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HOMOLOGY OF DENDROIDAL SETS

MATIJA BAŠIĆ and THOMAS NIKOLAUS

(communicated by Emily Riehl)

Abstract
We define for every dendroidal set X a chain complex and

show that this assignment determines a left Quillen functor.
Then we define the homology groups Hn(X) as the homology
groups of this chain complex. This generalizes the homology of
simplicial sets. Our main result is that the homology of X is iso-
morphic to the homology of the associated spectrumK(X) as dis-
cussed in previous work by the authors ([BN14] and [Nik14]).
Since these homology groups are sometimes computable we can
identify some spectra K(X) which we could not identify before.

1. Introduction

The definition of the singular homology of a topological space can be divided into
several steps. First, we consider the singular simplicial set, then we take the chain
complex associated to this simplicial set and finally we compute the homology of
this chain complex. The part we want to focus on for now is the construction which
associates a chain complex Ch(S) to a simplicial set S. This chain complex is freely
generated by the non-degenerate simplices of S where an n-simplex has degree n and
the differential is given by the alternating sum of faces.

The notion of a dendroidal set is a generalization of a simplicial set. Dendroidal
sets have been introduced by Moerdijk and Weiss [MW07, MW09] and shown
to yield a good model for homotopy coherent operads by Cisinski and Moerdijk
[CM11, CM13a, CM13b]. A dendroidal set X has a set XT of T -dendrices for
every tree T . We think of a tree as a generalization of a linearly ordered set. The
category of simplicial sets embeds fully faithfully into the category of dendroidal
sets via the functor i! : sSet → dSet, and, in particular, every simplicial set S can be
considered as a dendroidal set i!S which is ‘supported’ on linear trees.

The main construction of this paper, given in Section 4, is that of a non-negatively
graded chain complex Ch(X) for every dendroidal set X which generalizes the chain
complex associated to a simplicial set. More precisely, this means that for a simplicial
set S the two chain complexes Ch(S) and Ch(i!S) are naturally isomorphic.

The chain complex Ch(X) is, as a graded abelian group, generated by the iso-
morphism classes of non-degenerate dendrices of X. A T -dendrex has degree |T |,
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where |T | is the number of vertices of T . The differential is, as in the simplicial case,
a signed sum of faces of the tree but the sign conventions are slightly more compli-
cated than the simplicial signs. We discuss a normalized and an unnormalized variant
of this chain complex in parallel to the variants of the chain complex for a simpli-
cial set. A related construction for planar dendroidal sets is discussed in the paper
[GLW11].

We show that the functor X �→ Ch(X) is homotopically well-behaved. More pre-
cisely, it forms a left Quillen functor with respect to the stable model structure on
dendroidal sets (as introduced in [BN14]) and the projective (or injective) model
structure on chain complexes. In particular, the chain complex Ch(X) is an invariant
of the stable homotopy type of the dendroidal set X. It follows that it can also be
considered as an invariant of ∞-operads (modelled by the Cisinski–Moerdijk model
structure on dendroidal sets). We define the homology of a dendroidal set X as the
homology of the associated chain complex for a cofibrant replacement of X. This
invariant is tractable and can be fully computed in some cases. For example we show
in Corollaries 5.13 and 5.14 that

Hn(Ω[T ]) =

{
Z�(T ) for n = 0,

0 otherwise,
Hn(Ω[T ]/∂Ω[T ]) =

{
Z for n = |T |,

0 otherwise,

where �(T ) is the number of leaves of T and |T | is the number of vertices of T .

In [BN14] and [Nik14], based on work of Heuts [Heu11], we have shown that
there is a functor which assigns to every dendroidal set X a connective spectrum
K(X). This functor has the property that for a dendroidal set of the form i!Y it yields
the suspension spectrum Σ∞

+ Y (Theorem 5.5 in [Nik14]). It also generalizes the K-
theory of symmetric monoidal categories. Since the definition is rather inexplicit it
turns out to be hard to identify the spectrum associated to a dendroidal set even for
‘small’ examples of dendroidal sets.

The main result of the present paper is that for a dendroidal set X the homology
Hn(X) agrees with the homology of the associated spectrum K(X) (Theorem 6.1). If
we denote by SHC the stable homotopy category of spectra and by grAb the category
of graded abelian groups, we may summarize the discussion by saying that there is a
square

sSet
Σ∞

+

i!

SHC

H∗

dSet

K

H∗

grAb,

which commutes up to a natural isomorphism.

Our main result allows us to indirectly deduce information about the spectrum
K(X) associated to a dendroidal set X, without explicitly computing K(X). For
example we use this strategy to identify the spectrum associated to the dendroidal
set Ω[T ]/∂Ω[T ] as the n-sphere ΣnS where n is the number of vertices of T . As one
more application we show that the spectrum associated to the dendroidal version of
the operad A∞ is trivial.
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Organization

In Section 2 we review the necessary background about dendroidal sets and prove
some technical results that we use later. In Section 3 we introduce and discuss several
conventions on how to assign signs to faces and isomorphisms of dendroidal sets. These
are used in the definition of the chain complexes Chun(X) and Ch(X) in Section 4.
In Section 5 we prove that these chain complexes are homotopically well-behaved and
equivalent. Our main result is contained in Section 6. Finally, Appendix A contains
a technical result that is needed to compute certain homologies.
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2. Preliminaries on dendroidal sets

In this section we recall the basic notions concerning dendroidal sets. We use the
definition of the category Ω of non-empty finite rooted trees as in [MW07, MW09].
See also [Wei11] for a nice introduction.

A (non-empty, finite, rooted) tree consists of finitely many edges and vertices. Each
vertex has a (possibly empty) set of input edges and one output edge. For each tree
T there is a unique edge rt(T ), called the root of T , which is not an input of any
vertex. An edge which is not an output of a vertex is called a leaf. The set of leaves
of a tree T is denoted by �(T ). Edges which are both inputs and outputs of vertices
are called inner edges.

Let |T | be the number of vertices of T . A vertex with no inputs is called a stump.
A vertex with one input is called unary and a tree with only unary vertices is called
linear. A linear tree with n vertices is denoted Ln. The trivial tree L0 is a tree with
no vertices and one edge. A tree with one vertex is called a corolla. A corolla with n
inputs is denoted Cn.

A rooted tree T determines a symmetric coloured operad Ω(T ) whose objects
are the edges of the tree and whose operations are freely generated by the vertices.
The dendroidal category Ω has all rooted trees as objects, and as morphisms T → T ′

operad morphisms Ω(T ) → Ω(T ′). In other words, Ω is equivalent to a full subcategory
of the category Oper of symmetric coloured operads.

The category dSet of dendroidal sets is the category of presheaves of sets on the
category of trees Ω. We denote by Ω[T ] the dendroidal set represented by a tree T ,
i.e. HomΩ(−, T ). We denote η := Ω[L0]. If X is a dendroidal set and T is a tree,
we denote XT := X(T ). By the Yoneda lemma, we have the canonical identification
XT

∼= Hom(Ω[T ], X). The elements of the set XT are called T -dendrices of X. If
f : S → T is a morphism in Ω we denote f∗ = X(f) : XT → XS .

