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Abstract
This paper introduces the category of marked curved Lie

algebras with curved morphisms, equipping it with a model
structure. This model structure is—when working over an alge-
braically closed field of characteristic zero—Quillen equivalent
to a model category of pseudo-compact unital commutative dif-
ferential graded algebras; extending known results regarding the
Koszul duality of unital commutative differential graded alge-
bras and differential graded Lie algebras. As an application of
the theory developed within this paper, algebraic deformation
theory is extended to functors over pseudo-compact, not neces-
sarily local, commutative differential graded algebras. Further,
these deformation functors are shown to be representable.

1. Introduction

Pseudo-compact unital commutative differential graded algebras are dual to co-
commutative counital differential graded coalgebras, and hence arise naturally as
cochain complexes of topological spaces; at least in the simply connected case. Fur-
ther, they play a notable role in rational homotopy theory [19, 22] and serve as
representing objects in formal deformation problems [11, 18, 21]. Therefore, when
working over a field of characteristic zero, it is natural to attempt to place them
in the framework of a closed model category. Quillen [22] produced the first result
of this kind—albeit under a strong assumption of connectedness. Later the connect-
edness assumption was removed by Hinich [11]. The crucial difference between the
approaches of Quillen and Hinich was Hinich had chosen a finer notion of weak equiv-
alence in his model structure: he worked with filtered quasi-isomorphisms, whereas
Quillen worked with quasi-isomorphisms.

Additionally, the constructions of Quillen and Hinich have a notable attribute: the
model categories are Quillen equivalent to certain model structures on the category
of differential graded Lie algebras. This type of equivalence is so-called Koszul dual-
ity. Whilst the construction of Hinich generalises the construction of Quillen, it does
not completely generalise to the category of all cocommutative counital differential
graded coalgebras; Hinich worked with conilpotent coalgebras in loc. cit. When the
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ground field is algebraically closed, the construction was completely generalised to all
coalgebras by Chuang, Lazarev, and Mannan [5]. The authors therein chose to work in
the dual setting of pseudo-compact unital commutative differential graded algebras.
One especially pleasant and useful property shown in op. cit. is, when working over an
algebraically closed field, any pseudo-compact commutative differential graded alge-
bra can be decomposed into a product of local pseudo-compact algebras. In fact, there
exists only two types of local algebras—Hinich algebras where the unique maximal
ideal is closed under the differential and acyclic algebras where any closed element is
also a boundary. Hinich algebras are precisely those studied by Hinich in [11], hence
the name.

The Koszul duality is also extended in [5]. The Koszul dual therein is the category
of formal coproducts of curved Lie algebras. This construction, however, is somewhat
asymmetric, and herein this category is replaced with a more natural one—namely
the category of marked curved Lie algebras with curved morphisms—providing a
more intuitive and symmetric description for a Koszul dual to the category of cocom-
mutative counital differential graded coalgebras, and one that is easier to work with.

Numerous papers discuss the homotopy theory of differential graded coalgebras
over different operads; for example Positselski [20] constructed a homotopy theory
for coassociative differential graded coalgebras. However, the coalgebras were assumed
to be conilpotent and this construction is not known in the completely general case.
Further, Positselski worked with curved objects suggesting that in more general cases
when discussing a Koszul duality one side of the Quillen equivalence should be a
category consisting of curved objects; a hypothesis that is strengthened by results of
[5] and this paper.

The paper is organised as follows. Sections 2 and 3 recall (without proof) the
necessary facts concerning the category of formal products of a given category, the
extended Hinich category, and the category of pseudo-compact unital commutative
differential graded algebras. For more details see the original paper [5].

In Section 4 the category of marked curved Lie algebras and curved morphisms is
introduced. This category is similar to the category of curved Lie algebras with strict
morphisms discussed in [5]. On the other hand, the morphisms are quite different and
as such the category itself is quite different. For instance, in the category of curved Lie
algebras with strict morphisms an object with non-zero curvature cannot be isomor-
phic to one with zero curvature, but using curved morphisms there is an abundance of
such isomorphisms: any Lie algebra twisting by a Maurer–Cartan element gives rise a
curved isomorphism (see Remark 4.5). The category of marked curved Lie algebras is
equipped with a model structure (Definition 4.20), using the existing model structure
of curved Lie algebras with strict morphisms (see [5]) together with rectification by a
marked point (Definition 4.12). Rectification by a marked point provides a procedure
in which a strict morphism can be obtained from a curved one. It should be noted,
however, this construction is not functorial.

Section 5 formulates the main result of the paper: a Quillen equivalence between
the model category of marked curved Lie algebras and the model category of pseudo-
compact unital commutative differential graded algebras (Theorem 5.13). This equiv-
alence uses a pair of adjoint functors that have their origins in the Harrison and
Chevalley–Eilenberg complexes of homological algebra, found (for example) in [1, 10]
and [27], respectively. As alluded to above, a benefit of the Koszul duality of this paper
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over [5] is the symmetry of the construction.

Section 6 applies the material developed in the rest of the paper to introduce
a certain class of deformation functors acting over pseudo-compact unital commu-
tative differential graded algebras. Theorem 6.10 shows these deformation functors
are representable in the homotopy category of pseudo-compact unital commutative
differential graded algebras. Two definitions (6.9 and 6.12) are given for these defor-
mation functors; one being slightly more general than the other. The less general
Definition 6.12 enjoys the benefit of not requiring the knowledge of a decomposi-
tion of a pseudo-compact commutative differential graded algebra into the product
of local pseudo-compact commutative differential graded algebras; this is possible via
a functor of [5]. Here deformation theory is considered via the differential graded Lie
algebra approach; see [9, 14, 18, 24, 23], for example.

The notion of a Sullivan homotopy was introduced by Sullivan [25] in his work
on rational homotopy theory, and Appendix A defines analogues in the categories of
curved Lie algebras with strict morphisms and local pseudo-compact commutative
differential graded algebras. These analogues serve the constructions of Section 6 by
showing (when the objects considered are suitably nice) the equivalence classes of
Sullivan homotopic morphisms is in bijective correspondence with the classes of mor-
phisms in the homotopy category (Theorem A.4). An explicit construction of a path
object in the category of curved Lie algebras with strict morphisms and similar—but
more subtle—ideas in the category of local pseudo-compact commutative differential
graded algebras lead to the proof.
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Notation and conventions

Throughout the paper it is assumed all commutative and Lie algebras are over a
fixed algebraically closed field, k, of characteristic zero. Algebraic closure is necessary
for some key results, but some of the statements hold in a more general setting.
Unmarked tensor products are assumed to be over k and algebras are assumed to
be unital, unless stated otherwise. The vector space over k spanned by the vectors
a, b, c, . . . is denoted by 〈a, b, c, . . .〉. Similarly, the free differential graded Lie algebra
over k on generators a, b, c, . . . is denoted by L〈a, b, c, . . .〉.

