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REMARKS ABOUT Δ-COMPLEXES AND APPLICATIONS

MICHAEL PORS, SOUMEN SARKAR and PETER ZVENGROWSKI

(communicated by Donald M. Davis)

Abstract
We first consider some generalities regarding Δ-complexes, in

particular, we give a brief history of the category of Δ-complexes,
and its relation to the category of semi-simplicial complexes intro-
duced in 1950 by Eilenberg and Zilber. A natural construction of
Δ-complexes arising from a group action on a simplicial complex
is next considered. Finally, an application of this construction
to obtain an elementary explicit computation of the cohomology
ring H∗(RPn;Z2), based on a Δ-complex structure, is given.

1. Introduction

The idea and terminology of Δ-complexes seems to originate in about 2002 in the
book of Hatcher [11], indeed it is introduced in Section 2.1, and can now be found in a
few undergraduate texts such as [2]. Note that the version of Δ-complexes given in the
first edition of [11] was somewhat incomplete, and we will be following the improved
version given in the subsequent editions. An earlier version of an equivalent idea, due
to Eilenberg and Zilber [7] in 1950, is mentioned by Hatcher. In the Eilenberg–Zilber
paper these objects are called “semi-simplicial complexes,” which can be confusing
since this term has later been used in a different context. To avoid confusion with
subsequent usage we shall call the “semi-simplicial complexes” introduced in [7] “EZ-
complexes” (face maps only). The “complete semi-simplicial complex” introduced in
[7] will be called “simplicial sets” (face maps and degeneracy maps), in agreement
with the terminology of texts such as [10, 17, 22].

In the second section of this note we give a brief historical sketch of this subject
and the related idea of geometric realization. In the third section we recall (cf. [11])
the definition of the category of Δ-complexes, denoted by Δ-Comp. The equivalence
of this category with the category of EZ-complexes, as suggested in Section 2.1 of
[11], is demonstrated. A corollary of this is that the homology functor on Δ-Comp
is indeed a homology theory satisfying the Eilenberg-Steenrod axioms, and related
constructions such as cup product and Steenrod squares (in cohomology theory), and
local coefficients, can be carried out on the category Δ-Comp.
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The fourth section considers a construction of Δ-complexes that frequently occurs
in practice, namely via the action of a finite group on a Δ-complex, in particular, on
a simplicial complex. The final section then gives an application of this construction
to obtaining a Δ-complex structure for RPn and using this to give an elementary
explicit computation of the cohomology ring H∗(RPn;Z2).

2. A brief history

The ideas behind the categories we are studying originated in the 1940s with Eilen-
berg’s work on singular homology theory, and were first given formal expression in the
1950 paper [7] of Eilenberg and Zilber. We remind the reader that the terms “semi-
simplicial complex, complete semi-simplicial complex” in [7] correspond respectively
to “EZ-complex, simplicial set” in our terminology. They are respectively denoted by
EZ-Comp, Simp. The simplicial sets have received the lion’s share of the attention
since 1950, probably because of their advantage in dealing with products of spaces
and their suitability for abstract homotopy theory. An excellent brief history of the
simplicial sets can be found in Weibel’s memoir [23], and there are also books dealing
with this subject such as [17] by May, [10] by Goerss and Jardine, as well as chapters
in other books such as [22] by Selick and various seminar or lecture notes such as [4]
by Curtis.

We therefore concentrate here on the much less extensive history of the EZ-
complexes. The singular complex of a topological space gives a functor from spaces to
EZ-complexes (and to simplicial sets). Already in 1950 Giever [8] defined an adjoint
to this functor, which we now call a geometric realization. In 1951 Hu [13] gave a
more general version of this geometric realization, which would, in fact, work for any
EZ-complex and is the same as Giever’s for the singular complex of a space. The geo-
metric realization of a simplicial set was given in 1957 by Milnor [19], who emphasizes
right at the start of his paper that “This construction will be different from that of
Giever and Hu in that the degeneracy operations of K are used.” As the titles of the
papers by Giever and Hu indicate, their primary aims were in different directions and
the geometric realizations/EZ-complexes were used as a convenient tool.

The next work that deals with EZ-complexes is that of Rourke and Sanderson [21]
in 1971. In this paper EZ-complexes are called Δ-sets, while simplicial sets are called
semi-simplicial complexes and abbreviated to css-sets. In fact this paper proves that
there is an equivalence of these two categories, and then goes on to discussing the Kan
condition and developing homotopy theory. Curiously, although Lemma 1.2 in this
paper quotes a result of Eilenberg–Zilber, [7] is not mentioned in the bibliography.

It seems that the next appearance of EZ-complexes is not until Hatcher’s book
in 2002 [11], together with the idea of Δ-complexes, as already mentioned in the
Introduction. Two recent papers dealing with EZ-complexes are [9, 18], where they
are called semi-simplicial sets.

3. Generalities about Δ-complexes

The objective of this section is to recall the category of Δ-complexes, in the sense
of Hatcher [11], the category of EZ-complexes following Eilenberg–Zilber [7], and to
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show that these categories are equivalent (cf. MacLane [16, Ch. IV, Theorem 4.1],
for the notion of equivalence of categories). In the case of Δ-complexes we give a
categorical interpretation as the colimit of a suitable diagram. In the case of EZ-
complexes we also give a categorical interpretation as a contravariant functor (cf.
Propositions 3.12 and 3.14). Both these interpretations will be convenient for proving
the main theorem of this section, Theorem 3.21.

First we fix some notations and terminology. Much of this is standard (cf. [16]),
however conventions vary. So we fix them here. Throughout this section a diagram D
in a category X is itself a category that consists of, for some set I, an I-indexed set

Obj(D) = {Xi : i ∈ I, Xi ∈ Obj(X)}
together with, for each i, j ∈ I, a (possibly empty) subset of morphisms

D(i, j) ⊆ X(Xi, Xj) = homX(Xi, Xj)

such that, for any i, j, k ∈ I, any f ∈ D(i, j), and any g ∈ D(j, k), the composite g ◦
f ∈ D(i, k), and 1Xi

∈ D(i, i). Given this formalization a diagram is said to commute
if for all i, j ∈ I the set D(i, j) contains at most one element.

With the diagram D as above, a cocone from the base D to the vertex X (or
cocone from D into X) is a pair (X, {(Xi, ξi)}) where X ∈ Obj(X) and {(Xi, ξi)} =
{(Xi, ξi) : i ∈ I} is an I-tuple of pairs (Xi, ξi) with each Xi ∈ Obj(X) and each
ξi : Xi → X a morphism in homX(Xi, X) such that, for all f ∈ D(i, j), the diagram

X

Xi
f

��

ξi

����������
Xj

ξj

��

commutes. A colimit of a diagram D is then a cocone (XD, {(Xi, φi)}) such that, for
any other cocone (X, {(Xi, ξi)}), there is a unique morphism ξ : XD → X such that,
for all i ∈ I the diagram

XD
ξ �� X

Xi

φi

��

ξi

����������

commutes. One also writes XD = colimD. Since colimits are unique up to unique
isomorphism (cf. [16, Ch. III, §4]) we will often refer to the colimit of a diagram D.
The dual notion of a cone is used in [16] to define limits.

