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COCOMMUTATIVE COALGEBRAS: HOMOTOPY THEORY
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Abstract

We extend a construction of Hinich to obtain a closed model
category structure on all differential graded cocommutative
coalgebras over an algebraically closed field of characteristic
zero. We further show that the Koszul duality between commu-
tative and Lie algebras extends to a Quillen equivalence between
cocommutative coalgebras and formal coproducts of curved Lie
algebras.

1. Introduction

Differential graded (dg) coalgebras arise naturally as invariants of topological
spaces, for example as the normalized singular chains of a space. They also serve as
representing objects for formal deformation functors [8, 13, 16] and feature promi-
nently in rational homotopy theory [17, 14]. As such it is natural to ask if they
may be placed in the framework of a closed model category (CMC), at least in the
case of cocommutative dg coalgebras over a field of characteristic zero. The first
result of this kind is due to D. Quillen [17] under a rather strong connectivity as-
sumption; this assumption was subsequently removed by Hinich in [8]. The crucial
difference between these two approaches is that Quillen defined weak equivalences
to be quasi-isomorphisms whereas Hinich considered a finer (i.e., harder to satisfy)
notion of a filtered quasi-isomorphism. A particularly nice feature of Hinich’s model
is the so-called Koszul duality: it turns out to be Quillen equivalent to the category
of dg Lie algebras, again without any grading restrictions. Hinich’s theory was mo-
tivated by deformation theory, indeed it shows that the deformation functor of a
Maurer—Cartan element in a dg Lie algebra is (co)represented by a certain dg coal-
gebra.

Hinich’s construction, while being a vast generalization of Quillen’s, is not com-
pletely general in that only conilpotent dg coalgebras were allowed. The natural prob-
lem is to extend it to all dg coalgebras, not necessarily conilpotent.
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We give a rather complete answer in the case when the ground field is algebraically
closed. Our result can be interpreted as showing that dg coalgebras corepresent de-
formation functors of collections of Maurer—Cartan elements (as opposed to a single
element).

There are by now quite a few papers devoted to the study of homotopy theory of
dg coalgebras. One can try to extend Hinich’s approach to dg coalgebras over other
operads, e.g., coassociative dg coalgebras. The corresponding theory was constructed
in [12, 15]; it was further generalized in [22] to dg coalgebras over an arbitrary Koszul
operad. In these papers coalgebras are still assumed to be conilpotent. It is not clear
at present how one can extend these results to non-conilpotent dg algebras, even in
the associative case. It is interesting that Positselski nevertheless [15] succeeded in
constructing a CMC structure on the category of dg comodules over an arbitrary dg
coalgebra.

There have been various attempts at constructing a CMC structure on the category
of dg coalgebras taking weak equivalences to be quasi-isomorphisms. Technically, it
could be viewed as a Bousfield localization of a Hinich-type CMC. In the absence
of the latter one can try to construct such a CMC by transfer from the category
of dg vector spaces. In this way, Getzler and Goerss constructed a CMC of non-
negatively graded coassociative dg coalgebras, [5]; a more abstract approach was
taken in the recent paper [21]. The paper [7] takes a categorical approach allowing to
prove a CMC structure on dg comodules over a coring satisfying certain conditions.
The paper [1] constructs a CMC on the category of dg coalgebras over a quasi-
free operad (however, note that the operads of associative or commutative algebras
do not fall into this framework). Finally, the series of papers by Smith [18, 19,
20] claimed to construct a transferred CMC structure on dg coalgebras over fairly
arbitrary cooperads. It follows from our results that some additional assumptions
(e.g., those made in [1]) are necessary since the cofree coalgebra functor fails to
be exact in the simplest possible case: that of cocommutative dg coalgebras over
a field of characteristic zero. Strikingly, it is exact in the coassociative context, a
phenomenon for which we lack a really satisfactory explanation, cf. Remark 2.14
below. It follows that there cannot be a transferred CMC on cocommutative dg
coalgebras, as opposed to the coassociative dg coalgebras (even if one imposes the
characteristic zero assumption).

In light of our results it is natural to look for a CMC structure on all coassociative
(noncommutative and nonconilpotent) algebras so that the forgeful functor from all
cocommutative coalgebras is part of a Quillen adjunction. One can speculate that this
approach may eventually lead to the full algebraization of non-simply connected ratio-
nal homotopy theory, analogous to the Sullivan—Quillen theory for simply-connected
(or, more generally, nilpotent) rational spaces.

The category of cocommutative coalgebras may be identified via dualisation over
the ground field with the opposite category to the category of pseudo-compact com-
mutative algebras, cf. [4, 2] for a detailed study of pseudo-compact algebras in a
non-differential context. This point of view is taken, e.g., in the papers [9, 10] and
we adopt it here as well; it is quite convenient, particularly when dealing with cofree
coalgebras (whose duals are suitably completed symmetric algebras). If a dg coal-
gebra is conilpotent, then the corresponding dual algebra is local in the differential
sense, i.e., it has a unique dg ideal. We refer to such algebras as Hinich algebras.
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In §2 we extend arguments of Demazure concerning commutative algebras over
algebraically closed fields [2] to the graded commutative case, thus showing that
any pseudo-compact algebra is the direct product of local pseudo-compact algebras.
However, Demazure’s methodology does not take account of the differential, so as well
as Hinich algebras, pseudo-compact dg algebras include algebras where the maximal
ideal is not closed under the differential.

In §3 we extend the CMC structure on Hinich algebras to the category of all pseudo-
compact dg algebras with a unique maximal graded ideal, possibly non-differential,
which we refer to as the extended Hinich category. One may visualize this as passing
from the category of pointed connected spaces to the category of pointed connected
spaces together with the empty set. The role of the empty set is played by an acyclic
algebra which we denote A(x). However, we are not merely adding an object analogous
to the empty set, but rather objects analogous to the Cartesian products of the empty
set with a connected space. Unlike their topological analogues, these objects are not
all isomorphic.

As a result, this extension of the CMC structure on Hinich algebras is nontrivial,
and depends on the particular properties of A(z) in the extended Hinich category.
However, the structure that we obtain is in some sense natural, being the unique
extension which preserves certain intuitions, such as the inclusion of the empty set in
a point being both a fibration and a cofibration.

Next in §4 we show that the category of formal products of objects in a CMC is
itself a CMC. Continuing our topological analogy, this corresponds to passing from
pointed connected spaces to (multiply) pointed disconnected spaces. In fact the CMC
structure on formal products is quite natural, with the properties of a map being
a cofibration or weak equivalence being tied to the corresponding properties on the
components of the map in the original category. The only surprise is that the property
of a map being a fibration, determined by the right lifting property, is not tied to the
components of the map being a fibration.

In particular, we conclude that the category of all pseudo-compact commutative
dg algebras, being the category of formal products in the extended Hinich category,
is itself a CMC. We attempt a more abstract view of the situation by relating the
CMC structure on all pseudo-compact algebras to the one on Hinich algebras via a
Quillen adjunction, which may be defined independently of the factorization in §2 in
the commutative case.

In [8] the CMC structure was transferred via a Quillen equivalence from the cat-
egory of dg Lie algebras. The natural extension of this Quillen equivalence to our
extended Hinich category is to the category of curved Lie algebras. In §5 we describe
the CMC structure on curved Lie algebras and how the Quillen equivalence extends
to it. It follows that the category of all pseudo-compact commutative dg algebras
is Quillen equivalent to the opposite category of formal coproducts of curved Lie
algebras. One can view this (anti)-equivalence as the commutative-Lie Koszul du-
ality extended to all pseudo-compact commutative dg algebras (or, equivalently, all
cocommutative dg coalgebras).

We remark that the construction of the CMC structure on curved dg Lie algebras
may be applied verbatim to yield a CMC structure on curved associative dg algebras.
This raises the possibility of transferring this CMC structure to the category of all
local pseudo-compact coassociative dg coalgebras.
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2. Pseudo-compact algebras

Henceforth let k be an algebraically closed field of characteristic 0. We work in the
underlying category of differential Z-graded k-vector spaces. Algebras and coalgebras
(which are always graded commutative) are assumed to be over k as are unlabeled
tensor products. Let V be the category of counital (cocommutative) dg coalgebras
over k.

Let V' be an object in V. Given any v € V, the counit and coassociativity of V/
imply that v is contained in a finite dimensional graded ideal in V' [5, Lemma 1.1
& Lemma 1.2]. By cocommutativity this is necessarily a finite dimensional subcoal-
gebra. (In the non-commutative case such a subcoalgebra containing v may still be
constructed by other means.) Thus V' is the union of its finite dimensional graded
subcoalgebras and enlarging these subcoalgebras if necessary one can assume that
they are closed with respect to the differential and still finite-dimensional. It follows
that the linear dual of V over k (the algebra henceforth denoted V*) is the inverse
limit of finite dimensional (commutative) dg algebras (namely the linear duals of the
finite dimensional dg subcoalgebras of V).