The following abbreviations are commonly used throughout the paper: ‘dgla’ for
differential graded Lie algebra; ‘cdga’ for commutative differential graded algebra; ‘dg’
for differential graded; ‘MC’ for Maurer–Cartan; ‘CMC’ for closed model category in
the sense of [22] (for a review of this material see [7]); ‘LLP’ for left lifting property;
and ‘RLP’ for right lifting property.

Graded objects are assumed to be Z-graded, unless otherwise stated. For both
commutative and Lie algebras this grading is in the homological sense with lower
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indices. Although some Lie algebras in this paper are not necessarily complexes,
they possess an odd derivation often referred to as the (pre-)differential and hence
resemble complexes. In the homological grading, these differentials have degree −1.
Given any homogeneous element, x, of some given algebra, its degree is denoted by
|x|. Therefore, in the homological setting an MC element is of degree −1 and the
curvature element of a curved Lie algebra is of degree −2. The suspension, ΣV , of a
homologically graded space is defined by (ΣV )i = Vi−1. Applying the functor of linear
discrete or topological duality takes homologically graded spaces to cohomologically
graded ones, and vice versa, i.e. (V ∗)i = (Vi)

∗. A homologically graded space can
therefore be considered equivalently as a cohomological one by setting Vi = V −i for
each i ∈ Z. Additionally, ΣV ∗ is written for Σ(V ∗), and with this convention there is
an isomorphism (ΣV )∗ ∼= Σ−1V ∗.

Many cdgas considered in this paper are pseudo-compact. A cdga is said to be
pseudo-compact if it is an inverse limit of finite dimensional commutative graded
algebras with continuous differential. Taking the inverse limit induces a topology
and the operations of the algebra are assumed to be continuous with respect to this
topology. More details on pseudo-compact objects can be found in [8, 12, 26].

Consider a curved Lie algebra, (g, dg, ω), and a pseudo-compact cdga, A = lim
←−

Ai.

The completed tensor product, denoted ⊗̂, is given by

g⊗̂A = lim
←−
i

g⊗Ai,

where the tensor on the right hand side is given by the tensor product in the category
of graded vector spaces. Note the adjective ‘completed’ is dropped almost everywhere.
This tensor product possesses the structure of a curved Lie algebra: the curvature is
given by ω⊗̂1, the differential is given on elementary tensors by d(x⊗̂a) = (dgx)⊗̂a+
(−1)|x|x⊗̂(dAa), and the bracket is given on elementary tensors by [x⊗̂a, y⊗̂b] =
[x, y]⊗̂(−1)|a||y|ab. This construction is useful in Section 6 when defining deformation
functors; Definitions 6.9 and 6.12.

2. The category of formal products

The category of formal products was defined as a means to describe the category
of pseudo-compact cdgas. Here the definition and some facts are recalled; for greater
details and the proofs see the original paper [5]. Let C be a CMC.

Definition 2.1. The category of formal products in C, denoted Prod(C), is the cate-
gory with objects given by morphisms from indexing sets to the set of objects of the
category C. An object is denoted by

∏
i∈I Ai, where I is some indexing set and for

each i ∈ I the morphism sends i 7→ Ai ∈ C. A morphism in Prod(C),

f :
∏

i∈I

Ai →
∏

j∈J

Bj ,

is given by a morphism of sets J → I that sends j 7→ ij , and a morphism fj : Aij → Bj

of C for all j ∈ J . The morphism fj is called the jth component of the morphism f .

Remark 2.2. The indexing set of an object in Prod(C) could be empty and in this
case one has the terminal object for Prod(C).
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Definition 2.3. Let
∏

i∈I Ai,
∏

j∈J Bj ∈ Prod(C), their product is given by

∏

i∈(I
∐

J)

Ai

and their coproduct is given by
∏

(i,j)∈I×J

(
Ai

∐
Bj

)
.

Both constructions easily extend from the binary case.

Proposition 2.4. Given a morphism f :
∏

i∈I Ai →
∏

j∈J Bj, for each i ∈ I, let Bi

denote the product in C of the Bj satisfying ij = i. The morphisms fj : Ai → Bj factor
uniquely through a morphism f i : Ai → Bi.

Definition 2.5. A morphism f :
∏

i∈I Ai →
∏

j∈J Bj of Prod(C) is said to be a

• weak equivalence if, and only if, the morphism J → I induced by f is a bijection
and for every j ∈ J the morphism fj (or equivalently each for every i ∈ I the
morphism f i) is a weak equivalence in C;

• cofibration if, and only if, for each j ∈ J the morphism fj is a cofibration in C;

• fibration if, and only if, for each i ∈ I the morphism f i is a fibration in C.

The classes of morphisms in Definition 2.5 provide Prod(C) with the structure of
a CMC; cf. [5, Theorem 4.8].

Example 2.6. To gain some intuition, an example of [5] is recalled. Let C be the
category of connected topological spaces, then the category coProd(C) := Prod(Cop)
is the category of all topological spaces that can be written as the disjoint union of
connected spaces. In fact, in [16], the categories of finite (co)products were used to
construct a disconnected rational homotopy theory.

3. The extended Hinich category and pseudo-compact cdgas

As shown in [5], the category of pseudo-compact cdgas (denoted herein A) is
equivalent to the category of formal products of local pseudo-compact cdgas. The
category of local pseudo-compact cdgas is referred to as the extended Hinich category
and denoted by E . This section does not contain any original results; for greater
details and the proofs see the original paper [5].

Proposition 3.1. Any pseudo-compact cdga is isomorphic to a direct product of local
pseudo-compact cdgas.

Definition 3.2. A local pseudo-compact cdga is said to be

• a Hinich algebra if the maximal ideal is closed under the differential;

• an acyclic algebra if every cycle is a boundary.

Every local pseudo-compact cdga is, in fact, one of the above two types, cf. [5].
The category of Hinich algebras is referred to as the Hinich category.



324 JAMES MAUNDER

Definition 3.3. Given A ∈ E with maximal ideal M , the full Hinich subalgebra is
the local pseudo-compact cdga given as AH := {a ∈ A : da ∈M}.

Clearly, AH is a Hinich algebra and if A is a Hinich algebra then AH = A. If A is
acyclic then AH has codimension one in A.

Proposition 3.4. Given a morphism f : A→ B of pseudo-compact cdgas, it restricts
to a morphism fH : AH → BH of Hinich algebras. Conversely, given x ∈ A such that
x /∈ AH , then f(x) /∈ BH .

It follows from Proposition 3.4 there cannot exist a morphism from an acyclic
algebra to a Hinich algebra and any morphism from a Hinich algebra to an acyclic
algebra must factor through the full Hinich subalgebra of the codomain.

Remark 3.5. A functor from the extended Hinich category to the Hinich category
is defined by A 7→ AH and (f : A→ B) 7→ (fH : AH → BH). This functor forms the
right adjoint in a Quillen adjunction (the left adjoint being the inclusion), cf. [5,
Proposition 3.19].

Proposition 3.6. The acyclic algebra Λ = k[x]/〈x2〉 with differential given by dx=1,
where |x| = 1, is the terminal object of E.