Definition 3.1. (i) For any n,m ∈ N let R = {v0 < · · · < vn} be an ordered set of
n+ 1 elements of Rm such that the set {vi − v0 : 1 � i � n} is linearly independent.
The resulting convex-hull

Δn
R :=

{
n∑

i=0

tivi : t0, . . . , tn � 0 and
n∑

i=0

ti = 1

}
is called the ordered n-simplex generated by R in R

m, and will also be written
〈v0, . . . , vn〉. We call vi the i-th vertex of Δn

R. Given ordered n-simplexes Δn
R and
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Δn
S there is a canonical affine homeomorphism

Δn
R → Δn

S given by

n∑
i=0

tiui �−→
n∑

i=0

tivi.

The standard n-simplex Δn in R
n+1 is obtained by taking vi = ei+1 for 0 � i � n.

(ii) Given an n-simplex Δn
R and a natural number k � n, a k-face of Δn

R is a k-
simplex generated by k + 1 vertices of Δn

R with the induced ordering. Notice that there
are

(
n+1
k+1

)
k-faces of Δn

R. If K is a k-face of Δn
R then the k-face inclusion of Δk into

Δn
R associated with K is the composition ιnK of the canonical affine homeomorphism

from Δk to K followed by subset inclusion

Δk
∼= �� K � � �� Δn

R.

In particular, if K is an (n− 1)-face of the standard n-simplex Δn, let k be the index
of the unique vertex not contained in K. One denotes the corresponding face inclusion
by

ιnk : Δ
n−1 → Δn.

(iii) Given an n-simplex Δn, let ∂Δn, called the boundary of Δn, denote the union

of the (n− 1)-faces of Δn. Let
◦
Δn := Δn \ ∂Δn and call it the interior of Δn. Notice

that ∂Δ0 = ∅ and
◦
Δ0 = Δ0. This may seem odd, but it simplifies notation later.

This next definition is taken from Section 2.1 of [11] with the only modifications
being a slight categorification of the language. See the same section of [11] for several
examples (and non-examples). By a “map” we always mean a continuous function.

Definition 3.2. A Δ-complex is a pair X = (X,Σ) consisting of a topological space
X and a collection of maps

Σ = {σα : Δ
nα → X : α ∈ A, nα � 0}

satisfying the following conditions.

A1. For each σα ∈ Σ the composite
◦
Δnα ↪→ Δnα

σα−−→ X is injective. Call this com-
posite

◦
σα. Definition 3.1 (iii) implies that whenever nα = 0, we get that

◦
σα = σα.

A2. Each x ∈ X is in the image of exactly one such
◦
σα.

A3. For each σα : Δ
nα → X in Σ, each k < nα, and every face inclusion Δk ↪→ Δnα ,

the composite Δk ↪→ Δnα
σα−−→ X is one of the maps in Σ.

A4. A set A ⊆ X is open if and only if σ−1
α (A) is open in Δnα for each σα ∈ Σ.

We write Σn = {σα : nα = n} ⊆ Σ, and call each σα ∈ Σn an n-simplex of X .

Definition 3.3. A morphism X = (X,Σ)→ Y = (Y,Σ′) of Δ-complexes is a map
f : X → Y such that, for each σ ∈ Σ we get that the composite

Δnα
σα �� X

f �� Y

is an element of Σ′. By a slight abuse of notation, we also write f : X → Y .
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Example 3.4. If X is a Δ-complex with associated maps Σ, then the identity map
1X : X → X clearly satisfies 1X ◦ σ ∈ Σ for all σ ∈ Σ, hence 1X is a morphism of
Δ-complexes.

Proposition 3.5. There is a category, Δ-Comp, whose

• objects are Δ-complexes,

• morphisms are morphisms of Δ-complexes,

• identity morphisms are the identity maps of Example 3.4,

• composition is given by the usual composition of functions.

Proof. This is routine to check.

Example 3.6. Any finite simplicial complex (see Definition 4.2) is a Δ-complex, cf. [2,
Section 6.1]. To obtain a Δ-complex structure one may use a partial order 
 for the
vertices such that the vertices of any simplex are simply ordered under 
, for example,
any total order of the vertices of the simplicial complex will suffice. Note that different
partial orders may give rise to different Δ-complex structures. In particular, we may
regard Δn as a Δ-complex (with e1 < . . . < en+1), which we denote simply as Δn (or

(Δn,Σn)), and any face inclusion Δk � � ι �� Δn is a morphism of Δ-complexes.

The next lemma identifies a Δ-complex as a suitable colimit, and will be useful
towards proving the main Theorem 3.21. A similar result, for simplicial sets, can be
found in Section 1.2 of [10].

Lemma 3.7. Let X = (X,Σ) be a Δ-complex, and let D = DX be the diagram in the
category Δ-Comp with one copy of Δnα for each σα ∈ Σ, denoted (Δnα , σα), and a
face inclusion ι : Δnα → Δnβ if σα factors as

σβ ◦ ι = σα.

Then X is the colimit of D.

Proof. Let ι : Δnα → Δnβ be a morphism of D, then by construction we know that

σβ ◦ ι = σα.

Thus (X,Σ) is a cocone for D. Let (Y,Σ′) be another cocone for D, where Σ′ =
{φα : σα ∈ Σ}, φα : Δ

nα → Y . We need to show that there is a unique map φ : X → Y
such that φσα = φα for all σα ∈ Σ.

By A2, for each point x ∈ X there is a unique σα(x) ∈ Σ and a unique px ∈
◦
Δnα(x)

such that

x =
◦
σα(x)(px).

Define φ : X → Y by

φ(x) := φα(x)(px).

We now show φ is a morphism of cocones for D. Indeed, for any p ∈ Δnα , if p ∈ ◦
Δnα

then (φσα)(p) = φα(p) from the above definition of φ, taking α(x) = α and x = σα(p).
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Otherwise let Δnβ be the face of Δnα such that p ∈ ◦
Δnβ and let

ι : Δnβ → Δnα

be the associated face inclusion. By hypothesis p = ι(p′) for some p′ ∈ Δnβ , and
compute

(φσα)(p) = φ(σα(p))

= φβ(p
′) (by our choice of β above and our definition of φ)

= (φαι)(p
′) (since φ is a cocone)

= φα(ι(p
′))

= φα(p).

Hence φ ◦ σα = φα for each σα ∈ Σ.
Next we show that φ is continuous. Let A ⊆ Y be open and let B := φ−1(A). By

definition of the topology on X we have that B is open if and only if σ−1
α (B) is open

for all σα ∈ Σ, but

σ−1
α (B) = σ−1

α

(
φ−1(A)

)
= (φσα)

−1(A) = φ−1
α (A)

and φ−1
α (A) is open since φα is continuous by assumption. We conclude that B is

open, and hence that φ is continuous.
Finally, to see that φ is unique, let ξ : X → Y likewise satisfy ξ ◦ σα = φα for each

σα ∈ Σ. Now for each x ∈ X there is a σβ ∈ Σ such that x ∈ Im σβ , say x = σβ(p).
In particular, we get that

φ(x) = φ(σβ(p)) = (φσβ)(p) = φβ(p) = (ξσβ)(p) = ξ(σβ(p)) = ξ(x).