As such, the algebra V* is endowed with a topology (regarding finite dimensional
algebras as discrete spaces). Given a morphism in V: f: V4 — Va, its dual is a con-
tinuous algebra morphism f*: V5* — V}*. Conversely any such continuous linear map
is induced by a morphism in V.

Definition 2.1. A pseudo-compact dg algebra over k is the inverse limit of a diagram
of unital finite dimensional dg algebras over k. A morphism of pseudo-compact dg
algebras is a unit preserving dg-algebra morphism which is continuous with respect
to the induced topology.

Then V* is a pseudo-compact dg algebra. In fact any pseudo-compact dg algebra
arises as the dual of a dg coalgebra. To recover this coalgebra, simply take the topologi-
cal dual. Thus we may identify V°P with the category of pseudo-compact dg algebras.
An arbitrary pseudo-compact dg algebra will be identified (both algebraically and
topologically) with the direct product of local pseudo-compact dg algebras:

Definition 2.2. A local pseudo-compact dg algebra is a pseudo-compact dg algebra
having a unique maximal graded ideal, possibly not closed with respect to the differ-
ential.

We consider the following two types of local pseudo-compact dg algebra:

Definition 2.3. A Hinich algebra is the linear dual of a dg coalgebra in the sense of
[8, 2.1]. Specifically it is a local pseudo-compact dg algebra whose maximal ideal is
closed under the differential.

Definition 2.4. An acyclic algebra is a local pseudo-compact dg algebra in which
every closed element is a boundary.

In fact these are all the local pseudo-compact dg algebras:

Lemma 2.5. Any local pseudo-compact dg algebra is either a Hinich algebra or an
acyclic algebra.
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Proof. Let A be alocal pseudo-compact dg algebra. Suppose A is not a Hinich algebra.
Then the maximal ideal M is not closed under the differential. That is we have some
dm ¢ M for some homogeneous m € M. Then dm is invertible as otherwise it would
generate an ideal, necessarily contained in M. Let wdm = 1 for some homogeneous
w € A. We have:

0=dl =d(w(dm)) = (dw)(dm).

Multiplying both sides by w, we get dw = 0. Then given a homology class [a] for
a € A, we have [a] = [awdm] = [a][w][dm] = [0].
Thus A is an acyclic algebra as required. O

Let A be a pseudo-compact dg algebra. The following arguments are essentially
the ones articulated by Demazure [2] in the (ungraded) commutative case.

We wish to show that A is a direct product of local pseudo-compact dg algebras.
We know that A is the inverse limit of a diagram of finite dimensional dg algebras.
Restricting to the image of A in each of these finite dimensional algebras, we have
that A is the inverse limit of quotients by finite codimension dg ideals I;, indexed by
1 € T some indexing set.

Each quotient A/I; is a finite dimensional commutative dg algebra, hence, forget-
ting the differential, a finite product of local graded algebras. Since du = 0 for any
idempotent u, the differential acts in each factor, and so A/I; is a finite product of
local dg algebras. By replacing each of these products with its local factors, and each
morphism with its component morphisms we obtain a new diagram (with the same
inverse limit) of local finite dimensional dg algebras. Thus without loss of generality
we may assume that each dg ideal I; is contained in a unique graded maximal ideal
M; (namely the preimage of the unique graded maximal ideal in A/I;).

Let € denote the set of graded maximal ideals of A containing some I;. For each
M € Q let Ap; denote the inverse limit of the subdiagram of quotients A/I; with
I; C M; as the inverse limit of finite-dimensional dg algebras, it is a pseudo-compact
algebra.

Lemma 2.6. We have an isomorphism of pseudo-compact dg algebras:

A= T] Awm,

MeQ

with the topology on the right hand side the product topology on the pseudo-compact
algebras Apy.

Proof. An element of A is a consistent assignment of congruence classes in each
quotient A/I;, whilst an element of Ay, is a consistent assignment of congruence
classes to just those quotients A/I; with I; C M. Thus we have a natural injective
algebra homomorphism A — [],,;cq Anr. To see that this is surjective we need that
any element of the product yields a consistent set of congruence classes in the A/I;.

If this were not consistent then we would have dg ideals I;, I; contained in distinct
unique graded maximal ideals M, M’ together with an dg ideal J containing both
1;,1;. However, in that case we would have J contained in a unique graded maximal
ideal which must equal both M and M’, contradicting M # M’.

Finally, note that the open sets of both A and [],,. A are generated by the
preimages of subsets of the A/I;. O
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Let M € Q. Given a € A with component 0 in A, we have a € I; for each I; C M.
In particular, a« € M. Thus M is the direct product of a graded maximal ideal M in
Ajps with the remaining Ay, N € Q.

An element a € A lies in M if its image in one of (and hence all) the A/I; (with
I; C M) lies in the unique maximal ideal.

Lemma 2.7. The algebra Ay is local pseudo-compact dg algebra.

Proof. Let a € A be a homogeneous element not in M. Then a maps to a unit in
each A/I; with I; C M. That is it has a unique inverse in each quotient. Let b € Ay,
represent this collection of congruence classes in the A/I;. Then ab = ba = 1. O

Thus by Lemma 2.5 and Lemma 2.6 we have that A is a direct product of Hinich
algebras and acyclic algebras.
Consider a morphism of pseudo-compact dg algebras:

£ 1T A4 = T B (1)
iel jeJ
where the A;, B; are all Hinich algebras or acyclic algebras. Clearly f is determined
by its compositions with projections onto the factors B; for j € J. Denote these f;.
Then as each A;, B; contains no idempotents other than 0,1 we know that each f;
factors through some ultraproduct of the A; over an ultrafilter p; on I.

Lemma 2.8. For j € J the ultrafilter j1; is principal.

Proof. As any inverse limit of T spaces is T, we know that the complement of 0 € B;
is open. As f is continuous, the preimage f~'(B;\{0}) is also open. In particular, it
contains a neighbourhood of 1. That is it contains the direct product of the A; with
finitely many of the A; replaced by sets U; C A;, containing 1 € A;.

In particular, f~1(B;\{0}) contains an idempotent = with component 1 in finitely
many factors A; and component 0 in the rest. As f(x)# 0 it must be the only
other idempotent in B;: f(x) = 1. Then our ultrafilter y; contains a finite set and is
principal. O

Of course the ultraproduct over the principal ultrafilter y; is just a factorA;,. That
is for every j € J there exists i; € I such that the map f; factors through the factor
A;;. In summary we have:

Theorem 2.9. Fvery pseudo-compact dg algebra is a direct product of Hinich alge-
bras and acyclic algebras. A morphism of pseudo-compact dg algebras f (as in (1))
corresponds precisely to a collection of continuous homomorphisms; f;: A;; — Bj for
each j € J.

Hinich [8] has shown that the full subcategory of pseudo-compact dg algebras
consisting of Hinich algebras is a CMC, cf. [9] concerning this formulation. In the
following section we extend this CMC structure to a larger full subcategory that
includes acyclic algebras and show that this too is a CMC. In §4 we define the notion
of the category of formal products of objects in a category. From Theorem 2.9 it
is clear that applying this operation to our category of Hinich algebras and acyclic
algebras yields precisely the category of pseudo-compact dg algebras.
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Further we show that this formal product operation takes closed model categories
to closed model categories. Thus we have that the category of pseudo-compact alge-
bras is a CMC. As discussed, this may be identified with VP, the opposite category
to V. Interchanging fibrations and cofibrations then implies that V is a CMC.

Before we proceed with this construction of a CMC structure on V, we will briefly
discuss an alternative approach. In [19] the problem of inducing a CMC structure on
V is approached by constructing an adjunction from V to the underlying category of
dg vector spaces U.

The functor G: V — U in this adjunction is just the forgetful functor, whilst
its right adjoint F' is the ‘cofree’ functor, which we will describe by explicitly giv-
ing F°P: UY°P — V°P. Here F°P denotes the functor which given any V € U, takes
V* i (F(V))*. Here we continue to regard V°P as the category of pseudo-compact
dg algebras over k and similarly we regard U°P as the category of pseudo-compact
dg vector spaces.

The following construction is given in the associative context in [5, Proposi-
tion 1.10]. Firstly, given a finite dimensional dg vector space V, let F°P(V) =
L{S )/I}, where S(V) is the free commutative dg algebra generated by V', and I

ranges over all differential ideals of finite dimensional index.

Definition 2.10. Given V € U°P a pseudo-compact dg vector space with V = I'&H’Y V,
for finite dimensional V,,, we define:

FOP(V) = lim FP(V).

Lemma 2.11. The functor F is right adjoint to G.

