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Abstract
We use a classical result of McCord and reduction methods

of finite spaces to prove a generalization of Thomason’s theo-
rem on homotopy colimits over posets. In particular, this allows
us to characterize the homotopy colimits of diagrams of simpli-
cial complexes in terms of the Grothendieck construction on
the diagrams of their face posets. We also derive analogues of
well known results on homotopy colimits in the combinatorial
setting, including a cofinality theorem and a generalization of
Quillen’s Theorem A for posets.

1. Introduction

Let C be a small category and let X : C → CAT be a functor to the category CAT
of small categories. Recall that the Grothendieck construction on X, which is usually
denoted by C ∫

X, is the following category. The objects are the pairs (c, x), where c is
an object of C and x is an object of X(c), and the morphisms (α, β) : (c, x) → (c′, x′)
are given by morphisms α : c → c′ in C and β : X(α)(x) → x′ in X(c′). Thomason’s
theorem [15] establishes the existence of a natural homotopy equivalence

hocolim NX → N (C
∫

X),

from the homotopy colimit of the nerve of X to the nerve of the Grothendieck con-
struction.

In this article we focus our attention on homotopy colimits of diagrams of spaces
indexed by finite partially ordered sets. The main idea is to use the interaction
between the combinatorics and the topology of finite topological spaces to investigate
homotopy colimits of diagrams of polyhedra. If P is a finite poset and X : P → P<∞
takes values in the category of finite posets, the Grothendieck construction P

∫
X is

also a finite poset and, in fact, it is very simple to characterize. On the other hand,
any finite poset can be regarded as a finite topological space where the open subsets
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are its downsets (see, for example, [1, 3, 9, 10, 12]). We handle the Grothendieck
construction on a diagram of finite posets as a finite topological space and use a
local-to-global theorem of McCord [12, Thm 6] to derive analogues of well known
results on homotopy colimits in the combinatorial setting and to prove a general-
ization of Thomason’s theorem. This generalization allows us to apply combinatorial
methods to investigate homotopy colimits of diagrams of polyhedra (indexed by finite
posets). In [2] Barmak exhibited a very simple proof of Quillen’s Theorem A for posets
[13] (or equivalently, McCord’s theorem for finite topological spaces [12]) using the
non-Hausdorff mapping cylinder Bf of a poset map f : X → Y . The non-Hausdorff
mapping cylinder is a finite analogue of the classical mapping cylinder of a continuous
function, and similarly to its classical version, Bf is the non-Hausdorff homotopy col-

imit (i.e., the Grothendieck construction) of the diagram of posets X
f−→ Y , indexed

by the poset 1 of two elements 0 < 1.
In Section 2 we study non-Hausdorff homotopy colimits of P -diagrams from the

finite space point of view. We use reduction methods to investigate their weak homo-
topy types. Quillen’s Theorem A for posets follows immediately from Proposition 2.8
and Proposition 2.4 below, by applying the results to the poset 1.

The main result of the article is the following generalization of Thomason’s theorem
in the context of finite posets.

Theorem 1.1. Let P be a finite poset. Let K : P → S be a diagram of spaces and
X : P → P<∞ be a diagram of finite posets. Let φ : K → X be a diagram morphism
(where X is viewed as a diagram of finite topological spaces) such that φp : Kp → Xp

is a weak homotopy equivalence for every p ∈ P . Then there exists a weak homotopy
equivalence

φ̂ : hocolimK → hocolimX,

from the homotopy colimit of K to the non-Hausdorff homotopy colimit of X (viewed
as a finite topological space).

As an immediate consequence of this result we derive a particular case of Thoma-
son’s theorem in the context of posets, and also a kind of converse of Thomason’s
theorem, which relates the homotopy colimit of a diagram of simplicial complexes
with the non-Hausdorff homotopy colimit of the diagram of their face posets. In
combination with the reduction methods of Section 2, this allows us to simplify the
computation of homotopy colimits of diagrams of spaces.

It is well known that for any simplicial set T , there is a natural homotopy equiva-
lence sd T → T from the (geometric realization of the) barycentric subdivision of T
to T (see, for example, [11, Thm. 12.2.5]). By Bousfield–Kan’s homotopy lemma [5],
this implies that the homotopy colimit of a diagram of simplicial sets is homotopy
equivalent to the homotopy colimit of the diagram of their barycentric subdivisions.
On the other hand, any ordered simplicial complex K (i.e., a simplicial complex
together with a partial ordering of its vertices that restricts to a total ordering on the
vertices of each simplex) can be seen as a simplicial set Ks. Moreover, the simplicial
set associated to its (geometric) barycentric subdivision (K ′)s is naturally isomorphic
to sd Ks, the subdivision of the simplicial set Ks (see [11, Thm. 12.2.2]). This proves
that the homotopy colimit of a diagram of ordered simplicial complexes (and ordered
simplicial maps) is homotopy equivalent to the homotopy colimit of the diagram of
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their barycentric subdivisions. However, in a general geometric situation, one has to
deal with diagrams of unordered simplicial complexes, and in the unordered context
there is no natural homotopy equivalence between K and its barycentric subdivision
K ′ (although their underlying topological spaces are equal). Our methods turn out
to be appropriate to circumvent this problem. As a corollary of our main theorem,
we prove invariance of homotopy type under barycentric subdivision for homotopy
colimits in the (general) unordered setting.