Since x was arbitrary we conclude that φ = ξ. Thus φ is the unique map with this
property.

It follows that colimD exists in the category Δ-Comp and equals to X .

Remark 3.8. If X and Y are Δ-complexes, then a morphism f : X → Y gives rise to
a functor F : DX → DY , where F (Δnα , σα) = (Δnα , f ◦ σα), such that

f = colimF : X = colimDX → colimDY = Y.
Conversely, any functor F : DX → DY arises in this way from a morphism f : X → Y
of Δ-complexes where, for x∈X, say

◦
σα(ξ) = x ∈ Im

◦
σα (uniquely) and F (Δnα , σα) =

(Δnα , τα), we set f(x) = τα(ξ) ∈ Y .

Now we define the category of EZ-complexes, EZ-Comp. This definition is from [7]
with minor changes in terminology and notation. In particular, we use the term “EZ-
complex” in place of “semi-simplicial complex”, and we use an N-indexed collection
of sets Kn in place of a set K together with a function K → N (here 0 ∈ N).

Definition 3.9 (Eilenberg–Zilber [7]). An EZ-complex,K, is an N-indexed collection
of sets Kn together with a collection of functions

∂n
i : Kn → Kn−1

for all 0 < n ∈ N and all integers 0 � i � n. These functions must satisfy the identity

∂n−1
i ∂n

j = ∂n−1
j−1 ∂

n
i

for all n ∈ N and all i < j. Call the elements of Kn the n-simplexes of K. For any
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n-simplex σ call the (n− 1)-simplex ∂n
i (σ) the ith face of σ.

Note that for the above Definition 3.9, May [17] uses the notation ∂i, Selick [22]

uses di and σ(i) is used in [7]. Our aim now is to define a category Δ̃ such that any

EZ-complex may be described as a contravariant functor from Δ̃ to Set. The same
idea occurs in [21], and for simplicial sets can be found in [17, p. 4], [22, p. 91] and
partly in [7, §8].
Definition 3.10. Let Δ̃ be the category whose

• objects are the ordered sets [n] = {0 < 1 < 2 < · · · < n} for each n ∈ N,

• morphisms are the injective order-preserving functions,

• identities are the identity functions,

• composition is the usual composition of functions.

For every n ∈ N and every integer 0 � i � n+ 1 define δni : [n]→ [n+ 1] by

δni (k) =

{
k, k < i,
k + 1, k � i.

These functions are all clearly order-preserving and injective, hence they are mor-
phisms of Δ̃.

Lemma 3.11. For any n ∈ N the equation

δn+1
j ◦ δni = δn+1

i ◦ δnj−1

holds for every 0 � i < j � n+ 2.

The proof is a routine computation. The next result follows immediately from
contravariance and Lemma 3.11.

Proposition 3.12. Given a contravariant functor L : Δ̃→ Set, the sets Kn :=L([n])
together with the morphisms ∂n

j := L(δn−1
j ) for all n ∈ N and all 0 � j � n form an

EZ-complex K := KL.

Lemma 3.13. Every non-identity morphism μ : [n]→ [n+m] in Δ̃ can be uniquely
written as a composite

μ = δn+m−1
km−1

◦ · · · ◦ δn+1
k1

◦ δnk0
with k0 < k1 < · · · < km−1.

Proof. This can be found in (8.3) of Section 8 of [7] (ignoring the degeneracy maps).

Proposition 3.14. Given any EZ-complex K we get a contravariant functor L =
LK : Δ̃→ Set given by L([n]) := Kn for all n ∈ N and, for any μ : [n]→ [n+m]
write

μ = δn+m−1
km−1

◦ · · · ◦ δn+1
k1

◦ δnk0

and define

L(μ) = ∂n−1
k0

◦ ∂n
k1
◦ · · · ◦ ∂n+m−2

km−1
.

Also set L(1[n]) = 1[n].
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Proof. The proof follows by remarking that all morphisms in Δ̃ are of the form
μ : [n]→ [n+m] for some n,m ∈ N. For ν : [n+m]→ [n+m+ l], the equation L(ν ◦
μ) = L(μ) ◦ L(ν) follows from Lemma 3.13.

Given Propositions 3.12 and 3.14 we can identify an EZ-complex with a contravari-
ant functor from Δ̃ to Set and vice-versa. A morphism of EZ-complexes is then a
natural transformation between the associated contravariant functors. Denote the
category of EZ-complexes by EZ-Comp.

For the next lemma recall that ιnk : Δ
n−1 → Δn is the face inclusion associated to

the unique (n− 1)-face of Δn which does not contain the kth vertex of Δn. Note that
ιnk (ei) = eδn−1

k (i) on the vertices {e1, . . . , en} of Δn−1. So ιnk is “formally” the same

as δn−1
k .

Lemma 3.15. For any n ∈ N and any 1 � i < j � n+ 1 the following identity holds:

ιn+1
j ◦ ιni = ιn+1

i ◦ ιnj−1.

Proof. This is routine to check. Formally (as remarked above) this is same as
Lemma 3.11 except for the indexing.

Definition 3.16. Given a Δ-complex, X , let

K(X )n = {σα ∈ Σ : Dom(σα) = Δn} = Σn

for each 0 < n ∈ N and

∂n
i (σα) = σα ◦ ιni : Δn−1 → X

is the ‘pre-compose by the inclusion of the ith face’ function for all 0 < n ∈ N and all
1 � i � n.

We remark that one can think of K(X ) as a subset of DX .

Proposition 3.17. Let K(X ) be the collections of sets K(X )n together with the col-
lection of maps ∂n

i as defined in Definition 3.16. Then K(X ) is an EZ-complex.

Proof. Notice that whenever 1 � i < j � n+ 1, for any n ∈ N,

∂n−1
i ∂n

j (σα) = ∂n−1
i (σα ◦ ιnj )

= σα ◦ ιnj ◦ιn−1
i

= σα ◦ ιni ◦ιn−1
j−1 by Lemma 3.15

= ∂n−1
j−1 ∂

n
i (σα),

hence K(X ) is an EZ-complex as claimed.

Definition 3.18. Given a morphism f : X → Y of Δ-complexes, define

K(f) : K(X )→ K(Y)
to be the pointwise post-composition function

K(X )n � σα �−→ f ◦ σα.

That this is well-defined is exactly the definition of a morphism of Δ-complexes.
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Proposition 3.19. The assignment of Definition 3.18 is a (covariant) functor

K : Δ-Comp→ EZ-Comp .

Proof. Given a morphism f : X → Y in Δ-Comp by definition we have that K(f)
is a morphism in EZ-Comp from K(X ) to K(Y), thus domains and codomains are
respected as required.

Further, since K(1X)n is the ‘post-compose with the identity’ function it is clear
that K(1X ) is the identity morphism.

