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RATIONAL O(2)-EQUIVARIANT SPECTRA

DAVID BARNES

(communicated by Brooke Shipley)

Abstract
The category of rational O(2)-equivariant cohomology theo-

ries has an algebraic model A(O(2)), as established by work of
Greenlees. That is, there is an equivalence of categories between
the homotopy category of rational O(2)-equivariant spectra and
the derived category of the abelian model DA(O(2)). In this
paper we lift this equivalence of homotopy categories to the level
of Quillen equivalences of model categories. This Quillen equiv-
alence is also compatible with the Adams short exact sequence
of the algebraic model.
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1. Introduction

Equivariant cohomology theories are a fundamental tool for studying spaces with
a G-action. To study these cohomology theories, it is helpful to understand the G-
spectra that represent them. The homotopy category of G-spectra is particularly
complicated. It contains all the information of the stable homotopy category, as well
as equivariant information such as the Burnside ring of G and the group cohomology
of G. A standard and fruitful method to make this category easier to study is to work
rationally. Since the rational stable homotopy category is equivalent to the category
of graded rational vector spaces, we have removed most of the topological complexity.
However, much of the interesting behaviour that comes from the group is preserved
and made tractable.

The category of rational G-spectra has been classified (via Quillen equivalences)
in terms of a simple algebraic category for a number of groups. The case of finite
groups has been covered by the author [Bar09a] and Kȩdziorek [Kȩd15]. The circle
group T = SO(2) has recently been completed by the author, Greenlees, Kȩdziorek
and Shipley in [BGKS15]. The case of a torus group is considered in Greenlees and
Shipley [GS].

In this paper we focus on the group O(2), which is the simplest non-commutative
non-finite compact Lie group. The paper [Gre98b] gives an abelian model A(O(2))
for the homotopy category of rational O(2)-spectra. By considering objects with a
differential in A(O(2)) we can construct a model category dA(O(2)) and a Quillen
equivalence between dA(O(2)) and the model category of rational O(2)-spectra. We
call dA(O(2)) the algebraic model for rational O(2)-spectra. This Quillen equiv-
alence gives us a triangulated equivalence of the homotopy categories and also tells us
that all further homotopical structures (such as homotopy limits or Toda brackets)
are preserved by this equivalence.

The algebraic model is explicit and manageable so that constructing objects or
maps is straightforward. Furthermore, there is an Adams exact sequence relating
maps in the homotopy category of rational O(2)-spectra to the algebraic model, see
Theorems 3.8 and 5.5. The algebraic model splits into the product of two simpler
categories. The first, called the toral part dA(C), comes from (the homotopy cate-
gory of) the algebraic model for T along with a skewed action of W = O(2)/T, see
Definition 3.3. Our work will also clarify an imprecision in [Gre98b] regarding the
behaviour of W on the toral part, see Remark 3.6. The second, called the dihedral
part dgA(D), behaves much more like the case of a finite group (or an exceptional
subgroup as in [Kȩd15]), see Definition 5.2. The main theorem can be phrased as
follows, where we denote rational O(2)-equivariant (orthogonal) spectra by O(2) SpOQ .
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Theorem 1.1. There is a zig-zag of Quillen equivalences between

O(2) SpOQ and dA(C)× dgA(D).

This paper represents the prototype for other extensions of a torus by a finite group.
LetG be an extension of Tr by a finite group, then there is a notion of ‘toral’G-spectra
extending our notion of toral O(2)-spectra. A study of the homotopy category of such
spectra appears in [Gre15] and that paper gives an abelian model for the homotopy
category. A similar method to Section 4 and an extension of the results of [Bar16]
should provide a classification of toral G-spectra in terms of the algebraic model
built from the abelian model. The key fact is that a map of toral G-spectra is a weak
equivalence if and only if it forgets to a weak equivalence of Tr-spectra.

1.1. Organisation
The model category of rational O(2)-spectra is recalled in Section 2. Theorem 2.5

splits the model category into two parts: the model category of ‘toral spectra’ and the
model category of ‘dihedral spectra’, see Definition 2.6. This is the model category
version of the fact that the homotopy category splits into two pieces.

The model category of toral spectra only has homotopical information coming
from the finite cyclic groups and T and hence behaves very much like the model
category of rational T-spectra. In Section 3 we introduce the algebraic model for toral
spectra. The classification of toral spectra in terms of the algebraic model is given
in Section 4. The method is an extension of the method of [BGKS15]. The extra
difficulty is accounting for the action of the Weyl group W = WO(2)T = O(2)/T. The
essential point is that the T-fixed points of a toral O(2)-spectrum have the structure
of a spectrum with W -action.

The model category of dihedral spectra contains the homotopical information of
rational O(2)-spectra generated by the dihedral subgroups and O(2). In Section 5 we
introduce the algebraic model for dihedral spectra and give the classification. This
part of the work is simpler than the toral case as all the homotopical information is
concentrated in degree zero, see Lemma 5.17.

2. Rational O(2)-spectra

In this section we introduce a model category for rational O(2)-spectra and show
that it splits into the product of two localisations. We also give some information on
the group O(2) and introduce some basic results on O(2)-spectra.

2.1. The group O(2) and model structures
Let Dh

2n denote the dihedral subgroup of order 2n containing h, where h is an
element of O(2) \ SO(2). The closed subgroups of O(2) are O(2), SO(2), the finite
cyclic groups Cn (n > 1) and the finite dihedral groups Dh

2n for varying h.
For H a closed subgroup of O(2) we let NO(2)(H) denote the normaliser of H in

O(2): So NO(2)(H) is the largest subgroup of O(2) in which H is normal. The Weyl
group of H in O(2) is

WO(2)(H) := NO(2)(H)/H.
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The Weyl group of O(2) is the trivial group. The Weyl group of T = SO(2) is the
group of order two, which we call W

W := O(2)/SO(2) = WO(2)(SO(2)).

The normaliser ofDh
2n in O(2) isDh

4n, thus the Weyl group ofDh
2n is isomorphic toW .

The finite cyclic groups are normal, hence the Weyl group of Cn is O(2)/Cn
∼= O(2).

Following [LMSM86, Chapter V, Section 2], define FO(2) to be the set of those
subgroups of O(2) with finite index in their normaliser equipped with the Hausdorff
topology. This is an O(2)-space via the conjugation action of O(2) on its subgroups.
Let C(FO(2)/O(2),Q) be the ring of continuous maps from FO(2)/O(2) to Q consid-
ered as a discrete space. By work of tom Dieck, see [LMSM86, Lemma 2.10], there
is an isomorphism of rings

A(O(2))⊗Q := [S, S]O(2) ⊗Q
∼=
−→ C(FO(2)/O(2),Q),

which sends f ⊗ q to (H) 7→ q deg(ΦHf) (the degree of the H-fixed points of the map
f : S→ S). We draw FO(2)/O(2) below as Figure 1. We will sometimes write D2n for
(Dh

2n) the conjugacy class of Dh
2n. The point O(2) is a limit point of this space.

•

•

••• •· · ·

O(2)

SO(2)

D2D4D6D8

Figure 1: FO(2)/O(2).

Definition 2.1. Define C to be the set consisting of the finite cyclic groups and T.
This set is a family in the sense that it is closed under conjugation and taking
subgroups. Let D be the complement of C in the set of all (closed) subgroups of
O(2).

Definition 2.2. We define idempotents of C(FO(2)/O(2),Q) as follows: eC is the
characteristic function of T, eD := eC − 1 and en is the characteristic function of D2n

for each n > 1. We also let fn = eD − Σn−1
k=1ek.

Our base category of spectra SpO is the category of orthogonal spectra, equipped
with the stable model structure. Let O(2)SpO be the model category of O(2)-equivari-
ant orthogonal spectra (defined over a complete O(2)-universe U). This is a proper,
cellular, stable model structure where weak equivalences are those maps f such that
πH
∗ (f) is an isomorphism for all closed subgroups H of O(2). See [MM02] for details.
Similarly, we have TSpO, the model category of T-equivariant orthogonal spectra.

We will index this category of spectra over the universe i∗U (so our T-equivariant spec-
tra are indexed on T-representations of the form i∗V , for V an O(2)-representation).
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This non-standard choice of universe is justified by [MM02, Section V.2 and Re-
mark 1.10]. In particular, the homotopy category is the usual T-equivariant stable
homotopy category. One advantage of this convention is that the forgetful functor
from O(2)-spectra to T-spectra is given by (i∗X)(i∗V ) := i∗(X(V )), that is, the space
X(V ) with O(2)-action forgotten to a T-action, for X an O(2)-spectrum.

