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BROWN CATEGORIES AND BICATEGORIES

GEOFFROY HOREL

(communicated by J.F. Jardine)

Abstract
In a Brown category of cofibrant objects, there is a model

for the mapping spaces of the hammock localization in terms of
zig-zags of length 2. In this paper we show how to assemble these
spaces into a Segal category that models the infinity-categorical
localization of the Brown category.

1. Introduction

Given a category C with a subcategory wC of weak equivalences, we can always
form the category Ho(C, wC) (or Ho(C) if there is no ambiguity). It is uniquely defined
up to equivalence of categories by the fact that, for any category B, the category of
functors from Ho(C) to B is equivalent to the category of functors from C to B sending
the maps of wC to isomorphisms in B.

It is nowadays well-understood that the homotopy category of C is the shadow of
a richer object: the∞-categorical localization of C at wC. This is an∞-category with
a map from C that sends the maps of wC to weak equivalences and which is initial (in
the∞-categorical sense) with this property. In other words, it is the∞-category that
satisfies an ∞-categorical version of the characterization of the homotopy category
explained in the previous paragraph. One of the most famous model for this ∞-
categorical localization is the hammock localization of Dwyer and Kan (see [DK80]).
The output of the hammock localization is a simplicially enriched category. The
category of simplicially enriched categories can be equipped with a notion of weak
equivalences that make them into a model for ∞-categories (cf. [Ber07]). Applying
the homotopy coherent nerve to the hammock localization, we obtain a quasicategory
model of the ∞-categorical localization of C at wC (this fact is proved in [Hin13,
Proposition 1.2.1]).

Although extremely useful theoretically, the hammock localization has very com-
plicated mapping spaces built out of arbitrary zig-zags of maps in C. Fortunately in
many cases, it is enough to restrict to much simpler zig-zags. For instance, if C is a
Brown category of cofibrant objects and X and Y are objects of C, then, we can model
the space of maps from x to y as the nerve of a category whose objects are the objects

of the undercategory Cx�y/ of the form X −→ Y ′
�

←−↩ Y and whose morphisms are
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morphisms in the undercategory Cx�y/ that are sent to weak equivalences by the for-
getful functor Cx�y/

→ C. A proof of this fact can be found in [Wei99] assuming the
existence of functorial factorizations in C and in [Cis10b, Proposition 3.23] in full
generality. A different proof appears in [Low15, Theorem 4.11.]. This fact can also be
seen as a corollary of our main result (see Theorem 7.5). A closely related construction
appears in work of Jardine under the name cocycle categories (see [Jar09]).

This model of Weiss and Cisinski is very simple but it seems that we have lost one
of the key feature of the hammock localization, namely the ability to compose. Indeed,

if we have two of these zig-zags x −→ y′
�

←−↩ y and y −→ z′
�

←−↩ z representing zero
simplices in the mapping space from x to y and the mapping space from y to z, we can
form their composite in the hammock localization. This is given by the concatenation

x −→ y′
�

←−↩ y −→ z′
�

←−↩ z,

which is sadly not a 0-simplex in the mapping space from x to z. Fortunately, there
is another very natural way to compose these two zig-zags. Using the axioms of a
Brown category, we can form the diagram

z′′

y′ z′
∼

x y

∼

z

∼

in which the square is cocartesian. Then we can define the composite of our two
zig-zags to be the exterior two edges of the above diagram.

This construction does not quite form a 2-category since pushouts are only well-
defined up to isomorphisms. One way to deal with this issue is to make choices of
compositions and then add coherence isomorphisms. That way, we obtain a bicategory
assembling all these mapping spaces together. Such a construction can be found
in [Wei99, Remark 1.2] and Cisinski in [Cis10b, p. 524].

In this paper, we have chosen a different approach that is in our sense more nat-
ural. Instead of making choices of compositions, there is a way to package all the
possible choices into a single object. The result is a Tamsamani bicategory that we
call the Weiss bicategory of (C, wC) (see Definition 7.3 for a precise construction).
A Tamsamani bicategory is a simplicial diagram in categories that satisfies Segal
conditions (see Definition 3.4). Hitting such an object with the nerve functor yields a
Segal category. The main result of the present paper asserts that the Segal category
that we obtain after applying the nerve functor the Weiss bicategory of (C, wC) is a
model for the ∞-categorical localization of C at wC. More precisely, we prove that it
is equivalent to Rezk’s relative nerve construction (see Theorem 7.5). The fact that
Rezk’s relative nerve construction is a model for the ∞-categorical localization is a
folklore theorem. Since this result seems to be missing from the literature we provide
a proof in the appendix (see Theorem A.2) based on work of Toën.