Let Δ be the category of non-empty finite linear orders and order preserving func-
tions. Then the category sSet of simplicial sets is the category of presheaves on Δ.
There is an inclusion i : Δ → Ω of categories given by i([n]) = Ln. This inclusion
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induces a pair of adjoint functors

i! : sSet dSet : i∗,

with i!(X) a dendroidal set supported on the linear trees. We also note that the
inclusion Ω → Oper induces a pair of adjoint functors

τd : dSet Oper : Nd

and Nd is the dendroidal nerve functor (extending the nerve functor N : Cat → sSet).
Note that the inputs of a vertex of a tree are not ordered in any way. A planar

structure on a tree T consists of a linear order on the set of inputs of each vertex.
A planar tree is given by a tree with a planar structure. We depict planar trees by
drawing the inputs from left to right in increasing order, see below for examples.

Every planar tree T generates a non-symmetric operad Ωp(T ) similarly to the
definition of Ω(T ) for a non-planar tree T (in fact, Ω(T ) is the symmetrization of
Ωp(T )). We let Ωp be the category of planar trees thought of as a full subcategory
of the category of non-symmetric coloured operads. The most significant technical
distinction between planar and non-planar trees is that every automorphism in Ωp

is an identity, while in Ω non-trivial automorphisms exist. There is a dendroidal set
P : Ωop → Set such that P (T ) is the set of planar structures of the tree T . We also
say that P is the presheaf of planar structures.

As in the category Δ, there are elementary face and degeneracy maps in Ω which
generate all morphisms. Let e be an edge of a tree T and let σeT be the tree obtained
from T by adding a copy e′ of the edge e and a unary vertex between e′ and e. There
is an epimorphism σe : σeT → T in Ω sending the unary operation in Ω(σeT )(e

′; e) to
the identity operation in Ω(T )(e; e). We call a morphism of this type an elementary
degeneracy map.

a b

•w

c d •
e′

f

•v

e

r

−→

a b

c d •w f

•v

e

r

If e is an inner edge of a tree T , there is a tree ∂eT obtained by contracting the
edge e in T . The obvious monomorphism ∂eT → T is called an inner elementary face
map.

c d a b f

•v◦ew
r

−→

a b

c d •w f

•v

e

r

Let w be a top vertex of a tree T , i.e. all inputs of w are leaves. There is a tree
∂wT obtained by chopping off the vertex w (and all its inputs) in T . The obvious
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monomorphism ∂wT → T is called a top elementary face map.

c d e f

•v
r

−→

a b

c d •w f

•v

e

r

Let v be a bottom vertex of a tree T , i.e. the root rt(T ) is the output of v, and let
e be an input of v such that all other inputs of v are leaves. Note that such a pair
(v, e) need not exist for every tree. If T is a corolla, then e is also a leaf and it can be
any input of v, while for trees with more than one vertex, e is the unique inner edge
attached to v (if it exists at all). There is a tree ∂v,eT obtained by chopping off the
vertex v (with the root and all its inputs except e) in T . The obvious monomorphism
∂v,eT → T is called a bottom elementary face map.

a b

•w
e

−→

a b

c d •w f

•v

e

r

We will say that ∂f : ∂fT → T is an elementary face map whenever f is an inner
edge e, top vertex w, or a pair (v, e) of a bottom vertex v with an input e such that
all other inputs are leaves. In that case we will say that ∂fT is an elementary face of
T .

The relations satisfied by the elementary face maps will be crucial for the definition
of the homology of dendroidal sets. A detailed discussion of the dendroidal relations
is given in Sections 2.2, 2.3 and 3.2 in [MT10] and it can be summarized by the
following lemma.

Lemma 2.1 ([MT10]). Let T be a tree, ∂fT an elementary face of T and S = ∂g∂fT
an elementary face of ∂fT . Then the map S → T can be written as a composition of
elementary face maps in exactly two ways, i.e. there exists a unique elementary face
∂g′T of T with g′ �= f together with a unique elementary face ∂f ′∂g′T of ∂g′T , which
is equal to S, such that the following dendroidal identity holds:

∂g∂f = ∂f ′∂g′ .

Example 2.2. Let a and b be inner edges of a tree T . Then there exist elementary
faces ∂aT , ∂bT and

∂b∂aT = ∂a∂bT.

Let w be a top vertex of a tree T and let the output edge e of w be the input edge
of another vertex v of that tree. Then there exist elementary faces ∂eT and ∂wT .
Moreover, if we denote z = v ◦e w, the elementary face ∂z∂eT exists if and only if
there exists the elementary face ∂w∂vT . In the case when they both exist, these faces
are the same.
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Moreover, there are obvious dendroidal identities relating two elementary degen-
eracy maps, an elementary degeneracy map with an elementary face map or any ele-
mentary map with an isomorphism. We refer the reader to Section 2.2.3 in [MT10]
for more details.

Lemma 2.3 ([MT10, Lemma 2.3.2]). Every morphism in Ω can be factored in a
unique way as a composition of elementary face maps followed by an isomorphism
and followed by a composition of elementary degeneracy maps.

Definition 2.4. A dendrex is called degenerate if it is in the image of σ∗
e , where

σe is an elementary degeneracy map. A dendrex which is not degenerate is called
non-degenerate.

Lemma 2.5 ([MT10, Lemma 3.4.1]). Let X be a dendroidal set and x ∈ XT a den-
drex of X, for some tree T . There is a unique composition of elementary degeneracy
maps σ : T → S and a unique non-degenerate dendrex x# ∈ XS such that x = σ∗(x#).

Definition 2.6. Any elementary face map ∂f : ∂fT → T induces a map of repre-
sentable dendroidal sets ∂f : Ω[∂fT ] → Ω[T ]. The union of all images of the maps
∂f : Ω[∂fT ] → Ω[T ] is denoted by ∂Ω[T ]. The inclusion ∂Ω[T ] → Ω[T ] is called a
boundary inclusion.

Definition 2.7. A monomorphism f : A → B of dendroidal sets is called normal if
the action of the automorphism group Aut(T ) on the complement of the image

BT \ f(AT )

is free, for every tree T . We say that a dendroidal set A is normal if ∅ → A is a normal
monomorphism.

Using the definition of a normal monomorphism it is easy to see that if f : A → B
is any morphism of dendroidal sets and B is normal, then A is also normal. If f is a
monomorphism and B is normal, then f is a normal monomorphism.

Proposition 2.8 ([CM13a, Proposition 1.4]). The class of all normal monomor-
phisms is the smallest class of monomorphisms closed under pushouts and transfinite
compositions that contains all boundary inclusions ∂Ω[T ] → Ω[T ].

Remark 2.9. Let X be a dendroidal set and let X(n) be the sub-dendroidal set of X
generated by all non-degenerate dendrices x ∈ XT with |T | � n. We say that X(n) is
the n-skeleton of X. An arbitrary dendroidal set X is (isomorphic to) the colimit of
the sequence

X(0) ⊂ X(1) ⊂ X(2) ⊂ · · · .

By Proposition 3.4.4 in [MT10], a dendroidal set X is normal if and only if for all
positive integers n there is pushout square∐

(T,x) ∂Ω[T ] X(n−1)

∐
(T,x) Ω[T ] X(n),

where the coproduct is taken over all isomorphism classes of non-degenerate dendrices
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x ∈ XT for |T | = n.

Definition 2.10. For an elementary face map ∂f : ∂fT → T we denote by Λf [T ] the
union of images of all elementary face maps ∂g : Ω[∂gT ] → Ω[T ], g �= f .