The paper concludes with some new results on homotopy colimits of diagrams
of polyhedra, which are obtained by applying the main theorem together with the
combinatorial methods introduced in Section 2.

2. The Grothendieck construction on posets and reduction
methods

Given a finite poset X, we denote by K(X) its classifying space. K(X) is also called
the order complex of X and it is the simplicial complex whose simplices are the non-
empty chains of X. A finite poset can be seen as a finite topological space whose open
subsets are the downsets (see, for example, [1, 3, 9, 10, 11, 12]). The topology of
the finite space X is related to the topology of the classifying space K(X). This was
studied by McCord in [12]. Concretely, there is a natural weak homotopy equivalence
μ : K(X) → X (i.e., a continuous map which induces isomorphisms in all homotopy
groups). μ is called the McCord map and it is defined as follows. Given α ∈ K(X),
write α =

∑r
i=1 tixi with

∑r
i=1 ti = 1 and ti > 0, where x1 < x2 < · · · < xr is a chain

of X, and define μ(α) = x1.
Throughout this paper we will handle finite posets as finite topological spaces and

use the weak equivalence K(X) → X. A function f : X → Y between finite posets
(= finite spaces) is a poset map (i.e., it is order preserving) if and only if it is contin-
uous. Note that a poset X is weakly contractible (= homotopically trivial) if and only
if K(X) is a contractible polyhedron. More generally, two finite posets X and Y are
weakly equivalent (denoted by X �

we
Y ) if and only if K(X) and K(Y ) are homotopy

equivalent, and f : X → Y is a weak equivalence if and only if its realization is a
homotopy equivalence. A finite poset is called a finite model of a CW-complex K if
its classifying space K(X) is homotopy equivalent to K.

Given a finite simplicial complex K, its face poset will be denoted by X (K).
This is the poset of simplices of K ordered by inclusion. A simplicial map f : K → L
induces a poset map X (f) : X (K) → X (L). McCord defined in [12] a weak equivalence
ν̃ : K → X (K) using the McCord map of above and the identification of K with its
barycentric subdivision K ′. This weak equivalence is however not natural (only up
to homotopy). Since we need naturality to apply Theorem 3.1 below, we will use the
following variation of the McCord map ν̃, which was introduced by Barmak in [1].
Given a simplicial complex K, we consider its face poset X (K) with the opposite

order, denoted by X (K)op, and define a map ν : K → X (K)op by ν(x) = σ if x ∈ ◦
σ.

Here
◦
σ denotes the interior of σ. By [1, Thm. 11.3.2] ν is a natural weak equivalence.

For any x ∈ X, let Ux ⊆ X be the subposet of elements which are smaller than
or equal to x and let Ûx = Ux � {x}. Analogously, we denote by Fx the subposet
of elements of X which are greater than or equal to x and let F̂x = Fx � {x}. The
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open subsets {Ux}x∈X form a basis for the topology of X. When a point x belongs to
different posets X,Y , we write UX

x , UY
x , FX

x , FY
x to distinguish whether the subposets

are considered in X or in Y . For x, y ∈ X, we write x ≺ y if x is covered by y, i.e., if
x < y and there is no z such that x < z < y. A linear extension of a finite poset X is
a total ordering x1, . . . , xn of its elements such that if xi � xj in X then i � j.