Following [Bar09b, Section 5] and using [MM02, Theorem IV.6.3], we can cre-
ate a new model structure on O(2)SpO by localising at a rational sphere spectrum
S0Q. The spectrum S0Q can be built as a non-equivariant spectrum and inflated to
an O(2)-spectrum or built directly in O(2)-spectra. We call the weak equivalences
of the localised model structure rational equivalences: those maps f such that
πH
∗ (f)⊗Q is an isomorphism for all closed subgroups H of O(2). We call this the

rational model structures. Analogous model structures exist for T-spectra and
non-equivariant spectra.

Definition 2.3. Let O(2) SpOQ be the category of O(2)-equivariant orthogonal spectra
equipped with the rational model structure. This category of spectra is indexed on
the complete O(2)-universe U.

Let T SpOQ be the category of T-equivariant orthogonal spectra equipped with the
rational model structure. This category of spectra is indexed on the universe i∗U.

Let SpOQ be the category of orthogonal spectra equipped with the rational model
structure. This category of spectra is indexed on the universe R∞.

We will also have cause to use a category of naiveW = O(2)/T-equivariant spectra.

Definition 2.4. Let SpOQ [W ] denote the category of W -objects and W -maps in SpO,
indexed on the universe R∞. This category is equipped with the ‘free’ model structure
lifted from SpOQ , using the functor W+ ∧ (−). Hence a map is a weak equivalence or

fibration if it is so in SpOQ when the W -action is forgotten.

2.2. Splitting rational O(2)-spectra
We know by [Gre98b] and [Bar09b, Section 6] that the homotopy theory of

rational O(2)-spectra splits into two pieces. Using the idempotents of Definition 2.2
we define eCS as the homotopy colimit (mapping telescope) of

S
eC

S
eC

S
eC

. . .

and we require that this spectrum be cofibrant (either by choice of construction or
by replacing it with a cofibrant replacement). Similarly, we have (1− eC)S ≃ eDS.

We can then Bousfield localise the model category of rational O(2)-spectra at
these objects to obtain LeCSO(2) SpOQ and LeDSO(2) SpOQ using [MM02, Section

IV.6]. The weak equivalences of LeCSO(2) SpOQ are those maps f such that eCS ∧ f

is a rational equivalence, and similarly so for LeDSO(2) SpOQ . These are cofibrantly
generated, proper, simplicial stable model categories. The result below is [Bar09b,
Corollary 6.3].

Theorem 2.5. The adjoint pair of the diagonal functor ∆ and the product functor
Π induces a symmetric monoidal Quillen equivalence:

∆: O(2) SpOQ
−−→←− LeCSO(2) SpOQ × LeDSO(2) SpOQ : Π.
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We can identify these localised homotopy categories more clearly. Note that for

any X and Y in O(2) SpOQ , the abelian group [X,Y ]
O(2)
Q is a module over the ring

[S, S]
O(2)
Q via the smash product. Hence we have the following isomorphisms of sets

of maps in the homotopy category:

[X,Y ]
O(2)
Q

∼= eC[X,Y ]
O(2)
Q × eD[X,Y ]

O(2)
Q ,

eC[X,Y ]
O(2)
Q

∼= HoLeCSO(2) SpOQ(X,Y ),

eD[X,Y ]
O(2)
Q

∼= HoLeDSO(2) SpOQ(X,Y ).

We can improve our description of LeCSO(2) SpOQ by describing eCS in terms of
a suspension spectrum. Let EC denote the universal O(2)-space corresponding to
the family C, so ECH is non-equivariantly contractible for each H ∈ C and is the
empty set for H /∈ C. This is an O(2)-CW-complex and is built from cells of the form

O(2)/K+ for K ∈ C. Define ẼC via the cofibre sequence of O(2)-spaces,

EC+ → S0 → ẼC.

By considering geometric fixed points, it is easy to check that the composite map
EC+ → S → eCS of O(2)-spectra is a weak equivalence. It follows that the weak equiv-
alences of LeCSO(2) SpOQ are those maps f such that EC+ ∧ f is a rational equivalence.
By [MM02, Proposition IV.6.7] it follows that the weak equivalences are those maps
f such that i∗f is a weak equivalence of rational T-spectra.

We will find it convenient to use a slightly different model structure on O(2) SpOQ
to model HoLeCSO(2) SpOQ . We take the following construction from [MM02, The-
orem IV.6.5]. The (non-rational) stable model structure on O(2)-spectra has sets
of generating cofibrations and acyclic cofibrations obtained by applying the shifted
suspension functors FV to spaces of the form O(2)/H+ ∧A for H 6 O(2), V a rep-
resentation of O(2) and A either a sphere or a disc. If we restrict ourselves to only
those with H 6 T, we obtain a new model structure on O(2)-spectra that is stable
and cellular. In particular, a map f is a weak equivalence or fibration in this new
model structure if and only if i∗f is a weak equivalence or fibration of T-spectra. We
rationalise this model structure as above and denote it CO(2) SpOQ . From the descrip-
tions of the weak equivalences it follows immediately that the identity functor from
CO(2) SpOQ to LeCSO(2) SpOQ is the left adjoint of a Quillen equivalence.

Definition 2.6. We call CO(2) SpOQ the model category of toral O(2)-spectra. We

call LeDSO(2) SpOQ the model category of dihedral O(2)-spectra.

We rephrase the splitting result.

Corollary 2.7. The model category of rational O(2)-spectra is Quillen equivalent to

CO(2) SpOQ × LeDSO(2) SpOQ .

In Section 4.2 we will make much use of the T-fixed points functor, so we intro-
duce that functor and discuss how it acts on the model category CO(2) SpOQ . The

functor (−)T of [MM02, Section V.3] first restricts an O(2)-spectrum indexed on
a complete O(2)-universe U to R∞, then applies the space-level fixed point functor
levelwise.
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Lemma 2.8. The (categorical) T-fixed points functor induces a Quillen pair

ε∗ : SpOQ [W ] −−→←− CO(2) SpOQ : (−)T.

Proof. We first consider the adjunction before rationalising. On the left a map is a
fibration if and only if it forgets to a fibration of non-equivariant spectra. A map on
the right is a fibration if and only if it forgets to a fibration of T-spectra. The functor
(−)T is a right Quillen functor from T-spectra to spectra by [MM02, Proposition 3.4]
hence we have a Quillen pair before localisation.

The adjunction extends to the rationalised categories as the rational sphere spec-
trum S0Q in each category is given by applying the appropriate inflation functor from
non-equivariant spectra.

The forgetful and fixed points functors interact well, as the commutative diagram
below shows. Analogues of this diagram will appear throughout Section 4.

Proposition 2.9. There is a diagram of Quillen functors as below, in which both the
square of fixed point and forgetful functors commute, as does the square of inflation
and forgetful functors.

SpOQ [W ]
ε∗

i∗

CO(2) SpOQ

i∗

(−)T

SpOQ
ε∗

T SpOQ
(−)T

Then both functors i∗ preserve weak equivalences, cofibrations and fibrations. Fur-
thermore if i∗f is a weak equivalence (or fibration), then f is a weak equivalence (or
fibration).

Proof. The two commutativity statements follow directly from the definitions. We
have already discussed weak equivalences and fibrations for both functors i∗ in the
non-rationalised case. These extend to the rational versions as S0Q can be constructed
in SpO and then inflated to an equivariant spectrum in any of the other three cate-
gories.

For cofibrations, consider a generating cofibration of CO(2) SpOQ ,

FV

(
O(2)/H+ ∧ Sn−1

+

)
−→ FV

(
O(2)/H+ ∧Dn

+

)
,

for H a subgroup of T and V a representation of O(2). Applying i∗ to this gives

Fi∗V

(
(T/H+ ∨ j∗T/H+) ∧ Sn−1

+

)
−→ Fi∗V

(
(T/H+ ∨ j∗T/H+) ∧Dn

+

)
,

where j∗T/H+ denotes the space T/H but with the inverse action of T (so t ∈ T acts
by t−1). Since this map is a cofibration of T-spectra, the statement follows. A similar
argument holds in the case of SpOQ [W ].

3. The toral model

In this section we define dA(C), the algebraic model for toral spectra and explain
how it relates to dA(T), the algebraic model for rational T-spectra.
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3.1. The model A(T)
The algebraic category for the homotopy category of rational T-spectra is estab-

lished in [Gre99]. We adapt that category to the toral case and explain how to relate
it to the T-case. Our starting point is the category of chain complexes with an action
of W .