The inclusion Λf [T ] → Ω[T ] is called a horn inclusion. A horn inclusion is called
inner (resp. top or bottom) if ∂f is an inner (resp. top or bottom) elementary face
map.

Definition 2.11 ([BN14]). A dendroidal set X is called fully Kan if the induced
map

Hom(Ω[T ], X) → Hom(Λf [T ], X)

is a surjection for every horn inclusion Λf [T ] → Ω[T ].

For the discussion of the homology of dendroidal sets in the current paper we will
freely use the language of Quillen model structures. For an introduction to model
structures the reader may consult the standard references [Qui67] and [Hov07].
Occasionally we will also need the language of ∞-categories as developed in [Joy08,
Lur09, Lur11].

Theorem 2.12 ([BN14]). There is a combinatorial left proper model structure on
dendroidal sets, called the stable model structure, for which the cofibrations are pre-
cisely the normal monomorphisms, and the fibrant objects are precisely the fully
Kan dendroidal sets. The stable model structure is Quillen equivalent to the group-
completion model structure on E∞-spaces. In particular, the underlying ∞-category
of fully Kan dendroidal sets is equivalent to the ∞-category of connective spectra.

This theorem, in particular, implies that for every dendroidal set D there is an
associated connective spectrum which we denote by K(D). The assignment D �→
K(D) has been investigated in [Nik14]. One of the main results there is that this
functor generalizes K-theory of symmetric monoidal categories.

Remark 2.13. By Proposition 2.8, the generating cofibrations are given by boundary
inclusions ∂Ω[T ] → Ω[T ]. Horn inclusions Λf [T ] → Ω[T ] are trivial cofibrations, but
it is not known whether the set of horn inclusions is the set of generating trivial
cofibrations. On the other hand, fibrant objects and fibrations between fibrant objects
are characterized by the right lifting property with respect to all horn inclusions, cf.
Theorem 4.6 in [BN14] and Proposition 5.4.3 and Proposition 5.4.5 in [Baš15].

Lemma 2.14. Let M be a model category and F : dSet → M a left adjoint functor.
Then F is a left Quillen functor with respect to the stable model structure if and only if
F sends boundary inclusions to cofibrations and horn inclusions to trivial cofibrations
in M .

Proof. If F is left Quillen, then F clearly sends boundary inclusions to cofibrations
and horn inclusions to trivial cofibrations in M .

To prove the converse, let us assume that F sends boundary inclusions to cofibra-
tions and horn inclusions to trivial cofibrations in M . Since cofibrations in the stable
model structure are generated as a saturated class by boundary inclusions, it follows
that F preserves cofibrations. Let G be the right adjoint of F . It is a well-known
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fact about model categories that trivial cofibrations are characterized by the lifting
property against fibrations between fibrant objects, see, e.g., [JT08, Lemma A.6.1].
By this fact, and by adjunction, it follows that F preserves trivial cofibrations if G
preserves fibrations between fibrant objects. We now use that fibrant objects and
trivial fibrations between fibrant objects in dSet can be characterized by the lifting
property against horn inclusions. Thus another application of the adjunction property
proves the claim.

Lemma 2.15. Let M be a model category and let F,G : dSet → M be left adjoint
functors that send normal monomorphisms to cofibrations. If there is a natural trans-
formation α : F → G such that αΩ[T ] : F (Ω[T ]) → G(Ω[T ]) is a weak equivalence for
every tree T , then αX : F (X) → G(X) is a weak equivalence for every normal den-
droidal set X.

Proof. For a non-negative integer n, we say that a dendroidal set X is n-dimensional
if X has no non-degenerate dendrices of shape T for |T | > n.

We prove by induction on n that if X is a normal n-dimensional dendroidal set,
then F (X) → G(X) is a weak equivalence. If X is 0-dimensional, then X is just a
coproduct of copies of η. By the assumption, F (η) → G(η) is a weak equivalence,
so F (X) → G(X) is a weak equivalence since it is a coproduct of weak equivalences
between cofibrant objects.

For the inductive step, assume X is an n-dimensional normal dendroidal set and
let X ′ be its (n− 1)-skeleton. Then X = X ′ ∪∐

∂Ω[T ]

∐
Ω[T ], where the coproduct

varies over all isomorphism classes of non-degenerate dendrices in XT with |T | = n.
Since F and G are left adjoints they preserve colimits, so there is a commutative

diagram: ∐
F (∂Ω[T ])

∼

F (X ′)

∼

∐
G(∂Ω[T ]) G(X ′)

∐
F (Ω[T ])

∼

F (X)

∐
G(Ω[T ]) G(X),

where all the objects are cofibrant, the back and front sides are pushout squares and
the two vertical maps on the left are cofibrations. The two maps in the upper square
are weak equivalences by the inductive hypothesis. The map

∐
F (Ω[T ]) →

∐
G(Ω[T ])

is a weak equivalence by assumption. Hence F (X) → G(X) is also a weak equivalence.
Finally, for a normal dendroidal set X, consider the skeletal filtration of X:

∅ = X(−1) ⊆ X(0) ⊆ X(1) → . . . → X(n) ⊆ . . . .

Since X(n) is n-dimensional, we have shown already that F (X(n)) → G(X(n)) is
a weak equivalence between cofibrant objects. Since F (resp. G) preserves colimits,
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F (X) (resp. G(X)) is a filtered colimit of F (X(n)) (resp. G(X(n))) and hence F (X) →
G(X) is a weak equivalence, too.

Corollary 2.16. Let F, G : dSet → M be two left Quillen functors and ϕ : F ⇒ G
a natural transformation such that ϕη : F (η) → G(η) is an equivalence. Then
ϕX : F (X) → G(X) is an equivalence for any normal dendroidal set X. In partic-
ular, F and G induce equivalent functors on homotopy categories.

Proof. For any tree T , the inclusion of leaves⊔
�(T )

η → Ω[T ]

is a stable trivial cofibration. Since F and G are left Quillen functors, F (Ω[T ]) →
G(Ω[T ]) is a weak equivalence too. The result follows from Lemma 2.15.

The last corollary establishes an easy criterion to check that two left Quillen func-
tors are equivalent once we are given a natural transformation between the two. We
will need later a stronger version of that result where we can drop the assumption
that we are already given a natural transformation. To prove this stronger result we
have to rely on results of [GGN15] which are obtained in the setting of ∞-categories.
Thus we will also state the result in the setting of ∞-categories. But note that a left
Quillen functor between model categories gives rise to a left adjoint functor between
∞-categories.

Proposition 2.17. Let F,G : dSet∞ →C be two left adjoint functors of ∞-categories,
where dSet∞ denotes the ∞-category underlying the stable model structure on den-
droidal sets. Assume that C is presentable and additive. The latter means that the
homotopy category Ho(C) is additive. If F (η) � G(η) in C then the functors F and
G are equivalent. In particular, for every dendroidal set X there is an equivalence
F (X) � G(X) in C.

Proof. We first use that the ∞-category dSet∞ is equivalent to the ∞-category Sp�0

of connective spectra as a result of the equivalence mentioned in Theorem 2.12. It is
shown in [BN14] that under this equivalence the dendroidal set η is sent to the sphere.
Then we use Corollary 4.9 in [GGN15], which states that connective spectra form
the ‘free additive’ ∞-category on one generator (which is the sphere). This implies
that two left adjoint ∞-functors F,G : Sp�0 → C from the ∞-category of connective
spectra to an additive ∞-category C are equivalent if they coincide on the sphere.
Thus dSet∞ satisfies the same universal property, which proves the statement.