In [1, 3, 4] various reduction methods were introduced. A reduction method allows
us to study and handle the homotopy type of a polyhedron by combinatorial moves on
their finite models. We describe here some of these methods, which will be used in the
rest of this article. For a comprehensive exposition the reader may consult [1, 3, 4].
The first reduction method was introduced by Stong [14] (see also [9, 10]). Given
a finite poset X, an element x ∈ X is called an up beat point if F̂x has a minimum,
i.e., there is a unique element y ∈ X such that x ≺ y. Analogously x is called a down
beat point if Ûx has maximum (there is a unique y such that y ≺ x). In both cases
we say that x is dominated by y. If x is a beat point (up or down), X � {x} ⊂ X is a
strong deformation retract (as finite topological spaces, and therefore at the level of
classifying spaces). A finite poset X is contractible (= dismantlable) if and only if one
can remove beat points from X, one by one, to obtain a one-point space (singleton).
If X is contractible then it is weakly contractible, but the converse does not hold (see
[1, Section 1.3] for more details). The notion of collapse in the context of posets was
introduced by Barmak and Minian in [3] and it corresponds to Whitehead’s classical
notion of simplicial collapse. A point x ∈ X is a down weak point if Ûx is contractible
(i.e., dismantlable), and it is an up weak point if F̂x is contractible. An elementary
collapse is the deletion of an up or down weak point. The inverse operation is called
an elementary expansion. We say that X collapses to Y (or Y expands to X), and
denote X ↘ Y , if there is a sequence of elementary collapses which starts in X and
ends in Y . A poset X is said to be collapsible if it collapses to a point. Since any beat
point is in particular a weak point, if X is a contractible poset then it is collapsible.
In [1, Sections 4.2 and 4.3] and [3, Ex. 3.1] there are various examples of collapsible
posets which are not contractible. Finally, we say that X is simply equivalent to Y if
there exists a sequence of collapses and expansions that starts in X and ends in Y .
This is denoted by X �↘ Y . In [3, Thm. 3.10] it is proved that X �↘ Y if and only
if K(X) and K(Y ) are simply equivalent polyhedra (which, as customary, is denoted
by K(X)�↘ K(Y )). In particular, if X �↘ Y then they are weakly equivalent (and
collapsible posets are homotopically trivial). Moreover, ifX ↘ Y then K(X)↘ K(Y ).
It can be shown that if Ûx or F̂x is a collapsible poset then K(X)↘ K(X � {x}) (see
[4, Thm. 3.6]).

More generally, we say that a point x ∈ X is a γ-point if Ûx or F̂x is homotopically
trivial. It is proved in [4, Thm. 3.15] that in that case, X �↘ X � {x}. Therefore, if
a finite poset X can be reduced to a point by removing γ-points, one by one, then it
is homotopically trivial (i.e., its classifying space K(X) is contractible).

Working with diagrams over finite posets allows us to apply reduction methods
to study their homotopy colimits. We use reduction methods to derive old and new
results on homotopy colimits. We refer the reader to [5] and [16] for the basic def-
initions and results on homotopy colimits of spaces, and to [17] for applications of
homotopy colimits to combinatorial problems.

Let P be a finite poset, viewed as a small category with a unique arrow p → q
for each p, q ∈ P such that p � q, and let X be a P -diagram of finite posets, i.e., a
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functor from P to the category P<∞ of finite posets. In this case the Grothendieck
construction on X can be described as follows.

Definition 2.1 (The non-Hausdorff homotopy colimit of finite posets). Let X : P →
P<∞ be a functor. The non-Hausdorff homotopy colimit of X, denoted by hocolimX,
is the following poset. The underlying set is the disjoint union

∐
p∈P Xp. We keep the

given ordering within Xp for all p ∈ P , and for every x ∈ Xp and y ∈ Xq such that
p � q, we set x � y in hocolimX if fpq(x) � y in Xq. Here Xp = X(p) for each p ∈ P
and fpq = X(p → q) for each p � q in P .

By Thomason’s theorem we have a homotopy equivalence

hocolim KX � K(hocolimX).

In the context of finite posets, Thomason’s theorem can be deduced from a more
general result. This will be proved in the next section.

Remark 2.2. At this point it is worth noting the difference between hocolimX and
hocolimX for a given diagram X : P → P<∞. The first one is the Grothendieck con-
struction on X and it is a finite poset (which can be viewed as a finite topological
space). The second one is the classical construction of homotopy colimit of a diagram
of topological spaces (applied, in this case, to a diagram of finite topological spaces)
and it is not a finite space. However, as an immediate consequence of our main result
of next section, we will see that they are weakly equivalent spaces (when we view
hocolimX as a finite topological space).

Example 2.3. Any map f : X0 → X1 between finite posets can be viewed as a dia-
gram X : 1 → P<∞ where 1 is the poset of two elements 0 < 1. Similarly, as in the
topological context, we have hocolimX = Bf , the non-Hausdorff mapping cylinder
of f , introduced in [1].

