) for every j � i1, and similarly for i2.
Hence, we may choose j � i1, i2, and the universal property of kernels implies the
existence of a unique map Ki1 → Ki2 as in the diagram

0 �� Ki1
��

��

Xi1
��

��

Xj

��

0 �� Ki2
�� Xi2

�� Xj .

Denote the colimit lim−→i∈I Ki ∈ LexD by K; and similarly define Y = lim−→i∈I Xi/Ki.

By the exactness of colimits for Grothendieck abelian categories, we have a short
exact sequence

0 −→ K −→ X −→ Y −→ 0.

However, one sees easily that K = 0, since by construction we know that for every
i ∈ I, there exists j � i, such that Ki → Kj is the zero map. In order to conclude
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the proof, we have to show that for every i1 � i2 the induced map Yi1 → Yi2 is a
monomorphism.

As above we may choose an index j � i1, i2, such that Kik = ker(Xik → Xj) for
k = 1, 2. In particular, we may identify Yik with the image Xik/Kik ⊂ Xj , and the
map Yi1 → Yi2 with the induced inclusion of images.

Example 3.13. (Non-abelian admissible Ind category) Let Vectf be the category of
finite-dimensional k-vector spaces and Vect the category of all k-vector spaces. There
is a morphism

Inda(Vect)⊕
i=0...∞

k
f−−→

Vect⊕
i=0...∞

k,

where the first coproduct is formed in Inda(Vect), and the latter in Vect itself. In
terms of an admissible Ind diagram, f is (i �→ (k⊕i ↪→ k⊕∞)). This morphism does
not possess a cokernel, so that Inda(Vect) cannot be an abelian category. This example
also re-affirms that the inclusion C ↪→ Inda(C) does not preserve colimits. If we work
instead with the full Ind category Ind(C), i.e., we allow also Ind diagrams whose
transition morphisms are not monics, Ind(C) is always abelian once C is, and our f
would permit a cokernel. Its transition morphisms would all be epics, so it is non-
admissible.

3.1. Further properties
The next lemma is a slight generalization of [BGW16, Proposition 3.14]; mutatis

mutandis the proof is the same.

Lemma 3.14. Let D be an exact category, and C an extension-closed full subcategory.
For k � 0, there exist canonical equivalences

Inda(Sk D, SkC)
�−→ Sk(Ind

a(D,C)),

Proa(Sk D, SkC)
�−→ Sk(Pro

a(D,C)),

Tateel(Sk D, SkC)
�−→ Sk Tate

el(D,C),

where Sk is the category of k-simplices of Waldhausen’s S-construction [Wal85].

In Definition 2.3 we defined elementary Tate objects as the full subcategory of
admissible Ind Pro objects which possess a lattice. The concept of lattices also exists
for relative elementary Tate objects and is of equal importance.

Definition 3.15.

1. For V ∈ Tateel(D,C) we say that an admissible monic L ↪→ V is a relative lattice,
if L ∈ Proa(D), and V/L ∈ Inda(C).

2. For two relative lattices L,L′, we say that L � L′, if the inclusion L ↪→ V factors
through L′ ↪→ V via an admissible monic L ↪→ L′ (by Lemma 2.6).

3. Define the relative Sato Grassmannian GrC(V ) to be the partially ordered set
of relative lattices of V .

It follows directly from the definition that every elementary relative Tate object
has a lattice. In fact, the existence of lattices characterizes elementary relative Tate
objects.
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Lemma 3.16. For V ∈ Inda Proa(D) the following assertions are equivalent:

(a) We have V ∈ Tateel(D,C).

(b) There exists a relative lattice, that is, a short exact sequence L ↪→ V � V/L
with L ∈ Proa(D) and V/L ∈ Inda(C).

Proof. We have seen in Lemma 3.6 that Tateel(D,C) ⊂ Inda Proa(D) is an extension-
closed subcategory. Since Proa(D) ⊂ Tateel(D,C) ⊃ Inda(C), we see that (b) implies
(a).

Conversely, if V is in Tateel(D,C), there exists a presentation as lim−→i∈I Vi, where

(Vi)i∈I is a directed system in Proa(D), with Vj/Vi ∈ C for j � i. Lemma 2.2 implies
that Vi ↪→ V is an admissible monomorphism in Inda Proa(D). The quotient is given
by lim−→j�i

Vj/Vi ∈ Inda(C). This shows that V possesses a relative lattice.

Corollary 3.17. The smallest extension-closed subcategory of Inda Proa(D) which
contains Proa(D) and Inda(C) is Tateel(D,C).