Definition 3.7. A morphism, f : A→ B, of E is said to be a

• weak equivalence if, and only if, it is a weak equivalence in the Hinich category
or any morphism of acyclic algebras;

• fibration if, and only if, BH is contained within its image;

• cofibration if, and only if, it is a retract of a morphism in the class consisting of
the tensor products of cofibrations in the Hinich category with:

– the identity k → k;
– the identity Λ→ Λ;
– the natural inclusion k →֒ Λ.

Remark 3.8. Definition 3.7 provides an extension of the model structure given by
Hinich [11] for the Hinich category. It is, in fact, the unique one with this choice
of weak equivalence, having all surjective morphisms being fibrations, and Λ being
cofibrant; cf. [5].

Definition 3.7 provides a model structure for E making it a CMC (cf. [5, Theo-
rem 3.17]) and hence provides a model structure for A via Definition 2.5 making it a
CMC, since A is equivalent to Prod(E).

In the closing of this section, the following important observation is made. This
observation is useful in the proof of Theorem 6.10.

Proposition 3.9. There exists an isomorphism of sets

HomA


∏

i∈I

Ai,
∏

j∈J

Bj


 ∼=

∏

j∈J

∐

i∈I

HomE(Ai, Bj).
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4. The category of marked Lie algebras

Here the category of marked Lie algebras is introduced and some basic properties
discussed, including defining a model structure (Definition 4.20). In Section 5, the
theory developed within this section is used to prove the category of marked curved
Lie algebras is Quillen equivalent to Prod(E) (Theorem 5.13).

4.1. Basic definitions
Similar to [5], this paper works with curved Lie algebras, but a key difference is the

morphisms are curved: further the Lie algebras also possess a set of marked points.
Despite this contrast, a lot of the results proven in [5] prove useful in this setting.

Definition 4.1. A curved Lie algebra is a triple (g, d, ω) where g is a graded Lie
algebra, d is a derivation with |d| = −1, and ω ∈ g−2 such that dω = 0 and d2x = [ω, x]
for all x ∈ g. The element ω is known as the curvature.

Remark 4.2. The derivation of a curved Lie algebra is often referred to as the differ-
ential, but this is an abuse of notation since it need not square to zero (unless the
curvature is zero). Despite this, the term ‘differential’ is used within this paper.

Definition 4.3. A curved morphism of curved Lie algebras is a pair

(f, α) : (g, dg, ωg)→ (h, dh, ωh),

where f : g→ h is a graded Lie algebra morphism and α ∈ h−1 such that:

• dhf(x) = f(dgx) + [α, f(x)] for all x ∈ g, and

• ωh = f(ωg) + dhα+ 1
2 [α, α].

The image of the curved morphism (f, α) is given by {f(x)− α : x ∈ g} ⊆ h. The
composition of two curved morphisms, when it exists, is defined as (f, α) ◦ (g, β) =
(f ◦ g, α+ f(β)). A morphism with α = 0 is said to be strict.

A strict morphism is given by a dgla morphism such that f(ωg) = ωh; these are
exactly the morphisms considered in [5]. Therefore, the α part of a curved morphism
can be seen to deform how the differential and curvature commute with the graded
Lie algebra morphism f . Strict morphisms are particularly useful since there exists a
process to obtain a strict morphism from a curved one, cf. Definition 4.12.

Definition 4.4. A curved isomorphism is a curved morphism

(f, α) : (g, dg, ωg)→ (h, dh, ωh),

with an inverse curved morphism

(f, α)−1 : (h, dh, ωh)→ (g, dg, ωg),

such that (f, α) ◦ (f, α)−1 = (idh, 0) and (f, α)−1 ◦ (f, α) = (idg, 0).

Remark 4.5. Observe that a curved Lie algebra with non-zero curvature may be iso-
morphic to one with zero curvature (i.e. a dgla). Take the curved isomorphism

(id, ξ) : (g, d, ω)→

(
g, d+ adξ, ω + dξ +

1

2
[ξ, ξ]

)
,

which has inverse (id,−ξ). The codomain has zero curvature if, and only if, ξ is an
MC element of (g, d, ω). Some curved Lie algebras, however, do not possess any MC
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elements, unlike dglas where 0 is always an MC element. These morphisms correspond
to twisting by ξ, written as gξ. More details concerning twisting can be found in [2],
and how it is generalised to L∞-algebras can be found in [4]. It should be noted that
neither of the cited sources use the notion of a curved morphism.

Proposition 4.6. Given a curved morphism (f, α) : (g, dg, ωg)→ (h, dh, ωh) and an
MC element x of (g, dg, ωg), then (f, α)(x)= f(x)− α is an MC element of (h, dh, ωh).

Proof. It is a simple check to see f(x)− α satisfies the MC equation.

Definition 4.7. A curved Lie algebra, (g, d, ω), is said to be marked when it is
equipped with a set of possibly non-distinct elements of g−1 indexed by a non-empty
set I, i.e. a set {xi}i∈I , with |xi| = −1 for all i ∈ I.

The marked points are of degree −1 and thus could be MC elements of the curved
Lie algebra. Hence twisting by such an element results in the Lie algebra having zero
curvature as shown in Remark 4.5.

For the sake of brevity, a marked curved Lie algebra is here onwards denoted by
its underlying graded Lie algebra and set of marked points, omitting the differential
and curvature.

Definition 4.8. A morphism of marked curved Lie algebras is a curved Lie algebra
morphism (f, α) : (g, {xi}i∈I)→ (h, {yj}j∈J) which induces a well defined morphism
of sets {xi}i∈I → {yj}j∈J . The morphism (f, α) is an isomorphism of marked curved
Lie algebras if (f, α) is an isomorphism of curved Lie algebras and the induced mor-
phism on sets is a bijection.

Definition 4.9. The category of marked curved Lie algebras, denoted L , is the
category whose objects are marked curved Lie algebras and morphisms are those of
Definition 4.8.

Definition 4.10. A marked curved Lie algebra ((h, d, ω), {xi}i∈J ) is a marked curved
Lie subalgebra of ((g, d, ω), {xi}i∈I) if h ⊆ g as graded Lie algebras and J ⊆ I as sets.

Proposition 4.11. Given a curved Lie algebra morphism

(f, α) : (g, dg, ωg)→ (h, dh, ωh),

taking x ∈ g−1 and denoting (f, α)(x) = y, a strict morphism is given by

(idh, y) ◦ (f, α) ◦ (idg,−x) : g
x → hy.

Proof. (idh, y) ◦ (f, α) ◦ (idg,−x) = (f, y + α− f(x)) = (f, 0).

Specialising Proposition 4.11 to marked curved Lie algebras, recall that given

(f, α) : (g, {xi}i∈I)→ (h, {yj}j∈J),

for all i ∈ I there exists ji ∈ J such that (f, α)(xi) = yji .