It is a well known fact that the mapping cylinder of a continuous function f : W →
Z is homotopy equivalent to Z. Similarly, if f : X → Y is a map of posets, the non-
Hausdorff mapping cylinder Bf collapses to Y . This result can be viewed as a par-
ticular case of Corollary 2.5 below: if the indexing poset P has maximum p, the
homotopy colimit of any P -diagram collapses to Xp. If f : X → Y is a poset map
such that f−1(Uy) is weakly contractible for every y ∈ Y , then f is a weak equiva-
lence (i.e., it induces a homotopy equivalence between the classifying spaces). This
is Quillen’s Theorem A for posets [13] and McCord’s theorem for finite topological
spaces [12]. In Proposition 2.8 we generalize this result for homotopy colimits of P -
diagrams. Quillen’s Theorem A for posets follows immediately from Propositions 2.8
and 2.4 by applying the results to the poset 1.

Given a poset map φ : P → Q and a Q-diagram X, we denote by φ∗X the P -
diagram obtained by pulling back X along φ. Concretely, φ∗X = Xφ. There is a
canonical map hocolimφ∗X → hocolimX induced by the identities (φ∗X)p = Xφ(p).
If i : Q′ → Q is a subposet and X is a Q-diagram, the restriction i∗X is denoted by
X|Q′ . Note that in this case hocolimX|Q′ is a subposet of hocolimX.

Proposition 2.4. Let X : P → P<∞ be a P -diagram of finite posets. If p ∈ P is
an up beat point, then hocolimX ↘ hocolimX|P�{p} . In particular, they are weakly
equivalent.
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Proof. Let x0, x1, · · · , xn be a linear extension of Xop
p , the opposite poset of Xp. Let

Y0 = hocolimX and for each 0 � i � n define inductively Yi+1 = Yi � {xi}. Let q be
the minimum element of F̂P

p . Note that F̂Yi
xi

= FYi

fpq(xi)
. This implies that xi is an up

beat point of Yi for all 1 � i � n and therefore

hocolimX = Y0 ↘ Y1 ↘ · · · ↘ Yn+1 = (hocolimX)�Xp = hocolimX|P�{p}.

Corollary 2.5. Let X : P → P<∞ be P -diagram of finite posets. If P has a maximum
element p, then hocolim(X)↘ Xp. In particular, they are weakly equivalent.

Proof. Let p = p0, p1, · · · , pn be a linear extension of P op. Since P has a maximum
element, there is a sequence of collapses

P ↘ P � {p1}↘ P � {p1, p2} · · · ↘ P � {p1, p2, · · · , pn} = {p},
where pi is an up beat point of P � {p1, p2, · · · , pi−1}. By applying recursively Propo-
sition 2.4, we have

hocolimX ↘ (hocolimX)�Xp1 ↘ · · · ↘ (hocolimX)�
n⋃

i=1

Xpi = Xp.

From this result and McCord’s theorem [12, Thm. 6] we deduce the following
analogue of Bousfield–Kan’s homotopy lemma (cf. [5, 17]). Note that it can also be
deduced from the original homotopy lemma for diagrams of spaces and Thomason’s
theorem.

Corollary 2.6 (Homotopy lemma). Let P be a finite poset, let X,Y : P → P<∞ be
P -diagrams of finite posets and α : X → Y a morphism of diagrams. If αp : Xp → Yp

is a weak equivalence for every p ∈ P , then α induces a weak equivalence

hocolimX �
we

hocolimY.

Proof. For any p ∈ P consider hocolimX|Up
the homotopy colimit of the diagram

restricted to Up. Since p is the maximum of Up, by Proposition 2.5 hocolimX|Up
↘ Xp

and therefore α induces a weak equivalence hocolimX|Up
�
we

hocolimY|Up
. Now the

results follows from[12, Thm. 6]applied to the basis-like open cover {hocolimY|Up
}p∈P

of hocolimY .

Remark 2.7. Note that all the collapses in Proposition 2.4 and Corollary 2.5 are
strong collapses, in the sense that all the points removed are beat points (not just
weak points). This implies that if the finite space Xp in Corollary 2.5 is contractible
(i.e., it is a dismantlable poset) then so is hocolimX.

Proposition 2.8. Let X : P → P<∞ be a P -diagram of finite posets. If p is a down
beat point of P dominated by an element q and f−1

qp (Ux) is contractible for every x ∈
Xp, then hocolim(X)↘ hocolim(X|P�{p}). In particular, they are weakly equivalent.

Proof. Let x0, x1, · · · , xn be a linear extension of Xp. Define Y0 = hocolimX, and
inductively Yi+1 = Yi � {xi} for every 0 � i � n. We will show that Y0 ↘ Y1 ↘ · · ·
↘ Yn+1 = (hocolimX)�Xp.
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Note that ÛYi
xi

= hocolim X̃i, where X̃i : ÛP
p → P<∞ is the functor defined by

X̃i(p′) = f−1
p′p(Uxi), for all p′ < p in P (where the transition maps are induced by

the original transition maps).
Since ÛP

p has a maximum element q and f−1
qp (Uxi) is contractible, by Corollary 2.5

and Remark 2.7, ÛYi
xi

is a contractible finite space. This proves that xi is a weak point
of Yi.