We now record the key property of relative lattices.

Proposition 3.18. If D is idempotent complete, then the relative Sato Grassmannian
GrC(V ) is a directed partially ordered set.

Proof. Abuse notation and let V : I → Proa(D) be an admissible relative Tate dia-
gram representing V . Note that, by definition, for all i ∈ I, Vi ∈ GrC(V ). Now let
L1, L2 ∈ GrC(V ). Because Proa(D) is left filtering in Tateel(D,C), there exists i ∈ I
such that we have a commuting triangle

L1 ⊕ L2
��





Vi�	

��

V,

in Tateel(D,C). If D is idempotent complete, then Lemma 6.9 of [BGW16] shows
that for a = 1, 2 the map La → Vi is an admissible monic in Proa(D).

Lemma 3.19. Let C ⊂ D be a left s-filtering or right s-filtering subcategory. Let V ∈
Tateel(D,C) and let L1 � L2 ∈ GrC(V ). Then L2/L1 ∈ C.

Proof. By [BGW16, Proposition 6.6], we know that L2/L1 ∈ D. Lemma 3.2 and
Noether’s Lemma show that L2/L1 ∈ Inda(C). By Lemma 3.1, we have L2/L1 ∈ C.

Lemma 3.20. Let D be idempotent complete, and let C ⊂ D be a left or right filtering
subcategory. Then C is idempotent complete.

Proof. By categorical duality, we may reduce the claim to the assumption that C

is left filtering in D. Let X
p−→ X be an idempotent in C. Because D is idempotent

complete, there exists Y ∈ D such that Y = ker(p). Because C ⊂ D is left filtering, C
is closed under subobjects in D. Hence, Y ↪→ X also belongs to C, which implies that
ker(p) ∈ C.



356 OLIVER BRAUNLING, MICHAEL GROECHENIG and JESSE WOLFSON

As a next step, we investigate the filtering properties of the inclusions of cate-
gories D ↪→ Inda(D,C), Proa(D) ↪→ Tateel(D,C), and study the relation between the
categorical quotients.

Proposition 3.21. Let C ⊂ D be a subcategory which is closed under extensions. The
inclusions D ↪→ Inda(D,C), and Proa(D) ↪→ Tateel(D,C) are left s-filtering. The inclu-
sions Inda(C) → Inda(D,C) and Inda(D,C) → Tateel(D,C) induce exact equivalences

Inda(C)/C
�−→ Inda(D,C)/D

�−→ Tateel(D,C)/Proa(D). (2)

Proof. We first show the inclusions are left s-filtering. The second inclusion is a special
case of the first. For the first, we observe that D is left special in Inda(D,C) because
D is left special in Inda(D) [BGW16, Lemma 2.18]. Further, D is left filtering in
Inda(D,C) for the same reason it is in Inda(D), namely given any admissible relative
Ind diagram Y : I → D, and given any

X −→ Ŷ

there exists i ∈ I such that X factors through the admissible monic Yi ↪→ Ŷ .
We now establish the equivalences. The inverse equivalence

Inda(D,C)/D −→ Inda(C)/C

is defined as follows. Let Dira∗(D,C) ⊂ Dira(D) be the full subcategory of relative
admissible Ind diagrams indexed by directed partially ordered sets with an initial
object. A slight modification of the proof of [BGW16, Proposition 5.14] shows that
Inda(D,C) is equivalent to the localization Dira∗(D,C)[W

−1], where W is the subcate-
gory of final maps as in [BGW16, Proposition 3.15]. By inspection, the assignment

(I
X−→ D) �→ (I

X/X0−−−−→ C)

induces a functor Dira∗(D,C) → Inda(C), such that the induced functor

Dira∗(D,C) −→ Inda(C)/C

factors through the localization Dira∗(D,C) → Inda(D,C). By inspection, this functor
is the desired inverse for the first functor of (2). To see that it is exact, apply the
straightening construction for exact sequences (cf. [BGW16, Proposition 3.12]).

Mutatis mutandis, the proof of Proposition 5.28 of [BGW16] defines an exact
functor

Tateel(D,C) −→ Inda(C)/C,

which factors through the localization Tateel(D,C)/Proa(D). By inspection, this func-
tor is inverse to the canonical map Inda(C)/C → Tateel(D,C)/Proa(D).

The previous lemma now combines with the 2 of 3 property for equivalences to
imply that the second functor in (2) is an equivalence as well.