Definition 4.12. Given a morphism (f, α) : (g, {xi}i∈I)→ (h, {yj}j∈J) and fixing
some k ∈ I, call the morphism gxk → hyk obtained analogously to Proposition 4.11
the rectification by the marked point xk.
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Proposition 4.13. Any commutative diagram of marked curved Lie algebras with
an initial vertex (one such that there exists no morphisms into it, and there exists
a unique morphism, up to commutativity, to every other vertex) is isomorphic to a
commutative diagram with strict morphisms.

Proof. Choosing a marked point in the initial vertex induces a choice of marked point
at every other vertex by images. Rectifying each morphism by these marked points
completes the proof.

Proposition 4.13 implies that when considering decompositions of morphisms, com-
mutative squares, and lifting problems it is sufficient to consider strict morphisms.

4.2. Small limits and colimits

The category L does not possess an initial object, and, therefore, an initial object
is formally added to L . The resulting category is denoted by L∗. It is assumed this
initial object has no marked points to echo the terminal object of Prod(E) having
no components, see Remark 2.2. The zero curved Lie algebra ((0, 0, 0), {0}) is the
terminal object for L∗.

Proposition 4.14. The product in L∗ is given by the Cartesian product of the under-
lying graded Lie algebras, the differential is given by specialising to each component,
the curvature is given by the Cartesian product of the curvature of each component,
and the Cartesian product of the sets of marked points. The projection morphisms are
those morphisms projecting onto each component by the identity.

Proof. It is a straightforward check.

Proposition 4.15. The equaliser of two parallel morphisms

(f, α), (g, β) : (g, {xi}i∈I)→ (h, {yj}j∈J)

is the largest curved Lie subalgebra (x, {xi}i∈I′) ⊆ (g, {xi}i∈I) upon which the two
morphisms agree, with the (strict) inclusion morphism (x, {xi}i∈I′) →֒ (g, {xi}i∈I).

Proof. An exercise in chasing the definitions.

Proposition 4.16. The coproduct in the category of marked curved Lie algebras is
easiest to describe in the binary case: let (g, {xi}i∈I) and (h, {yj}j∈J ) be marked
curved Lie algebras, the coproduct (g, {xi}i∈I)

∐
(h, {yj}j∈J) has as its underlying

graded Lie algebra the free Lie algebra on g, h, and a formal element z of degree −1.
The differential is given by the rules: d|g = dg, d|h = dh − adz and dz = ωh − ωg −
1
2 [z, z]. The set of marked points is given by the union of sets {xi}i∈I ∪ {yj + z}j∈J .
The resulting space has curvature equal to that of g. The two inclusion morphisms
are given by

(idg, 0) : (g, {xi}i∈I) →֒ (g, {xi}i∈I)
∐

(h, {yj}j∈J )

and

(idh,−z) : (h, {yj}j∈J ) →֒ (g, {xi}i∈I)
∐

(h, {yj}j∈J ).
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Proof. It is clear (g, {xi}i∈I)
∐
(h, {yj}j∈J) is a well defined marked curved Lie alge-

bra. Given a marked curved Lie algebra (a, {zk}k∈K) and morphisms

(fg, α) : (g, {xi}i∈I)→ (a, {zk}k∈K)

and

(fh, β) : (h, {yj}j∈J)→ (a, {zk}k∈K),

define (f, α) : (g, {xi}i∈I)
∐
(h, {yj}j∈J)→ (a, {zk}k∈K) by f |g = fg, f |h = fh, and

f(z) = α− β. Clearly (f, α) is a well defined morphism and the diagram

(a, {zk}k∈K)

(g, {xi}i∈I) (g, {xi}i∈I)
∐
(h, {yj}j∈J) (h, {yj}j∈J)

(fg, α)

(f, α)

(fh, β)

commutes. Uniqueness of this construction is a quick check.

The coproduct given in Proposition 4.16 is similar to the disjoint product of [16]:
it can be informally thought of as taking the disjoint union of the two marked curved
Lie algebras, adding a formal MC element, and then twisting the copy of h with this
formal element to flatten its curvature.

Proposition 4.17. The coequaliser of two parallel morphisms

(f, α), (g, β) : (g, {xi}i∈I)→ (h, {yj}j∈J)

is the quotient of h by the ideal generated by f(x)− g(x) and α− β, for all x ∈ g with
the set of marked points being the quotient in a similar manner.

Proof. A painless check.

Proposition 4.18. The category L∗ has all small limits and colimits.

Proof. L∗ contains an initial object, terminal object, products, equalisers, coprod-
ucts, and coequalisers, this is sufficient cf. [17].

4.3. Model structure
The category of curved Lie algebras with strict morphisms, denoted G, plays an

important role in defining a model structure for the category L∗, therefore the model
structure for G given in [5] is recalled.

Definition 4.19. A morphism f : g→ h of G is said to be

• a weak equivalence if, and only if, f is either a quasi-isomorphism of dglas or
any morphism between curved Lie algebras that have non-zero curvature.

• a fibration if, and only if, it is surjective;

• a cofibration if, and only if, it has the LLP with respect to acyclic fibrations.

Recall Definition 4.12: given a morphism (f, α) : (g, {xi}i∈I)→ (h, {yj}j∈J) such
that (f, α)(xk) = yjk for some k ∈ I, the rectification by the marked point xk gives
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a strict morphism (f, 0) : gxk → hyjk . This latter morphism can clearly be considered
as a morphism in the category G by forgetting marked points.

Definition 4.20. Excluding those containing the initial object, a morphism

(f, α) : (g, {xi}i∈I)→ (h, {yj}j∈J )

of L∗ is said to be

• a weak equivalence if, and only if, it induces a bijection of the marked points
and the rectification by each marked point is a weak equivalence of G;

• a fibration if, and only if, the graded Lie algebra morphism f is surjective;

• a cofibration if, and only if, it has the LLP with respect to all acyclic fibrations.

The unique morphism from the initial object to itself belongs to all three classes. The
unique morphism from the initial object to any given object of L∗ is a cofibration.

It is clear that each of the classes of morphism given in Definition 4.20 is closed
under taking retracts, and they are also closed under rectification.

Proposition 4.21. Excluding those containing the initial object, a morphism of L∗

belongs to any one of the classes of Definition 4.20 if, and only if, the rectification by
every marked point belongs to the same class.

Proof. It is straightforward to show the statement holds for weak equivalences and
fibrations. Any cofibration has the LLP with respect to any acyclic fibration, and
since a rectification can be viewed as a retract of the original morphism it also has
the LLP with respect to any acyclic fibration.

Proposition 4.22. Excluding those containing the initial object, a morphism of L∗

belongs to a class in Definition 4.20 if, and only if, the rectification by each marked
point of the domain considered as a morphism of G belongs to the same class in
Definition 4.19.

Proof. This is vacuously true for weak equivalences and almost as easily seen for
fibrations. Taking the rectification of a cofibration and viewing it as a morphism of
G, it must have the LLP with respect to all acyclic fibrations of G since it has the LLP
with respect to all acyclic fibrations of L∗, and in particular, those strict morphisms
where the sets of marked points are assumed to be the singleton set {0}, i.e. where
the morphism is already of the form of one in G. The converse statement is almost
analogous.