Proposition 2.9. Let X : P → P<∞ be a P -diagram of finite posets. If p is a down
beat point of P dominated by q and fqp is a weak equivalence, then

hocolimX �
we

hocolimX|P�{p} .

Proof. Since p is dominated by q, there is a well defined strong homotopy retraction
r : P → P � {p} which is the identity for any p′ 	= p and r(p) = q. Denote by i : P �

{p} → P the inclusion. There is a morphism of P -diagrams γ : (ir)∗X → X such that
γp′ is the identity for every p′ 	= p and γp = fqp : ((ir)

∗X)p = Xq → Xp. By hypothesis
and Corollary 2.6, γ induces a weak equivalence hocolim(ir)∗X �

we
hocolimX, and by

Proposition 2.8, hocolim(ir)∗X �
we

hocolimX|P�{p} .

Example 2.10. By the previous proposition one can immediately deduce that the
non-Hausdorff homotopy pushout of the poset diagram

X0
f1 ��

f2

��

X1

X2

is weakly equivalent to X0 provided the maps f1 and f2 are weak equivalences.

We prove now an analogue, in the context of posets, of a cofinality theorem of
Bousfield and Kan. We need first a generalization of Proposition 2.4.

Proposition 2.11. Let X : P → P<∞ be a P -diagram of finite posets. If p is a point
of P such that F̂p is homotopically trivial, then hocolimX �

we
hocolimX|P�{p} .

Proof. Let x1, x2, · · · , xn be a linear extension of Xop
p . For each 1 � i � n, we define

the F̂p-diagram X̃i : F̂p → P<∞ as follows. X̃i(p′) = Ffpp′ (xi) and X̃i(p′ → p′′) =
fp′p′′|Ff

pp′ (xi)
: Ffpp′ (xi) → Ffpp′′ (xi).

Since X̃i(p′) is contractible for all p′ ∈ F̂p, then by Corollary 2.6 it follows that

hocolim X̃i �
we

F̂p, and by hypothesis, the last one is weakly contractible. Therefore,

since

F̂ (hocolimX)�{x1,x2,··· ,xi−1}
xi

= hocolim X̃i,

which is homotopically trivial, we can remove the points x1, . . . , xn of Xp one by one,
similarly as in the proof of Proposition 2.4, and the result follows.

We give now a direct and simple proof of a cofinality theorem for posets. This is a
particular case of a known result for functors between small categories which satisfy
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the hypotheses of Quillen’s Theorem A (see [8, Prop. 3.2.23] and [6, Thm. 30.5]), and
it is an analogue of Bousfield–Kan’s cofinality theorem in the combinatorial setting.

Theorem 2.12 (Cofinality theorem). Let ϕ : P → Q be an order preserving map
between finite posets. Let X : Q → P<∞ be a Q-diagram. If ϕ−1(Fq) is homotopi-
cally trivial for all q ∈ Q, then the canonical map hocolimϕ∗X → hocolimX is a
weak equivalence.

Proof. Let R be the following poset. The underlying set is the disjoint union Q
∐

P .
We keep the given ordering within Q and P and for every q ∈ Q and p ∈ P we set
q � p if there are q′ ∈ Q and p′ ∈ P such that q � q′, p′ � p and ϕ(p′) = q′. Con-
sider the following R-diagram X̃ : R → P<∞. For each q ∈ Q take X̃(q) = Xq, set

X̃(p) = Xϕ(p) for p ∈ P , X̃(p → p′) = X(ϕ(p) → ϕ(p′)), X̃(q → q′) = X(q → q′), and
X̃(ϕ(p) → p) = idXϕ(p)

. Note that the restriction of X̃ to Q is the original diagram

X and the restriction of X̃ to P is ϕ∗X.

Take a linear extension q1, q2, · · · , qm of Qop. For each 1 � j � m we have

F̂R�{q1,q2,··· ,qj−1}
qj = ϕ−1(Fqj ),

which is homotopically trivial by hypothesis. By applying recursively Proposition 2.11,
we get hocolim X̃ �

we
hocolimϕ∗X.

Similarly, take a linear extension p1, p2, · · · , pn of P . For each 1 � i � n we have

ÛR�{p1,p2,··· ,pi−1}
pi

= ϕ(Upi) = Uϕ(pi).

Therefore, pi is a down beat point of R� {p1, p2, · · · , pi−1} dominated by ϕ(pi), and
X̃(ϕ(pi) → pi) is the identity. By Proposition 2.8 we have hocolim X̃ �

we
hocolimX.