Proposition 3.22. Let D be idempotent complete and let C ⊂ D be a right s-filtering
subcategory. Then C ⊂ Proa(D) is right s-filtering, and the inclusion of categories
Proa(D) ⊂ Tateel(D,C) induces an exact functor between exact categories

Proa(D) −→ Tateel(D,C)/ Inda(C),

yielding an equivalence of categories Proa(D)/C ∼= Tateel(D,C)/ Inda(C).
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Proof. The definition of right s-filtering implies that a composition of right s-filtering
embeddings is again right s-filtering. Therefore, our assumption on C together with
the fact that D ↪→ Proa(D) is right s-filtering (cf. [BGW16, Theorem 4.2(2)]) implies
that C ⊂ Proa(D) is right s-filtering.

Using Lemma 3.19, the same argument as for [BGW16, Proposition 5.34] shows
that the assignment

V �→ L

(sending a relative Tate object to a relative lattice) extends to an exact functor

Tateel(D,C) −→ Proa(D)/C. (3)

To see that this factors through Tateel(D,C)/ Inda(C), let

V0 ↪→ V1 � Z

be a short exact sequence of relative Tate objects with Z ∈ Inda(C). By the universal
property of localizations, it suffices to show that (3) sends the map V0 ↪→ V1 to an
isomorphism in Proa(D)/C.

To check this, we let L0 ↪→ V0 be a relative lattice. By the definition of morphisms
in Tateel(D,C), the inclusion

L0 ↪→ V1

factors through a relative lattice L1 ↪→ V1. Therefore, the functor (3) sends the map
V0 ↪→ V1 to L0 → L1. We claim that this map is an isomorphism in Proa(D)/C, i.e.,
that it is an admissible monic in Proa(D) with cokernel in C.

By Lemma 3.19, it suffices to show that the admissible monic L0 ↪→ V1 is a relative
lattice. This follows from Noether’s lemma and Lemma 3.2. Indeed, we have a short
exact sequence in Tateel(D,C)

V0/L0 ↪→ V1/L0 � V1/V0.

By assumption V0/L0 and V1/V0 are both in Inda(C). Therefore V1/L0 is as well.
We have shown that (3) induces an exact functor

Tateel(D,C)/ Inda(C) −→ Proa(D)/C.

From the definitions, we see that this is an inverse to the map

Proa(D)/C −→ Tateel(D,C)/ Inda(C).

This concludes the proof.

3.2. Examples
Let X be a Noetherian scheme, and let Z ⊂ X be a closed subscheme. Denote by

j : X \ Z ↪→ X the inclusion of the complement of Z. Denote by CohZ(X) the full
subcategory of Coh(X) consisting of coherent sheaves with set-theoretic support in
Z. Denote by QCoh(X,Coh(X \ Z)) the full subcategory of QCoh(X) consisting of
quasi-coherent sheaves whose restriction to X \ Z is coherent.

Proposition 3.23. There exists an exact equivalence

QCoh(X,Coh(X \ Z))
�−−→ Inda(Coh(X),CohZ(X)),
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and this equivalence fits into a 2-commuting square

QCoh(X,Coh(X \ Z)) ��

�
��

QCoh(X)

�
��

Inda(Coh(X),CohZ(X)) �� Inda(Coh(X)).

Proof. Recall that, since X is Noetherian, there is an exact equivalence QCoh(X) �
Inda(Coh(X)) which sends a quasi-coherent sheaf F to the Ind object represented by
the admissible Ind diagram of coherent subsheaves of F (see [Sta, Tag 01PG]).

Because Inda(Coh(X),CohZ(X)) is a fully exact subcategory of Inda(Coh(X)), it
suffices to show that a quasi-coherent sheaf is in Inda(Coh(X),CohZ(X)) if and only
if its pullback to X \ Z is coherent. The “only if” is clear.

Let F be represented by an Ind diagram F : I → Coh(X). Suppose the pullback
j∗F is coherent. Then there exists a final subdiagram J ⊂ I such that the diagram

J ↪→ I
F−−→ Coh(X)

j∗−−−→ Coh(X \ Z)

is isomorphic to a constant diagram. In particular, for all j < k in J , the cokernel
Fk/Fj has set-theoretic support in Z. We conclude that QCoh(X,Coh(X \ Z)) ⊂
Inda(Coh(X),CohZ(X)).

Corollary 3.24. If the inclusion j is affine, there exists a 2-commuting diagram of
exact functors

Coh(X \ Z)
j∗ ��

��

QCoh(X)

�
��

Inda(Coh(X),CohZ(X)) �� Inda(Coh(X)).

Proof. Because X \ Z ⊂ X is affine, the push-forward j∗ gives an exact functor

j∗ : Coh(X \ Z) −→ QCoh(X).