Proof (cf. Proof of [5, Proposition 1.10] for the associative case). We will show that
the forgetful functor G°P: VP — U°P is right adjoint to F°P. Let A =1i m A, be
a pseudo-compact algebra and let V = hm V,y, where as before the V, are finite

dimensional. We have:

Hom(F°P(V), A)

I

j—

QJ/EQ\L'

1

=

limy Hom(S(V;)/1, Aa)

Hom(S(V;), Aa)

1%

112

1 1 18

hAlHom(V.y, Aq)
5
=~ Hom(V, A). 0

The approach of [18, 19, 20] is to transfer the CMC structure on U to one on V.
That is, a morphism f: A — B is defined to be a weak equivalence or cofibration pre-
cisely when the underlying morphism of dg vector spaces G(f) has the corresponding
property [19, Definition 4.5].

Thus the functor G preserves cofibrations and acyclic cofibrations. This is equiv-
alent to saying that F' preserves fibrations and acyclic fibrations [3, Remark 9.8].
Thus F°P preserves cofibrations and acyclic cofibrations. It follows from Ken Brown’s
Lemma [3, Lemma 9.9] that F°P preserves weak equivalences between cofibrant ob-
jects. Since in U°P all objects are cofibrant it is necessarily the case that F°P is exact
(cf. [20, Theorem 4.4]).
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However, we will show that F°P is not exact and thus that a CMC structure on V
cannot be transferred in this way.

Let V = (z,y) be the two dimensional dg vector space over k satisfying dax =y,
with z in degree 0 and y in degree —1. The map f: V — 0 is a quasi-isomorphism.
We will demonstrate that F°P is not exact by showing that F°P(f) is not a quasi-
isomorphism. Indeed this implies that F), G cannot form a Quillen adjunction for any
CMC structure on V where G preserves weak equivalences.

Let k[|x, dz|] be completion of the dg algebra S(V) = k[z, dz] at the dg ideal (z).

Proposition 2.12. There is an isomorphism of pseudo-compact dg algebras

FoP(V) = [ kllea, daal].
A€k

Proof. Consider the collection J of principal dg ideals in k[z, dx], i.e., those generated
by a single polynomial p(z) € k[z]; clearly this collection is cofinal among all dg ideals
in k[z, dz] of finite-dimensional index and so

F(V) = lim kfw, da] /1
Ieg

Writing p(z) as a product of powers of prime ideals (which are all linear since k is alge-
braically closed): p(z) = (z — a1)** ... (x — a,,)*" we see that the algebra k[z]/(p(z))
decomposes into a direct product of local algebras:

n

kle]/(p(x)) = [ ] kla] /(@ — ai) = H

i=1

We denote by ey, ..., e, the corresponding set of orthogonal idempotents in
k[z]/(p(x)); thus

eiklz]/(p(x)) = klz]/(z — ai)™.
The idempotents e; are cocycles in the dg algebra k[x,dz]/(p(x)) and so, give its
decomposition as a direct product of dg algebras:

klx,dz]/ Hk’xx,dz}\ )

Since lim, klxy,dzy]/(x5) = k[|zy, dz,|], the desired statement follows. O
Corollary 2.13. The functor F°P is not exact.
Proof. We have that
F*(V) = H Ellxa, dzy]].
A€k
For each A\, we have Hy(k[|z,dx,|]) = k. Thus:
Hy(FP(V)) =[] &
Aek

On the other hand F°P(0) = k, so Ho(F°P(0)) = k. Thus F°P(f) cannot be a quasi-
isomorphism, as required. O
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Remark 2.14. Note that S(V) = k[x,dx] is the de Rham algebra of k[x] and F°P(V)
is its pseudo-compact completion. It is, thus, the de Rham algebra of the pseudo-
compact completion k[x]” of k[x]; and we showed that it is a direct product of copies of
the de Rham algebra of k[|z|]. In contrast, the corresponding procedure applied to the
free associative algebra k(x, dz) leads to the pseudo-compact version of the algebra of
noncommutative forms on k[x]”. The cohomology of the complex of noncommutative
forms is always isomorphic to k sitting in degree zero, cf. for example [6, 11.4].
Technically, the arguments in the proof of Proposition 2 fail because the idempotents
e; are no longer cocycles in the algebra of noncommutative forms. It follows that the
cofree coalgebra functor is exact in the noncommutative context. This was also proved
by Getzler and Goerss [5, Theorem 2.1] by constructing an explicit chain homotopy.

3. The extended Hinich category

Let £ denote the full subcategory of the category of pseudo-compact dg algebras,
whose objects are precisely the local pseudo-compact dg algebras. As we have seen,
these algebras are either Hinich algebras or acyclic algebras. The goal of this section
is to show that £ has the structure of a CMC.

As dl1 =0, every acyclic algebra contains an element x with dz = 1. Moreover,
2 may chosen to be of degree 1, so an acyclic algebra contains the algebra A(z) =
k[z]/2?, with differential given by dz = 1.

Lemma 3.1. Let A be an acyclic algebra. Then A = A° ® A, where A° is the subal-
gebra of closed elements.

Proof. Any element w € A may be written w = (w — xdw) + xdw, where w — zdw, dw
are closed. Conversely, given w = a + zb, with a,b closed, we have b = dw and a =
w — zdw. O

Definition 3.2. Let A be an object in £, with unique maximal ideal M. The full
Hinich subalgebra A™ consists of all elements a, such that da € M.

Note that if A is a Hinich algebra then A¥ = A. Conversely, if A is an acyclic
algebra, then A” has codimension 1 in A.

Lemma 3.3. Both A and A° are Hinich algebras.

Proof. Again let M denote the maximal ideal in A. Let M, M° denote the inter-
sections of M with A¥ and A°, respectively.

If z € A” is not an element of M then we have y € A such that zy = 1. We
need to show that y € A, in order to deduce that  is a unit in A", and hence that
A is local.

We have 0 = d(zy) = (dz)y £ z(dy). Thus z(dy) € M. In particular, yz(dy) =
+dy € M and y € A as required.

Similarly, given z € A" with = not an element of M°, we have y € A with 2y = 1
and we need to show that y € A% to deduce that z is a unit and that A° is local.

Again we have 0 = (dz)y + z(dy) = tx(dy). Hence, as before dy = +yx(dy) =0
and y € A° as required. O
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Lemma 3.4. Let f: A — B be a morphism in E. Then f restricts to a morphism
i A" — BH. Conversely given x ¢ A", we have f(z) ¢ BHY.

Proof. If x € A satisfies dz € M, then consider the image of f(dz) in B/N = k, where
N is the maximal ideal in B. This image must be 0, as any surjective map from A to
a field will have kernel M. Thus d(f(z)) = f(dx) € N and f(x) € BY.

For the converse, note that if dz is a unit, then d(f(x)) = f(dx) is also a unit. [

In particular, Lemma 3.4 implies that there are no morphisms in £ from an acyclic
algebra to a Hinich algebra, and any morphism from a Hinich algebra A to an acyclic
algebra B must factor through B,

Lemma 3.5. The category € contains all (small) colimits.

Proof. 1t suffices to show that £ contains all coproducts and coequalisers. The coprod-
uct in & is just the tensor product. The coequaliser of two maps f: A — B is just the
quotient of B by the ideal generated by elements of the form f(a) — g(a),a € A. O

Given a diagram D in &, let D°, D¥ denote the corresponding diagrams of subal-
gebras.

We will construct a limit for D by considering separately the case where there is
a cone A(x) — D and the case where there is not. Note that by Lemma 3.4, if even
one of the objects in D is a Hinich algebra, then we are in the second case.

Lemma 3.6. Suppose there is no cone A(x) — D. Then we have l&l(D) = T&l(DH),
the limit in the usual Hinich category.

Proof. Given a cone X EN D, we know that X is a Hinich algebra, as otherwise

we would have a cone A(r) — X 4 p. By Lemma 3.4 we have that f factorizes

x L pr D, where ¢ denotes the inclusion on each object of D. Then f’ factorizes
uniquely through the cone M(DH) — DH.

X o> lim(DH)

N

DH

N\

D.

As the component maps of ¢ are injective, this is the unique factorization of f
through the cone I'&nDH — D" 4 D, O

Suppose there is a cone g: A(z) — D. Thenlet L = yLH(DO) ® A(z),and let I: L —
D be the cone induced by g and I&H D® — D% % D, where ¢ denotes the inclusion on
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each object of D:
Jim D’ =L <— A(z).
| A
g
Db —*

Lemma 3.7. Let A be a Hinich algebra with vanishing differential and let f: A — D
be a cone. Then [ factors uniquely through I.

Proof. As f factors through D° and hence hm DY, we have that the following diagram
commutes, for some f': A — L m DY

Now any different morphism f”: A — L making the diagram commute, must factor
through ILnDO, as L = @DO As the components of ¢ are injective, the induced
map A — hm D° must in fact be f/, and f” is not a different morphism after all. O

Lemma 3.8. Let f: A(y) — D be a cone. Then f factors uniquely through I.

Proof. The cones f, g from A(x), A(y) induce a cone from the coproduct A(z,y). The
restriction of this to A(x,y)? factors through l&lDO by Lemma 3.7. We obtain the
following commuting diagram:

)0 —— A, y).