Definition 3.1. The category Ch(Q[W ]) is the category of rational chain complexes
that have an action of the group of order two. This is a monoidal category with tensor
product given by tensoring over Q and using the diagonal W -action. The unit of this
product is Q in degree zero with trivial W -action.

There is a proper cofibrantly generated model structure on this category by [Hov99,
Proposition 4.2.13]. The fibrations are the surjections and the weak equivalences are
the homology isomorphisms. The cofibrations are dimensionwise split injections with
cofibrant cokernel. Let Sn−1 be the chain complex with Q in degree n− 1 ∈ Z and
zeroes elsewhere and the Dn be the chain complex with Q in degrees n and n− 1
(with the identity as the differential between these degrees) and zeroes elsewhere. The
generating cofibrations are given by the inclusion maps Sn−1 ⊗Q[W ]→ Dn ⊗Q[W ]
and the acyclic cofibrations are given by 0→ Dn ⊗Q[W ] for n ∈ Z.

Since Q is a retract of Q[W ] we see that Sn−1 ⊗Q→ Dn ⊗Q is also a cofibration
of Ch(Q[W ]). Hence the cofibrant objects do not have to be W -free.

The forgetful functor from Ch(Q[W ]) to Ch(Q) is the right adjoint of a strong
monoidal Quillen pair. The left adjoint sends a chain complex X to X ⊕X with W
acting as the exchange of factors map.

It is routine to check that this category is a symmetric monoidal model category
that satisfies the monoid axiom. We construct a commutative monoid in Ch(Q[W ]).

Definition 3.2. Let OF be the graded ring of operations
∏

n>1 Q[cn] with cn of
degree −2. This ring has trivial differential.

The group W acts on this graded ring (via ring homomorphisms), it is defined by
wcn = −cn. We thus have a map of graded rings (without W -action)

w : OF → OF

and a change of rings functor w∗ from OF -mod to itself. For a module N , w∗N is
the same underlying set, but now each cn acts as −cn.

We use the notation

E−1OF = colimn>1 OF[c
−1
1 , . . . , c−1

n ].

It is easy to see that E−1OF is also a graded ring with W -action. As a vector space,
(E−1OF)2k is

∏
a>1 Q for k 6 0 and is ⊕a>1Q for k > 0. For any OF-module N , we

define E−1N to be E−1OF ⊗OF
N . The tensor product has the diagonal action of W .

Definition 3.3. An object A = (β : N → E−1OF ⊗ U) of dA(C) consists of the fol-
lowing data:

• an OF-module N in the category Ch(Q[W ]),
• an object U of Ch(Q[W ]),
• a map β of OF-modules in the category Ch(Q[W ]),
• with the requirement that E−1β is an isomorphism.
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Let B = (β′ : N ′ → E−1OF ⊗ U ′) be another object of dA(C). A map (θ, φ) : A→
B in this category consists of the following data:

• a map θ : N → N ′ of OF-modules in the category Ch(Q[W ]),
• a map φ : U → U ′ in the category Ch(Q[W ]),
• with the requirement that the obvious square involving the structure maps

commutes.

We call dA(C) the algebraic model for toral spectra. The subcategory of
objects with zero differentials in all places is called A(C), the abelian model for
toral spectra.

We let S0 =
(
OF → E−1OF ⊗Q

)
where Q has trivial W -action. This is the unit

of a monoidal product on dA(C) (although we will make no direct use of that in this
paper).

The abelian and algebraic models for rational T-equivariant spectra have similar
descriptions.

Definition 3.4. The category dA(T) is defined as in Definition 3.3 but using Ch(Q)
instead of Ch(Q[W ]). We call this the algebraic model for T-spectra.

The full subcategory of dA(T) consisting of objects with zero differentials is called
A(T), the abelian model for T-spectra.

There is an obvious forgetful functor relating dA(T) and dA(C). The results of
Section 4 will show that this forgetful functor is the algebraic version of the forgetful
functor from CO(2) SpOQ to T SpOQ .

Lemma 3.5. There is an adjoint pair relating dA(T) and dA(C). The left adjoint D
takes

β : N → E−1OF ⊗ U,

in A to the following composite:

N ⊕ w∗N
β⊕w∗β
−→ (E−1OF ⊗ U)⊕ (w∗E−1OF ⊗ U)

Id⊕w
−→ E−1OF ⊗ U ⊕ E−1OF ⊗ U.

The W -action then simply swaps the two summands. The right adjoint i∗ is the
forgetful functor from dA(C) to dA(T).

Remark 3.6. In [Gre98b, Corollary 3.2] the algebraic model for the toral part is
described as A(T) with a W -action. This is not sufficiently precise, the more correct
statement is that the algebraic model for the toral part is A(C) as in Definition 3.3.
See Lemma 4.19 for the calculation which shows how the given action of W on OF is
obtained from topological data.

The problem with the proof of the corollary is as follows, let Z be a T-spectrum
(or a T-space) with a T-equivariant map of order two z : Z → Z. Choose a reflection
ŵ ∈ O(2) and let Rŵ : O(2)+ → O(2)+ be right multiplication by ŵ. Then the map

Rŵ ∧ z : O(2)+ ∧T Z −→ O(2)+ ∧T Z

is not well defined due to the equalisation of the T-actions. This is easily seen at the
space level, where Rŵ ∧ z([σ, x]) = [σŵ, z(x)].
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Instead, let j : T→ T be the inversion map and j∗ be the change of groups functor.
If z is a map from Z to j∗Z, such that j∗z ◦ z is the identity, then the map Rŵ ∧ z
is well defined. Obviously, if Y is an O(2)-spectrum then i∗Y has such a map, given
by the action of ŵ. With this interpretation of W -actions, [Gre98b, Proposition 3.1
and Corollary 3.2] are correct. This idea of skewed actions on a category is considered
in more detail in [Bar08b, Chapters 7 and 8].

3.2. Model structures on dA(C)
We use the dualisable model structure on dA(T), see [Bar16, Theorem 6.6]. This

is a proper monoidal model category that satisfies the monoid axiom and whose weak
equivalences are the homology isomorphisms. We can lift this model structure to
the toral case using the lifting lemma [Hir03, Theorem 11.3.2] and the adjoint pair
(D, i∗).

Theorem 3.7. There is a model structure on dA(C) where the weak equivalences are
the homology isomorphisms and the fibrations are those maps which forget to fibrations
in the dualisable model structure on dA(T). This model structure is proper, cofibrantly
generated, monoidal and satisfies the monoid axiom. The generating cofibrations and
acyclic cofibrations are given by applying D to the generating sets for the dualisable
model structure on dA(T).

Note that the ring map w : OF → OF induces a map w : S0 → w∗S0. It follows that
S0 (with W -action) is a retract of DS0 and hence is cofibrant in dA(C).

In [Gre99], Greenlees constructs a functor πA
∗ from the homotopy category of

rational T-spectra to A(T). For a rational T-spectrum X, let πA
∗ (X) be the following

object of A. For details of the spectraDEF+ and ẼF see Definition 4.3. The spectrum
ΦTX is the geometric T-fixed points of X:

πA

∗ (X) =
(
πT
∗ (X ∧DEF+) −→ πT

∗ (X ∧DEF+ ∧ ẼF) ∼= E−1OF ⊗ π∗(Φ
TX)

)
.

Since DEF+ and ẼF can be constructed as O(2)-spectra, we can extend πA
∗ to the

toral case by keeping track of the W = O(2)/T action on πT
∗ (X) for X an O(2)-

spectrum. This functor fits into an Adams short exact sequence for the toral part,
the proof follows the same pattern as [Gre99, Theorem 5.6.6].

Theorem 3.8. For X and Y rational O(2)-spectra, there is an Adams short exact
sequence as below, where [−,−]C∗ denotes maps in the homotopy category of toral
spectra.

0→ ExtA(C)(π
A

∗ (ΣX), πA

∗ (Y ))→ [X,Y ]C∗ → HomA(C)(π
A

∗ (X), πA

∗ (Y ))→ 0

4. Toral spectra

In this section we show that the model category of toral O(2)-spectra, CO(2) SpOQ , is
Quillen equivalent to the category dA(C). The method is an extension of [BGKS15].

The first step is to separate that part of toral O(2)-equivariant homotopy theory
that is determined by the finite cyclic subgroups from that determined by T. Proposi-
tion 4.8 gives this separation, see [BGKS15, Proposition 3.2.5] for the T-equivariant
analogue and further explanation of the underlying idea.
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The next step is to take T-fixed points, so that we are now working with non-
equivariant spectra. This removal of equivariance is achieved in Corollary 4.15, which
is a generalisation of [BGKS15, Corollary 3.3.6]. The major difference is that the
T-fixed points of an O(2)-spectrum define a spectrum with a W -action, see Lem-
ma 2.8.