Because the co-unit of the adjunction j∗ 
 j∗ is an isomorphism, we see that j∗ factors
through QCoh(X,Coh(X \ Z)).

Proposition 3.25. There exists an exact functor

CZ : Coh(X) −→ Proa(CohZ(X)).

Proof. For all r � 1, let jr : Z
r → X denote the inclusion of the rth-order formal

neighbourhood of Z in X. For F ∈ Coh(X), define

CZ(F ) := lim←−
r

jr,∗j∗rF.

By inspection, the transition maps jr,∗j∗rF → jr−1,∗j∗r−1F are epimorphisms in the
abelian category CohZ(X). Therefore, the assignment F �→ CZ(F ) defines a functor

CZ : Coh(X) −→ Proa(CohZ(X)).

By the Artin–Rees Lemma (e.g., [AM69, Proposition 10.12]), this functor is ex-
act.
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Corollary 3.26. There exists a 2-commuting diagram of functors

CohZ(X) ��

1

��

Coh(X) ��

CZ

��

QCoh(X,Coh(X \ Z))

TZ

��

CohZ(X) �� Proa(CohZ(X)) �� Tateel(CohZ(X)),

moreover, the functor TZ satisfies the property that the composition

Coh(U)
TZ−−→ Tateel(CohZ(X)) −→

Tateel(CohZ(X))/ Inda(CohZ(X)) ∼= Proa(CohZ(X))/CohZ(X)
(4)

is an exact functor.

Proof. The definition ofCZ ensures that if F ∈ CohZ(X), then the Pro objectCZ(F )
is represented by the constant Pro diagram on F . This accounts for the left square.
For the right square, we observe that CZ gives an exact functor of pairs

(Coh(X),CohZ(X))
CZ−−→ (Proa(CohZ(X)),CohZ(X)).

The exact functor TZ is the corresponding map

QCoh(X,Coh(X \ Z))
�−→ Inda(Coh(X),CohZ(X)) −→

Inda(Proa(CohZ(X)),CohZ(X)) =: Tateel(CohZ(X)).

This concludes the construction and the proof of the first part. The second part
follows from Lemma 3.27 below, and the fact that the exact functor

Tateel(CohZ(X))/ Inda(CohZ(X)) ∼= Proa(CohZ(X))/CohZ(X)

is an equivalence of exact categories by [BGW16, Proposition 5.34].

Lemma 3.27. Let X be a Noetherian affine scheme, and Z a closed subset, we denote
by j : U ↪→ X the inclusion of the open complement. There exists an exact functor

BZ : Coh(U) −→ Proa(CohZ(X))/CohZ(X),

rendering the diagram of categories

Coh(X)
j∗

��

��

Coh(U)

BZ

��

Proa(CohZ(X)) �� Proa(CohZ(X))/CohZ(X)

2-commutative.

Proof. For every coherent sheaf F ∈ Coh(U) we denote by KF the directed set of
coherent subobjects N of j∗ F satisfying N |U = F . We have

j∗ F ∼= lim−→
N∈KF

N.

As a consequence we obtain that for every morphism F1 → F2, and every N1 ∈ KF1 ,
there exists an N2 ∈ KF2 , such that N1 ↪→ F1 → F2 factors through N2.
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We denote by

B̃Z : Coh(X) −→ Proa(CohZ(X))/CohZ(X)

the functor given by the composition of CZ and

Proa(CohZ(X)) −→ Proa(CohZ(X))/CohZ(X).

Now we define

BZ : Coh(U) −→ Proa(CohZ(X))/CohZ(X),

as the colimit

BZ(F) = lim−→
N∈KF

B̃Z(N).

We observe that for N ⊂ N ′, the induced bonding map CZ(N) → CZ(N
′) is an

isomorphism in Proa(CohZ(X))/CohZ(X), since the kernel is given by CZ(N
′/N) ∈

CohZ(Y ). Therefore the colimit exists, and is canonically isomorphic to B̃Z(N) for
every N ∈ KF .

To conclude the proof we have to show that the functor we have defined is exact.
Let

0 −→ F1 −→ F2 −→ F3 −→ 0 (5)

be a short exact sequence in Coh(U). We obtain an exact sequence

0 −→ j∗ F1 −→ j∗ F2 −→ j∗ F3 −→ R1j∗ F1 .