Corollary 2.18. Let F,G : dSet → M be two left Quillen functors where M is an
additive combinatorial model category. If there exists an equivalence F (η) → G(η) in
Ho(M) then there is a zig-zag of natural equivalences between F and G. In particular,
the induced functors F,G : Ho(dSet) → Ho(M) on homotopy categories are equivalent.

3. Some conventions about signs

In this section we describe a labelling of the vertices of a planar tree, and a sign
convention for faces and automorphisms. These labels and signs will be used in the
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definition of the homology of a dendroidal set. The convention for faces is taken from
[GLW11, Section 4.5].

Let (T, p) be a planar tree, i.e. T is a non-planar tree and p a planar structure on
T . For every face map f : S → T there is a planar structure on S given as P (f)(p),
so that f is a map of planar trees with these planar structures. Here, P denotes the
presheaf of planar structures described in Section 2.

We define a labelling of the vertices of a planar tree with n vertices by the numbers
0,1,. . . , n− 1 by a ‘left-first depth traversal’ of the tree, as follows. We label the vertex
above the root edge with 0 and then proceed recursively. Whenever we label a vertex
we continue labelling the vertices of its leftmost branch (until we reach a top vertex),
then we label the vertices of the second branch from the left and so on until we have
labelled all the vertices. An example of such a labelling is given below.

Definition 3.1. We assign a sign sgnp(∂a) ∈ {−1,+1} to each elementary face map
∂a : ∂aT → T using the labelling of the planar tree (T, p) as follows: If T is a corolla,
we assign −1 to the inclusion of the root edge and +1 to the inclusion of a leaf. If T
has at least two vertices, we assign +1 to the root face, which is the face obtained by
chopping off the root vertex (which only exists if the root vertex has only one inner
edge assigned to it). We assign (−1)k to the face ∂eT → T if e is an inner edge which
is the output of the vertex labelled by k, and we assign (−1)k+1 to ∂v if v is a top
vertex labelled with k.

Example 3.2. Consider for example the planar tree (T, p)

•3

+

•2

−

•

−

4

•1

+ +

•5

+

•0

− −

where the signs associated to the inner faces are shown next to the corresponding
inner edge and the signs associated to the top faces are shown next to one of the
leaves.

Next we define a sign convention that will be used when we consider different
planar structures.

Definition 3.3. Let T be a tree and let p′, p ∈ PT be two planar structures. Each
of these planar structures determines a labelling of the vertices of T as described
above. Thus there is a permutation on the set of labels {1, . . . , n− 1} which sends
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the labelling induced by p′ to the labelling induced by p (we omit the label 0 since
the root vertex must be fixed). We define sgn(p′, p) ∈ {−1,+1} to be the sign of that
permutation.

Example 3.4. Let us illustrate our sign convention for a change of planar structure
as a continuation of Example 3.2. Here is another planar structure, p′, of the same
tree T

•4

•2 •3

•1 •5

•0

where the vertices are labelled according to described rule. The corresponding per-
mutation is

σ =

(
1 2 3 4 5
1 4 2 3 5

)
,

so sgn(p′, p) = sgn(σ) = 1.

Let ∂e : ∂eT → T be an elementary face map. If p ∈ PT is a planar structure on T ,
then we denote pe = P (∂e)(p) ∈ P∂eT .

Lemma 3.5. Let ∂e : ∂eT → T be an elementary face map. For any two planar struc-
tures p′, p ∈ PT we have

sgn(p′, p) · sgnp(∂e) = sgn(p′e, pe) · sgnp′(∂e).

Proof. If T is a corolla, the statement is true since all the terms are +1. Let |T | = n+
1 be the number of vertices of T and τ ∈ Σn the permutation assigned to the planar
structures p′ and p. Suppose first that e is an inner edge of T . Let k be the label given
to the vertex above e and τ(k) = l. Then sgnp(∂e) = (−1)k and sgnp′(∂e) = (−1)l.

We denote by τe ∈ Σn−1 the permutation assigned to the planar structures p′e and
pe. Observe that the permutation τe : {1, 2, . . . , n− 1} → {1, 2, . . . , n− 1} is obtained
from the permutation τ : {1, 2, . . . , n} → {1, 2, . . . , n} in the following way. We delete
k in the domain of τ and relabel the elements greater than k by decreasing them by
1. Also we delete l in the codomain of τ and relabel the elements greater than l by
decreasing them by 1. Now we compare the number of inversions of τ (i.e. the instances
of pairs (a, b) such that a, b ∈ {1, 2, . . . , n}, a < b and τ(a) > τ(b)) to the number of
inversions of τe. Actually the inversions in τe are in bijection with the inversions (a, b)
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of τ such that a and b are different than k (if a, b �= k then the mentioned relabelling
does not affect the relative order of τ(a) and τ(b) when considered in the codomain
of τe). So we need to calculate the number of elements of the set

{(a, k) : 1 � a < k, τ(a) > l} ∪ {(k, b) : k < b � n, τ(b) < l}. (1)

Denote by p the number of elements of the set {a : 1 � a < k, τ(a) > l}. Then the
number of elements of the set {a : 1 � a < k, τ(a) < l} is k − p− 1. But the elements
of the latter set are in bijection with the elements of {c : 1 � c < l, τ−1(c) < k}. This
implies that the number of elements of the set {c : 1 � c < l, τ−1(c) > k} is l − (k −
p− 1)− 1 = l − k + p, and this set is in bijection with {b : k < b � n, τ(b) < l}. So
the number of elements of the set in (1) is l − k + p+ p = l − k + 2p and we conclude
that sgn(τ) = (−1)l−k+2psgn(τe).

If we suppose ∂e is a face map corresponding to a top vertex of T ′ labelled by k
and τ(k) = l, then in the same way we conclude sgn(τ) = (−1)l−k+2psgn(τe). Since
in this case sgnp(∂e) = (−1)k+1 and sgnp′(∂e) = (−1)l+1, the statement of the lemma
holds.

If ∂e is a face map corresponding to a root vertex, then sgn(τ) = sgn(τe) (because
in this case τ(1) = 1 and τe is obtained by deleting 1 in the domain and codomain of
τ) and sgnp(∂e) = sgnp′(∂e) = 1 by definition.

4. The chain complex of a dendroidal set

In this section we define two chain complexes associated to a dendroidal set such
that the definitions extend the constructions of the normalized and unnormalized
chain complex associated to a simplicial set.

Recall that for a tree T we denote by |T | the number of vertices of T . Let X be a
dendroidal set and n ∈ N0. We consider the free abelian group

C(X)n :=
⊕

T∈Ω,|T |=n

⊕
p∈PT

Z〈XT 〉 (2)

generated by triples (T, p, x) where (T, p) is a planar tree and x ∈ XT . For trees T and
T ′, planar structures p ∈ PT and p′ ∈ PT ′ , an isomorphism τ : T ′ → T and a dendrex
x ∈ XT we consider the free subgroup A(X)n generated by

(T, p, x)− sgn(p′, τ∗p)(T ′, p′, τ∗(x)). (3)

Here τ∗(x) isX(τ)(x) forX(τ) : XT →XT ′ and τ∗(p) denotes P (τ)(p) for P (τ) : PT →
PT ′ .