Our main result is valid for categories that are more general than Brown categories
of cofibrant objects. We introduce the notion of a partial Brown category in Defini-
tion 2.2. Any Brown category (with functorial cylinders) is a partial Brown category
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but there are many partial Brown categories that cannot be extended to a Brown cat-
egory. In short, Brown categories model ∞-categories with finite colimits whereas we
prove in Proposition 2.8, that partial Brown categories can model all ∞-categories.

Notation
We denote by Cat the category of small categories. We denote by S the category

of simplicial sets. We call the objects of S spaces rather than simplicial sets. Given
an object X of S, we sometimes use the phrase “the points of X” to refer to the
zero-simplices of X.

We denote by ∗ the terminal object of both S and Cat.
We denote by N : Cat→ S the nerve functor. We say that a map f : C → D in

Cat is a weak equivalence if N(f) is a weak equivalence in the Kan–Quillen model
structure on S. These maps are the weak equivalences of the Thomason model struc-
ture on Cat constructed in [Tho80]. Note that this notion of weak equivalence is
different from the notion of equivalence of categories. An equivalence of category
is a weak equivalence but the converse is not true.

We call an object of CatΔ
op

a simplicial category. This is a nonstandard terminol-
ogy but we will never use the notion of simplicially enriched category. The functor
N : Cat→ S extends to a functor CatΔ

op

→ SΔ
op

that we also denote by N .

2. Partial Brown categories

Recall that a relative category is a pair (C, wC) in which C is a category and
wC is a subcategory containing all the objects. We denote by RCat the category
of relative categories and weak equivalences preserving maps. Given a category C,
we denote by C the relative category (C,Ob(C)) and by C� the relative category
(C,C). There is a functor NR

•
: RCat→ SΔ

op

sending (C, wC) to the simplicial space
NR

p (C, wC)q := RCat([p]× [q]�, (C, wC)). It is proved as the main result of [BK12c]
that RCat has a model structure whose weak equivalences are the maps that are
sent by NR

•
to weak equivalences in the model structure of complete Segal spaces.

Moreover, the authors of [BK12c] prove that this model category is a model for
the ∞-category of ∞-categories. They also prove in [BK12a, Theorem 1.8] that the
weak equivalences of relative categories are exactly the maps that are sent to Dwyer–
Kan equivalences of simplicially enriched categories by the Dwyer–Kan hammock
localization.

We now recall the notion of a Brown category. These are relative categories with
the additional data of a class of cofibrations. The dual notion was introduced by
Brown in [Bro73, I.1] under the name category of fibrant objects.

Definition 2.1. A Brown category is a category C with all finite coproducts and
equipped with the data of two subcategories wC (whose maps are called the weak
equivalences) and cC (whose maps are called the cofibrations) satisfying the following
axioms.

1. The weak equivalences satisfy the two-out-of-three property and contain all the
isomorphisms.

2. The isomorphisms are cofibrations.
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3. The cobase change of a map in cC (resp. wC ∩ cC) along any map exists and is
in cC (resp. wC ∩ cC).

4. For any X in C, there exists a factorization of the codiagonal C � C → C as
the composite of a cofibration C � C → C ⊗ I followed by a weak equivalence
C ⊗ I → C.

5. For any object X of C, the map ∅→ X is a cofibration.

Our main result (Theorem 7.5) does not require the full strength of the axioms of
a Brown category. We now introduce the definition of a partial Brown category. This
is a structure on a relative category that is weaker than that of a Brown category but
still sufficient for our purposes.

Definition 2.2. A partial Brown category (hereafter abbreviated to PBC) is a
category M with two subcategories wM and cM whose maps are called respectively
the weak equivalences and trivial cofibrations such that the following axioms are
satisfied.