The quasi-coherent sheaf G3 := ker(j∗ F3 → R1j∗ F1) agrees with F3 after restriction
to U , since R1j∗ F |U = 0. Choose a coherent subsheaf F̄3 ⊂ G3, satisfying F̄3|U = F3.
By what we remarked above, there exists a coherent subsheaf F̄2 ⊂ j∗ F2, satisfying
F̄2|U = F2 |U , mapping to F̄3. We define the kernel of this map to be F̄1. We have
a commutative diagram with exact rows

0 �� F̄1
��

��

F̄2
��

��

F̄3
��

��

0

0 �� j∗ F1
�� j∗ F2

�� G3
�� 0.

Applying the restriction functor j∗, we see that the two vertical maps on the right
become isomorphisms, hence the same is true for F̄1 → j∗ F1. After applying CZ , the
upper short exact sequence can be identified with the sequence obtained by applying
the functor BZ to Equation (5). This concludes the proof of the assertion.

Corollary 3.28. Let W ⊂ Z ⊂ X be a chain of closed subschemes. There exists a
2-commuting diagram of exact maps

CohW (X) ��

1

��

Coh(X) ��

CZ

��

QCoh(X,Coh(X \W ))/ Inda(CohZ(X))

TZ,W

��

CohW (X) �� Proa(CohZ(X)) �� Tateel(CohZ(X),CohW (X))/ Inda(CohZ(X)).
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Proof. The proof is the same as for the previous corollary, once we observe that, for
W ⊂ Z and F ∈ CohW (X), we have that CZ(F ) is represented by the constant Pro
diagram on F .

We conclude this section with a brief discussion of another exact functor of geo-
metric origin, which takes values in a category of Pro objects.

Example 3.29 (Deligne). Let X be a Noetherian scheme and j : U ↪→ X an open
immersion. Let J be the ideal sheaf of the closed complement. It does not mat-
ter whether we take the reduced ideal sheaf or some nil-thickening. Deligne [Del66]
defines the following: For any coherent sheaf F on U let F be a coherent prolong-
ment to X. Such an F always exists, but it is not canonical. A concrete construc-
tion is given by considering the poset of coherent subsheaves Fi ⊆ j∗F of the quasi-
coherent sheaf j∗F . The restrictions j∗Fi will become stationary and equal F , and
once Fi is chosen so that this occurs, Fi is a feasible candidate for F . We get a
Pro-diagram

J i · F ←− J i+1 · F ←− J i+2 · F ←− · · · , (6)

which defines an object in ProCoh(X). Deligne shows that this defines a func-
tor

j! : Coh(U) −→ ProCoh(X),

which is essentially left adjoint to the pull-back j∗:

HomU (F , j∗G) ∼−−→ HomX(j!F ,G)
holds functorially for all F coherent on U and G quasi-coherent on X. In favourable
situations, if F has no torsion, the Pro-diagram in Equation (6) has monic transi-
tion maps. It describes an intersection, the “J -divisible” sections of F . This makes
this Pro-system very different from an admissible Pro-diagram with epic transition
maps. Moreover, unless X is an Artinian scheme, Equation (6) cannot be replaced
by an admissible system, Proposition 3.11 does not apply since Coh(X) is not an
Artinian abelian category. Being exact, j! induces a map in K-theory, but by the
Eilenberg swindle, j! : KCoh(U) → KProCoh(X) is just a map to the zero spectrum, so
there is nothing interesting to see in K-theory anyway. Nonetheless, j! is of course an
important functor for other purposes: Deligne uses j! as an ingredient to define a de-
rived push-forward “with compact supports” Rf! for (non-admissible Pro-)coherent
sheaves. Classically, both Rf! � Rf ! were only defined for proper morphisms, but
this trick allowed him to devise a generalization to compactifiable morphisms. See
[Del66] for more.

Deligne’s functor is related to TZ by a short exact sequence

j!(−) ↪→ j∗(−) � TZ(−), (7)

of (not necessarily exact) functors from Coh(U) to Ind ProCoh(X). Indeed, for F ∈
Coh(U) we define j! F by choosing an extension F̄ , and forming the limit over the
inverse system J iF̄ . Hence, we have a short exact sequence

0 −→ lim←−
i

J iF̄ −→ F̄ −→ lim←−
i

F̄/J iF̄ −→ 0,

in Pro(Coh(X)). The limit on the right hand side is by definition CZ(F̄). Taking the
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colimit over all possible choices for F̄ , we obtain the short exact sequence

0 −→ j! F −→ j∗ F −→ TZ(F) −→ 0,

in Ind ProCoh(X).

4. The relative index map

In order to introduce the relative index map, and relate it to algebraic K-theory,
we need to recall a few facts about Waldhausen’s approach to algebraic K-theory for
exact categories.