//T

imD? ——L<—— Az

Let a € lim D denote the image of y — x € A(x,y)°. We define a map h: A(y) — L
byh:y—a®l+1®x.

Then f =1h as Ih(y) = (f(y) — g(z)) + g(z) = f(y).

Any other morphism h': A(y) — L factorizing f would map y — h(y) + 8 ® 1, for
some 3 € 1£1 DY satisfying (3 ® 1) = 0. As the component maps of ¢ are injective, we
have that the image of 8 in each object of D is 0. Therefore 3 =0and A/ =h. O
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Lemma 3.9. We have L = l'ng.

Proof. Firstly, let A be an acyclic algebra and let f: A — D be a cone. By Lemma 3.1
we know that A is the coproduct of A and A(y). The restrictions of f to A° and
A(y), factor through [ uniquely, by Lemmas 3.7 and 3.8, respectively. These induce a
map h: A — L which is then the unique factorization of f through I:

AO\ A(y)
A /
h
A
s

D.

Now let A be a Hinich algebra and let f: A — D be a cone. We have a cone A ®
A(z) — D induced by f, g, which factors through [ as A ® A(z) is acyclic:

A A(x)
\ /
A® A(z)
f hv 9
L
|
D.

Let f/: A — L be a different map which factorizes f through I. Together with the
natural inclusion A(x) — L, there is induced a map h': A® A(x) — L. Now A’ also
factorizes the cone A ® A(x) — D. Thus by the uniqueness of this factorization i’ = h
and f’ is not a different map after all. O

Thus by Lemma 3.5 we know £ contains all (small) colimits and by Lemmas 3.6
and 3.9 we know & contains all (small) limits. Note that by Lemma 3.6 the product
A x k= A" for any algebra A in £ Whilst k£ was both an initial and a terminal
object in the Hinich category, in &, it is just an initial object, and we have a new
terminal object:

Lemma 3.10. The terminal object in & is A(x).

Proof. From any Hinich algebra there is a unique morphism to A(z), factoring through
k — A(z) (by Lemma 3.4). Any acyclic algebra is the coproduct of a Hinich algebra
with A(z), so it suffices to note that the identity is the unique morphism A(z) — A(x).
This follows from the fact that any such morphism must map x to an element of the
maximal ideal, whose derivative is 1. O
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Definition 3.11. We define fibrations, cofibrations and weak equivalences:
~ A map f: A— B is a fibration precisely when B is contained in the image of f.

— A cofibration is a retraction of a morphism in the class C, consisting of the tensor
product of cofibrations in the Hinich category with:

i) The identity 15: k — k,
ii) The identity 15,y : A(z) — A(z),
iii) The natural inclusion k — A(z).

— A weak equivalence is either a weak equivalence (in the Hinich category) between
Hinich algebras, or any morphism between acyclic algebras.

Note the fibrations between Hinich algebras are precisely the surjective maps,
which are also the fibrations in the Hinich category. (Indeed the fibrations between
acyclic algebras are also precisely the surjective maps). Further the weak equivalences
and cofibrations between Hinich algebras are precisely the same as the ones in the
Hinich category. Thus this CMC structure extends the one given in [8].

Also note that every object in £ is fibrant, as the image of any map to A(x) must
contain k£ C A(z).

It is clear from Definition 3.11 and the fact that the Hinich category is a CMC
that fibrations, cofibrations and weak equivalences are closed under retraction, and
each contain all identity maps. Further, weak equivalences must satisfy the 2 of 3 rule
and fibrations are closed under composition. To verify that we have indeed defined a
CMC, it remains to check that the various lifting properties and factorizations hold
(from which it will follow that cofibrations are closed under composition).

Lemma 3.12. Let By, By be acyclic algebras. Then any morphism f: BE — B is
a weak equivalence of Hinich algebras.

Proof. By the 2 of 3 rule for weak equivalences, it suffices to check that maps BY — k
are weak equivalences in the Hinich category. Let I denote the maximal ideal in
B°. From Lemma 3.1 we know that B =k @ I[x]/2?%, with differential given by
d(a + xb) = b for a,b € I.

Clearly the map k @ I[x]/2? — k is a quasi-isomorphism. Weak equivalences in
the Hinich category are essentially filtered quasi-isomorphisms. Take the filtration on
I[z]/2?* by the powers of I. This is an admissible filtration, and the given map k &
I[x]/x? — k respects it and induces a quasi-isomorphism on the associated grading.

1

Lemma 3.13. Cofibrations have the left lifting property with respect to acyclic fibra-
tions.

Proof. As the left lifting property with respect to a given map is closed under retrac-
tion, it suffices to verify it for each of the three classes (i), (i), (iii).

Given a commutative square with a Hinich cofibration f: A; — As on the left and
an acyclic fibration g: By — By on the right, we may factorize the horizontal maps
through the full Hinich subalgebras of By, By. The restriction of g to these is still a
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fibration in the Hinich category, and a weak equivalence (by Lemma 3.12 in the case
By, By are acyclic), so we obtain a lifting as follows:

A ——=BF . B (2)

AQHBQH H-BQ.

Composed with the horizontal map Bff — B this gives a lifting of the original square.
As the left lifting property is closed under taking coproducts, we have that the
left lifting property for acyclic fibrations holds for maps in the classes (i) and (ii). To
show that it also holds for maps in the class (iii), it remains to show that it holds for
the map k — A(z).
Let g: By — Bs be an acyclic fibration and suppose we have a commutative square:

k$B1

L,k

A(z) —2> By.
Let z € By be a degree 1 element satisfying g(z) = i2(1 ® x). Then dz =1+ m for
some degree 0 element m € ker(g) with dm = 0.

Let y € By be a degree 1 element satisfying dy = 1. Then we have that d(z —ym) =1.
Thus we may define a lifting h: A(x) — By by h: 2 — z —ym. O

Lemma 3.14. Acyclic cofibrations have the left lifting property with respect to fibra-
tions.

Proof. Suppose we have a commutative square:

A1H31

I
A2 HBQ;

with f an acyclic cofibration and ¢ a fibration.

If Ay, As are Hinich algebras, then we may factorize the horizontal maps though
full Hinich subalgebras and obtain a lifting as in (2).

On the other hand, if Ay, A5 are acyclic algebras, then so are By, By. Thus g is an
acyclic fibration and we have a lifting by Lemma 3.13. O

Lemma 3.15. Let f: A — B be a morphism in £. Then f may factorized as:
1) an acyclic cofibration followed by a fibration,
1) a cofibration followed by an acyclic fibration.

Proof. In both cases it will suffice to take cofibrations from the class C.
If A, B are Hinich algebras, then both factorizations follow from the fact that the
Hinich category is a CMC. Note the cofibrations used here are of type ().



COCOMMUTATIVE COALGEBRAS: HOMOTOPY THEORY AND KOSZUL DUALITY 317

Next suppose A, B are both acyclic algebras. By Lemma 3.1 we have A = A° ®
A(z). Letting z also denote f(z) we have that f = f0® 15 A°@A(z) - B°®
A(x), where fO0: A% — BY is the restriction of f.

Now as f° is a map of Hinich algebras we may factorize it as 0 = ji for an object
C, a cofibration i: A — C and a fibration j: C' — B°. Then i ® 1a(x) is a cofibration
of type (ii) and j ® 1,(x is still surjective, hence a fibration. Both are of course weak
equivalences as they are maps between acyclic algebras. Thus both factorizations of
f are given by:

A0 6 A2) P00,

Finally, let A be a Hinich algebra and B an acyclic algebra. We may factorize f
through the map f#: A — B, followed by the inclusion ¢: B¥ — B. Then we may
factorize fH = ji, for an object C, an acyclic cofibration i: A — C, and a fibration
j: C — BH . Thus f factorizes as:

A—tsco_Jd.pH_+t . p

As j is a fibration between Hinich algebras it is surjective, and ¢j is a fibration. Thus
f = (1)i gives us the first factorization (i).

From Lemma 3.1 we know that we have some morphism g: A(x) — B. Together
with ¢j this induces a morphism h: C ® A(x) — B. This map is a surjective map of
acyclic algebras, hence an acyclic fibration. Let ¢: C'— C' ® A(z) denote the natural
inclusion. We have that f factorizes as:

A—tsC s C®Az)—>B.

Now c¢i is a cofibration of type (iii). So f = h(ci) gives the second factorization (ii). O
Lemma 3.16. Cofibrations are closed under composition.

Proof. Note that compositions of cofibrations have the left lifting property for acyclic
fibrations by Lemma 3.13. Let f: A — B be such a composition, and let f = ji be its
factorization into a morphism ¢ € C followed by an acyclic fibration j: C' — B. We
may pick a morphism h to make the following diagram commute:

A" C

17

B— B

1B
Then f is a retract of the morphism 7 € C:

AAs a1 g

AN

J O

Thus £ contains limits and colimits. We conclude:
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Theorem 3.17. The category € is a CMC, with fibrations, cofibrations and weak
equivalences as in Definition 3.11.