Definition 4.1. Let X be a dendroidal set. For each n ∈ N0 we define an abelian
group Chun(X)n as the quotient

Chun(X)n := C(X)n/A(X)n,

or more suggestively

Chun(X)n :=

(⊕
T∈Ω,|T |=n

⊕
p∈PT

Z〈XT 〉
)

(T, p, x) ∼ sgn(p′, τ∗p)(T ′, p′, τ∗(x))
.
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Note that Chun(X)n is a free abelian group since we have identified generators
of a free abelian group C(X)n. The generators of Chun(X)n are in bijection with
the isomorphism classes of dendrices of X. Each representative carries additional
information: a planar structure, which is used only for the definition of the differential
that we will give now. As we will show, it does not matter which planar structure we
use. We write [T, p, x] for the generator represented by the triple (T, p, x).

Definition 4.2. Let X be a dendroidal set. For every positive integer n, we define a
map d : Chun(X)n → Chun(X)n−1 on generators by

d([T, p, x]) :=
∑

∂e : ∂eT→T

sgnp(∂e)[∂eT, pe, ∂
∗
ex],

and extend it additively. The sum is taken over the set of elementary face maps of T .

Note that by the definition of elementary face maps, the edges of a face of T form
a subset of the edges of T . There can be other monomorphisms S → T which are iso-
morphic over T to such elementary face maps. These are not included in the indexing
set of our sum. One could also sum over isomorphism classes of such monomorphisms
but that leads to complications in terms of signs.

Lemma 4.3. The map d : Chun(X)n → Chun(X)n−1 is well-defined.

Proof. Let x ∈ XT and x′ = τ∗x ∈ XT ′ for some isomorphism τ : T ′ → T . If p ∈ PT

and p′ ∈ PT ′ are two planar structures, we have [T, p, x] = sgn(p′, τ∗p)[T ′, p′, τ∗x]. So,
we need to prove that∑

∂e : ∂eT ′→T ′

sgnp′(∂e)[∂eT
′, p′e, ∂

∗
e (x

′)]

= sgn(p′, τ∗p)
∑

∂f : ∂fT→T

sgnp(∂f )[∂fT, pf , ∂
∗
f (x)],

where the sums are taken over the set of elementary face maps of T ′ and T , respec-
tively.

There is a unique isomorphism τe : ∂eT
′ → ∂τ(e)T such that τ∂e = ∂τ(e)τe. Note that

(τ∗p)e = P (∂e)P (τ)(p) = P (τe)P (∂τ(e))(p) = τ∗e pτ(e).

Hence, Lemma 3.5 implies that

sgnp′(∂e)[∂eT
′, p′e, ∂

∗
ex

′] = sgnp′(∂e)[∂eT
′, p′e, ∂

∗
e τ

∗x]

= sgnp′(∂e)[∂eT
′, p′e, τ

∗
e ∂

∗
τ(e)x]

= sgnp′(∂e)sgn(p
′
e, τ

∗
e pτ(e))[∂τ(e)T, pτ(e), ∂

∗
τ(e)x]

= sgn(p′, τ∗p)sgnp(∂τ(e))[∂τ(e)T, pτ(e), ∂
∗
τ(e)x].

The set of elementary face maps ∂e : ∂eT
′ → T ′ is in bijection with the set of ele-

mentary face maps ∂f : ∂fT → T by e �→ f = τ(e), so collecting these terms together
yields the desired statement.

Proposition 4.4. The graded abelian group (Chun(X), d) is a chain complex.
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Proof. We need to prove that d2 = 0. Consider x ∈ XT and a planar structure p. We
write [x] instead of [T, p, x] as the planar structure is clear from the context. We have
the following calculation

d2([x]) = d

⎛
⎝ ∑

∂∗

e : ∂eT→T

sgnp(∂e)[∂
∗
ex]

⎞
⎠

=
∑

∂e : ∂eT→T

∑
∂f : ∂f∂eT→∂eT

sgnp(∂e)sgnpe
(∂f )[∂

∗
f∂

∗
ex].

For every two elementary face maps ∂e : ∂eT → T and ∂f : ∂f∂eT → ∂eT there
are elementary face maps ∂f ′ : ∂f ′T → T and ∂e′ : ∂e′∂f ′T → ∂f ′T such that ∂e∂f =
∂f ′∂e′ . The sign convention for faces of a planar tree is defined exactly so that the
following holds

sgnp(∂e)sgnpe
(∂f ) = −sgnp(∂f ′)sgnpf′

(∂e′).

This follows easily from the sign convention by inspection and it is also stated in
[GLW11] as Lemma 4.3. Hence every term in the above sum appears exactly twice,
each time with a different sign. This proves that the above sum is zero, i.e. d2 = 0.

Finally, for a morphism f : X → Y of dendroidal sets, we define

Chun(f)n([T, p, x]) = [T, p, f(x)], x ∈ XT .

Since f is a morphism of dendroidal sets it follows that Chun(f)n is a well-defined
morphism of chain complexes. In this way we obtain a functor Chun : dSet → Ch�0.

Proposition 4.5. Consider, for a dendroidal set X, the subgroups D(X)n ⊂
Chun(X)n generated by the classes of degenerate dendrices. Then D(X) is a sub-
complex, i.e. it is closed under taking differentials.

Proof. We need to check that the differential restricts to classes represented by degen-
eracies. Let σ : σT → T be a degeneracy map. Then the tree T has two adjacent face
maps ∂f and ∂f ′ which are equal up to an isomorphism of ∂fT and ∂f ′T . Let x ∈ XT .
Then

d[σ∗x] =
∑

∂e : ∂eT→T

sgnd(∂e)[∂
∗
eσ

∗x].

By the dendroidal identities σ commutes with all face maps ∂e except ∂f and ∂f ′ ,
but sgnd(∂f )[∂

∗
fσ

∗x] = −sgnd(∂f ′)[∂∗
f ′σ∗x]. We conclude that the above sum is equal

to the sum of classes represented by degeneracies.

Lemma 4.6. Let X be a dendroidal set such that for every non-degenerate dendrex
x ∈ XT the associated map x : Ω[T ] → X is a monomorphism. Then the subcomplex
D(X) is acyclic.

Proof. Let us fix a linear order on the setXη. We will first establish some terminology.
If x ∈ XT is a dendrex and e is an edge of T , then we say that e∗(x) ∈ Xη is a colour
of x.

Let x ∈ XT be a degenerate dendrex of shape T . By Lemma 2.5, there is a com-
position of elementary degeneracy maps σ : T → S and a non-degenerate dendrex
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x# ∈ XS such that x = σ∗(x#). If e is an edge of S such that σ factors through
the elementary degeneracy map σe, then the preimage σ−1(e) in T has at least
two elements. We think of all the elements in σ−1(e) as copies of e as, obviously,
x : Ω[T ] → X maps all the elements in σ−1(e) to the same element e∗(x) ∈ Xη. If we
denote a = e∗(x) and σ−1(e) has k elements, we say that x factors through a k-fold
degeneracy on a. Let us consider all elements a ∈ Xη such that x factors through a
k-fold degeneracy on a for some k. The smallest such a with respect to our fixed order
on Xη will be called the smallest degenerate colour of x.