The third step is to replace categories based on rational spectra (with an action of
W ) with categories based on chain complexes (with an action ofW ) using [Shi07], see
Theorem 4.17. The remaining steps are analogues of [BGKS15, Section 4], where
we complete our series of Quillen equivalences with the model dA(C) by removing
the localisations and cellularisations in our constructions. See Propositions 4.20 and
Theorem 4.21.

4.1. Isotropy separation
We briefly recap the notion of a diagram of model categories and the category of

generalised diagrams. We let P denote the pullback category • → • ← •.

Definition 4.1. A P-diagram of model categories R• is a pair of Quillen pairs

L : A −−→←− B : R,
F : C −−→←− B : G,

with L and F the left adjoints. We will usually draw this as the diagram

A
L

B
R G

C.
F

We can then define the category of generalised diagrams in R•. This is sometimes
also called the category of sections.

Definition 4.2. Given a P-diagram of model categories R• as above, we can define
a new category, R• -mod. The objects are pairs of morphisms in B: α : La→ b and
γ : Fc→ b. We write such an object as (a, α, b, γ, c). A morphism in R• -mod from
(a, α, b, γ, c) to (a′, α′, b′, γ′, c′) is a triple of maps x : a→ a′ in A, y : b→ b′ in B,
z : c→ c′ in C such that we have a commuting diagram in B:

La
α

Lx

b

y

Fc
γ

Fz

La′
α′

b′ Fc′
γ′

If each category in the diagram R• is proper and cellular, then the category
R• -mod has a proper and cellular model structure with weak equivalences and cofi-
brations defined objectwise by [GS14b, Proposition 3.3].

We can separate the homotopical information of toral O(2)-spectra into three parts.
The first part takes care of the homotopical information coming from the finite cyclic
subgroups. The second part deals with the homotopical information coming from T.
The third part is a comparison term. We have already removed the behaviour of the
dihedral groups in Theorem 2.5. The first step is to carefully construct a commutative
ring spectrum with some special properties.
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Definition 4.3. Let F be the collection of finite cyclic subgroups of O(2). There is a
universal space for this family called EF where EFH is non-equivariantly contractible
for each finite cyclic subgroup H and EFK = ∅ for all other subgroups K. This is an
O(2)-CW-complex and is built from cells of the form O(2)/K+ for K ∈ F. We define

ẼF via the cofibre sequence of O(2)-spaces,

EF+ → S0 → ẼF.

We define DEF+ to be F (EF+, N
#S), where N# is the lax monoidal right adjoint

described in [EKMM97, Theorem IV.3.9] from O(2)-equivariant EKMM S-modules
to O(2)SpO.

Lemma 4.4. The spectrum DEF+ is a commutative ring spectrum that is fibrant in
the category of toral O(2)-equivariant orthogonal spectra. This forgets to the commu-
tative ring T-spectrum DEF+ constructed in [BGKS15, Definition 3.2.2].

Proof. The ring spectrum constructed in [BGKS15] is made using the same pro-
cess as above, but starting in T-equivariant S-modules. Hence the statement about
i∗DEF+ follows immediately. The spectrum DEF+ is fibrant in O(2)SpO, since
N#S is fibrant. Hence DEF+ is fibrant in CO(2)SpO (recall the identity functor
CO(2)SpO → O(2)SpO is a left Quillen functor).

Note that we do not require DEF+ to be fibrant in CO(2) SpOQ : we do not need it
to be rational, only that its T-fixed points are weakly equivalent to its derived T-fixed
points. That is, we need

π∗(DEFT
+)
∼= πT

∗ (DEF+),

which holds as DEF+ is fibrant in O(2)SpO.
From this ring spectrum we can make three model categories. In the following,

whenever we have a ring object A in a model category M, we will equip A -mod
with the lifted model structure, where fibrations and weak equivalences are defined
by forgetting to M.

• DEF+ -mod, the category ofDEF+-modules in CO(2) SpOQ . This model category
captures the information coming from the finite cyclic groups.

• L
ẼF

CO(2) SpOQ , the model category CO(2) SpOQ , localised at the homology theory

ẼF. This model category captures the information coming from T.

• L
ẼF∧DEF+

DEF+ -mod the category of DEF+-modules in CO(2) SpOQ , localised

at the homology theory ẼF ∧DEF+. This model category captures the inter-
action of the first two.

Now we can give our diagram of model categories that separates the behaviour of
the finite cyclic groups from the rest.

Definition 4.5. We define S• to be the following diagram of model categories:

DEF+ -mod
Id

L
ẼF∧DEF+

DEF+ -mod
Id U

L
ẼF

CO(2) SpOQ .
DEF+∧−

We thus have a cellular model category S• -mod, that is both proper and stable.
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Given any O(2)-spectrum X, we have an S•-module

S• ∧X := (DEF+ ∧X, Id, DEF+ ∧X, Id, X).

The functor S• ∧ − has a right adjoint called pb, which is constructed just after
[BGKS15, Definition 3.2.3]. This right adjoint sends an object (A,α,B, γ, C) to the
pullback of the diagram

A
α

B C ∧DEF+
γ

C
C∧unit

.

Similarly to [BGKS15, Proposition 3.2.4], we have a Quillen pair

S• ∧ − : CO(2) SpOQ
−−→←− S• -mod: pb .

Now we want to relate this to the T-equivariant separation. The diagram S• is a
diagram of model categories of O(2)-spectra (with extra structure), so at each vertex
we can make an analogous category built from T-equivariant spectra.

Definition 4.6. Let i∗DEF+ -mod denote modules over i∗DEF+ in T SpOQ . There is
a diagram of model categories i∗S•, made from the three model categories:

i∗DEF+ -mod, L
i∗ẼF∧i∗DEF+

i∗DEF+ -mod and L
i∗ẼF

T SpOQ .

The above diagram of model categories is precisely the diagram of [BGKS15,
Definition 3.2.3] and we have a square of Quillen functors

CO(2)SpOQ

S•∧−

i∗

S• -mod

i∗

pb

TSpOQ

i∗S•∧−

i∗S• -mod
pb

Lemma 4.7. The forgetful functors i∗ commute with both the horizontal left adjoints
and the horizontal right adjoints. They also preserve fibrations and cofibrations. A
map (x, y, z) in S• -mod is a weak equivalence if and only if i∗(x, y, z) = (i∗x, i∗y, i∗z)
is a weak equivalence in i∗S• -mod.

Proof. That i∗ commutes with the horizontal functors is immediate from the defini-
tions. The left hand i∗ preserves fibrations and cofibrations by Proposition 2.9.

The right hand i∗ preserves and detects weak equivalences in S• -mod as weak
equivalences are detected objectwise and i∗ : CO(2) SpOQ → T SpOQ preserves and de-
tects weak equivalences. Cofibrations are also defined objectwise, so i∗ preserves cofi-
brations as it does so on each component model category of S•.

On each component model category of the right hand side, i∗ preserves fibrations.
Since the fibrations in S• -mod are defined in terms of certain pullbacks (which are
preserved by i∗) it follows that the right hand i∗ also preserves fibrations.

To turn the horizontal adjunctions of this square into Quillen equivalences, we
apply the Cellularization Principle of [GS13, Proposition 2.7]. This result gives con-
ditions under which a Quillen adjunction becomes a Quillen equivalence after cellu-
larising (right Bousfield localising) both sides of the adjunction.
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Let eCn
denote the idempotent in the rationalised Burnside ring for Cn correspond-

ing to Cn and let SCn
denote the Cn-equivariant sphere spectrum. The generators of

CO(2) SpOQ are the spectra O(2)+ ∧Cn
eCn

SCn
for n > 1 and the cofibrant replacement

of the O(2)-equivariant sphere in CO(2) SpOQ : EC+ ∧ S. Let Ktop be the set of images
of these objects under the functor S• ∧ −, and all (integer) suspensions and desus-
pensions thereof. The elements of this set will be called cells and we will cellularise
(right Bousfield localise) S• -mod at this set.

To apply the cellularisation principle, we need to know that the cells Ktop are
homotopically compact (also known as small or compact) in the sense of [SS03,
Definition 2.1.2]. The arguments of [BGKS15, Section 3.2] apply verbatim, so we
leave the details to that reference.