The demand that there are no weak equivalences between a Hinich algebra and an
acyclic algebra was quite natural to make, as such maps are never quasi-isomorphisms.
Similarly, it was natural to demand that all maps between acyclic algebras be weak
equivalences.

Once the weak equivalences are fixed, the extension of the CMC structure on Hinich
algebras to a CMC structure on £ is completely determined by two conditions. The
first is that surjective maps are fibrations (as they were in the Hinich algebra). The
second is that the terminal object is cofibrant.

Proposition 3.18. The CMC structure on € given in Definition 3.11, is the unique
extension of the one on Hinich algebras given in [8] with:

1) weak equivalences precisely those given in Definition 3.11,
11) all surjective maps being fibrations,
1) A(x) cofibrant.

Proof. Consider any such CMC structure. The map ~v: &k — A(z) has the right lifting
property for all maps between Hinich algebras, and all maps between acyclic algebras.
Thus it must be a fibration. For any algebra A, the inclusion A” — A is the product of
the identity 14 with v and hence a fibration. Thus all the fibrations of Definition 3.11
are still fibrations in our new CMC structure.

Clearly 1, () is a cofibration and as A(z) is cofibrant we have ~ also a cofibration.
Thus for any cofibration between Hinich algebras f: A — B, the coproduct of f with
1a(z) Or v must also be a cofibration. Thus all the cofibrations of Definition 3.11 are
still cofibrations in our new CMC structure.

Our new CMC structure has the same weak equivalences, and all the fibrations
and cofibrations of Definition 3.11. Thus it cannot have any additional fibrations or
cofibrations and must in fact be the same structure. O

Finally, we note that the CMC structure on £ is related to the CMC structures on
Hinich algebras via the following Quillen adjunction:

— Let E be the inclusion functor of the category of Hinich algebras in £.

— Let H be the functor sending an algebra A € £ to A¥, and sending a morphism
f: A— Bin & to the restriction f7: A7 — BH,

We have a natural equivalence e¢: FH — 1g, where for any A € £, the map
ea: AH — A is just the natural inclusion. We have a natural isomorphism 7 from
HE to the identity functor on Hinich algebras, which is simply the identity on each
Hinich algebra. Thus F is left adjoint to H: £ 4 H.

Proposition 3.19. The pair E, H form a Quillen adjunction.

Proof. Tt suffices to note that E preserves cofibrations and weak equivalences (as well
as fibrations). O
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4. Formal categories of products

In this section we will show that if a category C is a CMC, then so is the category
of formal products of objects in C.

Definition 4.1. Let Prod(C) denote the category whose objects are maps from an
indexing set to the objects of C. We write [],.; 4; for the object corresponding to
the map sending i — A;.

A morphism in Prod(C);

iel

fZ 1_[14Z — H Bj,
il jeJ
is a map J — I, sending j — i;, together with a map sending each j € J to a mor-
phism f;: A;; — Bj;. We call the f; the components of f.
The composition of f with a map g: [[;c; Bj — [[cx Ck is given by:

(9 = gkfjk'

The identity map on [],.; A; has components 14, for i € I.

iel
Note that the indexing set for an object may be empty. We denote this object 0.
Observe that it is the terminal object in our category; given any other object, there is
a unique morphism from it to 0, which will have no components. The only morphism
from 0 is the identity map to itself.
We can also define the category of formal coproducts in C by

(coProd C)? := (Prod C°P),

where the superscript op stands to indicate the opposite category. Clearly, all our
results will also be true for the categories of formal coproducts, in particular coProd C
will be a CMC whenever C is a CMC.

Remark 4.2. To get some intuition for the category Prod C or coProdC note that if
C is the category of connected topological spaces then coProdC is the category of
all topological spaces. The categories of formal (co)products (more precisely, their
variants consisting of finite (co)products) were used in [11] to construct disconnected
rational homotopy theory.

Note that Prod of the category of local k-algebras is not the full category of k-
algebras (note that a morphism k! — k need not correspond to the inclusion of a
point in the discrete set I, but rather the inclusion of a point in 81, the Stone-Cech
compactification of 7).

However, we need not concern ourselves with this technicality for coalgebras, as
from Theorem 2.9 we have that:

Lemma 4.3. The opposite category to counital cocommutative dg coalgebras VP is
precisely Prod(£).

Returning to the general case C, we must first show that Prod(C) contains all
limits and colimits. Let D: A — Prod(C) be a diagram. Let D: A°? — SET denote
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the underlying diagram of indexing sets. Let L, C' denote the limit and colimit of D,
respectively. We have

=11 b/ ~,
AcA

where the relation is generated by i ~ D(f)(i) for f a morphism in A.

Thus each ¢ € C' may be regarded as a category, whose objects are the elements of
the equivalence class ¢ and whose morphisms are arrows D(f)(i) — 4, for morphisms
f in A. We have a diagram D.: ¢ — C sending each object and arrow in ¢ to the
corresponding object and morphism in C. Let L. = I'&HDC and let

Lp= H L..
ceC

Lemma 4.4. We have @D =Lp.
Proof. Given some A € A, let

D(A) =[] 4
iel
Each i € I is an element of a unique ¢ € C, and we have a map f#,: L. — A;. Thus
we have a morphism

4 Lp = D(A),

for each A € A. This gives us a cone f: Lp — D.

Now consider a cone g: X = HjeJ X; — D. For each c € C' we have that g maps all
the elements of ¢ to a unique j € J. We thus have a cone g.: X; — D,, which factors
uniquely through a morphism h.: X; — L, so the following diagram commutes:

X; e L
N
D..

The resulting morphism h: X — Lp, gives the unique factorization of g through the
cone f:

Corollary 4.5. The product over j € J of objects [|

II A

iEHJEJ 1;

il A; is:

Next we consider colimits. Again given an object A € A, write D(A) = [],c; Ai- An
element [ € L assigns an index 4; to each A € A. Thus [ defines a diagram D;: A — C,
sending an object A to 4;,, and a morphism f: A — A’ to the component of D(f):
fl: Dl(A) — Dl(AI).
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Let C; = hﬂDl and let:

cp=1]]c.

leL

Lemma 4.6. We have li_r>nD =Cp.

Proof. For each A€ A and [ € L we have a morphism f4,: Dj(A) = C; as C; is
the colimit of D;. Thus we have a morphism f4: D(A) — Cp. Collectively these
morphisms form a co-cone f: D — Cp.
Now consider a co-cone:
9: D= X =][X,
jeJ

Each j € J is mapped to some [ € L by g, and we have a co-cone g;: D; = Xj.
This factors uniquely through a map h;: C; — X;, making the following diagram
commute:

D
I
Cl hj>-Xj.

Thus we have a morphism h: Cp — X which gives the unique factorization of g
through f:

D
N
Cp h>—X. |

Corollary 4.7. The coproduct distributes over products. That is:
(4o v (IB) = I AiuB).
il jeJ (i,4)€IxJ
Consider a morphism:
el jeJ
For each i € I let B" denote the product in C of the B; satisfying i; = i. The maps
fi+ Ai = Bj factor uniquely through a map f%: A; — B".

We now define a CMC structure on Prod(C).
Definition 4.8. The map f (from (3)) is:
— A cofibration precisely when for each j € J we have f; is a cofibration in C,
— A fibration precisely when for each i € I we have f? is a fibration in C,

— A weak equivalence precisely when the map I — J (induced by f) is a bijection,
and each f;, j € J (or equivalently each fi, i€ I)is a weak equivalence in C.
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Theorem 4.9. If C is a CMC then Definition 4.8 determines a CMC' structure on
Prod(C).

The proof of Theorem 4.9 consists of a succession of lemmas below. Clearly the
identity map on any object is a cofibration, fibration and weak equivalence. Also it
is clear that cofibrations and weak equivalences are each closed under composition.

Lemma 4.10. Fibrations are closed under composition.

Proof. Suppose we have fibrations:

f 1A= 1185 9 [IBi = I] Cw

iel jeJ jeJ kEK

Then for each j € J, we have a fibration: ¢/: B; — C7. Given i € I, let g': B" — C"
denote the product (in C) of all the g7 which satisfy i; = i. Fibrations in a CMC are
closed under products, so we know that ¢’ is a fibration for each i € I. Recall that f°
is also a fibration for i € I.
Now consider any k € K and let j = jj, i = i;. The following diagram commutes
(where the vertical arrows denote the natural projections from products):
ft 9’

A ———= B ——= ("

|,

|

Ck.

(9f)k

Thus given i € I we have that (gf)* = ¢'f! is a fibration in C. Thus gf is a fibration.
O

Consider morphisms f: A — B, g: B — C in Prod(C). Let the objects A, B,C be
indexed by sets I, J, K, respectively.

Lemma 4.11. If any two of f, g, gf are weak equivalences, then so is the third.