Proposition 4.23. Given two composable weak equivalences, (f, α) and (g, β), if any
two of (f, α), (g, β) and (g ◦ f, β + g(α)) are weak equivalences then so is the third.

Proof. When all objects involved are the initial object, the result is clear. Now exclud-
ing the initial object: if any two of the morphisms induce bijections upon the sets of
marked points then so must the third. Further, if any two of them are weak equiv-
alences of G after rectification then again so must the third since the two of three
property holds for G.

By definition, any cofibration has the LLP with respect to all acyclic fibrations,
accordingly it remains to show that any acyclic cofibration has the LLP with respect
to all fibrations.
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Proposition 4.24. The acyclic cofibrations are precisely the morphisms that have
the LLP with respect to the fibrations.

Proof. For morphisms not containing the initial object, this follows from Proposi-
tion 4.21, Proposition 4.22, and that the statement holds in the CMC G. The only
remaining case is the acyclic cofibration given by the initial object uniquely mapping
to itself, where the statement is clear.

In order to show a morphism of L∗ can always be factorised as the composition
of an acyclic cofibration followed by a fibration it is necessary to introduce the disk
of a marked curved Lie algebra.

Definition 4.25. The disk of the marked curved Lie algebra ((g, dg, ωg), {xi}i∈I) is
the marked curved Lie algebra ((Dg, d̄, ω̄), {uxi

}i∈I) where Dg = L〈ω̄, ug, vg : g ∈ g−〉
subject to the relations d̄ug = vg and d̄vg = [ω̄, ug], where g− denotes the homoge-
neous elements of g and |ug| = |g| for all g ∈ g−. In particular, ω̄ is the curvature.

This can informally be thought of as attaching cells to the curved Lie algebra to
make it acyclic, despite curved Lie algebras not necessarily being complexes. Even in
the case of a marked curved Lie algebra with zero curvature (i.e., a dgla with a set
of marked points) the disk construction does not lead to an acyclic complex since a
non-zero curvature element always exists as a generator of the disk.

Remark 4.26. The canonical strict morphism (Dg, {uxi
}i∈I)→ (g, {xi}i∈I) given by

ug 7→ g, vg 7→ dgg, and ω̄ 7→ ωg for all g ∈ g− is a fibration.

Proposition 4.27. An acyclic cofibration is given by the canonical strict morphism

(L〈ω̄, ugi , vgi〉, {ugi}i∈I)→ (Dg, {gi}i∈I).

Proof. When (g, {xi}i∈I) is the initial object the result is trivial. Let

(g, 0) : (x, {xj}j∈J)→ (y, {yk}k∈K)

be a fibration and

(L〈ω̄, ugi , vgi : i ∈ I〉, {ugi}i∈I) (x, {xj}j∈J )

(Dg, {ugi}i∈I) (y, {yk}k∈K)

(f, 0)

(g, 0)

be a commutative diagram. The diagram has been assumed to be strict by Propo-
sition 4.13. A lift (h, 0) : (Dg, {gi}i∈I)→ (x, {xj}j∈J) is defined as follows. For all
ω̄, ugi , vgi ∈ Dg, (h, 0) has the same action as (f, 0). For all ug ∈ Dg that are not in
(L〈ω̄, ugi , vgi〉, {ugi}i∈I) there exists some y ∈ y such that ug 7→ y and since (g, 0) is
surjective one can choose x ∈ x such that x 7→ y. Thus letting h(ug) = x completely
defines a lift.

Proposition 4.28. Given a morphism (g, {xi}i∈I)→ (h, {yj}j∈J) of L∗ it can be
factorised as the composition of an acyclic cofibration followed by a fibration.
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Proof. Consider the pushout

(L〈ω̄, uyj
, vyj

: j ∈ J〉, {gj}j∈J) (g, {xi}i∈I)

(Dh, {yj}j∈J)
(
Dh

∐
L〈ω̄,uyj

,vyj
:j∈J〉 g, {zi}i∈I

)
.

Since it is the pushout of an acyclic cofibration the right hand morphism is also
an acyclic cofibration. Furthermore, the universal property of a pushout provides a

morphism
(
Dh

∐
L〈ω̄,uyj

,vyj
:j∈J〉 g, {zi}i∈I

)
→ (h, {yj}j∈J) that is surjective and such

that the composition

(g, {xi}i∈)→

(
Dh

∐
L〈ω̄,uyj

,vyj
:j∈J〉

g, {zi}i∈I

)
→ (h, {yj}j∈J )

is equal to the original morphism.

Proposition 4.29. Any morphism in L∗ can be factorised into a cofibration followed
by an acyclic fibration.

Proof. In the case (g, {xi}i∈I) is the initial object, take the factorisation

(g, {xi}i∈I)→ (h, {yj}j∈J)→ (h, {yj}j∈J ),

where the morphism (h, {yj}j∈J)→ (h, {yj}j∈J ) is the identity.
Assume, (g, {xi}i∈I) is not the initial object. Let (f, α) : (g, {xi}i∈I)→ (h, {yj}j∈J )

be any morphism in L∗, and for every k ∈ I let (f, α)(xk) = yjk . Consider the strict
morphisms

(f, 0) : (gxk , {xi − xk}i∈I)→ (hyjk , {yj − yjk}j∈J)

(obtained by rectification cf. Definition 4.12) as morphisms in G by forgetting the
marked points. Therefore, there exists the factorisation in G

x

gxk hyjk ,
(f, 0)

(ι, 0) (p, 0)

where (ι, 0) and (p, 0) are a cofibration and acyclic fibration of G resp. Since (f, 0) =
(p ◦ ι, 0), the image of {xi − xk}i∈I under (ι, 0) must be a subset of the pre-image
p−1{yj − yjk}j∈J . Accordingly, for each element yn ∈ {yj − yjk}j∈J , take zn to be an
element in the pre-image of yn under (p, 0) (which exists by surjectivity of p) that is
either also in (ι, 0){xi − xn}i∈I if it exists, or any arbitrary element of correct degree
if it does not. Thus, (x, {zj}j∈J) is a marked curved Lie algebra. Untwisting g and
h results in a decomposition of the morphism (f, α) = (p,−yjk) ◦ (ι, ι(xk)). Clearly
(p,−yjk) is an acyclic fibration. To see that (ι, ι(xk)) is a cofibration, consult the
following diagram
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(g, {xi}i∈I) (y, {am}m∈M )

(gxk , {xi − xk}i∈I) (y, {am}m∈M )

(x, {zj}j∈J ) (y′, {bm}m∈M ),

(ι, 0)

where the morphism (y, {am}m∈M )→ (y′, {bm}m∈M ) is a strict acyclic fibration and
hence is an acyclic fibration in G. Therefore, a lift exists in the bottom square which
clearly respects marked points by commutativity of the diagram and hence provides a
lift for the outer rectangle implying that the morphism (ι, ι(xk)) is a cofibration.