In [Sch04], Schlichting established a fundamental “Localization Theorem” for the
K-theory of exact categories. We will be mainly interested in its statement for Wald-
hausen’s S-construction. This requires us to recall notation introduced byWaldhausen
[Wal85].

For an exact functor f : C → D of exact categories, we denote by Sr
•(f) the sim-

plicial object of exact categories given by pairs

(Y1 ↪→ · · · ↪→ Yn;X1 ↪→ · · · ↪→ Xn+1) ∈ SnC× Sn+1 D,

together with an isomorphism

φ : (Y1 ↪→ · · ·Yn) ∼= (X2/X1 ↪→ · · · ↪→ Xn+1/X1).

The face and degeneracy maps are induced by the ones for the Waldhausen S-
construction; details can be found in loc. cit.

For a category C we denote by C× the groupoid obtained by discarding all non-
invertible morphisms. Via the classifying space construction (that is, the geometric
realization of the nerve), we can fully faithfully embed the 2-category of groupoids
into the ∞-category of spaces.

Following Waldhausen, we denote by KC = Ω|S•C×| the K-theory space of an
exact category. The corresponding connective spectrum will be denoted by KC.

Proposition 4.1. (Schlichting [Sch04, Lemma 2.3]) Suppose that C ⊂ D is a right
s-filtering inclusion of an idempotent complete subcategory. Let

Sr
•(C ⊂ D)

q−→ D /C

be the map of simplicial objects in categories, given by

(Y1 ↪→ · · · ↪→ Yn;X1 ↪→ · · · ↪→ Xn+1) �→ Xn+1.

Then, in the homotopy commuting cube of spaces, all diagonal arrows are equivalences

|S•(C)×|
1
��

f
��

��

|S•(D)×|

��

1
��

|S•(C)×| f
��

��

|S•(D)×|

��

|S•Sr
•(1C)

×| ��

��

|S•Sr
•(f)

×| |S•q|
��

∗ �� |S•(D /C)×|.
From this proposition, Schlichting could deduce the following result.
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Theorem 4.2 (Schlichting’s localization theorem). Let C ⊂ D be an idempotent com-
plete subcategory, which is left or right s-filtering. The homotopy commutative square
of spaces

KC
��

��

KD

��

∗ �� KD /C

is cartesian.

In [BGW14, Corollary 2.39], the authors established the following description of
boundary maps in K-theory.

Theorem 4.3. Let C ⊂ D be a right s-filtering inclusion of an idempotent complete
subcategory. Consider the map of spaces

|Sr
•(C ⊂ D)×| δ−→ |S•(C)×|,

induced by the map of simplicial objects in exact categories

(Y1 ↪→ · · · ↪→ Yn;X1 ↪→ · · · ↪→ Xn+1) �→ (Y1 ↪→ · · · ↪→ Yn).

It is canonically equivalent to the boundary map

Ω|S•(D /C)×| ∂−→ |S•(C)×| (8)

associated to the localization sequence

|S•(C)×|

��

�� |S•(D)×|

��

∗ �� |S•(D /C)×|.

(9)

We now give a variant of the index map for relative Tate objects and relate it to
boundary maps in algebraic K-theory.

Definition 4.4. Let C ⊂ D be an extension-closed subcategory.

1. For every n � 0, we define Gr�n (D,C) to be the full subcategory of Fun([n+
1],Tateel(D,C)) consisting of sequences of admissible monics

L0 ↪→ · · · ↪→ Ln ↪→ V,

where, for all i, Li ↪→ V is the inclusion of a relative lattice (cf. Definition 3.15).1

2. Define the relative Sato complex Gr�• (D,C) to be the simplicial diagram of exact
categories with n-simplices Gr�n (D,C), with face maps di given by omitting the
ith relative lattice, and with degeneracy maps si given by repeating it.

Lemma 3.19 allows for the following definition.

1To see that this is an exact category, observe that because Proa(D) and Inda(C) are closed under

extensions in Tateel(D,C), Gr�n (D,C) is closed under extensions in Fun([n+ 1],Tateel(D,C)).
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Definition 4.5. Let D be idempotent complete and let C ⊂ D be a right s-filtering
subcategory. The categorical relative index map is the span of simplicial maps

Tateel(D,C) ←− Gr�• (D,C)
Index−−−→ S•(C), (10)

where the left-facing arrow is given on n-simplices by the assignment

(L0 ↪→ · · · ↪→ Ln ↪→ V ) �→ V,

and Index is given on n-simplices by the assignment

(L0 ↪→ · · · ↪→ Ln ↪→ V ) �→ (L1/L0 ↪→ · · · ↪→ Ln/L0).