Finally, given morphisms f : X → Y and g : Y → Z in Δ-Comp we compute

K(g ◦ f)(σα) = (g ◦ f) ◦ σα = g ◦ (f ◦ σα) = K(g)(f ◦ σα) = K(g) ◦ K(f)(σα).

Definition 3.20 (MacLane [16]). Let C and D be two categories and let F : C → D
be a functor. Then F induces a function

FX,Y : homC(X,Y )→ homD(F (X), F (Y ))

for every pair of objects X and Y in C. The functor F is said to be

• fully faithful if FX,Y is bijective for each X and Y in C.
• essentially surjective if each object d in D is isomorphic to an object of the form

Fc, for c in C.

Theorem 3.21. The functor K is an equivalence of categories between Δ-Comp and
EZ-Comp.

Proof. Recall (see MacLane [16, Theorem IV.4.1 (iii)]) that two categories X and Y

are equivalent if and only if there is a functor F : X→ Y such that F is fully faithful
and essentially surjective. Thus we need to show that K is fully faithful and essentially
surjective.

To show that K is faithful let f, g : X → Y be distinct morphisms in Δ-Comp.
We want to show that K(f) �= K(g) in EZ-Comp. Since f �= g there is a point x ∈ X
such that f(x) �= g(x) by the definition of a function. Since X is a Δ-complex we get
that there is an α such that x is an element of the image of σα : Δ

nα → X, hence
f ◦ σα �= g ◦ σα. Then

K(f)(σα) = f ◦ σα �= g ◦ σα = K(g)(σα)

so K(f) �= K(g).

To show that K is full, let f̃ : K(X )→ K(Y) be a morphism in EZ-Comp, where
X = (X,Σ) and Y = (Y,Σ′). Recall from Lemma 3.7 that X = colimDX and Y =
colimDY . Thus, to define a morphism from X to Y, it suffices by Remark 3.8 to
specify a functor F : DX → DY . Define

F (Δnα , σα) = (Δnα , f̃(σα))

and for any face inclusion ι : Δnα → Δnβ define

F (ι) = f̃(σβ) ◦ ι : Δnα → Y.
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For ι
nβ

j : Δ
nβ−1 → Δnβ , we have

F (ι
nβ

j ) = f̃(σβ) ◦ ιj = ∂j(f̃(σβ)) Definition 3.16

= f̃(∂j(σβ)) since f̃ is a morphism in EZ-Comp

= f̃(σβ ◦ ιj)
= f̃(σα).

Since any face inclusion ι : Δm ↪→ Δn is a composition ι = ιn−1
kn−m

◦ · · · ◦ ιmk1
, the above

equality and the associative law show f̃(σβ) ◦ ι = f̃(σα) (where m = nα and n = nβ),

hence the collection f̃(σβ) forms a cocone from the base D into Y . The universal
property of the colimit then gives a morphism f = colimF : X → Y such that f ◦
σα = f̃(σα) for all σα ∈ Σ. But

K(f)n(σα) = f ◦ σα = f̃(σα)

by definition, hence K(f) = f̃ . Since f̃ was arbitrary we get that K is full.

To show that K is essentially surjective pick any EZ-complex K : Δ̃→ Set. We
will construct a Δ-complex X such that K(X ) ∼= K. This is motivated by the similar
construction in [11, p. 104]. First we define a diagram in Δ-Comp in the following
way. Define the objects of D to be, for each n ∈ N and each α ∈ Kn, a copy of
Δnα indexed by α. For each n ∈ N, each integer m � 1, each α ∈ Kn+m, and every

morphism γ : [n]→ [n+m] in Δ̃ write

γ = δn+m−1
km−1

◦ · · · ◦ δn+1
k1

◦ δnk0

and set

D(K(γ)(α), α) := {ιn+m
km−1

◦ · · · ◦ ιn+1
k0

},
where K(γ) : Kn+m → Kn. These sets are composition-closed with respect to the
index by functoriality. Construct

X =
(⊔

Δnα
)
/ ∼,

where ∼ is the same set of identifications mentioned in Hatcher [11, p. 104]. It is
routine to check that (

X, {φα : Δ
nα → X and α ∈

⋃
n∈N

Kn}
)

is a Δ-complex, that is, it satisfies the conditions A1, . . . ,A4 of Definition 3.2.
Further K(X ) ∼= K since each K(X )n consists of exactly one face inclusion for each

element of Kn, and since, for each n ∈ N and each k � n we have, in K(X ), that

∂n
k (φα) = φαι

n
k = φ∂n

k (α)

by the construction of the diagramD. Thus the morphismK → K(X ) defined by send-
ing α to φα is both well-defined and a pointwise isomorphism. Natural transforma-
tions which are pointwise isomorphisms are natural isomorphisms, hence K ∼= K(X )
in EZ-Comp. We conclude that K is essentially surjective.

The next corollary deals with the chain complex functors from either of these two
categories to Comp, the category of chain complexes of abelian groups.
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Corollary 3.22. The functor K commutes with the chain complex functors on
Δ-Comp and EZ-Comp, indeed one has the commutative diagram

Δ-Comp
K−−−−→ EZ-Comp⏐⏐�cΔ

⏐⏐�c

Comp Comp.

(1)

Proof. For any Δ-complex X = (X,Σ), we find that both Cn(X ) and Cn(K(X )) are
equal to the free abelian group on Σn = K(X )n. Since ∂n

i (σα) = σα ◦ ιni , as in Defini-
tion 3.16, the boundary maps are also identical.

From Corollary 3.22 and [21, Theorem 1.7, Proposition 2.1] we have the following.

Corollary 3.23. The categories Δ-Comp, EZ-Comp and Simp are equivalent.

Remark 3.24. As proved in [11], the natural inclusion of the chains of a Δ-complex
X into the singular chains S(X) induces an isomorphism in homology. Therefore the
homology of Δ-complexes is a homology theory onΔ-Comp satisfying the Eilenberg–
Steenrod axioms.

4. Construction of Δ-complexes

We commence this section by proving a basic result, Theorem 4.1, which says that
a G-action on a Δ-complex X by Δ-morphisms induces a Δ-complex structure on
|X|/G. This is followed by a few definitions and remarks pertaining to the case where
X is a simplicial complex. Then, after giving some further results, we compare our
Definition 4.3 with the corresponding definitions of Illman [14] using an example.
Throughout the section, it is assumed that G and X are finite.

Theorem 4.1. Let X = (X,Σ) be a Δ-complex and G act on X by Δ-morphisms.
Then the orbit space X/G has a Δ-complex structure (X/G, Σ̄) and the canoni-
cal identification map π : X � X/G induces a morphism (X,Σ) � (X/G, Σ̄) of Δ-
complexes.