Proposition 4.30. L∗ is a CMC with the model structure of Definition 4.20.

Proof. It follows by the preceding results.

5. Quillen equivalence

This section first recalls the Quillen equivalence of [5, Section 5] between E and G.
A nice feature of this construction is the contravariant functors interchange curved
Lie algebras with non-zero curvature and acyclic algebras, as well as uncurved Lie
algebras (or dglas) and Hinich algebras. Using the Quillen equivalence of E and G as
a foundation, a Quillen equivalence between L∗ and A (via Prod(E)) is constructed.

As remarked earlier, when passing from E toA (via Prod(E)) it is possible to extend
the Quillen equivalence by passing from G to its category of formal coproducts: cf.
[5]. However, this result is unnatural due to its asymmetry. Here—by replacing the
category of formal coproducts with the category of curved Lie algebras with curved
morphisms—a more symmetric result is obtained.

Definition 5.1. A contravariant functor CE: G → E is given by sending a curved Lie
algebra (g, d, ω) to the local pseudo-compact cdga ŜΣ−1g∗ with differential induced
via the Leibniz rule and continuity by its restriction to Σ−1g∗. The restriction is given
by the sum of three components:

• Σ−1g∗ → k given by the evaluation of the curvature ω of g,

• Σ−1g∗ → Σ−1g∗ given by pre-composition of the differential d, and

• Σ−1g∗ → S2Σ−1g∗ given by the pre-composition of the bracket on g.

Remark 5.2. If the curvature of a curved Lie algebra is 0, then the first part of the
differential in Definition 5.1 disappears recovering the construction of Hinich [11].

Proposition 5.3. For any given curved Lie algebra (g, d, ω) ∈ G, the local pseudo-
compact cdga CE(g, d, ω) is cofibrant in E.

Proof. Every object of G is fibrant and CE maps fibrations to cofibrations.

Definition 5.4. A contravariant functor L : E → G is given by sending a local pseudo-
compact cdga A to the free graded Lie algebra LΣ−1A∗ with differential induced by
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the differential of A and the multiplication of A, and curvature given by the morphism
k → Σ−1A∗ induced by the composition of the augmentation of A with the differential
of A.

Remark 5.5. If A is a Hinich algebra the image of the differential on A is its maximal
ideal mA which is precisely the kernel of the augmentation of A and so L(A) has zero
curvature.

Proposition 5.6. For any given local pseudo-compact cdga, A, the curved Lie algebra
L(A) is a cofibrant object in G.

Proof. Every object of E is fibrant and L maps fibrations to cofibrations.

Moving from the categories G and E to the categories L∗ and Prod(E), the con-
travariant functors L and CE are extended as follows.

Definition 5.7. A contravariant functor C̃E: L∗ → Prod(E) is given by

C̃E((g, d, ω), {xi}i∈I) :=
∏

i∈I

CE(g, d+ adxi
, ω + dxi +

1

2
[xi, xi]).

Given a morphism of marked curved Lie algebras, (f, α) : (g, {xi}i∈I)→ (h, {yj}j∈J),

let the kth component of the morphism C̃E(h, {yj}j∈J)→ C̃E(g, {xi}i∈I) be given by
applying CE to the rectification gxk → hyjk considered as a morphism in G.

Remark 5.8. The contravariant functor C̃E takes a marked Lie algebra to a formal
product of Hinich algebras and acyclic algebras depending upon whether the marked
point is an MC element or not.

Definition 5.9. A contravariant functor L̃ : Prod(E)→ L∗ is given by

L̃

(∏

i∈I

Ai

)
:=
∐

i∈I

(L(Ai), {0}),

where
∐

is the coproduct of the category L∗, cf. Proposition 4.16. Given any mor-
phism f :

∏
i∈I Ai →

∏
j∈J Bj of Prod(E), let the morphism
∐

j∈J

(L(Bj), {0})→
∐

i∈I

(L(Ai), {0})

be obtained by combining each of the components

(L(fj), 0) : (L(Bj), {0})→ (L(Aij ), {0}).

Proposition 5.10. The contravariant functor L̃ is left adjoint to the contravariant
functor C̃E.

Proof. The statement of the proposition is equivalent to the statement there exists
an isomorphism of the sets

HomProd(E)


C̃E(g, {xi}i∈I),

∏

j∈J

Aj


 ∼= HomL∗


L̃


∏

j∈J

Aj


 , (g, {xi}i∈I)


 .

Given a morphism f :
∏

i∈I CE(g
xi)→

∏
j∈J Aj of Prod(E), applying the contravari-

ant functor L to the components, fj , the morphisms L(fj) : L(Aj)→ L(CE(g
xij )) are



334 JAMES MAUNDER

obtained. Since the contravariant functors L and CE are adjoint, these morphisms
are equivalent to the morphisms L(fj) : L(Aj)→ g

xij . Therefore, by the universal
property of coproducts, for each j ∈ J there exists the commutative diagram

g

L(Aj)
∐

j∈J L(Aj).

(id,−xij ) ◦ L(fj)

Clearly, the morphisms are marked and therefore it has been shown that L̃(f) is a

morphism in HomL∗
(L̃(
∏

j∈J Aj), (g, {xi}i∈I)).

Conversely, given a morphism f : L̃(
∏

j∈J Aj)→ (g, {xi}i∈I) one can easily use
the fact that CE and L are an adjoint pair to show—in a similar manner to the
preceding—that after applying the contravariant functor C̃E, a morphism equivalent
to ∏

i∈I

CE(gxi)→
∏

j∈J

Aj

is obtained.

Proposition 5.11. The contravariant functors L̃ and C̃E both map fibrations to cofi-
brations.

Proof. Given a fibration f :
∏

i∈I Ai →
∏

j∈J Bj of Prod(E), for each i ∈ I the mor-

phism f i : Ai →
∏

{j:j 7→i} Bj is a fibration of E . Hence for each i ∈ I the morphism

L(f i) is a cofibration. Let

(
L
(∏

{j:j 7→i} Bj

)
, {0}

) ∐
j∈J(L(Bj), {0}) (X, {ξk}k∈K)

(L(Ai), {0})
∐

i∈I(L(Ai), {0}) (Y, {νk}k∈K)

be a commutative diagram in L∗ and (X, {ξk}k∈K)→ (Y, {νk}k∈K) be an acyclic
fibration. Further, it is assumed to be strict, cf. Proposition 4.13. The left hand
morphism is a cofibration of G and as such there exists some lift (L(Ai), {0})→
(X, {ξk}k∈K) for each i ∈ I. Using the universal property of coproducts, there exists
a morphism

∐
i∈I(L(Ai), {0})→ (X, {ξk}k∈K) making everything commute. Hence,

the morphism L̃(f) is a cofibration. The proof for C̃E is similar.

Proposition 5.12. The contravariant functors C̃E and L̃ preserve weak equivalences.