Proposition 4.8. There is a Quillen equivalence

S• ∧ − : CO(2) SpOQ
−−→←− Ktop -cell-S

• -mod: pb .

Proof. This result follows from the same proof as for the T-case. By [GS13, Propo-
sition 2.7] it suffices to show that the derived unit is a weak equivalence on the
generators of O(2) SpOQ . The pullback of a fibrant replacement of S• ∧X is given by
the homotopy pullback of the following diagram of O(2)-spectra:

DEF+ ∧X ∧ S0Q −→ DEF+ ∧ ẼF ∧X ∧ S0Q←− ẼF ∧X ∧ S0Q.

Since we are in a stable model category, the above is weakly equivalent to X ∧ S0Q
smashed with the homotopy pullback of DEF+ −→ DEF+ ∧ ẼF ←− ẼF which is S.

The derived unit map is induced by the unit map X → DEF+ ∧X and S0 → ẼF

and hence is a rational equivalence.

We now wish to compare with the T SpOQ version. As above, the generators of T SpOQ
are the T-equivariant sphere spectrum S and the spectra T+ ∧Cn

eCn
SCn

for n > 1.
Let i∗Ktop be the set of images of these objects under the functor i∗S• ∧ −, and all
(integer) suspensions and desuspensions thereof.

Lemma 4.9. The functors i∗ below are right Quillen functors that commute with
both the horizontal left adjoints and the horizontal right adjoints. Furthermore the
functors i∗ preserve and detect all weak equivalences.

CO(2)SpOQ

S•∧−

i∗

Ktop -cell-S
• -mod

i∗

pb

TSpOQ

i∗S•∧−

i∗Ktop -cell- i
∗S• -mod

pb

Proof. The commutativity follows immediately from the definitions. Let Rpb denote
the right derived functor of pb. Then f : X → Y in Ktop -cell-S

• -mod is a weak

equivalence if and only if Rpb f is a weak equivalence of CO(2) SpOQ . This holds if

and only if i∗Rpb f = Rpb i∗f is a weak equivalence in T SpOQ by Proposition 2.9.
Finally, that holds if and only if i∗f is a weak equivalence in i∗Ktop -cell- i

∗S• -mod,
as the lower adjunction is a Quillen equivalence. Thus the right hand i∗ is a right
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Quillen functor after cellularisation as the fibrations are unchanged and it preserves
weak equivalences.

Thus we have separated the homotopical information of SC -mod into a diagram
of three model categories. The advantage of doing so is that we may now remove
the equivariance from the model category whilst keeping the correct homotopy cate-
gory.

4.2. Removing equivariance
We start with the general pattern used in this section. Let A be a (commutative)

ring spectrum in O(2)-equivariant spectra. Then AT is a (commutative) ring object
in SpO[W ] and there is a map of commutative rings a : ε∗AT → A. Using [GS14a,
Section 4] we get a Quillen adjunction

a♯ = A ∧ε∗AT ε∗(−) : AT -mod −−→←− A -mod: (−)T.

That reference has a number of examples where this kind of adjunction is a Quillen
equivalence. We want to use this type of adjunction to remove T-equivariance from
S• -mod. We do so by considering each of the three component model categories in
turn. In the first we consider A = DEF+.

Lemma 4.10. The adjunction below is a Quillen equivalence.

a♯ : DEFT
+ -mod −−→←− DEF+ -mod: (−)T

Proof. The forgetful functors, to SpOQ [W ] on the left and T SpOQ on the right, com-

mute with both a♯ and (−)T, just as in Proposition 2.9. Furthermore these forgetful
functors preserve fibrant objects and cofibrant objects and preserve and detect weak
equivalences. We also know that the analogous adjunction at the level of T-equivariant
spectra is a Quillen equivalence by [BGKS15, Proposition 3.3.1].

Let X ∈ DEFT
+ -mod be cofibrant and Y ∈ DEF+ -mod be fibrant. The map

f : a♯X → Y is a weak equivalence if and only if the adjoint map f̂ : X → Y T is

a weak equivalence, as this holds for i∗f and i∗(f̂) = î∗f .

The next step is to repeat the above with an additional Bousfield localisation. The
model category L

ẼF∧DEF+
DEF+ -mod can be described as the localisation of the

model category DEF+ -mod at the set of maps Σ∗f : the set of all suspensions and
desuspensions of f : DEF+ → DEF+ ∧ ẼF. Let (Σ∗f)T: be the set of maps obtained
by applying the derived right adjoint to the maps Σ∗f . By [Hir03, Theorem 3.3.20,
part 1b] we obtain a Quillen equivalence.

Lemma 4.11. The adjunction below is a Quillen equivalence.

a♯ : L(Σ∗f)TDEFT
+ -mod −−→←− LΣ∗fDEF+ -mod: (−)T

The final version is to use A = S0, in which case the left adjoint a♯ is simply ε∗(−).

Lemma 4.12. The adjunction below is a symmetric monoidal Quillen equivalence.

ε∗ : Sp
O

Q [W ] −−→←− L
ẼF

CO(2) SpOQ : (−)T
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Proof. This follows by the same arguments as for [BGKS15, Proposition 3.3.3],
namely that the derived right adjoint behaves as the geometric T-fixed point func-
tor, the left hand side is generated by W+ and the right hand side is generated by
O(2)/T+.

We can extend the functor (−)T to the level of diagrams of model categories.

Definition 4.13. We define S•
top to be the diagram of model categories below. Here,

DEFT
+ -mod means modules over DEFT

+ in the model category SpOQ [W ].

DEFT
+ -mod

Id

L(Σ∗f)TDEFT
+ -mod

Id
SpOQ [W ]

DEF+∧−

The unmarked functor is simply the forgetful functor.

Because of the way we have constructed S•
top it follows that (a♯, (−)

T) gives a map
of diagrams of model categories from S•

top to S•. Since each of the components is a
Quillen equivalence, we immediately obtain the following.

Theorem 4.14. There is a Quillen equivalence:

S•
top -mod

a♯

S• -mod .
(−)T

We define KT
top, the set of cells for S•

top -mod, to be the set of objects given by

applying the derived functor of (−)T to Ktop. By [GS13, Corollary 2.8] we see that
the Quillen equivalence above is preserved by cellularisation.

Corollary 4.15. The adjunction below is a Quillen equivalence.

KT
top -cell-S

•
top -mod

a♯

Ktop -cell-S
• -mod

(−)T

The forgetful functor i∗ relates the toral spectra version and the T-equivariant
version of this result [BGKS15]. Recall that we have the diagram of model categories
based on T-spectra which we call i∗S•, see Definition 4.6. Just as we constructed S•

top,
we can also make a diagram of model categories i∗S•

top that is the ‘fixed points’ of
i∗S•. We then have the following result which is similar in nature to Proposition 2.9.

Corollary 4.16. There is a diagram of Quillen functors as below. We note that i∗

commutes with both a♯ and (−)T up to natural isomorphism.

S•
top -mod

a♯

i∗

S• -mod
(−)T

i∗

i∗S•
top -mod

a♯

i∗S• -mod
(−)T

4.3. Moving to algebra
We want to replace the model categoryKT

top -cell-S
•
top -mod by a Quillen equivalent

Ch(Q[W ])-model category. The method is the same as in [BGKS15, Section 3.4], we
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briefly describe the process. We forget structure to get a diagram of model categories
based on symmetric spectra with W -action (rather than orthogonal spectra). Then
we ‘smash’ with HQ to get a diagram of model categories based on HQ-modules
in symmetric spectra with W -action. Then one can apply [Kȩd15, Lemma 5.7] (an
extension of [Shi07]) to get a diagram of model categories based on Ch(Q[W ]). We
leave the fine details to the references and simply state the consequences.

Theorem 4.17. There exists a commutative ring St in Ch(Q[W ]) and a set of maps
of St-modules A such that

• there is an isomorphism H∗(St) ∼= πT
∗ (DEF+),

• for any a ∈ A, there is a canonical g ∈ (Σ∗f)T with H∗(a) ∼= π∗(g),
• there is a zig-zag of Quillen equivalences between S•

top -mod and the diagram of
model categories S•

t -mod

St -mod
Id

LASt -mod
Id U

Ch(Q[W ])
St∧−

.

As in [BGKS15, Section 3.4], the zig-zag between S•
top -mod and S•

t -mod actually
consists of objectwise Quillen equivalences. In particular, there is a zig-zag of Quillen
equivalences between St -mod and DEFT

+ -mod and A is the set of images of the maps
in (Σ∗f)T under the derived zig-zag.