If a is the smallest degenerate colour of x and x factors through a k-fold degeneracy
on a, we say x is canonical if k is an odd number. Consider a class inD(X)n and its two
representatives x and y. We have that x is canonical if and only if y is canonical. So
it is well-defined to say that a class in D(X)n is canonical if any of its representatives
is canonical. We define An as the set of all canonical generators of D(X)n and Bn

as the set of all generators of D(X)n that are not canonical. A bijection between Bn

and An+1 is established by degenerating x at the smallest degenerate colour a. Note
that A0, B0 and A1 are empty sets and d(x) = 0 for all x ∈ B1. Let Cn = D(X)n and
Cn,can = Z〈An〉. If we define w : Cn → N0 to be

w(x) =

{
0, if x ∈ Cn,can,
1, otherwise,

then all assumptions of Proposition A.1 below obviously hold. So all homology groups
of D(X) vanish.

Definition 4.7. We define the normalized chain complex as the quotient

Ch(X)• := Chun(X)•/D(X)•.

Remark 4.8. Since every dendrex is either degenerate or non-degenerate, we can iden-
tify the quotient Ch(X)n as a subgroup of Chun(X) generated by all classes of non-
degenerate dendrices. This inclusion, however, is not compatible with the differentials.
The reason is that the differential of non-degenerate dendrices is not necessarily a lin-
ear combination of non-degenerate dendrices as the following example shows.

Let x be a dendrex of some dendroidal set X of the following shape

•

•

such that the inner face of x is degenerate. Then x is non-degenerate, but the differ-
ential

d

⎛
⎝•

•

⎞
⎠ = • − • + •

calculated in Chun(X) is not a linear combination of non-degenerate dendrices. More
informally we can describe the differential of Ch(X) as a modification of the differ-
ential of Chun(X) where we disregard degenerate dendrices.



126 MATIJA BAŠIĆ and THOMAS NIKOLAUS

5. Equivalence of the chain complexes

Proposition 5.1. Let Γun
d : Ch�0 → dSet be defined by the formula

Γun
d (C)T = HomCh�0

(Chun(Ω[T ]), C).

Then the pair (Chun,Γun
d ) forms an adjunction.

Proof. It is well-known that a functor F : [Dop, Set] → C from the category of pre-
sheaves on a small category D to a cocomplete category C is left adjoint if, and only
if, it preserves colimits. In this setting the right adjoint functor G to F is given by
the formula

G(C)d = HomC(F (d), C) for d ∈ Ob(D), C ∈ Ob(C).

Thus the claim is implied if we show that Chun preserves colimits. Since colimits in
chain complexes are just colimits of the underlying graded abelian groups it suffices
to show that for every n the functor

Chun(X)n = C(X)n/A(X)n

preserves colimits in X. We write Chun as a coequalizer of⊕
T,T ′∈Ω,

|T |=|T ′|=n

⊕
τ : T

∼

−→T ′

⊕
p∈PT ,

p′∈PT ′

Z〈XT 〉 ⇒
⊕
T∈Ω,

|T |=n

⊕
p∈PT

Z〈XT 〉,

where the maps are given on generators by

(T, T ′, τ, p, p′, x) �→ (T, p, x) and (T, T ′, τ, p, p′, x) �→ (T ′, p′, sgn(p′, τ∗p)τ∗(x)).

Now we see that both sides of the coequalizer commute with colimits in X since the
direct sum functor and the free abelian group functor commute with colimits. Its also
clear that the maps between the two abelian groups commute with colimits since they
are (apart from a sign) completely determined by the indexing set. Since coequalizers
also commute with colimits this finishes the proof.

Proposition 5.2. Let Γd : Ch�0 → dSet be defined by the formula

Γd(C)T = HomCh�0
(Ch(Ω[T ]), C).

Then the pair (Ch,Γd) forms an adjunction.

Proof. The proof is similar to the proof of Proposition 5.1. We again want to show
that the functor

Ch(X) = Chun(X)/D(X)

preserves colimits in X. We consider the following functor

Ξ: dSet → AbGr X �→
⊕
|T |=n

⊕
τ : T→T ′

degeneracy

⊕
p∈PT

Z〈X ′
T 〉.

Then there is a natural transformation Ξ → Chun given on generators by

(T, τ, p, x) �→ [T, p, τ∗x].

By definition, it is clear that Ch(X) is the cokernel of Ξ(X) → Chun(X). Thus the
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fact that everything clearly commutes with colimits establishes the claim.

Recall that the category Ch�0 of positively graded chain complexes admits two
canonical model structures: the projective one and the injective one. In each, the
weak equivalences are quasi-isomorphisms. In the injective model structure the cofi-
brations are all monomorphisms and in the projective one the cofibrations are the
monomorphisms with levelwise projective cokernel.

Proposition 5.3. The functor Ch: dSet → Ch�0 maps boundary inclusions to cofi-
brations (in either of the model structures). The same is true for the functor Chun.

Proof. Let i : ∂Ω[S] → Ω[S] be a boundary inclusion. Because ∂Ω[S]T → Ω[S]T are
monomorphisms compatible with the equivalence relation generated by

(T, p, x) ∼ sgn(p′, τ∗p)(T ′, p′, τ∗(x))

(see (3) in Section 4), the induced maps Ch(i)n and Chun(i)n are monomorphisms
between free abelian groups given by inclusion of generators. Hence their cokernels
are also free.

Corollary 5.4. The natural map Chun(X) → Ch(X) is a quasi-isomorphism for
every normal dendroidal set X.

Proof. By Lemma 4.6, D(Ω[T ]) is acyclic for every tree T . Hence, the natural maps

Chun(Ω[T ]) → Ch(Ω[T ])

are quasi-isomorphisms. Proposition 5.1, Proposition 5.2, Proposition 5.3 and
Lemma 2.15 imply the result.

Proposition 5.5. The functor Ch: dSet → Ch�0 maps the dendroidal horn inclu-
sions Λa[T ] → Ω[T ] to trivial cofibrations (in either of the model structures). The
same is true for the functor Chun.

Proof. By Proposition 5.3, it is enough to show that the functor Ch sends a horn
inclusion i : Λa[T ] → Ω[T ] to a quasi-isomorphism. Let |T | = n. Then Ch(Λa[T ])k →
Ch(Ω[T ])k is an isomorphism for 0 � k � n− 2. Hence, Hk(i) is an isomorphism for
0 � k � n− 3.

Note that Ch(Λa[T ])n−1 is a subgroup of Ch(Ω[T ])n−1 generated by all but one
of the generators, let us denote it [xa], of Ch(Ω[T ])n−1. The group Ch(Λa[T ])n is
trivial and Ch(Ω[T ])n is generated by one element, call it [x]. Then [xa]− d([x]) is
in Ch(Λa[T ])n−1, so d([xa]) is in d(Ch(Λa[T ])n−1). This implies that Hn−2(i) is an
isomorphism. Also, the fact that [xa]− d([x]) is an element of Ch(Λa[T ])n−1 implies
Hn−1(i) and Hn(i) are isomorphisms.

From Lemma 2.14, Proposition 5.3 and Proposition 5.5 we have the following
immediate consequence.