We have an analogue of [BGW14, Prop. 3.3] in this setting.

Proposition 4.6. Let D be idempotent complete, and let C ⊂ D be an extension-
closed subcategory. Then the augmentation Gr�• (D,C) → Tateel(D,C) of (10) induces
an equivalence

|Gr�• (D,C)
×| ∼=−→ Tateel(D,C)×.

Proof. Proposition 3.18 implies that the relative Grassmannian is a directed partially
ordered set. This implies that the geometric realization of its nerve (also known as

classifying space) is contractible. The simplicial groupoid Gr�• (D,C)× is equivalent
to the nerve of the category Gr�(D,C), whose objects are pairs (V, L), with V ∈
Tateel

×
(D,C), and L ∈ Gr(V ). Morphisms are given by commutative diagrams

L �
�

��� �

��

M� �

��

V
� �� W.

By virtue of Quillen’s Theorem A we obtain that the functor

Gr�(D,C)× −→ Tateel(D,C)×

induces an equivalence of classifying spaces.

Along with Lemma 3.14 this implies an analogue of Corollary [BGW14, Cor. 3.6].

Corollary 4.7. Let D be idempotent complete, and let C ⊂ D be a right s-filtering
subcategory. The categorical relative index map determines a map of infinite loop
spaces

BIndex : |S• Tateel(D,C)×| −→ |S•S•(C)×|, (11)

which fits into a homotopy commuting square

Tateel(D,C)×

��

Index �� |S•(C)×|
�
��

Ω|S• Tateel(D,C)×|
ΩBIndex

�� Ω|S•S•(C)×|.

(12)

We refer to the looping of the bottom horizontal map as the K-theoretic relative index
map.
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This brings us to the main property of the relative Index map.

Theorem 4.8. Let D be idempotent complete, and let C ⊂ D be a right s-filtering
subcategory. Then the K-theoretic relative index map fits into a homotopy commuting
diagram

ΩKTateel(D,C)
Ω2BIndex �� KC

ΩKD /C

		

∂

�� .

Proof. The categorical relative index map fits into a 2-commuting diagram

Tateel(D,C)

��

Gr�• (D,C)��

�� ��
Proa(D)/C Sr

•(C ⊂ Proa(D))�� �� S•(C)

D /C

		

Sr
•(C ⊂ D),

		

��

��

and the map Gr�• (D,C) → Sr
•(C ⊂ Proa(D)) is given on n-simplices by the assignment

(L0 ↪→ · · · ↪→ Ln ↪→ V ) �→ (L1/L0 ↪→ · · ·Ln/L0;L0 ↪→ · · · ↪→ Ln).

Similarly, using Lemma 3.14, we see that there exists a 2-commuting diagram

S•(Tateel(D,C))×

��

Gr�• (S• D, S•(C))×��

�� ��

S•(Proa(D)/C)× S•Sr
•(C ⊂ Proa(D))×�� �� S•S•(C)×

S•(D /C)×

		

S•Sr
•(C ⊂ D)×.��

		 ��

Geometrically realizing and taking the double loop spaces, we obtain a homotopy
commuting diagram

ΩKTateel(D,C)

��

Ω2|Gr�• (S• D, S•(C))×|�
��

��
��

ΩKProa(D)/C Ω2|S•Sr
•(C ⊂ Proa(D))×|�

�� �� KC

ΩKD /C

		

Ω2|S•Sr
•(C ⊂ D)×|.

		

�
��

��

Note that the lower two left-facing maps are equivalences by Schlichting’s Propo-
sition 4.1. The first left-facing map is an equivalence by virtue of Waldhausen’s
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KC
∼= Ω|S•C×|. To be more precise, we apply first Proposition 4.6 to deduce that

|Gr�• (S• D, S•C)| ∼= Tateel(S• D, S•C)×, and then Lemma 3.14 to deduce

Tateel(S• D, S•C)× ∼= S• Tateel(D,C)×.

After inverting the left-facing equivalences, we obtain a homotopy commuting dia-
gram

ΩKTateel(D,C)

�� ��
ΩKProa(D)/C

�� KC

ΩKD /C.