Proof. If any two of f, g, gf induce bijections on sets, then so does the third. For
any k € K we have that two out g, f;, and g f;, are weak equivalences in C. Hence
we may conclude that the third is as well. O

Now suppose we have a commutative diagram in Prod(C):

A%—B$—A (4)

R
A/%’_B/#_A/

where po. = 14, p't' =14 and A, B, A’, B’ are indexed by sets I, J, I, J', respectively.

Lemma 4.12. If g is a cofibration so is f. If g is a weak equivalence so is f.
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Proof. In the category of sets, retractions of bijections are bijections. Thus if ¢ in-
duces a bijection on indexing sets then so does f. Now given any i’ € I’ we have a
commutative diagram in C:

A —2 s By s 4,

fi/l gj/l fi’l
V. /

/ i’ ’ P ’
' E— BJ/ ——— A,L-/.

We observe that f;/ is a retraction of g;;. Thus f;/ is a cofibration if g;/ is and f; is
a weak equivalence if g; is. O

Lemma 4.13. If g from (4) is a fibration then so is f.

Proof. For i € I we have the following commutative diagram in C:

A/i O B/j A/i
where (™7, p™ are maps induced by components of i/, p’, respectively, so p~" ™~ =
14/ Thus f* is a retraction of g7 so if ¢7 is a fibration then so is f*. O

Consider a morphism in Prod(C):

f: 1_[14Z — HB]

iel jeJ

Lemma 4.14. The morphism f may be factorized as a cofibration followed by an
acyclic fibration as well as an acyclic cofibration followed by a fibration.

Proof. For each j € J we have amap f;: A;; — B;. We may factorize f; = p;i; where
tj: Ai; — Cj is a cofibration and p: C; — Bj is an acyclic fibration for some object
C;. Thus we may factorize f as a cofibration followed by an acyclic fibration:

14> I]¢ = 1] B:-

iel jeJ jeJ

Now to obtain the second factorization note that for each i € I we may factorize
[t = p'; where 1;: A; — C; is an acyclic cofibration and p*: C; — B* is a fibration.
Thus we may factorize f as an acyclic cofibration followed by a fibration:

A 4TI %] 5

iel iel jeJ 0
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Consider the following commutative diagram in Prod(C):
Hie[ Ay ——= erK Ck
| lg
HjeJ B; — [Teex Dk
where f is a cofibration and g is an acyclic fibration.

Lemma 4.15. There exists a morphism:

h: HB]—> HCk

jedJ keK

making the diagram commute.

Proof. We construct h by setting for each k € K the component hy to be a map
which makes the following diagram commute:

AiLCk

7
fjl hk, \Lgk

B; g—Dk.

We know that hy, exists as f; is a cofibration and gy, is an acyclic fibration. O

Consider the following commutative diagram in Prod(C):

HieI A; — HjeJ Cj
| lg
[Lie; Bi — [Tkex D
where f is an acyclic cofibration and g is a fibration.
Lemma 4.16. There exists a morphism:
he [[B =[] ¢
iel jeJ
making the diagram commute.

Proof. We construct h by setting for each j € J the component h; to be a map which
makes the following diagram commute:

A —2=C;

) 7
fli P lgj

th .
B; —— D7,

where t™7 is the map induced by components of ¢. We know that h; exists as f; is an
acyclic cofibration and g7 is a fibration. O
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This completes the proof of Theorem 4.9, taking into account the existence of all
small limits in colimits in Prod(C) (Lemmas 4.4 and 4.6). The definitions of cofibration
and weak equivalence were the intuitive extensions of the CMC structure on C, and
determined the less obvious notion of fibration.

Consider a morphism f: [];.; Ai — 0. As f has no components, they are all vac-
uously cofibrations, so f is a cofibration.

Lemma 4.17. An object ]
are fibrant.

ser Ai €Prod(C) is fibrant if and only if each of the A;

Proof. Let f be as above. The product in C over the empty set is the terminal object
T € C. Thus for each i € I we have f* is the map f*: A; — T. O

Another way of relating the CMC structures of C and Prod(C) is through the
following Quillen adjunction:

— Let F': C — Prod(C) be the inclusion functor sending an object to itself (that is
the product over the one element set of itself).

— Let G: Prod(C) — C be the functor taking a formal product of objects in C to
their actual product in C. Given a morphism in Prod(C):

fi HAL — H Bj,
icl jeJ
note that the product in C of the B; over j € J is the same as the product over of
i € I of the B'. Let G(f) be the product of the f* over i € I.

We have a natural transformation e: F'G' — 1p,oq(c), whose components are the
projections onto the corresponding factors. We also have a natural isomorphism
1n: l¢ — GF which is simply the identity map on each object of C. Thus F' is left
adjoint to G: F' 4 G.

Lemma 4.18. The pair F,G form a Quillen adjunction.

Proof. Tt suffices to note that F' preserves cofibrations and weak equivalences (as well
as fibrations). n

Theorem 4.19. The category of counital cocommutative dg coalgebras V is a CMC.

Proof. The category V°P may be identified with the category of pseudo-compact
algebras which by Lemma 4.3 may be identified with Prod(£). By Theorem 3.17 £ is
a CMC. By Theorem 4.9, the category V°P and thus V, is also a CMC. O

Note the terminal object in Prod(€) which we have been denoting 0 does in fact
correspond to the 0 algebra in V°P. As every object in £ is fibrant, Lemma 4.17
implies that every object in V°P is fibrant.

In some ways our construction of a CMC on coalgebras may appear somewhat
ad-hoc, as were it not for the factorization of pseudo-compact dg algebras provided
by Theorem 2.9, we would not be able to call on this identification.

However, in this case the Quillen adjunction of Lemma 4.18 may be expressed
independently (after the fact) of the factorization of pseudo-compact dg algebras into
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Hinich algebras and acyclic algebras. As well as the aesthetic benefit of viewing this
link between the CMC structures on £ and pseudo-compact dg algebras, this opens up
the possibility of future generalization to the associative case, where the factorization
may not be called on.

Clearly in this case the functor I is just the inclusion of the category of Hinich
algebras in the category of pseudo-compact dg algebras. We end this section by giving
a ‘factorization independent’ construction of G.

Let A be a pseudo-compact dg algebra, which from Theorem 2.9 we know factorizes
as a product of acyclic and Hinich algebras:

A=]J A
iel
Then G(A) is simply the product in £ of the A4;. Let M; <1 A; be the graded maximal
ideal in each case. We must now consider two cases:
i) The case where 1 € A is not exact,

ii) The case where 1 € A is exact.

In case (i) we know that at least one of the A; is a Hinich algebra, hence by
Lemma 3.6 we know that G(A) is the product in the category of Hinich algebras of
the AH.

Let Jac(A) denote the Jacobson radical of A. This is simply the direct product of
the M;. Let d~*Jac(A) denote the preimage under the differential of the Jacobson
radical. Recalling that in each A; we have d"*M; = A¥ | we obtain:

d~'Jac(A) = HAZH
iel
Finally, to obtain the product in the category of Hinich algebras, we must take the
Jacobson radical once more and reattach the unit. We conclude:

Lemma 4.20. If 1 € A is not exact then we have:
G(A) = k @ Jac(d"'Jac(A)).

If we introduce the notation dJac(A) to denote the intersection of all graded maxi-
mal differential ideals, then we may write this more concisely. We have that dJac(A;)
is the graded maximal ideal in A¥ for each i and thus dJac(A) is the product of these
maximal ideals. In case (i) we may therefore write:

G(A) = k@ dJac(A).

We now consider case (ii). In this case all the A; are acyclic algebras. We may apply
Lemma 3.9 to deduce that G(A) is the product in the category of Hinich algebras of
the AY, tensored with A(x). Recalling that in each A; we have d=10 = A?, we obtain:

d'o=]] 47
il
Again to obtain the product in the category of Hinich algebras, we must take the
Jacobson radical and reattach the unit. We conclude:
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Proposition 4.21. If 1 € A is exact then we have:
G(A) = (k@ Jac(d~10)) @ A(z).

Combining with Lemma 3.19 we have that the inclusion of the original category
of Hinich algebras in the category of all pseudo-compact dg algebras F'E, has a right
adjoint HG, together with which it forms a Quillen adjunction. We may write HG:

Proposition 4.22. Let A be a pseudo-compact dg algebra. We have:

k@ dJac(A), 1 € A is not exact,

HG(A) = { k@ Jac(d=10)[z], 1€ A is exact.

5. Curved Lie algebras

In [8] the CMC structure on the Hinich category is induced via a Quillen equiv-
alence with the category of dg Lie algebras. It is natural to ask if this equivalence
extends to the extended Hinich category &, and if so, in what way we should extend
the category of Lie algebras to include ‘acyclic’ objects. It transpires that the correct
extension is the category of curved Lie algebras.

A curved Lie algebra is a graded Lie algebra A containing a distinguished degree
—2 element wy € A (referred to as the curvature of A), and having a degree —1
derivation d, such that:

d(ab) = (da)b + —19°8 % (db), d*a = [wa,al.