Since cellularisation is compatible with Quillen equivalences [GS13, Corollary 2.8],
there is a set of cells Kt in St -mod which gives the following result. These cells Kt are
the images of the objects in Ktop under the derived zig-zag of Quillen equivalences.

Corollary 4.18. There is a zig-zag of Quillen equivalences between the model cate-
gory KT

top -cell-R
•
top -mod and the model category Kt -cell-S

•
t -mod.

For each τ ∈ Kt there is a canonical σ ∈ Ktop with H∗(τ) ∼= π∗(σ).

This process is compatible with the forgetful functor, in the sense that at each
stage of the zig-zag, there is a commutative square of functors similar to that of
Proposition 2.9. In particular, there is a zig-zag of Quillen equivalences between the
model categories

i∗KT
top -cell- i

∗S•
top -mod and i∗Kt -cell- i

∗S•
t -mod

and the forgetful functor

i∗ : Kt -cell-S
•
t -mod −→ i∗Kt -cell- i

∗S•
t -mod

preserves and detects weak equivalences and fibrations.

4.4. Simplifying the algebra
We can simplify the diagram St in two ways. First by removing the localisation

at A, secondly by replacing the commutative dga St by a simpler commutative dga.
The key to both is formality arguments, we use the fact that the homology of St

or the homology of the maps in A is sufficiently well-structured to determine their
homology type. The method is an extension of [BGKS15, Section 4], where we
include the action of W = O(2)/T on OF. This extension is possible since in the
previous sections we have shown that at each our stage forgetful functors restrict to
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the categories and objects used in [BGKS15]. Let OF be the graded ring
∏

n>0 Q[cn]
from Section 3.1. Recall that each cn has degree −2.

Lemma 4.19. There is a zig-zag of quasi-isomorphisms of commutative ring objects
in Ch(Q[W ]) between St and OF.

Proof. We already have isomorphisms of commutative ring objects in Ch(Q[W ])

H∗(St) ∼= π∗(DEFT
+)
∼= πT

∗ (DEF+) = [S0, DEF+]
T
∗
∼= [EF+, S

0]T∗ .

By [Gre08, Theorems 7.4 and 7.5], in particular the first line of the proof of Theo-
rem 7.5, it follows that

[EF+, S
0]T∗
∼= [EF+, EF+]

T
∗
∼=

∏

H∈F

H∗(B(T/H)) =
∏

H∈F

Q[c] = OF.

The O(2)-action on EF+ induces a W -action on πT
∗ (DEF+) and hence there is a

W -action on H∗(CP∞) = H∗(BT/H) = Q[c]. This action sends ci to (−1)ici as it is
induced by the self-map of T given by t 7→ t−1, which is exactly conjugation by a
reflection of O(2). This fact is also noted immediately above Lemma 7.1 of [Gre01].
Thus we know the homology of St as a graded ring with W -action. Our next task is
to show that St is quasi-isomorphic to its homology.

There is a cycle xn ∈ St which corresponds to the idempotent en ∈ OF, which
projects onto factor n. Since this may not be W -fixed, let yn be the average of xn

and wxn. We then have a quasi-isomorphism St →
∏

n>1 St[y
−1
n ]. For each n, pick a

representative an ∈ St[y
−1
n ] for the homology class cn. Now let bn = 1/2(an − wan).

Then the map sending cn to bn gives a W -equivariant quasi-isomorphism Q[cn]→
St[y

−1
n ]. Putting these together for each n gives the other half of our zig-zag.

The other simplification is formally the same as the argument in [BGKS15, Sec-
tion 4], so we leave the details to the reference.

Proposition 4.20. There is a Quillen equivalence between S•
t -mod, and a diagram

of model categories S•
a -mod:

OF -mod

E
−1

OF⊗OF
−

E−1OF -mod Ch(Q[W ]),
E

−1
OF⊗−

where both unmarked functors are forgetful functors. Let Ka be the images of the
cells Kt in S•

a -mod. Then we have Quillen equivalences between Kt -cell-S
•
t -mod

and Ka -cell-S
•
a -mod.

As in previous cases, application of the forgetful functor from Ch(Q[W ])→ Ch(Q)
reduces us to the case of rational T-spectra. The forgetful functor

i∗ : Ka -cell-S
•
a -mod −→ i∗Sa -cell- i

∗S•
a -mod

preserves and detects weak equivalences and fibrations.

4.5. Comparison with the algebraic model
We now turn to comparing S•

a -mod to the algebraic model dA(C) of Section 3. We
first introduce an adjoint pair relating S•

a -mod and dA(C). An object
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β : M → E−1OF ⊗ V,

of dA(C) gives an object of S•
a -mod defined by

(M,E−1β,E−1OF ⊗ V, Id, V ).

This functor, which we call l∗, includes dA(C) into S•
a -mod, it has a right adjoint Γ.

For more details, see [Bar16, Section 7].

Theorem 4.21. The pair (l∗,Γ) induces a Quillen equivalence between the model
categories dA(C) and Ka -cell-S

•
a -mod. Furthermore, the square of left adjoints (and

the square of right adjoints) of the diagram below commute.

dA(C)
l∗

i∗

Ka -cell-S
•
a -mod

Γ

i∗

dA(T)
l∗

D

i∗Ka -cell- i
∗S•

a -mod
Γ

D

Proof. Recall D, the left adjoint to the forgetful functors i∗, see Lemma 3.5. That
the left adjoints commute is immediate from the definitions. It follows automatically
that the square of right adjoints also commutes.

The lower adjunction is a Quillen equivalence by [BGKS15, Proposition 4.2.4].
The weak equivalences and fibrations for Kdual

a -cell-S•
a -mod and dA(C) are defined

in terms of the functors i∗. It is also routine to check that i∗ preserves cofibrant
objects. Hence the adjunction between dA(C) and Kdual

a -cell-R•
a -mod is a Quillen

equivalence by the same argument as in Lemma 4.10.

We summarise this section with the following result.

Corollary 4.22. There is a zig-zag of Quillen equivalences between the model cate-
gory dA(C) and the model category of toral O(2)-spectra, CO(2) SpOQ . Furthermore,
these Quillen equivalences are compatible with the two forgetful functors

i∗ : CO(2) SpOQ → T SpOQ and i∗ : dA(C)→ dA(T).

Hence the algebraic forgetful functor correctly models the spectrum-level forgetful func-
tor.

Remark 4.23. As with [BGKS15], all of the Quillen equivalences of this section are
in fact symmetric monoidal, giving us a classification of ring objects in CO(2) SpOQ in

dA(C). However, the classification of the dihedral part of O(2) SpOQ is not monoidal,

so we do not obtain a monoidal classification of O(2) SpOQ overall.

5. Dihedral spectra

In this section we find a model category based on chain complexes of Q-modules
that is Quillen equivalent to the model category of dihedral spectra LeDSO(2) SpOQ .
The material we present is an updated version of the preprint [Bar08a]. An early draft
of this paper purported to give a symmetric monoidal Quillen equivalence. That result
relied on there being a commutative ring G-spectrum weakly equivalent to eDS. A
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correct interpretation of such a result would require careful use of N∞-spectra such
as in [BH15] (and possible further work in that area). Hence we leave monoidal
considerations to future work.

5.1. The dihedral model
The paper [Gre98b] constructs an algebraic model for the homotopy category

of dihedral spectra. We call this category A(D) and write dgA(D) for the category
of differential graded objects in A(D). In this subsection, we recap the definition
of that category and equip it with a model structure. The category A(D) can also
be described as the category of rational O(2)-Mackey functors with support in the
dihedral groups, see [Gre98a, Examples C(iii)].

Recall that W is used to denote the group of order two. For R a ring, let Ch(R)
denote the category of chain complexes of R-modules. We use Q[W ] to denote the
rational group ring of W . We will often consider Q-modules as objects of Q[W ] -mod
with trivial W -action without comment or decoration.

Definition 5.1. We define a category called A(D). An object M consists of the
following data: a Q-module M∞, a collection of Q[W ]-modules Mk for k > 1 and a
map of Q[W ]-modules σM : M∞ → colimn

∏
k>n Mk.

A map f : M →M ′ in this category consists of a map f∞ : M∞ →M ′
∞ in Q -mod

and maps fk : Mk →M ′
k in Q[W ] -mod making the square below commute.

M∞
σM

f∞

colimn

∏
k>n Mk

colimn

∏
k>n fk

M ′
∞

σM′

colimn

∏
k>n M

′
k

We will also write tails(M) for colimn

∏
k>n Mk.