Proof. Given a weak equivalence (f, α) : (g, {xi}i∈I)→ (h, {yi}i∈I) of L∗, it is evident
by definition that for all i ∈ I the morphism CE(hyi)→ CE(gxi) is a weak equivalence

of E , whence C̃E(f, α) is a weak equivalence.

Suppose f :
∏

i∈I Ai →
∏

i∈I Bi is a weak equivalence of Prod(E). Clearly L̃(f)
induces a bijection upon marked points. Now, f has components fi : Ai → Bi which
are weak equivalences in E , hence (L(fi), 0) is a weak equivalence for each i. Since
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L̃(A) is cofibrant for all A (by Proposition 5.11) one can conclude the coproducts∐
i L̃(Ai) and

∐
i L̃(Bi) descend to the level of homotopy, where each morphism

(L(fi), 0) is an isomorphism, which implies L̃(f) is an isomorphism and so L̃(f) is a
weak equivalence.

Theorem 5.13. The categories Prod(E) and L∗ are Quillen equivalent.

Proof. One applies the preceding results with [7, Theorem 9.7].

6. Deformation functors over pseudo-compact cdgas

An application of the above constructions to algebraic deformation theory is con-
tained within this section; more precisely, the theory is extended to deformation
functors over (not necessarily local) pseudo-compact cdgas. The main result, Theo-
rem 6.10, shows these deformation functors are representable in Ho(A). The story
of the approach to deformation theory via dglas has its roots with Drinfeld [6] and
Kontsevich [13] among others, who noticed that deformation theories in characteristic
zero are governed by the MC elements of dglas.

Here the category of sets is denoted by S and the notation (A,mA) refers to a
local pseudo-compact cdga A with maximal ideal given by mA.

6.1. MC elements and local pseudo-compact cdga morphisms
Fixing a curved Lie algebra (g, dg, ωg) and a local pseudo-compact cdga, (A,mA),

recall that the tensor product (g⊗̂A, d, ωg⊗̂1) is a well defined curved Lie algebra. The
MC elements of the tensor product g⊗̂A can be considered, in the usual sense, as those
elements, x ∈ g⊗̂A, solving the MC equation: ωg⊗̂1 + dx+ 1

2 [x, x] = 0. However, for
the construction of the deformation functor given later in this section, only the subset
of those MC elements belonging to g⊗̂mA are examined.

Definition 6.1. Let M̃C(g⊗̂A) denote the set of MC elements belonging to the subset
g⊗̂mA.

In fact, M̃C can be viewed as a bifunctorial construction from the product category
of curved Lie algebras with local pseudo-compact cdga into the category of sets.

Proposition 6.2. The functors (g, A) 7→ Hom(CE(g), A) and (g, A) 7→ M̃C(g⊗̂A)
are naturally isomorphic.

Proof. A degree −1 element in g⊗̂mA is a degree 0 element in Σ−1g⊗̂mA, further this
element determines (and is determined by) a continuous linear morphism (Σ−1g)∗ →
mA. In turn, this continuous linear morphism determines (and is determined) by a
morphism of local pseudo-compact commutative graded algebras: CE(g)→ A. The
condition that this morphism commutes with the differential is precisely the condition
that the element belongs to M̃C(g⊗̂A).

The equivalence of functors in Proposition 6.2 motivates the notion of a homotopy
between elements of the set M̃C(g⊗̂A).

Definition 6.3.

• Let k[z, dz] denote the free unital cdga on the generators z and dz with degrees
0 and −1, respectively, with the differential given by d(z) = dz.
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• Given A ∈ E , let A[z, dz] be the cdga given by A⊗̂k[z, dz], and |0, |1 : A[z, dz]→
A be the quotient morphisms given by setting z to 0 or 1, respectively.

Remark 6.4. k[z, dz] is the familiar de Rham algebra of forms on the unit interval.

Definition 6.5. Two elements ξ, η ∈ M̃C(g⊗̂A) are said to be homotopic if there

exists an element h ∈ M̃C(g⊗̂A[z, dz]) such that h|0 = ξ and h|1 = η.

Using the isomorphism of functors in Proposition 6.2, h ∈ M̃C(g⊗̂A[z, dz]) cor-
responds to a morphism of pseudo-compact cdgas h : CE(g)→ A[z, dz] which when
specialising to z = 0 and z = 1 restricts to the morphisms corresponding to ξ, η ∈
M̃C(g⊗̂A), respectively. Thus, a homotopy of MC elements is nothing more than a
Sullivan homotopy between the corresponding morphisms of local pseudo-compact
cdgas, cf. Appendix A.

Definition 6.6. Let M̃C(g⊗̂A) denote the set of equivalence classes of M̃C(g⊗̂A)
modulo the homotopy relation. This set is called the Maurer–Cartan moduli set of
the curved Lie algebra g with coefficients in the local pseudo-compact cdga A.

Remark 6.7. The MCmoduli set can be obtained in several ways in slightly specialised
cases. For example, it can be seen as the set of connected components of the MC
simplicial set; see [16], it should be noted, though, that pseudo-compact dglas are
considered in op. cit. Additionally, a result of Schlessinger and Stasheff [24] states
that for a pronilpotent dgla, two MC elements are homotopic if, and only if, they are
gauge equivalent: see [3] for a discussion and a proof.

The homotopy relation of MC elements and the Sullivan homotopy of morphisms
of pseudo-compact local cdgas are so closely related that Proposition 6.2 also holds
on the level of homotopy.

Proposition 6.8. Given a curved Lie algebra g and a local pseudo-compact cdga
(A,mA), the functors

(g, A) 7→ HomHo(E)(CE(g), A) and (g, A) 7→ M̃C(g⊗̂A)

are naturally isomorphic.

Proof. The two definitions of homotopy are equivalent since CE(g) is cofibrant (see
Theorem A.4), and so the result follows.

6.2. Deformations over pseudo-compact cdgas
For a dgla g and a local Artin algebra (A,mA), recall the tensor g⊗̂mA possesses

a well-defined dgla structure. Shadowing the inspiration of Drinfeld, Kontsevich, et
al., where the deformation functor associated to g is defined as the functor mapping
(A,mA), to the set of MC elements of g⊗̂mA modulo gauge equivalence, the following
definition is made.

Definition 6.9. Fixing a marked curved Lie algebra (g, {xi}i∈I) ∈ L∗, a deformation
functor Def(g,{x}i∈I) : A → S is given by

A =
∏

j∈J

Aj 7→
∏

j∈J

∐

i∈I

M̃C
(
gxi⊗̂Aj

)
.



KOSZUL DUALITY AND HOMOTOPY THEORY OF CURVED LIE ALGEBRAS 337

Using Proposition 3.9 and Proposition 6.8 one arrives at the following theorem.

Theorem 6.10. The deformation functor Def(g,{xi}i∈I) : A → S is representable in

the homotopy category of A by C̃E(g, {xi}i∈I).