We abuse terminology slightly by referring to d as the differential of A.

Morphisms of curved Lie algebras must respect the grading, Lie bracket, differ-
ential and distinguished element. The usual dg Lie algebras are precisely the curved
Lie algebras A, satisfying ws = 0. We refer to these as uncurved and to curved Lie
algebras A with wa # 0 as genuinely curved or gencurved. Clearly there are no mor-
phisms from an uncurved Lie algebra to a gencurved one. Denote the category of
curved Lie algebras G and the subcategory of usual dg Lie algebras L.

The category L is a CMC [17]. In particular, its CMC structure has fibrations
precisely the surjective maps [17, Theorem 5.1].

Remark 5.1. We note at this point that the arguments for the extension of a CMC
structure on dg Lie algebras to curved Lie algebras may be applied verbatim to
extending the CMC structure on dg associative algebras to curved associative Lie
algebras.

This raises the distinct possibility that a CMC structure on conilpotent coassocia-
tive coalgebras could be transferred from the category of curved associative algebras,
by extending our adjoint pair of functors between £ and G.

In order for it to make sense to say that £ is Quillen equivalent to G we must first
establish that G is a CMC.

Lemma 5.2. The category G is closed under taking small limits.

Proof. Given a small diagram D, one may regard it as a diagram of graded vector
spaces. Let L denote the limit of this diagram. There is a natural differential and Lie
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bracket induced on L. Finally, let the curvature wy, € L be the unique element which
maps to the curvature of each object in D. Then any cone from a curved Lie algebra
X to D will factor through a unique map of curved Lie algebras X — L. O

Note that the product of curved Lie algebras has the direct sum of the underlying
vector spaces as its underlying vector space. We will use the notation x to denote
the product of curved Lie algebras. Also we will denote the curved Lie algebra freely
generated by certain generators by placing the generators in angled brackets (). Con-
versely if elements of a curved Lie algebra already under consideration are placed in
angled brackets (), then it will denote the ideal generated by those elements.

Lemma 5.3. The category G is closed under taking small colimits.

Proof. Given a small diagram D, let D,, denote the extension of D which includes the
initial object (w) and its morphism to each object of D. Let C' denote the colimit of
the underlying diagram of graded Lie algebras. Define a differential on C' inductively
via the Leibniz rule. Further let we the curvature of C' be the image of w € (w).

It remains to verify that d?z = [we, ] for all # € C. This follows by induction
on the largest length of a term in z: Let a,b € C satisfy d?a = [w¢, a], d?b = [we, b].
From the Jacobi identity we have:

d*[a,b] = [d%a,b] + [a,d?D] = [[we, a),b] + [a, [we, V] = [we, [a, b]]. O

We next define a CMC structure on G, extending the one from [17] on L:

Definition 5.4. We define weak equivalences, fibrations and cofibrations in G:

— Weak equivalences are the weak equivalences in £, together with all maps between
gencurved Lie algebras.

— Fibrations are all surjective maps.

— Cofibrations are all maps which have the left lifting property with respect to acyclic
fibrations (as defined above).

From the definition it is clear that all three classes contain all identity maps and
are closed under composition and retraction. Further it is clear that weak equivalences
satisfy the 2 of 3 rule and that cofibrations satisfy the left lifting property with respect
to acyclic fibrations. Finally, note that all three classes restricted to L are precisely
the corresponding class in the CMC structure on £ from [17, Theorem 5.1].

Lemma 5.5. Acyclic cofibrations are precisely the maps which have the left lifting
property for all fibrations.

Proof. First we will show that acyclic cofibrations have the left lifting property for
all fibrations. Let f: A — B be an acyclic cofibration. If A, B are uncurved then f
has the required lifting property for all fibrations between uncurved Lie algebras and
vacuously for all other fibrations.
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Thus we assume that A, B are gencurved. Consider a commutative square in G:

A X

1

B——=Y,
v
where g is surjective. We then have the following commutative square:

A "Dy B

I e

B——Y xB.
(’leB)
The right hand map is still surjective, but is now acyclic as it is a map between
gencurved Lie algebras. As f is a cofibration, we then have a lifting (h,15): B —
X x B making the diagram commute. In particular, the following diagram commutes:

A" X

AT

Hence f satisfies the required lifting property. Conversely suppose that f: A — B
satisfies the left lifting property with respect to all fibrations. In particular, it has the
left lifting property for all acyclic fibrations, hence f is a cofibration. It remains to
show that f is acyclic.

If A, B are both gencurved then clearly f is acyclic. If A, B are both uncurved
then as f satisfies the left lifting property for all fibrations in £, we know that f is
acyclic. It will then suffice to rule out the possibility that A is gencurved and B is
uncurved.

Suppose that A is gencurved and consider the following commutative square in G:

B %—
where the right hand morphism is projection onto B and hence a fibration. We have
a lifting (h,1p): B — A X B making the diagram commute. In particular, hf = 14
so h(wp) = w, # 0. Thus wp # 0 and B is not uncurved. O

(1A, )

)

Corollary 5.6. Acyclic cofibrations are closed under pushouts.

Proof. Any class of morphisms which is defined by having the left lifting property
with respect to a class of morphisms will be closed under pushouts. O

Corollary 5.7. Given a cofibration f: A — B between gencurved Lie algebras, we
have that the induced map fo,: A/{(wa) = B/{wpg) is an acyclic cofibration in L.
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Proof. Suppose we have a commutative square:

e

Af(wa) ——

:

B/{wp) —

‘.< Q

)

where g is a fibration in L.

We may extend the diagram in the following way so that f having the left lifting
property with respect to g yields a lifting which necessarily factors through a map
h: B/{wg) — X:

A——=A/( wA ) ——X

Jw

<

<
:‘

Q

-%

As the quotient maps A — A/{wa), B — B/{wpg) are surjective we have that the
above diagram commutes. Thus f,, has the left lifting property for all fibrations in
L, as required. O

In order to show that we have a CMC structure on G it remains to show that we
have the required factorizations.
Let B be a curved Lie algebra and let B_ be its homogeneous elements. Define

FB = <w,ub,ub\ be B_>7

to be the free curved Lie algebra on B. In particular, w is the curvature of Fg and
the only relations imposed on the generators are that for all b € B we have du, = vy
and dv, = [w, up]. The elements of Fp are graded so that we have the natural map
mp: Fg — B sending:

up — b,

Vp > db,

w— wg,

for each b € B_.
Lemma 5.8. The inclusion (w) — Fg is an acyclic cofibration.
Proof. Given a commutative square:

(w) ——> X

|k
FBTK

with ¢g a surjective map, we may define a lift h: Fiz — X making the diagram com-
mute as follows:
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— Map w to wx.
— Map each wuy, to a preimage x;, (of the appropriate degree) under g of k(uyp).
— Map each v, to dxyp. O

Lemma 5.9. For any curved Lie algebra A, the quotient map A — A/{wa) is a cofi-
bration.

Proof. The map A — A/(w4) has the left lifting property for all maps between un-
curved Lie algebras and (vacuously) for all maps between gencurved Lie algebras. In
particular, it has the left lifting property for all acyclic fibrations as required. O

Lemma 5.10. Let f: A — B be a map of curved Lie algebras. Then f may be fac-
torized as:

i) an acyclic cofibration followed by a fibration,

i) a cofibration followed by an acyclic fibration.

Proof. The maps f and mp induce a map j: Fpx, A — B on the pushout Fpx(,)A
making the following diagram commute:

By Lemma 5.8 the left hand vertical map is an acyclic cofibration and by Corollary 5.6,
its pushout 7 is also an acyclic cofibration. The induced map j is clearly surjective,
hence a fibration. Thus f = ji gives us the first factorization (i).

If A, B are gencurved, then the first factorization is also the second factorization
(ii), as all maps between gencurved Lie algebras are weak equivalences. If A, B are
uncurved then the second factorization follows from £ being a CMC. Finally, we
consider the case where A is gencurved and B is uncurved.

In this case the map f factorizes through the quotient map A — A/(w), which
by Lemma 5.9 is a cofibration. The map A/{w) — B lies in £ and hence factor-
izes through some uncurved Lie algebra C, as a cofibration ¢ followed by an acyclic
fibration j. Thus we obtain the second factorization (ii) of f:

A%A/<w>$C$B, O
Thus G contains limits and colimits and has a closed model structure. We conclude:

Theorem 5.11. The category G is a CMC.

We can give a ‘generating set’ (in the sense of Lemma 5.12 below) for the cofibra-
tions of G. Let I be the set of morphisms in G of the following four types:

(1) Inclusions (w) — (w,u,v) where du = v and w is the curvature element.

(ii) Inclusions (v) — (u,v) where dv = 0, du = v and 0 is the curvature element.
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(iii) Inclusions 0 — (u), where du = 0 and 0 is the curvature element.
(iv) The map (w) — 0, where w is the curvature element.