Proof. We adhere to the notations of Section 3. Since G acts on X by Δ-morphisms,

if σ : Δn → X is an n-simplex then the composition gσ given by Δnα
σ−→ X

g−→ X is
an n-simplex in X . That is, if σ ∈ Σn then gσ ∈ Σn. Conversely, if gσ = τ ∈ Σn then
σ = g−1τ ∈ Σn for all g ∈ G. Thus Xn is a G-invariant subset of X, where Xn is the
union of the images of all σ ∈ Σm, m � n, i.e., the n-skeleton of X. Let σ ∈ Σn. Then

π−1(π(σ(
◦
Δn))) =

⋃
{g σ(

◦
Δn) : g ∈ G}. (2)

Suppose gσ(
◦
Δn) ∩ σ(

◦
Δn) �= ∅ and x belongs to this intersection. So x is in the

image of g
◦
σ and

◦
σ. Then by condition A2 of Definition 3.2, gσ(Δn) = σ(Δn). Since

theG-action on X preserves the ordering of each simplex, gσ(x) = σ(x) for all x ∈ Δn.
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Summarizing the above, either gσ(
◦
Δn) ∩ σ(

◦
Δn) = ∅ or g|σ(Δn) = idσ(Δn). From

this observation and (2) it follows that

π|
σ(

◦
Δn)

: σ(
◦
Δn)→ π(σ(

◦
Δn))

is a homeomorphism. On the other hand, any G-action on X by Δ-morphisms induces
an equivalence relation on Σ where as usual σ ∼ τ if and only if τ = gσ for some g ∈ G.
Let An = {σn1, . . . , σnkn} be a set of representatives for the equivalence classes of
σ ∈ Σn.

So σni’s are distinct and

X/G =

dim(X)⋃
n=0

⋃
σ∈An

π(σ(Δn)).

It is now straightforward that the collection of maps

βni = π ◦ σni : Δ
n → X/G,

where 0 � n � dim(K) and 1 � i � kn, satisfies the conditions of Definition 3.2 of a
Δ-complex. Therefore there is a Δ-complex structure on X/G with vertices V (X)/G
and clearly the identification map is a morphism of Δ-complexes.

Definition 4.2. 1. A (geometric) simplicial complex K is a finite collection of
simplexes in some R

N satisfying: (i) if σ1 is a face of σ2 and σ2 ∈ K then
σ1 ∈ K, (ii) if σ1, σ2 ∈ K then σ1 ∩ σ2 is a face of both σ1 and σ2. The zero
dimensional cells of K are called the vertices V (K) of K and the empty set ∅
is a (−1)-simplex by convention. The dimension of K is the maximum of the
dimensions of the simplexes in K.

2. For any simplicial complex K and any subset L ⊆ K, one defines its polyhedron
as

|L| =
⋃
σ∈L

σ ⊂ R
N .

Note that |L| is a compact subset of RN . Since we wish to work in the category
Δ-Comp, we shall usually assume that the vertices of any simplex of K are simply
ordered so that if σ1 is a face of σ2 then the ordering of the vertices of σ1 agrees with
the ordering coming from σ2, and in this case call K an ordered simplicial complex.
For instance, Example 3.6 gives a method to obtain such an ordering from a partial
ordering on V (K), but note that orderings that are not of this type also exist (cf.
Example 4.12). Next we introduce the idea of a G-action on a (finite) simplicial
complex.

Definition 4.3. Let G be a finite group and K be a finite simplicial complex. A
G-action on K is called simplicial if

σ = 〈v0, . . . , vr〉 ∈ K then gσ = g(σ) = 〈gv0, . . . , gvr〉 ∈ K.

In addition, if K is an ordered simplicial complex and G preserves the ordering of
each simplex of K, we call K an ordered simplicial G-complex.
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Example 4.4. Let v0 = −1, v1 = 1 and 〈v0, v1〉 = [−1, 1]. Then K = {〈v0〉, 〈v1〉,
〈v0, v1〉} is a simplicial complex. The order two flip (x �→ −x) on 〈v0, v1〉 is a simplicial
action of Z2 on K but not an ordered simplicial action.

Remark 4.5. In [14, §1] the definitions of both a simplicial G-complex, and an equiv-
ariant simplicial G-complex, are given. At the end of this section (Example 4.12)
we compare these definitions with Definition 4.3. Note that Definition 4.3 induces a
G-action on the polyhedron |K| via

n∑
i=0

tivi �−→
n∑

i=0

tig(vi)

and we denote both the actions by the same notation. This action is clearly a simplicial
homeomorphism for each g ∈ G.

Our primary concern in this section is quotients of ordered simplicial complexes,
and, in particular, we get the following as a special case of Theorem 4.1.

Proposition 4.6. Let K be an ordered simplicial G-complex. Then the orbit space
|K|/G is a Δ-complex with vertices V (K)/G. Furthermore, the canonical identifica-
tion map π : |K|� |K|/G is a morphism of Δ-complexes.

Proposition 4.7. Let K be a simplicial complex and τ a free simplicial involution
on K, i.e., a free Z2-action on K. Then there exists an ordering of the vertices of K
such that K is an ordered simplicial Z2-complex.

Proof. Let V be the set of vertices of K. One can write V = A � τA, where A is a
subset of V containing exactly half of the vertices of V . Let v1 < v2 < · · · < vk be an
order on A. Define an order on V by

v1 < τv1 < v2 < τv2 < · · · < vk < τvk.

This induces a Δ-complex structure on K, which we also denote by K. Since K is
a simplicial complex and τ is a free involution, 〈vi, τvi〉 is not an edge in K. Let
σ = 〈u1, . . . , u
〉 ∈ K. Then ui is either vji or τvji for i = 1, . . . , � and ji < ji+1 for
i = 1, . . . , �− 1. So τui is respectively either τvji or vji . Then

τσ = 〈τu1, . . . , τu
〉 and τu1 < · · · < τu
.

Therefore τ preserves the order on each simplex ofK. This proves the proposition.

Propositions 4.6 and 4.7 imply the following.

Corollary 4.8. For any free involution τ on a finite simplicial complex K, the space
|K|/Z2 has a Δ-complex structure.

Next we define a simplicial G-complex and an equivariant simplicial G-complex
following Illman [14], and we compare these definitions with our Definition 4.3 by
means of Proposition 4.11 and Example 4.12.

Definition 4.9 (Illman [14]). Let K be a simplicial complex and G act on |K|. Then
K is called a simplicial G-complex, if the map g : K → K is a simplicial homeomor-
phism for all g ∈ G. Moreover, K is called an equivariant simplicial G-complex if the
following also holds:



102 MICHAEL PORS, SOUMEN SARKAR and PETER ZVENGROWSKI

1. if 〈v0, . . . , vk〉 ∈ K and 〈g0v0, . . . , gkvk〉 ∈ K for some g0, . . . , gk ∈ G, then there
exists g ∈ G such that givi = gvi for i = 0, . . . , k. Here v0, . . . , vk need not be
distinct.

2. any simplex 〈v0, . . . , vk〉 ∈ K can be ordered such that the inclusions Gvk ⊆
· · · ⊆ Gv0 hold for the isotropy groups.

In the next remark observations 2 and 3 are due to Illman, and given in [14]
without proof.

Remark 4.10. 1. An equivariant simplicial G-complex is trivially a simplicial G-
complex. Also, by the final sentence of Remark 4.5, an ordered simplicial G-
complex is a simplicial G-complex.

2. The identification space of an equivariant simplicial G-complex by the action of
G is a simplicial complex.

3. For any simplex σ, if x ∈ σ and gx ∈ σ then gx = x, and if x ∈ ◦
σ and gx = x

then gy = y for all y ∈ σ.