1. Both wM and cM contain the isomorphisms of M and cM is contained in wM.

2. The weak equivalences satisfy the two-out-of-three property.

3. The cobase change of a trivial cofibration along any map exists and is a trivial
cofibration.

4. There are three functors c, w and s from wM[1] to wM[1] such that for each
weak equivalence f we have f = w(f) ◦ c(f), w(f) ◦ s(f) = id and c(f) and s(f)
are in cM[1].

We shall use the symbol
�

−→ to denote weak equivalences and
�

↪−→ to denote trivial
cofibrations.

Remark 2.3. Note that we require functoriality of the factorization. We believe that
this axiom could be weakened to simply requiring the existence of a factorization of
this type and our main result would remain valid. However, this would make the
proofs more technical.

Remark 2.4. One can also introduce the notion dual to that a partial Brown cate-
gory. We suggest the names partial Brown category of cofibrant objects and partial
Brown category of fibrant objects when one needs to distinguish the two notions.
All of the results in this paper admit a dual version that holds for partial Brown
categories of fibrant objects.

Definition 2.5. A right exact functor between PBCs M and N is a functor
f : M→ N sending weak equivalences to weak equivalences, trivial cofibrations to

trivial cofibrations and pushout squares of spans of the form • ←− •
�

↪−→ • to pushout
squares. A right exact equivalence is a right exact functor which is a weak equiv-
alence between the underlying relative categories.

We denote by PBC the relative category whose objects are small PBCs, morphisms
are right exact functors and weak equivalences are right exact equivalences.

Proposition 2.6. Let C be a Brown category of cofibrant objects with a functorial
cylinder object. Then C with the induced notion of weak equivalences and trivial cofi-
brations is a partial Brown category.
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Proof. Only the fourth axiom is not obvious. Let us denote by m 
→ m⊗ I the functo-
rial cylinder object in C (the notation does not imply any kind of monoidal structure
on C). Any map f : m→ n can be factored as m→ (m⊗ I) �m n→ n where the first
map is a cofibration and the second map is a weak equivalence. Moreover, the weak
equivalence (m⊗ I) �m n→ n has a section given by the obvious map from n to the
pushout. This section is a trivial cofibration. The proof of these facts can be found
in [Bro73, Factorization lemma, p. 421].

Example 2.7. We now list various ways of constructing PBCs:

• By Proposition 2.6, any Brown category (with functorial cylinder) is a PBC.
In particular, the category of cofibrant objects of a model category M with
functorial factorizations (or even a left derivable category as defined in [Cis10a])
is a PBC.

• The structure of a PBC is stable upon taking a homotopically replete full sub-
category (that is a full subcategory on a set of objects which is closed under
weak equivalences).

• If f : C→ D is an equivalence of categories and one of C and D is a PBC, then
there is a unique PBC structure on the other category that makes the functor
f right exact.

• If M and N are PBCs, then the coproduct M �N has a PBC structure in which
a map is a cofibration or weak equivalence if it comes from a cofibration or weak
equivalence in M or N. Clearly M �N is the coproduct in PBC. Note that even
if M and N are Brown categories, the coproduct M �N fails to have an initial
object. In particular, it cannot be given a Brown category structure.

• If M and N are PBCs, then the product M×N has a PBC structure in which
the cofibrations and weak equivalences are the products of cofibrations or weak
equivalences. This makes M×N into the product of M and N in PBC.

• If (C,wC) is a small relative category and M is a PBC, then the category
M(C,wC) of relative functors is a PBC if we give it the levelwise weak equivalences
and cofibrations.

Proposition 2.8. Any small relative category (C,wC) is weakly equivalent to the
underlying relative category of a partial Brown category.

Proof. We start from the category M = SC
op

of simplicial presheaves over C and
equip it with the injective model structure. Then we can form the left Bousfield
localization of M with respect to the all the maps between representable presheaves
f∗ : C(−, c)→ C(−, c′) for f : c→ c′ a weak equivalence in C. This gives a model
category LwM in which the cofibrations are the monomorphisms and the fibrant
objects are the relative functors from Cop to S that are also fibrant in the injective
model structure on SC

op

. Then we can consider the category Ey to be the smallest
homotopically replete subcategory of LwM containing the image of the Yoneda’s
embedding. We equip Ey with its PBC structure inherited from the model structure
of LwM. The fact that the map (C,wC)→ Ey is a weak equivalence of relative
categories is proved in [BK11, 3.3].