From Lemma 5.8 we know that type (i) morphisms in I are cofibrations. From
Lemma 5.9 we know that the type (iv) morphism in I is a cofibration. Also we are
given that type (ii) and (iii) morphisms in I are cofibrations in £ [17]. Thus the
morphisms in I are cofibrations. They generate all cofibrations in G in the sense:

Lemma 5.12. The maps satisfying the right lifting property with respect to I are
precisely the acyclic fibrations of G.

Proof. As the morphisms of I are cofibrations it is clear that acyclic fibrations will
have the right lifting property with respect to them. We must prove the converse.

Let f: A — B have the right lifting property with respect to I. If A, B are uncurved
then for f to have the right lifting property with respect to type (ii) and type (iii)
morphisms in I, it must be an acyclic fibration in L.

In order to have the right lifting property for the type (iv) morphism in I, f cannot
be a map from a gencurved algebra to an uncurved algebra.

Finally, if both A, B are gencurved then f is acyclic. Further, having the right
lifting property with respect to type (i) morphisms in I implies that f is surjective,
hence a fibration as well as acyclic. O

A description of the cofibrations in G in terms of how they extend the cofibrations
in £ is given by the following:

Lemma 5.13. FEvery cofibration in G is a retract of a pushout of a cofibration of one
of the following three types:

1) A cofibration in L,
2) The composition of a quotient map A— A/{wa) with a cofibration in L,
3) An inclusion of the form (w) — Fx for some graded set X.

Proof. In the proof of Lemma 5.10 we show that every morphism in G factors as a
cofibration of type 1) or 2) or a pushout of a cofibration of type 3), followed by an
acyclic fibration. In particular, for any cofibration f, we have f = pi where p is an
acyclic fibration and ¢ is a pushout of a cofibration of one of the three types.

Then by the standard diagram chase we have that f is a retract of i. O

Having shown that G is a CMC, we extend the contravariant functors in the Quillen
equivalence between Hinich algebras and Lie algebras [8], to a Quillen equivalence:

CE
S, G (5)

Here C'E takes a curved Lie algebra, g to its Chevalley—Eilenberg complex. As an
algebra this is the completed free graded commutative algebra on the dual of g raised
one degree: S(Xg)*.

The differential d is induced via the Leibniz rule and continuity by its restriction
to (3g)*. This restriction is given by:

d=dy+d; +da,

where:
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do: (Xg)* — k is given by evaluation on w the curvature of g,
dy: (Xg)* — (Xg)* is given by precomposition with the differential on g,
dy: (Xg)* — S?(Xg)* is given by precomposition with the Lie bracket on g.

Note that on (Xg)* we have dod; = 0 as the curvature is closed, d3 + doda = 0 by
the defining property of the curvature and dyds + dad; = 0 by the Leibniz rule. It
follows that d? = 0, as the remaining terms vanish.

The functor L takes an algebra A € £ to the free Lie algebra on the topological
dual of A raised one degree: L(XA)*. Composition of the differential on A with
augmentation gives an element in (XA)*, which we set as the curvature of LA.

Theorem 5.14. The functors L and CE in (5) determine a contravariant Quillen
equivalence between the closed model categories of curved Lie algebras and the extended
Hinich category.

The proof consists of a succession of lemmas below.

Lemma 5.15. The functors L and CE interchange Hinich algebras and uncurved
Lie algebras. They also interchange acyclic algebras and gencurved Lie algebras.

Proof. 1If A is a Hinich algebra, then the image of its differential lies in its maximal
ideal so the composition of the differential with augmentation is zero. Thus LA is
uncurved. Conversely if the maximal ideal of A is closed under the differential then
A is a Hinich algebra.

If g is a gencurved Lie algebra then dy is non-zero and for some x € (Xg)* we have
dx not in the maximal ideal of C'E(g). The proof of Lemma 2.5 implies CE(g) is
acyclic. Conversely if CE(g) is acyclic, then dy is non-zero and g is gencurved. O

Let e: CEL — 1¢ be the unit of the adjunction and let §: LCE — 1g be the
counit. In order to show that CE, L form a Quillen equivalence, it suffices to show
that €, are always weak equivalences and that C'E takes fibrations to cofibrations
and acyclic fibrations to acyclic cofibrations.

Lemma 5.16. For any A € &, g € G we have that €4, 04 are weak equivalences.

Proof. As the equivalence has been established between Hinich algebras and un-
curved Lie algebras [8], we may assume that A is acyclic and g is gencurved. Then
by Lemma 5.15 we know that €4 is a map between acyclic algebras and dg4 is a
map between gencurved Lie algebras. So they are both weak equivalences (Defini-
tions 3.11, 5.4). O

We know that C'E takes fibrations between uncurved Lie algebras to cofibrations
and preserves their acyclicity [8]. Further we know that C'E preserves the acyclicity
of all maps outside the subcategory of uncurved Lie algebras. That is we know that
the only weak equivalences outside this subcategory are maps between gencurved
algebras, and C'E takes these to maps between acyclic algebras, which are known to
all be weak equivalences. It remains to show that:

(i) CE takes fibrations between gencurved Lie algebras to cofibrations.
(ii) C'E takes fibrations from gencurved to uncurved Lie algebras to cofibrations.

Recall that fibrations in G are precisely the surjective maps. Let f: g — h be a
surjective map in G.
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Lemma 5.17. If g,h are gencurved then CE(f) is a cofibration.

Proof. From Lemma 5.15 we know that C'E(g) and CE(h) are acyclic. Thus by
Lemma 3.1 we may write CE(f) = f' ® 15(,) for some f': A — B a map of Hinich
algebras with vanishing differentials. Our goal will be to show that f’ is a cofibration
in the Hinich category, making CE(f) a cofibration in C of type (ii) (Definition 3.11).

As f is surjective, we have that f*: (Xh)* — (3g)* is injective and thus splits as
a map of graded vector spaces. This splitting induces a map of graded algebras (not
necessarily respecting the differentials):

j: CE(g) — CE(h),

satisfying jCE(f) = 1lop). Let j': B — A be the restriction of j to B, composed
with the natural map of algebras (again not necessarily respecting the differential)
CE(h) — A. As both the differentials on A and B vanish, we have that j’ respects
the differentials and is a map of Hinich algebras. Clearly we have j'f’ = 14, so we
know that f’ is a retraction in the Hinich category.

In order to conclude that the retraction f’ is a cofibration in the Hinich category
it suffices to show that as a graded algebra, B has the form B = S(U) for some
vector space U. This follows from the fact that as a graded algebra (ignoring the
differentials) B is a retract of CE(g). Indeed the inclusion of B in C'E(g) composed
with the natural map of algebras C'E(g) — B killing z, results in 15. O

Lemma 5.18. If g is gencurved and b is uncurved then CE(f) is a cofibration.

Proof. We have an exact sequence of Lie algebras:
I5g5,

where 7 is the inclusion of the kernel of f. As I contains the curvature of g we have
that ¢ is a map of gencurved Lie algebras.

Applying CFE to this sequence we get:
ce1) LY op(g) “EY CB(®). (6)

The map 7 induces a surjective map (¥g)* — (31)* which splits as a map of graded
vector spaces. Thus we have a retraction of graded algebras induced j: S(X1)* —

S(Xg)*, satisfying CE(i)j = log)-
Lemma 5.15 implies that CE(I), C'E(g) are acyclic, so by Lemma 3.1 we may write
CE(i) =17 ®@ 1) : B A(z) + A® A(x),

for a map of Hinich algebras i': A — B.

Let 7/: B — A be the restriction of j to B, composed with the projection A ®
A(xz) — A killing . Then we have that i'j' = 15 and

(' ® 1a@) (' ® La@) = lop)-

Now j' is a map of Hinich algebras, as it respects the (trivial) differentials of A, B.
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Consequently (j' ® 1(y)) is a morphism in £ and the sequence (6) splits:

N CE(z A ~ CE ~
snr <Y g1y @ $p) <Y 5 (sh),
-~
J' @A)

We see that CE(f) is the coproduct of the identity map L (sp)- with the inclusion

v: k — S(XI)*. Tt remains to show that ¢ is a cofibration.

As the differential on k vanishes, we have that ¢ factors through A. That is ¢
is the tensor product of some map z: k — A with the natural inclusion k& — A(z).
To conclude that ¢ is a cofibration in £ of type (iii) we need only show that z is a
cofibration in the Hinich category (see Definition 3.11).

Note that z is a retract as the Hinich algebra A is augmented over k. We have that
A is a retract (as a graded algebra) of S(X1)*, so the retract z: k — A is indeed a
cofibration in the Hinich category. O

This completes the proof of Theorem 5.14. Combining with Lemma 4.3 we obtain:

Corollary 5.19. The category of V of counital cocommutative dg coalgebras is
Quillen equivalent to the category coProd G of formal coproducts of curved Lie al-
gebras.
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