Definition 5.2. Let dgA(D) be the category of chain complexes in A(D). We call
this the algebraic model for dihedral spectra. We shall also need to use gA(D),
the category of graded objects in A(D).

We see that an object M of dgA(D) consists of a rational chain complex M∞

and a collection Mk ∈ Ch(Q[W ]) for k > 1 with a map of chain complexes of Q[W ]-
modules σM : M∞ → colimn

∏
k>n Mk. A map f in this category consists of a map

f∞ ∈ Ch(Q) and maps fk ∈ Ch(Q[W ]) such that the analogous square to the above
definition commutes.

We want to show how to construct an object of A(D) from a rational O(2)-
spectrum. We first need to discuss some more idempotents of rationalised Burnside
rings.

Recall the idempotents eC, eD and en for n > 1 from Definition 2.2. We also have
fn = eD − Σn−1

k=1ek.

Lemma 5.3. Let Dh
2n be a dihedral subgroup of O(2) of order 2n. Then for each k | n

the rational Burnside ring of Dh
2n has idempotents eCk

and eD2k
. The collection of

idempotents eCk
and eD2k

for k | n gives a maximal orthogonal decomposition of the
identity.
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The inclusion map Dh
2n → O(2) induces the following map A(O(2))→ A(Dh

2n):

eC 7→ Σk|neCk
,

eD 7→ Σk|neD2k
,

ek 7→ eD2k
k | n,

ek 7→ 0 k ∤ n.

Proof. Consider the induced map FDh
2n/D

h
2n → FO(2)/O(2) (which sends the cyclic

groups to SO(2)) and use tom Dieck’s isomorphism.

The following definition and theorem are taken from [Gre98b]. Note that for any
compact Lie group G and closed subgroup H, the action of NGH/H on G/H induces
an action of NGH/H on [G/H+, X]G∗

∼= πH
∗ (X).

Definition 5.4. Let X be an O(2)-spectrum with rational homotopy groups. We let
πD
∗ (X) denote the following object of gA(D). Let k > 1 and define

πD

∗ (X)k = eD2k
π
Dh

2k
∗ (X) πD

∗ (X)∞ = colimn(fnπ
O(2)
∗ (X)).

Note that πD
∗ (X)k is isomorphic to the homotopy groups of the D2k-geometric fixed

points of X. Whenever k > n, there is a map

fnπ
O(2)
∗ (X) −→ eD2k

π
Dh

2k
∗ (X)

induced from the inclusion Dh
2k → O(2) and multiplication by eD2k

. Thus we obtain
a map

fnπ
O(2)
∗ (X) −→

∏

k>n

eD2k
π
Dh

2k
∗ (X).

Taking colimits over n defines the structure map σ of πD
∗ (X).

Since any fibrant object of LeDSO(2) SpOQ has rational homotopy groups, this con-
struction defines a functor

πD

∗ : Ho
(
LeDSO(2) SpOQ

)
−→ gA(D).

Thus one has a map of graded Q-modules

[X,Y ]
DO(2)
∗ → HomgA(D)(π

D

∗ (X), πD

∗ (Y )).

This fits into an Adams short exact sequence as below, see [Gre98b, Corollary 5.5].

Theorem 5.5. Let X and Y be O(2)-spectra with rational homotopy groups. Then
there is a short exact sequence

0→ Ext(πD

∗ (ΣX), πD

∗ (Y ))→ [X,Y ]
DO(2)
∗ → HomgA(D)(π

D

∗ (X), πD

∗ (Y ))→ 0.

5.2. Adjunctions and model structures
We now introduce a particularly useful construction,

p
. We will soon see that this

construction is an explicit description of the ‘global sections’ of an object of dgA(D).

Definition 5.6. Let N > 1 and take M ∈ dgA(D). Then
p

N M is defined as the
following pullback in the category of Ch(Q[W ])-modules:
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p
N M

αM,N ∏
k>N Mk

M∞ tails(M)

Define
pW

N M to be (
p

N M)W , the W -fixed points of
p

N M .

It follows immediately from the definition above that
p

N and
pW

N are exact func-
tors. Furthermore, there are natural isomorphisms

p
N M ∼=

p
N+1 M ⊕MN ,

M∞
∼= colimN

p
N M,

tails(M)W ∼= colimn

∏
k>n(M

W
k ).

The notation
p

N is to make the reader think of some combination of a direct
product and a direct sum. Indeed if M∞ = 0, then

p
N M =

⊕
k>N Mk. Whereas if

M∞ = tails(M) and σ = Id, then
p

N M =
∏

k>N Mk.
Our first use of

p
N is to give a construction of limits in A(D).

Lemma 5.7. The category dgA(D) contains all small limits and colimits.

Proof. Let M i be a small diagram of objects of dgA(D). Define

(colimi M
i)∞ = colimi(M

i
∞) and (colimi M

i)k = colimi(M
i
k).

The structure map for colimi M
i is induced by the composite

M i
∞ −→ colimn

∏

k>n

M i
k −→ colimn

∏

k>n

colimi M
i
k.

For limits, we define

(limi M
i)k = limi(M

i
k) and (limi M

i)∞ = colimN limi(
xW

N
M i).

The structure map of limi M
i is the composite below, where the middle map is induced

by the maps αW
Mi,N

:
pW

N M i →
∏

k>N M i
k.

(limi M
i)∞ = colimN limi

(xW

N
M i

)
−→ colimN limi

∏

k>N

M i
k = tails(limi M

i)

It is routine to check that these constructions give the colimit and limit.

We will need the following fact to construct the model structure on A(D).

Lemma 5.8. The functors
p

N and
pW

N preserve filtered colimits for all N > 1.

Proof. One checks injectivity and surjectivity of the canonical map

colimi

x
N
M i −→

x
N
colimi M

i

by first dealing with the term at infinity, then dealing with the finite number of terms
that are not determined by the term at infinity.
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We introduce a collection of useful adjunctions relating dgA(D) to rational chain
complexes and W -equivariant rational chain complexes.

Definition 5.9. Let A be a rational chain complex, R∈ Ch(Q[W ]) andM ∈ dgA(D).
Define ikR to be the object of dgA(D) with (ikR)∞ = 0, (ikR)n = 0 for n 6= k and

(ikR)k = R. Now define pk by setting pkM = Mk ∈ Ch(Q[W ]). Then ik is both right
and left adjoint to pk:

ik : Ch(Q[W ]) −−→←− dgA(D) : pk pk : dgA(D) −−→←− Ch(Q[W ]) : ik.

Let p∞M = M∞ ∈ Ch(Q) and define (i∞A)∞ = A and (i∞A)k = 0. Then we have
an adjunction

p∞ : dgA(D) −−→←− Ch(Q) : i∞.

We set cA to be the object of dgA(D) with cAk = A = cA∞ and structure map
induced by the diagonal map A→

∏
k>1 A. Then we have the ‘constant sheaf’ and

‘global sections’ adjunction

c : Ch(Q) −−→←− dgA(D) :
xW

1
.

We put a model structure on dgA(D). We use the functors ik and c above to create
the generating sets. Let IQ and JQ denote the sets of generating cofibrations and
acyclic cofibrations for the projective model structure on rational chain complexes,
see [Hov99, Section 2.3]. Similarly, we have generating sets IQ[W ] and JQ[W ] for
Ch(Q[W ]).

Proposition 5.10. Define a map f in dgA(D) to be a weak equivalence or fibration
if f∞ and each fk is a homology isomorphism or surjection. These classes define a
cofibrantly generated and proper model structure on the category dgA(D).

The generating cofibrations I are the collections cIQ and ikIQ[W ] for k > 1. The
generating acyclic cofibrations J are cJQ and ikJQ[W ] for k > 1.

Proof. Lemma 5.8 shows that
pW

1 preserves filtered colimits. The required smallness
conditions on the generating sets follows immediately.

The rest of the proof is routine. As an example of the kind of argument we need
to make, we prove that the acyclic fibrations are the maps with the right lifting
property with respect to I. Let f : A→ B be such a map. Using the adjunctions
of Definition 5.9 it follows that each fk : Ak → Bk is a surjection and a homology
isomorphism, as is

pW
1 f :

pW
1 A→

pW
1 B.

Since
pW

N A ∼=
pW

N+1 A⊕AW
N it follows that each

pW
N f is a surjection and a

homology isomorphism for each N > 1. Taking colimits over N we see that f∞ is
a surjection and homology isomorphism.

Left properness is immediate because colimits are defined term-wise. For right
properness the only difficulty occurs at infinity, but the same method as in the pre-
ceding paragraph suffices, using exactness of

pW
N to see that it preserves surjections

and homology isomorphisms.