Corollary 5.6. The adjunctions (Ch,Γd) and (Chun,Γun
d ) are Quillen adjunctions

between the category of dendroidal sets with the stable model structure and the category
of non-negatively graded chain complexes with either the projective or the injective
model structure.
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Remark 5.7. The last result, in particular, implies the following fact: given a chain
complex C the classical Dold–Kan correspondence associates to it a simplicial set
Γ(C) (in fact, a simplicial abelian group). From our constructions it follows that Γ(C)
underlies the dendroidal set Γd(C) (which is, in fact, a dendroidal abelian group) and
that Γd(C) is fully Kan. This observation can be promoted to a dendroidal Dold–Kan
correspondence (slightly different in spirit to the one in [GLW11], which only applies
to planar dendroidal sets).

Definition 5.8. For a dendroidal set X define the homology and cohomology groups
with values in an abelian group A as

Hn(X,A) := Hn(Ch
unX̃ ⊗A) and Hn(X,A) := Hn(Hom(ChunX̃, A)),

where X̃ → X is cofibrant replacement ofX, i.e. a stable equivalence with X̃ a normal
dendroidal set. We will write Hn(X) for Hn(X,Z).

Remark 5.9. This definition does not depend (up to isomorphism) on the choice of
cofibrant replacement as a consequence of Corollary 5.6. To promote homology to
a functor we will implicitly assume a functorial choice of cofibrant replacement has
been fixed once and for all. It is well-known that this can be achieved by the small
object argument, in this case applied to the set of boundary inclusions of trees.
So, Hn(−, A) : dSet → AbGr is a functor for every non-negative integer n and every
abelian group A. One can also show functoriality without functorial cofibrant replace-
ment but we will not need this here.

Remark 5.10. For a dendroidal set of the form i!S where S is a simplicial set the
chain complex Chun(i!S) agrees with the unnormalized chain complex of S. Since i!S
is normal, we have

Hn(i!S,A) ∼= Hn(S,A) and Hn(i!S,A) ∼= Hn(S,A).

Corollary 5.11. If f : X → Y is a stable equivalence of dendroidal sets, then it
induces an isomorphism f∗ : Hn(X,A) → Hn(Y,A).

Note that we will show in Corollary 6.3 that the converse of that statement is also
true.

Corollary 5.12. For the terminal dendroidal set ∗ we have Hk(∗) = 0 for all k.

Proof. Since the homotopy category of dendroidal sets with respect to the stable
model structure is equivalent to the homotopy category of connective spectra, it
follows that it is pointed, i.e. that the initial object is isomorphic to the terminal
object. This means that the canonical morphism ∅ → ∗ is a stable weak equivalence.
Thus we conclude that the homology of ∗ is isomorphic to the homology of ∅ which
is clearly zero in all degrees.

Corollary 5.13. The homology of Ω[T ] is given by

Hk(Ω[T ]) =

{
Z〈�(T )〉 if k = 0,
0 if k �= 0.
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Proof. The morphism ⊔
�(T )

η → Ω[T ]

is a stable trivial cofibration, so the result follows from Corollary 5.11.

Corollary 5.14. Let T be a tree with n vertices. Then we have

Hk(Ω[T ]/∂Ω[T ]) =

{
Z, if k = n,
0, if k �= n.

Proof. We first consider the following pushout square

∂Ω[T ] Ω[T ]

∗ Ω[T ]/∂Ω[T ].

This square is a homotopy pushout square which can be seen as follows: take the
product of the whole square with a cofibrant resolution of ∗. Then we get another
square in which all corners are cofibrant and which is a pushout since dSet is Cartesian
closed. This new square is a homotopy pushout since the upper horizontal morphism
is a cofibration. But all corners are equivalent to the corners in the starting square,
this shows that the starting square is also a homotopy pushout square. It follows that
we have a homotopy pushout square of chain complexes

Ch(∂Ω[T ]) Ch(Ω[T ])

Ch(∗̃) Ch( ˜Ω[T ]/∂Ω[T ])

and we have that Ch(∗̃) is quasi isomorphic to the zero chain complex by Corol-

lary 5.12. Thus we find that Ch( ˜Ω[T ]/∂Ω[T ]) is quasi-isomorphic to the homotopy
cofibre of the morphism Ch(∂Ω[T ]) → Ch(Ω[T ]). Since this morphism is a monomor-
phism of chain complexes, the homotopy cofibre is quasi-isomorphic to the quo-
tient.

This quotient as a chain complex is completely concentrated in degree n, since the
non-degenerate cells of ∂Ω[T ] and Ω[T ] agree in all other degrees.

6. The associated spectrum and its homology

In this section we will compare the homology of a dendroidal set to the homology of
the associated connective spectrum. Recall that for a spectrum E, its n-th homology
group with coefficients in an abelian group A is defined as the n-th homotopy group
of the spectrum E ∧HA, where HA is the Eilenberg–MacLane spectrum of A. The
cohomology groups of E are defined as the negative homotopy groups of the mapping
spectrum HAE .
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Theorem 6.1. Let D be a dendroidal set. Then the homology groups H∗(D,A) are
naturally isomorphic to the homology groups with values in A of the associated con-
nective spectrum K(D). The cohomology groups H∗(D,A) are isomorphic to the coho-
mology groups of K(D).

Proof. We consider the following diagram of ∞-categories

dSet∞

Ch

Sp�0

−∧HZ

(Ch�0)∞ Mod(HZ)�0,

which is a priori not necessarily commutative. Here Sp�0 denotes the ∞-category
of connective spectra and Mod(HZ)�0 is the ∞-category of module spectra in Sp�0

over the ring spectrum HZ. The categories on the left side are the underlying ∞-
categories of the stable model category of dendroidal sets and the category of positive
chain complexes. The top row is an equivalence of ∞-categories as a consequence
of Theorem 2.12. The bottom row is an equivalence of ∞-categories given by the
extension of the Dold–Kan correspondence to spectra, Theorem 5.1.6 in [SS02] or
by the fact that Mod(HZ)�0 has HZ as a compact generator. The left vertical map
is induced by the left Quillen functor Ch studied in the previous sections. The right
vertical map is given by taking the homology of a spectrum, i.e. by the smash product
with HZ.

The ∞-category Mod(HZ)�0 is an additive ∞-category (see Definition 2.6 in
[GGN15]). The dendroidal set η corresponds to the sphere spectrum and its homol-
ogy is just the spectrum HZ (as the sphere spectrum is the unit for the smash prod-
uct). On the other hand the chain complex Ch(η) is just Z concentrated in degree 0
and under Dold–Kan correspondence it corresponds to HZ.

Hence there are two left adjoint ∞-functors from dSet∞ to Mod(HZ)�0 and since
they coincide on η, Proposition 2.17 implies that these functors are equivalent. This
proves the case of the homology with Z-coefficients. The other cases follow from
that.

Remark 6.2. There is a fully faithful functor i : AbGr → dSet from the category of
abelian groups into the category of dendroidal sets. The essential image of this func-
tor consists exactly of those dendroidal sets that have unique fillers for all horns,
see Proposition 3.5 of [BN14]. The K-theory spectrum K(i(M)) is equivalent to
the Eilenberg-MacLane spectrum HM for every abelian group M . Thus we get an
isomorphism

H∗(i(M), A) ∼= H∗(HM,A) = π∗(HM ∧HA).

For example H∗(i(Z/2),Z/2) is the dual Steenrod algebra.

Corollary 6.3. A morphism f : X → Y between dendroidal sets is a stable weak
equivalence if, and only if, it is a homology isomorphism, i.e. f∗ : Hn(X) → Hn(Y )
is an isomorphism for each n.