The main reason for our slightly unconventional factorization axiom is for Ken
Brown’s lemma to remain valid.
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Lemma 2.9. Let M be a PBC, (X, wX) be a relative category and F : wM→ X be
a functor. If F sends trivial cofibrations to weak equivalences, then F sends all weak
equivalences to weak equivalences.

Proof. Let w be a weak equivalence in M. Then by the fourth axiom of Definition 2.2,
the map w can be factored as w = v ◦ i with i a trivial cofibration and v a weak
equivalence which admits a trivial cofibration as a section. The map F (i) is thus a
weak equivalence. The map F (v) is also an equivalence because it has a section which
is a weak equivalence. Therefore, F (w) is a weak equivalence.

3. Segal spaces and categories

The category Δ is the full subcategory of Cat spanned by the totally ordered sets
[n] with n � 0.

Let C be a category with finite limits. Given any functor X : Δop
→ C, we can form

the limit of the following diagram:

X0
d0
←− X1

d1
−→ X0

d0
←− X1

d1
−→ · · ·X0

d0
←− X1

d1
−→ X0 (3.1)

that we denote by

X1 ×X0
X1 ×X0

· · · ×X0
X1.

Let us consider the n maps [1]→ [n] mapping 0 to i and 1 to i+ 1 for 0 � i � n− 1
and the n+ 1 maps [0]→ [n] sending 0 to i for 0 � i � n. These maps assemble into
a single map

cn : Xn → X1 ×X0
X1 ×X0

· · · ×X0
X1.

If C is a model category (in this paper, C will always be S or Cat), we denote by

X1 ×
h
X0

X1 ×
h
X0

X1 × · · · ×
h
X0

X1

the homotopy limit of the diagram (3.1). This object is well-defined up to weak
equivalence and comes with a map

dn : X1 ×X0
X1 ×X0

· · · ×X0
X1 → X1 ×

h
X0

X1 ×
h
X0
· · · ×

h
X0

X1.

Definition 3.1. A simplicial space X is said to be a Segal space if for each n � 2,
the map

sn := dn ◦ cn : Xn → X1 ×
h
X0

X1 ×
h
X0
· · · ×

h
X0

X1

is a weak equivalence.
A simplicial space X is said to be a Segal category if it is a Segal space and X0 is

a discrete simplicial set.

Remark 3.2. The notion of Segal space was introduced in [Rez01]. However, the
reader should be aware that our definition is slightly different than the one in [Rez01].
More precisely, a Segal space in Rezk’s sense is a Segal space in the sense of (3.1)
which is moreover fibrant in the Reedy model structure of SΔ

op

.

The maps sn appearing in the above definition will be called the n-th Segal map.
Note that if X0 is discrete, the map dn is always a weak equivalence since products
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in S are automatically derived products. Therefore, the map sn is a weak equivalence
if and only if the map cn is a weak equivalence.

Let X be a simplicial space (resp. a simplicial category) with X0 a discrete space
(resp. a discrete category). There is a map pn : Xn → Xn+1

0 whose i-th factor is the
map Xn → X0 induced by the map [0]→ [n] sending 0 to i. Given (x0, . . . , xn) ∈
Xn+1

0 , we denote by X(x0, . . . , xn) the fiber of pn over (x0, . . . , xn). Note that in this
situation, this is also a homotopy fiber.

We denote by CSS the model structure of complete Segal spaces constructed
in [Rez01]. This is a model structure on SΔ

op

which is a model for the ∞-category
of ∞-categories. We use the phrase Rezk equivalences for the weak equivalences
in CSS. The following lemma gives us a criterion for a map to be a Rezk equivalence.

Lemma 3.3. Let f : X → Y be a morphism between Segal spaces. Then f is a Rezk
equivalence if it satisfies the following two conditions:

• The square

X1

(d0,d1)

f1
Y1

(d0,d1)

X0 ×X0
f0×f0

Y0 × Y0

is homotopy cartesian.

• The induced map π0(X0)→ π0(Y0) is surjective.