3. Variations on Thomason’s theorem and applications

In this section we prove a result that relates the homotopy colimit of a diagram
of spaces with the non-Hausdorff homotopy colimit of the diagram of their models.
As a consequence we obtain an alternative and simple proof of a particular case of
Thomason’s theorem in the context of posets. As another immediate consequence of
the main result we deduce that the homotopy colimit of a diagram of finite simplicial
complexes is weakly equivalent to the non-Hausdorff homotopy colimit of the diagram
of their face posets. This implies that all the techniques developed in the previous
section for non-Hausdorff homotopy colimits can be used for diagrams of polyhedra
(indexed by finite posets) by means of the face poset functor.

We denote by S the category of topological spaces and continuous maps. Sometimes
we require a diagram of spaces D : P → S to satisfy extra conditions (for instance D
can be a diagram of simplicial complexes, finite topological spaces, etc.), however in
all these cases the homotopy colimit hocolimD is taken in the category S.
Theorem 3.1. Let P be a finite poset. Let K : P → S be a diagram of spaces and
X : P → P<∞ be a diagram of finite posets. Let φ : K → X be a diagram morphism
(where X is viewed as a diagram of finite topological spaces) such that φp : Kp → Xp
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is a weak equivalence for every p ∈ P . Then there exists a weak equivalence

φ̂ : hocolimK → hocolimX.

Proof. We define first the map φ̂ : hocolimK → hocolimX. For every p � p′ denote
by fpp′ = K(p → p′) and gpp′ = X(p → p′) the transition maps. Recall that hocolimK
can be constructed from the disjoint union

∐
p∈P Kp ×K(Fp) by identifying the

pairs (α, β) ∈ Kp ×K(Fp) with (α′, β′) ∈ Kp′ ×K(Fp′) if fpp′(α) = α′ and β = β′ ∈
K(Fp′). We denote by ∼ the equivalence relation generated by this identification.

For each p ∈ P , let μp : K(Fp) → Fp ⊆ Xp be the McCord map (defined at the
beginning of the previous section). Given (α, β) ∈ Kp ×K(Fp) we define

φ̂(α, β) = φμp(β)(fpμp(β)(α)) ∈ Xμp(β) ⊆ hocolimX.

It is easy to verify that φ̂ is well defined. In order to see that it is a continuous map,
it suffices to prove that for each y ∈ hocolimX, φ̂−1(U

hocolimX
y ) ∩ (Kq ×K(Fq)) is

open in Kq ×K(Fq) for every q ∈ P . Fix y ∈ hocolimX and let p ∈ P such that

y ∈ Xp. Note that φ̂−1(U
hocolimX
y ) ∩ (Kq ×K(Fq)) is empty if q 	� p and it is equal

to (gqpφq)
−1(U

Xp
y )× μ−1

q (U
Fq
p ) if q � p. This proves that φ̂ is continuous.

In order to prove that φ̂ is a weak homotopy equivalence, we use McCord’s theorem
[12, Thm. 6] for the basis-like open cover {hocolimX|Up}p∈P of hocolimX. We have
to see that

φ̂ : φ̂−1(hocolimX|Up) → hocolimX|Up

is a weak equivalence for each p. Note that

φ̂−1(hocolimX|Up) =
∐
q�p

Kq × μ−1
q (UFq

p )/∼

and that there is a commutative diagram

Kp × {p} φp ��

i
��

Xp

j

��
(
∐

q�p Kq × μ−1
q (U

Fq
p )/∼)

φ �� hocolimX|Up .

The inclusion j is a weak equivalence by Corollary 2.5 and φp is a weak equivalence by
hypothesis, thus we only need to check that the inclusion i is a homotopy equivalence.

Consider the retraction r : (
∐

q�p Kq × μ−1
q (U

Fq
p )/∼) → Kp × {p} defined by

r(α, β) = (fqp(α), p) for (α, β) ∈ Kq × μ−1
q (U

Fq
p ). It is clear that ri = 1. We define

a homotopy H : ir � 1 as a composition of two linear homotopies. Any β ∈ μ−1
q (U

Fq
p )

can be written as β = tβ1 + (1− t)β2 with 0 < t � 1, β1 ∈ K(Up) and β2 ∈ K(Xp �

Up). Take H1((α, β), s) = (α, (1− s)β + sβ1). Since β1 ∈ K(Up) which is a cone with
apex p, we can define then H2((α, β), s) = (α, (1− s)β1 + sp).