Proof. This follows immediately since it holds for connective spectra which can be
seen using Hurewicz’s theorem.
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Corollary 6.4. The spectrum associated to the dendroidal set Ω[T ]/∂Ω[T ] is equiva-
lent to the n-sphere, i.e. ΣnS � Σ∞(Sn, ∗).

Proof. By Corollary 5.14 we know that the homology of Ω[T ]/∂Ω[T ] is trivial in all
degrees except degree |T |, where it is Z. The result follows from that since the only
spectrum E such that Hn(E) = Z and Hk(E) = 0 for k �= n is Σ∞Sn.

Remark 6.5. The last corollary has the following consequence. Let X be a normal
dendroidal set. We can consider the skeletal filtration

X0 ⊂ X1 ⊂ X2 ⊂ · · ·
⋃

Xn = X,

as discussed in Remark 2.9. The subquotients Xn/Xn−1 are unions of dendroidal
sets Ω[T ]/∂Ω[T ] where T has n vertices. After passing to the associated spectra this
induces a filtration

K(X0) → K(X1) → K(X2) → · · · lim−→K(Xn) � K(X),

whose subquotients KXn/KXn−1 are wedges of n-spheres by Corollary 6.4. Thus it
has to agree with the stable cell filtration of the spectrum K(X). The associated
spectral sequence thus is the Atiyah–Hirzebruch spectral sequence. It was our initial
hope that the skeletal filtration of dendroidal sets would lead to more interesting
filtrations of K-theory spectra.

Let A∞ = Nd(Ass) be the dendroidal nerve of the symmetric operad for associative
algebras. Note that P ∼= A∞, where P is the presheaf of planar structures.

Theorem 6.6. The homology of A∞ vanishes. Therefore the spectrum K(A∞) is
trivial.

Proof. By definition, the generators of the free abelian group Chun(A∞)n are in
bijection with the isomorphism classes of planar structures of trees with n vertices.
More precisely, for each tree T there is exactly one generator for each orbit of the
action of the group Aut(T ) on the set of planar structures of T . Hence we may
represent the generators by planar trees with all the edges of the same colour, keeping
in mind that isomorphic planar trees are identified.

For example, for each of the trees

•

• •

•

the two planar structures are identified, so there is only one generator. But the planar
trees

• •

•

• •

•

represent different generators.
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We call a generator canonical if the leftmost top vertex of such a representative is
a stump. For example, in the above pictures, the planar trees on the right represent
canonical generators, while the ones on the left represent non-canonical generators.

Let An (resp. Bn) be the set of canonical (resp. non-canonical) generators of
Chun(A∞)n. A bijection between x ∈ Bn and x̂ ∈ An+1 is obtained by putting a
stump on the leftmost leaf of the chosen representative of a non-canonical generator
in Bn.

Obviously, a dendrex with no vertices has no stumps, so A0 is empty. The set B0 is
a singleton, consisting of a tree with one edge. Also A1 is a singleton containing just
the stump. For every generator x we define its weight w(x) as the number of leaves
of the planar tree representing it if x is non-canonical and w(x) = 0 if x is canonical.

If x is non-canonical, then x̂ has exactly one leaf less than x. Every other face of x̂
is either canonical (containing the added stump) or it is a non-canonical face obtained
by contracting the edge just below the added stump, so it has one leaf less than x.
This shows that all the assumptions of Proposition A.1 hold. Hence all homology
groups of A∞ vanish.

Appendix A. Acyclicity argument

In this section we finally prove the technical proposition which we have used in
Lemma 4.6 and Theorem 6.6 to show acyclicity of certain chain complexes.

Proposition A.1. Let C• be a chain complex such that all Cn are free abelian groups
which have a grading

Cn =
⊕
i∈N0

Cn,i.

For x ∈
m⊕
i=0

Cn,i \
m−1⊕
i=0

Cn,i we write w(x) = m. Let An and Bn be a basis for Cn,0

and
⊕
i>0

Cn,i, respectively. Assume there is a bijection between the sets Bn and An+1

which sends x ∈ Bn to x̂ ∈ An+1 and one of the following two statements holds

w(x− d(x̂)) < w(x) or w(x+ d(x̂)) < w(x).

Then H0(C•) = Z〈A0〉 and Hn(C•) = 0 for all n � 1.

Proof. First, for each x ∈ Bn we construct an element x̄ ∈ Cn+1,0 such that

x− d(x̄) ∈ Cn,0.

We proceed by induction on w(x). If w(x) = 1, we can take x̄ to be x̂ or −x̂ and
the statement follows by assumption. Let w(x) > 1 and assume that the statement
holds for all y ∈ Bn such that w(y) < w(x). We let x′ = ±x̂, where the sign ± is such
that w(x− d(x′)) < w(x). We write

x− d(x′) = z + y,

where z ∈ Cn,0, y ∈ Cn \ Cn,0, and y is a finite sum of elements yi in Bn such that
w(yi) < w(x) for i = 1, . . . , k. By the inductive hypothesis, we have ȳi ∈ Cn+1,0 such
that yi − d(ȳi) ∈ Cn,0, for i = 1, . . . , k. Our claim now follows if we let x̄ = x′ +

∑
i ȳi.
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Note that this same inductive argument shows that every element x̂, x ∈ Bn, can
be written as a linear combination of elements of the set {x̄ : x ∈ Bn}. As we assumed
An+1 = {x̂ : x ∈ Bn} is a basis for Cn+1,0, it follows that the set {x̄ : x ∈ Bn} gener-
ates Cn+1,0.

We will show that the set {d(x̄) : x ∈ Bn} is linearly independent, for every n. Let

us assume
∑k

i=1 αid(x̄i) = 0 for some x1, . . . , xk ∈ Bn. We can write d(x̄i) = xi + yi,
where yi ∈ Cn,0 for i = 1, 2, . . . , k. Hence we have

k∑
i=1

αixi +

k∑
i=1

αiyi = 0.

We conclude that αi = 0 for all i since y1, . . . , yk ∈ Cn,0, x1, . . . , xk ∈ Bn and Bn is a
basis for Cn \ Cn,0. Since d is linear, the set {x̄ : x ∈ Bn} is also linearly independent,
for every n. This implies that the set {x̄ : x ∈ Bn} is a basis for Cn+1,0.

Next we show that the restriction d : Cn,0 → Im d is surjective. Let y = d(a+ b) be
an element of Im d with a ∈ Cn,0 and b ∈ Cn \ Cn,0. There is an element b̄ ∈ Cn+1,0

such that b− db̄ ∈ Cn,0. Since d2 = 0 we have y = d(a+ b) = d(a+ b)− d(d(b̄)) =
d(a+ b− db̄) ∈ d(Cn,0). It follows that {d(x̄) : x ∈ Bn} is a basis for Im d. We con-
clude that the restriction

d : Cn+1,0 → Im d = span{d(x̄)}

is an isomorphism for every n.
Furthermore, this implies that Ker d is disjoint with Cn,0 for every n. As d(x̄) ∈

Ker d, the set {d(x̄) : x ∈ Bn} is also disjoint with Cn,0 and by the construction of
x̄ we have that span{d(x̄)} ⊕ Cn,0 = Cn. We also have Ker d⊕ Cn,0 = Cn because
Cn,0 → Im d is an isomorphism. Since span{d(x̄)} ⊆ Ker d, we must have

Ker d = span{d(x̄)} = Im d,

so Hn(C•) = 0 for all n � 1.
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