Note that with this model structure, the adjunctions (ik, pk) and (c,
pW

N ) are
Quillen pairs between rational chain complexes (with a W -action in the first case)
and A(D).
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Lemma 5.11. The collection ikQ[W ] for k > 1 and cQ are a set of homotopically
compact, cofibrant and fibrant generators for this category.

Proof. Every object of dgA(D) is fibrant and these objects are images of cofibrant
objects under left Quillen functors. Homotopy compactness is simple to check for
ikQ[W ]. For cQ it relies on the fact that

pW
1 commutes with arbitrary coproducts

(as they are filtered colimits of finite products).

Assume that [σ,M ]
A(D)
∗ = 0 for each σ in the collection. It follows that each Mk

must be acyclic as

0 = [ikQ[W ],M ]
A(D)
∗

∼= [Q[W ],Mk]
Ch(Q[W ])
∗ .

It follows that the canonical map M → i∞M∞, which is the identity at infinity and
zero elsewhere, is a weak equivalence. Thus we know that the graded groups

[cQ,M ]
A(D)
∗

∼= [cQ, i∞M∞]
A(D)
∗

∼= [Q,M∞]Q∗
∼= H∗(M∞)

are zero. Hence M∞ is acyclic and M → 0 is a weak equivalence.

It is time we make our analogy to sheaves clear. In particular, this explains why the
construction of limits in A(D) are more complicated than colimits: A(D) is essentially
a category of sheaves described in terms of stalks.

Definition 5.12. Let P be the space FO(2)/O(2) \ {SO(2)} (P for points). Let O

be the constant sheaf of Q on P considered as a sheaf of rings. Let WO -mod denote
the category of W -equivariant objects and W -equivariant maps in O -mod.

To specify an O-module M one only needs to give the stalks at the points k and∞
and a map of Q-modules M∞ → tails(M). The global sections of M are then given
by

p
1 M . Hence any object of dgA(D) defines an object of WO -mod. We call this

functor inc and see that it is full and faithful. Thus we can view dgA(D) as a full
subcategory of WO -mod.

The inclusion functor has a right adjoint called ‘fix’. On a W -equivariant O-
module M , fix(M)k = Mk, fix(M)∞ = MW

∞ and the structure map is MW
∞ →M∞ →

tails(M).

inc : dgA(D) −−→←− dgWO -mod: fix

In particular, one could also describe the limit of some diagram M i in dgA(D) as
fix limi inc M i, where the limit on the right is taken in the category of WO-modules.

Remark 5.13. The adjunction inc : dgA(D) −−→←− WO -mod: fix can be used to put a
model structure on WO -mod. Define a map f to be a weak equivalence or fibration
if fix f is. Then we have a new cofibrantly generated model structure on WO -mod.
With this model structure the adjunction (inc, fix) becomes a Quillen equivalence.

5.3. The dihedral comparison
In this subsection we give the proof that dgA(D) and LeDSO(2) SpOQ are Quillen

equivalent. Since we are not considering monoidal products, we use the tilting theorem
of Schwede and Shipley [SS03, Theorem 5.1.1]. Recall that a set of tiltors is a set
of homotopically compact generators for the homotopy category such that [T, T ′]∗ is
concentrated in degree zero for any T , T ′ in the set. One could use a similar method
to that of [Bar09a], but the argument given below is somewhat simpler.
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Lemma 5.14. The model category LeDSO(2) SpOQ has a set of tiltors given by the

following countably infinite collection of cofibrant-fibrant objects. Let f̂D denote fibrant
replacement in LeDSO(2) SpOQ and define

Gtop = {f̂DS0} ∪ {f̂DeHO(2)/H+ | H ∈ D \ {O(2)}}.

Proof. For any two dihedral subgroups H and K, the set of maps

[O(2)/H+, O(2)/K+]
DO(2)
∗

is concentrated in degree zero, where [−,−]
DO(2)
∗ denotes maps in the homotopy

category of LeDSO(2) SpOQ . Hence it follows that, in the homotopy category, maps
between elements of Gtop are concentrated in degree 0.

To show that Gtop generates, we must prove that if X is an object of LeDSO(2) SpOQ

such that [σ,X]
DO(2)
∗ = 0 for all σ ∈ Gtop, then X → ∗ is a π∗-isomorphism. Let X ∈

LeDSO(2) SpOQ be fibrant, by Theorem [MM02, IV.6.13] πH
∗ (X) = 0 for any H ∈ C

and we see immediately that

π
O(2)
∗ (X) = [S0, X]

O(2)
∗ = [S0, X]

DO(2)
∗ = 0.

Let H be a finite dihedral group. By [Gre98a, Examples C(i)] there is a natural
isomorphism

πH
∗ (X) ∼=

⊕

(K)6H

(eKπK
∗ (X))WHK .

Since we have assumed that eKπK
∗ (X) = [eKO(2)/K+, X]

DO(2)
∗ is zero for each finite

dihedral K, πH
∗ (X) = 0. Hence our set generates the homotopy category. Homotopy

compactness follows from the isomorphisms

[eKO(2)/K+, X]
DO(2)
∗ = [eKO(2)/K+, X]

O(2)
∗ = eKπK

∗ (X),

which hold whenever X is fibrant in LeDSO(2) SpOQ .

We identify a ringoid R from our algebraic model and give an algebraic version of
the tilting result we want for dihedral spectra.

Definition 5.15. Define a set of objects Ga of dgA(D)

Ga = {cQ} ∪ {ikQ[W ] | k > 1}.

Let R denote the ringoid given by taking the full subcategory of A(D) on the object
set Ga, considered as a category enriched over rational vector spaces. A module over
R is a contravariant additive functor from R to rational vector spaces.

By Lemma 5.11, Ga is a set of homotopically compact cofibrant-fibrant generators
for the homotopy category of dgA(D). A standard variation of the tilting theorem
(using rational chain complexes instead of symmetric spectra) gives the following
result.

Proposition 5.16. The model category of chain complexes of modules over R (with
fibrations the objectwise surjections and weak equivalences the objectwise homology
isomorphisms) is Quillen equivalent to dgA(D).
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We now prove that R is isomorphic to the endormorphism ringoid of Gtop.

Lemma 5.17. The functor πD
∗ induces an isomorphism of categories (enriched over

rational vector spaces) from the full subcategory of Ho(LeDSO(2) SpOQ) with object set
Gtop to R.

Proof. This is a series of routine calculations using [Gre98b]. Let H and K be finite

dihedral groups with |H| = 2k and |K| = 2m and let σH = f̂DeHO(2)/H+. Then

πD

∗ (SD) = cQ and πD

∗ (σH) = πD

∗ (eHO(2)/H+) = ikQ[W ].

The functor πD
∗ from Definition 5.4 gives maps as below. These maps are isomor-

phisms by Theorem 5.5 as ikQ[W ] and cQ are projective, see the proof of [Gre98b,
Remark 4.3]. The equalities on the right hold as the objects of Ga are cofibrant, fibrant
and concentrated in degree zero:

[SD, SD]
DO(2)
∗

∼=
−→ [cQ, cQ]

dgA(D)
∗ = A(D)(cQ, cQ),

[σH , SD]
DO(2)
∗

∼=
−→ [ikQ[W ], cQ]

dgA(D)
∗ = A(D)(ikQ[W ], cQ),

[SD, σH ]
DO(2)
∗

∼=
−→ [cQ, ikQ[W ]]

dgA(D)
∗ = A(D)(cQ, ikQ[W ]),

[σH , σH ]
DO(2)
∗

∼=
−→ [ikQ[W ], ikQ[W ]]

dgA(D)
∗ = A(D)(ikQ[W ], ikQ[W ]),

[σK , σH ]
DO(2)
∗

∼=
−→ [imQ[W ], ikQ[W ]]

dgA(D)
∗ = A(D)(imQ[W ], ikQ[W ]).

We can now give the classification theorem for dihedral spectra.

Theorem 5.18. The model categories LeDSO(2) SpOQ and dgA(D) are Quillen equiv-

alent. Hence the homotopy categories of LeDSO(2) SpOQ and dgA(D) are equivalent.

Proof. The model category LeDSO(2) SpOQ is simplicial, cofibrantly generated, proper
and stable as these properties are preserved by the localisations we have applied to
O(2)SpO.

Lemma 5.17 gives an isomorphism of ringoids, hence [SS03, Theorem 5.1.1] implies
that LeDSO(2) SpOQ is Quillen equivalent to the model category of chain complexes of
R-modules. The result then follows by Proposition 5.16.
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