Remark 3.2. Under the hypotheses of Theorem 3.1, there is an alternative way to
prove that hocolimK and hocolimX are weakly equivalent by means of a zigzag
of weak equivalences. First one can see that if suffices to reduce to the case K =
X and φ = 1X . Then, in order to prove that hocolimX and hocolimX are weakly
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equivalent one can use Thomason’s theorem (to obtain a weak equivalence at the level
of simplicial sets) and McCord’s theorem (to come back to the context of topological
spaces).1 Theorem 3.1 exhibits an explicit and direct weak equivalence hocolimK →
hocolimX.

As a first immediate corollary we obtain the following particular case of Thoma-
son’s theorem for posets.

Corollary 3.3. Given a diagram of finite posets X : P → P<∞, there is a homotopy
equivalence

hocolimKX → K(hocolimX).

Proof. We apply Theorem 3.1 to the diagram morphism μ : KX → X, where
μp : K(Xp) → Xp is the McCord map.

Now we prove a kind of converse of Thomason’s result, which relates the homotopy
colimit of a diagram of simplicial complexes with the non-Hausdorff homotopy colimit
of their face posets.

Corollary 3.4. Let K : P → S be a diagram of finite simplicial complexes. Then
there is a weak equivalence

ν : hocolimK → hocolim(XK)op,

from the homotopy colimit of K to the non-Hausdorff homotopy colimit of the diagram
of the opposite of their face posets.

Proof. Apply Theorem 3.1 to the diagram morphism induced by the natural weak
equivalences νp : Kp → X (Kp)

op defined in [1, Thm. 11.3.2] and the beginning of the
previous section.

Since for every simplicial complex L, K(X (L)op) = K(X (L)) = L′ (the barycentric
subdivision of L), from Corollary 3.3 and Corollary 3.4 we deduce the following.

Corollary 3.5. Let K : P → S be a diagram of (unordered) finite simplicial com-
plexes (and simplicial maps). Then hocolimK and hocolimK ′ are homotopy equiva-
lent, where K ′ : P → S is the diagram of the barycentric subdivisions (of spaces and
maps).

Note that the homotopy equivalence of the last corollary cannot be deduced directly
from a diagram map between K and K ′ since, although the underlying topological
spaces of Kp and K ′

p are equal and the transition maps fqp and f ′
qp are (linearly)

homotopic, in the context of unordered simplicial complexes there is no natural homo-
topy equivalence from the barycentric subdivision functor to the identity functor.
Moreover, in general the homotopies fqp � f ′

qp cannot be taken coherently.

Remark 3.6. From Theorem 3.1 one can easily deduce that if X : P → S is a diagram
of finite topological spaces, although hocolimX and hocolimX are very different,
there is a weak homotopy equivalence hocolimX → hocolimX induced by the identity
map.

1We thank the referee for pointing this out to us.
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Corollary 3.4 allows one to apply the results of Section 2 to homotopy colimits
of diagrams of polyhedra, by means of the weak equivalence with the non-Hausdorff
homotopy colimits of the opposite of the face posets. In particular, the following
analogues of Propositions 2.11 and 2.9 are valid for diagrams of simplicial complexes.

Proposition 3.7. Let K : P → S be a P -diagram of finite simplicial complexes (and
simplicial maps). If p is a point of P such that F̂p is homotopically trivial (in particu-
lar, if p is an up beat point or an up weak point), then hocolimK � hocolimK|P�{p} .

Proof. Consider the diagram (XK)op : P → P<∞, (XK)op(p) = (X (Kp))
op, and

apply Proposition 2.11 and Corollary 3.4.

Proposition 3.8. Let K : P → S be a P -diagram of finite simplicial complexes (and
simplicial maps). If p is a down beat point of P dominated by q and fqp is a homotopy
equivalence, then

hocolimK � hocolimK|P�{p} .

Proof. Consider the diagram (XK)op : P → P<∞ and apply Proposition 2.9 and
Corollary 3.4.

Suppose that K : P → S is a diagram of finite simplicial complexes such that
all the transition maps fqp : Kq → Kp are homotopy equivalences (in particular, if
P is connected, all Kp have the same homotopy type). In general, although the
simplicial maps fqp : Kq → Kp are homotopy equivalences, the homotopy type of Kp

and the topology of K(P ) do not determine the homotopy type of hocolimK. We
will show that if the indexing poset P and the maps fqp satisfy nice conditions, then
hocolimK � Kp (for any p ∈ P ).

Corollary 3.9. Let K : P → S be a P -diagram of finite simplicial complexes (and
simplicial maps). If P is a contractible finite space (i.e., a dismantlable poset) and
the transition maps fqp are homotopy equivalences, then hocolimK � Kp (for any
p ∈ P ).