Proof. Let f be a map satisfying the above two conditions. Let X 
→ XR be a fibrant
replacement functor in the Reedy model structure on SΔ

op

. The map X → XR and
Y → Y R are weak equivalences in CSS since the latter model category is a left Bous-
field localization of SΔ

op

with its Reedy model structure. Therefore, the map f is
a weak equivalence if and only if the map fR : XR

→ Y R is a weak equivalence.
Moreover, the map fR also satisfies the conditions of the lemma since those are
invariant under levelwise weak equivalences. We may therefore assume that X and Y
are Reedy fibrant. In that case, according to [Rez01, Theorem 7.7], we see that f is a
weak equivalence if and only if it is a Dwyer–Kan equivalence. According to [Hor15,
Proposition 2.15], the map f is a Dwyer–Kan equivalence if and only if it satisfies
the first condition of the lemma and the induced map π0(X0)/ ∼→ π0(Y0)/ ∼ is a
surjection where π0(X0)/ ∼ is a certain functorial quotient of π0(X0). But it is easy
to see that if π0(X0)→ π0(Y0) is surjective, then the map π0(X0)/ ∼→ π0(Y0)/ ∼
must be surjective as well.

Definition 3.4. A simplicial category X is said to be a Tamsamani bicategory
if X0 is a discrete category and the maps cn : Xn → X1 ×X0

X1 ×X0
· · · ×X0

X1 are
equivalences of categories for all n � 2.

Remark 3.5. Tamsamani bicategories should be thought of as a mild generalization
of bicategories. In fact, Lack and Paoli construct in [LP08] a fully faithful 2-nerve
from bicategories to Tamsamani bicategories. Note that since equivalences of cate-
gories are in particular weak equivalences, the simplicial space obtained by applying
the nerve levelwise to a Tamsamani bicategory is a Segal category.
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4. Fibrillations and Quillen’s theorem B

Computing homotopy pullbacks in a right proper model category usually involves
replacing one of the maps by a fibration. It has been observed by Rezk [Rez98] that
a weaker kind of fibrations is good enough. Those arrows are called sharp maps by
Rezk, fibrillations by Barwick and Kan in [BK12b] and weak fibrations by Cisinski
in [Cis10b]. We use Barwick and Kan’s terminology. Let X be a right proper model
category. The class of fibrillations is defined to be the largest class of maps in X

with the property that a pullback of a weak equivalence along a fibrillation is a weak
equivalence and the pullback of a fibrillation is a fibrillation. Note that any fibration
is a fibrillation. Moreover, we have the following proposition.

Proposition 4.1. [Rez98, Proposition 2.7] Let X be a right proper model category
and let

a b

p

a′ b′

be a square in which p is a fibrillation. Then the square is homotopy cartesian if and
only if the map a→ a′ ×b′ b is a weak equivalence. �

We will be mainly interested in the fibrillations in Cat with the Thomason model
structure. An elaboration of Quillen’s theorem B due to Barwick and Kan gives a
very efficient way to produce fibrillations in Cat.

Given a functor F : Xop
→ Cat, we define its Grothendieck construction Gr(F ).

The objects of this category are pairs (X, a) with X an object of X and a an object of
F (X). The set of morphisms from one such object (X, a) to another object (Y, b) is the
set of pairs (f, u) with f : X → Y a map in X and u : a→ F (f)b a map in F (X). The
composition is defined in a straightforward way. The category Gr(F ) comes equipped
with a map Gr(F )→ X.

Following Barwick and Kan, we say that a functor F from a small category X to
Cat has property Q if it sends all maps in X to weak equivalences.

Proposition 4.2. Let F : Xop
→ Cat be a functor having property Q. Let Gr(F ) be

the Grothendieck construction of F . The induced map Gr(F )→ X is a fibrillation in
Cat. �

Proof. The proof is essentially done in [BK12b, Lemma 9.7]. Our definition of the
Grothendieck construction differs from the one in Barwick and Kan. They work with
covariant functors as opposed to contravariant functors in our case. However, denoting
by Gr′ the Grothendieck construction used by Barwick and Kan, it is easy to see that
for Xop

→ Cat a functor, the map Gr(F )→ X is isomorphic to the opposite of the map
Gr′(F op)→ Xop where F op denotes the functor Xop

→ Cat sending X to F (X)op.
Now, we observe that the functor (−)op : Cat→ Cat preserves weak equivalences.