		
��

By Theorem 4.3, it suffices to prove that the map

ΩKTateel(D,C) −→ ΩKProa(D)/C

is an equivalence. We derive this from Proposition 3.22 as follows. To wit, consider
the 2-commuting diagram of exact categories

C ��

��

��

0

��

��

Proa(D) ��

��

Proa(D)/C

�
��

Inda(C) ��

��

0

��

Tateel(D,C) �� Tateel(D,C)/ Inda(C),

where the equivalence is that of Propositions 3.22. Applying K-theory, we obtain a
commuting diagram in the stable ∞-category of spectra

KC
��

��

��

0

��

��

KProa(D)
��

��

KProa(D)/C

�

��

KInda(C)
��

��

0

��

KTateel(D,C)
�� KTateel(D,C)/ Inda(C) .

Note that, of the entries in the diagram, only KC has non-vanishing π0. Along with
Theorem 4.2, this shows that the top face is bi-cartesian. We claim that the com-
muting cube above is bi-cartesian as well. By virtue of [Lur16, Lemma 1.2.4.15],
this is equivalent to the induced square of cofibres of the vertical morphisms being
bi-cartesian. However, Propositions 3.22 and 3.21 allow one to compute those cofibres
as the diagram obtained by applying K− to the square of exact categories
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Inda(C)/C
∼= ��

��

Tateel(D,C)/Proa(D)

��

0 �� 0.

Both this square and the resulting square of K-theory spaces are bi-cartesian. Since
the top face and the commuting cube itself are bi-cartesian, we see that the bottom
face has to be bi-cartesian as well.

The Eilenberg swindle implies that KInda(C) � 0, and we conclude that KTateel(D,C) �
KTateel(D,C)/ Inda(C) � KProa(D)/C as claimed.

Corollary 4.9. Let X be a Noetherian scheme, and let W ⊂ Z ⊂ X be a flag of
closed subschemes. Then the diagram of exact categories

Coh(W ) ��

��

Coh(Z) ��

��

Coh(Z \W )

TZ

��

CohW (X) �� CohZ(X) �� Tateel(CohZ(X),CohW (X))

determines a homotopy commuting triangle

ΩKCoh(Z\W )

TZ

��

∂ �� KCoh(W )

ΩKTateel(CohZ(X),CohW (X))

Ω2BIndex

��
.

Here we define the vertical map KCoh(Z\W ) → KTateel(CohZ(X),CohW (X)) to be the com-
position of the map given by the exact functor

Coh(Z \W ) −→ Tateel(CohZ(X),CohW (X))/ Inda(CohW (X))

of Corollary 3.26, and the inverse of the homotopy equivalence

KTateel(CohZ(X),CohW (X)) −→ KTateel(CohZ(X),CohW (X))/ Inda(CohW (X)).

Proof. We have a nested chain of Serre subcategories

CohW (X) ⊂ CohZ(X) ⊂ Coh(X).

By [Sch04, Example 1.7], Serre subcategories are right s-filtering. Therefore, we can
take D = CohZ(X) and C = CohW (X) and apply Theorem 4.8 to obtain a commuting
triangle in the ∞-category of spaces

ΩKTateel(CohZ(X),CohW (X))
Ω2BIndex �� KCohW (X)

ΩKCohZ(X)/CohW (X)

		

∂

��
.

By an application of devissage [Qui73, Section 5], we have equivalences KCoh(W ) �
KCohW (Z) � KCohW (X) and KCoh(Z) � KCohZ(X). We also have an equivalence of cat-
egories Coh(Z)/CohW (Z) � Coh(Z \W ) [Gab62, Chapter 5]. Now, together with
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Quillen’s localization sequence (the precursor of Schlichting’s localization theorem for
abelian categories), these equivalences determine a further equivalence

ΩKCohZ(X)/CohW (X) � ΩKCoh(Z\W ),

which is compatible with the boundary maps of the localization sequences. Applying
these equivalences to the commuting triangle above, we obtain the commuting triangle
of the desired type.

Proof of Theorem 1.2. Recall the exact functors

CZ : Coh(X) −→ Proa(CohZ(X))

and

TZ : Coh(X \ Z) −→ Tateel(Coh(X),CohZ(X))/ Inda(CohZ(X)),

from Proposition 3.25 and Corollary 3.26. It follows from the construction of Corol-
lary 3.26 that for every coherent sheaf F on X, the inclusion

CZ(F) ↪→ TZ(F |X\Z)
defines a relative lattice. Therefore, we obtain a canonical map

Gr�•,•(X,Z) −→ Gr�• (S• Coh(X), S• CohZ(X)),

and the assertion of the theorem follows from Corollary 4.9, and the fact that the
poset of coherent subsheaves of j∗ F |X\Z , which extends F |X\Z is filtered (indeed,
if G1,G2 ⊂ j∗ F |X\Z are coherent subsheaves, then so is G1 + G2).
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