Proof. Let A ∈ A,

Def(g,{xi}i∈I)(A) =
∏

j∈J

∐

i∈I

M̃C
(
gxi⊗̂Aj

)

∼=
∏

j∈J

∐

i∈I

HomHo(E) (CE(g
xi), Aj)

∼= HomHo(A)

(
C̃E(g, {xi}i∈I), A

)
.

Corollary 6.11. The functor Def(g,{xi}i∈I) is homotopy invariant in both the marked
Lie algebra and pseudo-compact cdga variables.

Proof. C̃E is homotopy invariant and Def(g,{xi}i∈I) is representable in the homotopy
category of pseudo-compact cdgas, thus the result follows.

The functor given in Definition 6.9 relies upon the decomposition of a pseudo-
compact cdga into the product of local ones. By recalling a pair of Quillen adjoint
functors originally given in [5] a more satisfying equivalent definition that does not
rely upon a decomposition can be given in the case where the curved Lie algebra
possesses one marked point. Let the functor F : E → Prod(E) be given by the inclusion
of a local pseudo-compact cdga to the formal product over a singleton set, and let
G : Prod(E)→ E be given by taking the formal product to the actual product of E .
It is proven in [5] these functors are Quillen adjoint. As defined here, G uses the
decomposition of a pseudo-compact cdga into the product of local ones. However, it
is possible to define G without this luxury, cf. [5].

Definition 6.12. Fixing a marked curved Lie algebra (g, {x}) ∈ L∗, a deformation

functor D̂ef(g,{x}) : A → S is given by A 7→ M̃C
(
gx⊗̂ G(A)

)
.

Proposition 6.13. Fix a marked curved Lie algebra (g, {x}) ∈ L∗. The functors

D̂ef(g,{x}) and Def(g,{x}) are naturally isomorphic.

Proof. It is immediate from the definitions.

Theorem 6.14. The functor D̂ef(g,{x}) is representable in the homotopy category of

pseudo-compact cdgas by C̃E(g, {x}).

Proof. It follows from Proposition 6.13.

Appendix A. Sullivan homotopy and path objects

In Section 6 the notion of a Sullivan homotopy is used to relate homotopy classes of
MC elements in certain curved Lie algebras with the homotopy classes of morphisms
in E . A Sullivan homotopy is reminiscent of a right homotopy in a CMC, but in E this
is not quite the case: the candidate for a so-called path object is not pseudo-compact.
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One could attempt to fix this failure by extending E suitably. This approach, however,
is not be taken here as it is not necessary.

Within this section interest is restricted to the categories E and G; most impor-
tantly, all morphisms between curved Lie algebras are strict.

Definition A.1. Given g ∈ G, let g[z, dz] ∈ G be given by g⊗ k[z, dz], and the quo-
tient morphisms given by setting z to 0 and 1 are denoted |0, |1 : g[z, dz]→ g, resp.

Recall Definition 6.3. As already remarked, the objects A[z, dz] and g[z, dz] resem-
ble path objects for A and g, respectively. However, k[z, dz] is not pseudo-compact,
and A[z, dz] /∈ E . Therefore, A[z, dz] cannot be a path object for A in E .

Proposition A.2. Given g ∈ G, g[z, dz] is a very good path object for g in G.

Proof. When g has zero curvature (i.e. a dgla) the statement is already known.
Assuming g has non-zero curvature, the canonical morphism g→ g[z, dz] is between
two curved Lie algebras with non-zero curvature and, therefore, a weak equiva-
lence. Moreover, the diagonal morphism (idg, idg) : g→ g

∏
g can be factorised as

g
∼
−→ g[z, dz]→ g

∏
g with the morphism g[z, dz]→ g

∏
g clearly surjective and hence

a fibration. Further, the morphism g→ g[z, dz] can easily be shown to be a cofibration
by showing it has the LLP with respect to all acyclic fibrations.

Definition A.3.

• Let A,B ∈ E . Two parallel morphisms of E , f, g : A→ B, are said to be Sullivan
homotopic if there exists a continuous local cdga morphism h : A→ B[z, dz] such
that h|0 = f and h|1 = g.

• Let g, h ∈ G. Two parallel morphisms of G, f, g : g→ h, are said to be Sullivan
homotopic if there exists a curved Lie algebra morphism h : g→ h[z, dz] such
that h|0 = f and h|1 = g.

Since all objects of G are fibrant, the right homotopy with the path object given
above is an equivalence relation, cf. [7, Lemma 4.16]. Therefore a Sullivan homotopy
in G is simply a right homotopy. When the source object is cofibrant this notion
of homotopy coincides with that given by the weak equivalences of the category G,
whence the notion of a Sullivan homotopy coincides with that of the model structure.

It was proven in [15, Theorem 3.6] that for a cofibrant Hinich algebra, A, and
an arbitrary Hinich algebra, B, the set of equivalence classes of Sullivan homotopic
morphisms A→ B is in bijection with the set of morphisms A→ B in the homotopy
category of the Hinich category. This theorem extends to E .

Theorem A.4 (Lazarev). Given a cofibrant A ∈ E and any arbitrary B ∈ E, two
parallel morphisms f, g : A→ B are Sullivan homotopic if, and only if, they repre-
sent the same morphism in Ho(E). More precisely, there is a bijective correspondence
between equivalence classes of Sullivan homotopic morphisms A→ B in E and the
set of morphisms A→ B in Ho(E).

Proof. The proof follows, mutatis mutandis, from [15, Theorem 3.6].

It should be mentioned, albeit in the conclusion of this appendix, Pridham [21]
constructed a path object functor for Hinich algebras. This construction is briefly
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recalled here. Given a finite-dimensional nilpotent local cdga whose maximal ideal
respects the differential, A, consider the pullback

A[z, dz]×k[z,dz] k k

A[z, dz] k[z, dz],
ε

where ε is the induced augmentation. This pullback is isomorphic to the algebra
mA[z, dz]⊕ k. The path object of A is given by the completion of mA[z, dz]⊕ k
with respect to ideal mA[z, dz]. This construction is extended to the category of
Hinich algebras by using the exactness of the completion functor for finitely generated
algebras. For more details on this path object construction see Pridham’s paper [21]
where, using this path object functor, a cylinder object functor is also constructed.

References

[1] Michael Barr. Harrison homology, Hochschild homology and triples. J. Algebra,
8:314–323, 1968.

[2] Christopher Braun. Operads and moduli spaces. arXiv:1209.1088, 2012.

[3] J. Chuang and A. Lazarev. Feynman diagrams and minimal models for operadic
algebras. J. Lond. Math. Soc. (2), 81(2):317–337, 2010.

[4] Joseph Chuang and Andrey Lazarev. L-infinity maps and twistings. Homology
Homotopy Appl., 13(2):175–195, 2011.

[5] Joseph Chuang, Andrey Lazarev, and Wajid Mannan. Cocommutative coalge-
bras: homotopy theory and Koszul duality. arXiv:1403.0774, 2014.

[6] Vladimir Drinfeld. A letter from Kharkov to Moscow. EMS Surv. Math. Sci.,
1(2):241–248, 2014. Translated from the Russian by Keith Conrad.
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