Proposition 4.11. Let K be an equivariant simplicial G-complex. Then there exists
an ordering for the simplexes of K with respect to which K is an ordered simplicial
G-complex.

Proof. By Remark 4.10 (2) K/G is a simplicial complex. Writing the vertices of K
as v and of K/G as [v], we can then order the vertices [v] ∈ K/G using a suitable
partial order 
 as in Example 3.6. Lifting this to a partial order � for the vertices of
K, i.e. v1 � v2 if and only if [v]1 
 [v2], then � has the property that the vertices of
any simplex of K are simply ordered, and it is preserved under the G-action.

We next give an example of an ordered simplicial G-complex which is not an
equivariant simplicial G-complex. So, the category of ordered simplicial G-complexes
properly contains the category of equivariant simplicial G-complexes.

Example 4.12. In this example the arrows on the edges imply the ordering of sim-
plexes. For example, the 2-simplex v0v1v2 in Figure 1 is ordered as 〈v1, v2, v0〉.

Consider the 2-dimensional simplicial complex K corresponding to Figure 1. The
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Figure 1: An ordered simplicial G-complex.
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cyclic group Z4
∼= G = 〈α | α4 = 1〉 acts on K as determined by

αv0 = v0, αv4 = v1, and αvi = vi+1 for i = 1, 2, 3.

Then v0 is fixed by G. Notice that the G-action is order preserving. So K is an ordered
simplicial G-complex. Thus by Proposition 4.6, |K|/G is a Δ-complex with vertices
V (K)/G.

Observe that the G-action on K does not satisfy Remark 4.10 (2) or
Remark 4.10 (3), so this is not an equivariant simplicial G-complex.

In the above we discussed group actions which preserve the ordering of each sim-
plex. More generally we may ask the following.

Question: Let K be simplicial G-complex. Do there exist any other (possibly
more general) sufficient conditions which ensure that |K|/G has the structure of a
Δ-complex?

5. Application to real projective space

A fairly simple way to triangulate RPn is to start with the standard triangulation
of Sn as the boundary of an n-simplex. The antipodal map τ is then not a simpicial
map, however, if one passes to the first barycentric subdivision the antipodal map
is now simplicial with σ ∩ τσ = ∅ for all simplexes, hence a triangulation of RPn =
Sn/Z2 is induced with 2n+1 − 1 vertices, see Example 3.20 in [5]. Also, Basak and
the second author constructed some triangulation of RPn with 2n + n+ 1 vertices,
see Theorem 3.24 in [1]. Using these triangulations to compute the cohomology ring
of RPn still seems very complicated (the authors succeeded for n � 3).

However, RPn admits a much simpler structure as a Δ-complex with only n+ 1
vertices, already mentioned as an exercise in [11]. After setting up some notation,
we shall show how this Δ-complex can be used to give an elementary and explicit
computation of the cohomology ring. A similar computation is discussed in [12] using
an alternative technique, block-dissections.

Following Coxeter [3], the regular polytope βn ⊂ R
n+1 with the 2(n+ 1) vertices

±ei, 1 � i � n+ 1, is called the n-dimensional cross polytope (or orthoplex), and is
homeomorphic to Sn. For n = 1, 2 it is respectively the familiar square, octahedron.
It will be useful to label the vertices as vi = ei, wi = −ei. Of course βn is a simplicial
complex, with vertex set

V = {vi, wi : 1 � i � n+ 1} = {λv1, . . . , λvn+1 : λ = ±1}.
Any subset of V that contains no pair vi, wi will form the vertices of a simplex
of the simplicial complex βn. Equivalently, an r-simplex of βn can be written as
σ = 〈λ0vi0 , . . . , λrvir 〉, where 1 � i0 < i1 < . . . < ir � n+ 1, λi = ±1 and 〈x0, . . . xr〉
denotes the convex hull of points x0, . . . , xr ∈ R

n+1. From this description we see that

the number of r-simplexes equals 2r+1 ·
(
n+ 1

r + 1

)
.

Now let τ be the simplicial map of βn to itself induced by defining τ(λvi) = −λvi
on the vertices of βn. Clearly τ is a simplicial involution and gives rise to a free
simplicial action of the group C2 = {e, τ} on βn. Also note |βn| ∼= Sn with τ(x) = −x
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for any x ∈ |βn|, hence
|βn|/C2

∼= RPn.

Each r-simplex σ of RPn can be written as

σ = 〈xi0 , xi1 , . . . , xir 〉 = 〈−xi0 ,−xi1 , . . . ,−xir 〉,
where 1 � i0 < i1 < . . . < ir � n+ 1 and xij ∈ {vij , wij}, 0 � j � r (as before vij =
eij , wij = −eij ). This notation is compatible with the simple order v1 < w1 < v2 <
· · · < vn+1 < wn+1 of the vertices of βn so gives both βn and RPn a Δ-complex
structure (which would also arise by applying Proposition 4.6 or Corollary 4.8).

We now turn our attention to describing the chain complex C arising from this
Δ-complex, and then using it to give an elementary computation of the cohomol-
ogy ring H∗(RPn;Z2). Of course this is well known to be the truncated polynomial
algebra Z2[u]/(u

n+1 = 0) and can be found in many texts, e.g. [11], but using more
sophisticated machinery. Our goal here is to utilize the above Δ-complex structure
for RPn to compute its homology and cohomology (ring) as well as to exhibit explicit
generators for these, in terms of the simplexes of RPn.

In particular, the following notation for the 2n n-simplexes of RPn will be con-
venient. From the above discussion each such simplex can be uniquely written σ =
〈x1, . . . , xn+1〉 where xi ∈ {vi, wi} and (for uniqueness) xn+1 = vn+1. Equivalently,

σ = 〈λ1v1, . . . , λnvn, vn+1〉, λi = ±1.
Then these 2n simplexes can be written σA, one for each A ⊆ n = {1, 2, . . . , n}, where
A = {i : λi = −1}. For example, σ∅ = 〈v1, v2, . . . , vn+1〉. The coefficients of each chain
complex will be Z unless otherwise indicated, and |A| will denote the cardinality of
A. We remark that there is a slight abuse of notation here since we are using the
same notation for the simplex σ in Sn and its image in RPn, but there should be no
confusion since we only deal with RPn.

We first consider the chain complex C∗(RPn,RPn−1) and its differential

d̃ : Cj(RP
n,RPn−1)→ Cj−1(RP

n,RPn−1),

in particular, for j = n.

Lemma 5.1. (a) Hn(RP
n,RPn−1) ≈ Z, with generator sn :=

∑
A ⊆ n

(−1)|A|σA.

(b) For 0 � i � n− 1, Hi(RP
n,RPn−1) = 0.

Proof. (a) Note that Cn(RP
n,RPn−1) = Cn(RP

n) since Cn(RP
n−1) = 0, and also

that Cn+1(RP
n,RPn−1) = 0. It follows that

Hn(RP
n,RPn−1) = Ker(d̃n : Cn(RP

n)→ Cn−1(RP
n,RPn−1)).