Proof. Since P is a contractible finite space, there is a sequence p1, · · · , pn such that pi
is a beat point (up or down) of P � {p1, p2, · · · , pi−1} and P � {p1, p2, · · · , pn} = {p}.
Now apply recursively Propositions 3.7 and 3.8.

As we state at the beginning of the previous section, if P is contractible (as a finite
space) then its classifying space K(P ) is contractible but the converse does not hold.
In [1, 3, 4] there are various examples of non-contractible finite spaces P with K(P )
contractible. Suppose that the indexing poset P can be reduced to a single point by
removing γ-points (recall that p is a γ-point if F̂p or Ûp is homotopically trivial). In
that case the previous corollary is not longer valid since Proposition 3.8 works only for
down beat points (i.e., when Ûp is a contractible finite space, not just homotopically
trivial). However, one can impose extra conditions on the maps fqp : Kq → Kp in
order to extend Proposition 3.8 to γ-points, and Corollary 3.9 to a more general
class of homotopically trivial posets. To this end we replace homotopy equivalences
by contractible mappings. This class of maps was introduced by Cohen in [7]. A
simplicial map f : K → L is called a contractible mapping if the preimage f−1(z) is
contractible for every point z in the underlying space of L. In [7, Thm. 11.1] Cohen
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proved that any contractible mapping f : K → L is a simple homotopy equivalence.
In [2, Thm. 5.1] Barmak exhibited an alternative and simple proof of Cohen’s result.
From the proof of [2, Thm. 5.1] one can deduce the following.

Proposition 3.10 (Barmak). Let f : K → L be a contractible mapping and let
X (f)op : X (K)op → X (L)op be the map induced in the opposite of their face posets.
Then (X (f)op)−1(Uσ) is homotopically trivial for every σ ∈ X (L)op.

Corollary 3.11. Let K : P → S be a P -diagram of finite simplicial complexes (and
simplicial maps). If p is a point of P such that Ûp is homotopically trivial and the
transition maps fqp are contractible mappings for every q � p, then hocolimK �
hocolimK|P�{p} .

Proof. Consider the diagram (XK)op : P → P<∞ and follow the proof of Proposi-
tion 2.8, using that (X (fqp)

op)−1(Uσ) are homotopically trivial by Proposition 3.10.

Corollary 3.11 in combination with Proposition 3.7 allows us to extend Corol-
lary 3.9 to a more general class of (homotopically trivial) indexing posets, under the
stronger assumption that the transition maps are contractible mappings.

Corollary 3.12. Let K : P → S be a P -diagram of finite simplicial complexes. If the
indexing poset P can be reduced to a point by removing γ-points (in particular, if P is
collapsible), and the transition maps fqp are contractible mappings, then hocolimK �
Kp (for any p ∈ P ).

Example 3.13. If the transition maps of the following diagram of simplicial complexes
are contractible mappings, its homotopy colimit is homotopy equivalent to any of the
Kp. This is because the indexing poset is a collapsible (but non-contractible) finite
space.

K1

�� ����
���

���
��

K2

�����
���

���
�

����
���

���
���

K3

�����
���

���
��

����
���

���
���

K4

�����
���

���
��

��
K5

���
��

��
��

		��
���

���
���

���
� K6



��
��
��
�

��	
		

		
		

K7

��











��	
		

		
		

K8



���
���

���
���

���
�

��











K9 K10 K11

Acknowledgments

We are grateful to Jonathan Barmak for many useful discussions and suggestions
during the preparation of this article. We also would like to thank Volkmar Welker
and Tim Porter for useful comments.

References

[1] Barmak, J.A. Algebraic Topology of Finite Topological Spaces and Applications.
Lecture Notes in Math., Vol. 2032 (2011).



HOMOTOPY COLIMITS OF DIAGRAMS OVER POSETS 245

[2] Barmak, J.A. On Quillen’s Theorem A for posets. J. Combin. Theory Ser. A
118 (2011), 2445–2453.

[3] Barmak, J.A.; Minian, E.G. Simple homotopy types and finite spaces. Adv.
Math. 218 (2008), no. 1, 87–104.

[4] Barmak, J.A.; Minian, E.G. One-point reductions of finite spaces, h-regular
CW-complexes and collapsibility. Algebr. Geom. Topol. 8 (2008), no. 3, 1763–
1780.

[5] Bousfield, A. K.; Kan, D. M. Homotopy Limits, Completions and Localizations,
Lecture Notes in Math., Vol. 304 (1972).

[6] Chachólski, W.; Scherer, J. Homotopy Theory of Diagrams. Mem. Amer. Math.
Soc., Vol. 155 (2002), no. 736, x+90 pp.

[7] Cohen, M.M. Simplicial structures and transverse cellularity. Ann. of Math.
85 (1967), 218–245.
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