Since each (n− 1)-simplex of RPn \ RPn−1 occurs in the boundary of precisely two

σA’s, any n-cycle x ∈ Ker(d̃) must be an integral multiple of
∑

A ⊆ n

λA · σA for some

λA = ±1. Without loss of generality fix λ∅ = +1, then all the other signs λA are
uniquely determined by the cycle condition d̃(x) = 0. It then only remains to check
that d̃(sn) = 0 since this will imply that x = m · sn for some m ∈ Z and hence gives
the conclusion of the lemma. To complete the proof then, consider any n− 1 simplex
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ω of RPn \ RPn−1. It must have the form σA with a single vertex vj missing, where
1 � j � n. Then it occurs in the boundary of precisely two σA, one for which j /∈ A
and one for which j ∈ A. The cardinalities of these two subsets A differ by 1, so the
form of sn guarantees that ω occurs with opposite signs in d̃(sn) and thus d̃(sn) = 0.

(b) A short non-simplicial proof of (b) follows from Proposition 2.22 of Hatcher

[11], namelyHi(RP
n,RPn−1) ≈ H̃i(RP

n/RPn−1) ≈ H̃i(S
n) = 0, i < n. We also give

a simplicial proof of this fact by means of an explicit contracting homotopy in the
chain complex itself, but defer this to the Appendix so that we can continue with the
homology calculations.

Using this lemma, the next step is to compute the connecting homomorphism

∂ : Hn(RP
n,RPn−1)→ Hn−1(RP

n−1).

Since, as established in Section 3, Δ-complexes give rise to a homology theory, know-
ing this connecting homomorphism together with Lemma 5.1 will suffice to determine
(by induction) the exact homology sequence of the pair (RPn,RPn−1), hence, in par-
ticular, the (integral) homology of RPn with explicit generators. The differential in
the chain complex C∗(RPn) will be denoted

d : Cj(RP
n)→ Cj−1(RP

n)

(in contrast with d̃ defined earlier). We may regard sn as an n-chain in
Cn(RP

n,RPn−1) or in Cn(RP
n) since, as noted in the proof of Lemma 5.1, these are

equal.

Theorem 5.2. (a) ∂(sn) = (1 + (−1)n)sn−1,
(b)

Hi(RP
n) =

⎧⎨⎩
Z : i = 0 and i = n odd,
Z2 : 0 < i < n and n odd,
0 : otherwise.

Proof. (a) Since, as noted above, j∗ : Cn(RP
n)→ Cn(RP

n,RPn−1) is the identity
map, we have

∂(sn) = (i∗)−1d(j∗)−1(sn) = (i∗)−1d(sn).

As shown in the proof of Lemma 5.1, any simplex containing the vertex vn+1 van-
ishes in d(sn), so we need only consider the coefficients of simplexes of the form
〈λ1v1, . . . , λnvn〉 in d(sn). Write such a simplex (non-uniquely) as τA, A ⊆ n, not-
ing that τA = τB if and only if B = n \A. By adjoining the vertex vn+1 to τA, τB
we obtain two distinct n-simplexes σA, σB of RPn. Now d(σA) will contain τA with
coefficient (−1)n+1 · (−1)|A| whereas d(σB) will contain τB = τA with coefficient

(−1)n · (−1)|B| = (−1)n · (−1)n−|A|.

For n odd these two coefficients add to 0, while for n even they add to 2 · (−1)|A|.
Since in the n even case this sum is precisely i∗(2sn−1), and 0 in the odd case, (a) is
proved.

(b) This is a straightforward induction, starting the induction with the known
case RP 1 ∼= S1, and using the exact homology sequence of the pair (RPn,RPn−1)
together with (a) as well as Lemma 5.1 to complete the inductive step. Note that
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there are two cases in the inductive step, (n− 1) odd to n even or vice-versa. We
omit the easily verified details.

Applying the universal coefficient theorem, or repeating the above proof with Z2

coefficients, now gives the following corollary at once.

Corollary 5.3. For all j, 0 � j � n, one has Hj(RP
n;Z2) ≈ Z2 and Hj(RPn;Z2) ≈

Z2.

Using this corollary we can now turn to the final goal of this section, computing
H∗(RPn;Z2) as a graded ring with explicit generator. We shall use the notation e.g.
〈v1, v2, v3〉∗ to denote the dual cochain of the simplex 〈v1, v2, v3〉 with coefficients Z

or Z2, i.e. 〈v1, v2, v3〉∗(σ) = 1 if σ = 〈v1, v2, v3〉 and is 0 otherwise, and similarly for
any other r-simplex. Since cup products are to be considered, a suitable partial order
of the vertices of the Δ-complex must be used, we choose the (simple) order v1 <
w1 < v2 < . . . < vn+1 < wn+1. As with any connected n-manifold, any n dimensional
“co-simplex” 〈λ1v1, . . . , λn+1vn+1〉∗ is a cocycle that generates Hn(RPn;Z2).

To complete the main goal of this section, we now exhibit an explicit 1-cocycle
u ∈ C1(RPn;Z2) such that its cohomology class [u] ∈ H1(RPn;Z2) satisfies [u]

n �= 0.
Indeed, define

u :=
∑

1�i<j�n+1

〈vi, wj〉∗. (3)

Theorem 5.4. The cochain u is a cocycle, i.e. δ(u) = 0, and [u]n �= 0.

Proof. To show that δ(u) = 0 it suffices to show 0 = (δ(u))(σ) = u(dσ) for each 2-
simplex σ = 〈±vr,±vs,±vt〉, r < s < t. Because σ = τ(σ), we can suppose without
loss of generality that there is at most one minus sign, thus σ has one of the four
forms 〈vr, vs, vt〉, 〈wr, vs, vt〉, 〈vr, ws, vt〉, 〈vr, vs, wt〉. In the first case

dσ = 〈vs, vt〉+ 〈vr, vt〉+ 〈vr, vs〉
and each summand 〈vi, wj〉∗ of u evaluates to 0 on each of the three terms in dσ. In
the second case

dσ = 〈vs, vt〉+ 〈wr, vt〉+ 〈wr, vs〉 = 〈vs, vt〉+ 〈vr, wt〉+ 〈vr, ws〉
so the summands 〈vr, wt〉∗, 〈vr, ws〉∗ of u each evaluate to 1 on dσ while all other
summands evaluate to 0, giving u(dσ) = 1 + 1 = 0. The third and fourth cases are
similar to the second.

Next, for the n-fold cup product [u]n, one must show that u⊗n evaluates to 1
on a generator of Hn(RP

n;Z2). From the above discussion (cf. Lemma 5.1 and the

remark just before Theorem 5.2) we can take this generator to be sn :=
∑

A ⊆ n

σA

(note that we are using Z2 coefficients). Each σA has vn+1 as final vertex, so in
the sum sn there will be a single “alternating” σA which we call ω, namely ω =
〈v1, w2, v3, . . . , wn, vn+1〉 for n even or ω = 〈w1, v2, w3, . . . , wn, vn+1〉 for n odd. Then
sn = ω + ϕ where ϕ is the sum of all σA with a repetition, i.e. a vivi+1 or wjwj+1 in
σA.
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Now from (3), it is clear that

u⊗n =
∑
ir<jr

〈vi1 , wj1〉∗ ⊗ 〈vi2 , wj2〉∗ ⊗ · · · ⊗ 〈vin , wjn〉∗

evaluates to zero on all terms of ϕ, hence for n even

u⊗n(sn) = u⊗n(ω) = 〈v1, w2〉∗(〈v1, w2〉) · 〈v2, w3〉∗(〈w2, v3〉) · · · = 1n = 1,

using that 〈w2, v3〉 = 〈v2, w3〉, 〈w4, v5〉 = 〈v4, w5〉, etc. The argument for n odd is
essentially the same. Hence [u]n �= 0.

Corollary 5.5. For each j, 0 � j � n, [u]j generates Hj(RPn;Z2), which is thus
isomorphic to the truncated polynomial algebra Z2[ [u] ]/([u]

n+1 = 0).

6. Appendix

In this appendix we show Hj(RP
n,RPn−1) = 0, 0 � j � n− 1, by means of an

explicit contracting homotopy s in the chain complex

C∗ : Cn
d̃n−→ Cn−1

d̃n−1−−−→ · · · d̃2−→ C1
d̃1−→ C0

d̃0−→ 0,

where we write Cj for Cj(RP
n,RPn−1) in this appendix, and as in Section 5 d̃ for

its differential. Recall that this means a sequence of homomorphisms sj : Cj → Cj+1,

0 � j � n− 1, with d̃j+1sj + sj−1d̃j = idCj and implies that Hj(RP
n,RPn−1) = 0,

0 � j � n− 1. Note that s−1 = 0.

Since C∗(RPn,RPn−1) = C∗(RPn)/C∗(RPn−1), any non-zero simplex σ of the
chain complex C∗(RPn,RPn−1) must contain the vertex vn+1. We can therefore
write any r-simplex σ uniquely as

σ = 〈xi1 , xi2 , . . . , xir , vn+1〉 where 1 � i1 < i2 < . . . < ir � n,

and henceforth use this notation. Of course, these are the generators of the free abelian
group C∗.

We next define a homomorphism

Λp : Cr−p → Cr,

show it is an anti-chain map (i.e., d̃Λp = (−1)pΛpd̃), prove one combinatorial lemma,
and after that it will be fairly easy to construct the contracting homotopy.

Definition 6.1. Let σ = 〈xm1 , . . . , xmr−p , vn+1〉 be an (r − p)-simplex in Cr−p, p+
1 � m1 < . . . < mr−p � n. Set

Λp(σ) =
∑

λi=±1

(

p∏
i=1

λi)〈λ1v1, . . . , λpvp, σ〉 ∈ Cr.

We remark that this sum has 2p terms, e.g. Λ2(σ) = 〈v1, v2, σ〉 − 〈v1, w2, σ〉 −
〈w1, v2, σ〉+ 〈w1, w2, σ〉.

Lemma 6.2. The map Λp satisfies d̃Λp = (−1)pΛpd̃.
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Proof. One has

d̃Λp(σ) =
∑

λi=±1

(

p∏
i=1

λi) d̃〈λ1v1, . . . , λpvp, σ〉.

The first terms of this sum, i.e., those that arise by omitting λ1v1 (for λ1 = ±1), gives
∑

λ2,...,λp=±1

(

p∏
i=2

λi) (〈λ2v2, . . . , λpvp, σ〉 − 〈λ2v2, . . . , λpvp, σ〉) = 0.

The same happens for the terms omitting λ2v2, . . ., omitting λpvp. What remains
gives us

d̃Λp(σ) =
∑

λi=±1

(

p∏
i=1

λi) 〈λ1v1, . . . , λpvp, (−1)pd̃σ〉 = (−1)pΛp(d̃σ).

Lemma 6.3. Let ω = 〈w1, . . . , wp, σ〉, p � 1. Then

〈v1, w2, . . . , wp, σ〉 − Λ1〈v2, w3, . . . , wp, σ〉+ Λ2〈v3, w4, . . . , wp, σ〉 − · · ·
+ (−1)pΛp〈σ〉 = ω. (4)

Proof. The final term (−1)pΛp〈σ〉 clearly has ω as one of its 2p terms (correspond-
ing to λ1 = . . . = λp = −1). It is not difficult to see that the other 2p − 1 terms in
(−1)pΛp〈σ〉 cancel the other 1 + 2 + · · ·+ 2p = 2p − 1 terms in (4) in pairs. Indeed,
for each term other than ω in (−1)pΛp〈σ〉, we have 1 � m := max{j : λj = −1} �
p, and one easily sees that this term will cancel the corresponding term in the
(−1)m−1Λm term in (4), (where Λ0 is the first term).

Now to define a contracting homotopy s, we start with s0(vn+1) = 〈v1, vn+1〉, then
d̃s0(vn+1) = 〈vn+1〉 as required.

Definition 6.4. For 0 < r < n, we define sr〈xi1 , . . . , xir , vn+1〉 = sr(ω) using the fol-
lowing four cases.

1. If i1 > 1, then sr(ω) = 〈v1, ω〉,
2. If i1 = 1 and xi1 = v1, then sr(ω) = 0,

3. If ω= 〈w1, . . . , wp, xip+1 , . . . , vn+1〉= 〈w1, . . . , wp, σ〉 with p< ip+1, then sr(ω) =
Λp(〈vp+1, σ〉),

4. (remaining cases) If ω = 〈w1, . . . , wp, vp+1, xip+2 , . . . , vn+1〉, then sr(ω) = 0.

Proposition 6.5. The homomorphism s is a contracting homotopy for C∗.

Proof. We prove that s is a contracting homotopy for the cases 1 to 4 in the given
order. In fact, 1, 2 and 4 are routine verifications and we give only the proof of 3
here.
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Let ω = 〈w1, w2, . . . , wp, σ〉, where p � 1.

d̃sr(ω) + sr−1d̃(ω) = d̃Λp(〈vp+1, σ〉) + sr−1(〈w2, . . . , wp, σ〉 − 〈w1, w3, . . . , wp, σ〉
+ 〈w1, w2, w4, . . . , wp, σ〉 − · · ·+ (−1)p〈w1, . . . , wp, d̃σ〉).

Applying Lemma 6.2, we get

d̃sr(ω) + sr−1d̃(ω) = (−1)pΛpd̃〈vp+1, σ〉+ 〈v1, w2, . . . , wp, σ〉 − Λ1〈v2, w3, . . . , wp, σ〉
+ Λ2〈v3, w4, . . . , wp, σ〉 − · · ·+ (−1)pΛp〈vp+1, d̃σ〉

= (−1)pΛp〈σ〉 − (−1)pΛp〈vp+1, d̃σ〉+ 〈v1, w2, . . . , wp, σ〉
− Λ1〈v2, w3, . . . , wp, σ〉+ Λ2〈v3, w4, . . . , wp, σ〉 − · · ·
+ (−1)pΛp〈vp+1, d̃σ〉.

Canceling the second and final terms, Lemma 6.3 shows that the remaining terms
equal ω.
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