It follows that F op has property Q. Therefore, by [BK12b, Lemma 9.7], the map

Gr′(F op)→ X
op

is a fibrillation. Now the class of fibrillation is preserved by the functor (−)op since
it preserves and reflects pullback squares and weak equivalences.
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5. A Segal space associated to a PBC

For any integer n, we construct a category Tn. This is the full subcategory of
[n]op × [n] spanned by objects (p, q) with p � q.

Construction 5.1. Let M be a PBC. We define a category Cn(M). The objects of
this category are the functors m : Tn →M satisfying the following conditions:

1. Maps of the form (g, id) for g a map in [n]op are sent to trivial cofibrations.

2. For any p < q < n, the square

mp+1,q mp,q+1

mp+1,q+1 mp,q+1

is a pushout square.

The morphisms in Cn(M) are the natural transformations that are objectwise in wM.

For example an object in C2(M) is a diagram of the form

m02

m01 m12

�

m00 m11

�

m22

�

in which the square is a pushout square.

The assignment [n]→ Tn is a cosimplicial category. This makes Cn(M) into a
simplicial category. For instance the three face maps from C2(M) to C1(M) send

the object above respectively to m00 −→ m01
�

←−↩ m11, m00 −→ m02
�

←−↩ m22 and

m11 −→ m12
�

←−↩ m22. The degeneracies are obtained by inserting identities. We
define C(M) to be the simplicial space obtained from C(M) by applying the nerve
objectwise.

Let NR(M) be Rezk classifying diagram of M. This is a simplicial space whose
space of n-simplices NR

n (M) is the nerve of the category N
R
n (M) whose objects are

functors [n]→M and morphisms are natural transformations which are objectwise
weak equivalences.

We now construct a map N
R(M)→ C(M). There is an inclusion [k]→ Tk sending

p to (0, p). This induces a restriction map Ck(M)→ N
R
k (M). These restriction maps

are not compatible with the simplicial structure. However, for each k, the restriction
map Ck(M)→ N

R
k (M) has a left adjoint. For instance, in degree 2, this left adjoint
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sends c0 −→ c1 −→ c2 to

c2

c1 c2

id

c0 c1

id

c2.

id

These left adjoints are compatible with the simplicial structure. More precisely,
they induce a natural transformation N

R(M)→ C(M) that is functorial in M. Hence,
we have the following proposition.

Proposition 5.2. The map N
R(M)→ C(M) is a levelwise weak equivalence. �

Another important feature of the simplicial space C(M) is the following proposi-
tion:

Proposition 5.3. The simplicial space C(M) is a Segal space.

Proof. We write C for C(M) and C for C(M). We have the map

cn : Cn → C1 ×C0
C1 ×C0

· · · ×C0
C1.

Since pushouts are determined up to unique isomorphism, this map is an equivalence
of categories. The functor N preserves homotopy pullbacks, therefore it suffices to
prove that the map

C1 ×C0
C1 ×C0

· · · ×C0
C1 → C1 ×

h
C0

C1 ×
h
C0
· · · ×

h
C0

C1

is a weak equivalence. We denote the source by Dn and the target by En. We proceed
by induction on n. For n = 1, the map D1 → E1 is a weak equivalence. Now, we claim
that the map d0 : C1 → C0 is a fibrillation. Assuming this is true for the moment, we
finish the proof. We assume that Dn → En is a weak equivalence. By Proposition 4.1,
this implies that

Dn+1 := Dn ×C0
C1 → En ×C0

C1

is a weak equivalence and that En ×C0
C1 → En ×

h
C0

C1 = En+1 is a weak equivalence.
Now we prove that d0 : C1 → C0 is a fibrillation. We construct a functor P : Cop

0 →

Cat sending m to the category whose objects are zig-zags of the form m −→ •
�

←−↩ •
and morphisms are objectwise weak equivalences inducing the identity of m on the
leftmost term. The category C1 can be identified with the Grothendieck construc-
tion of P . Thus by Proposition 4.2, it suffices to prove that P has property Q. By
Lemma 2.9, it is enough to prove that P sends trivial cofibrations to weak equiva-
lences. Let u : m→ n be a trivial cofibration, then the map P (u) : P (n)→ P (m) has

a left adjoint sending m −→ a
�

←−↩ b to n −→ n �m a
�

←−↩ b.

6. A fibrancy property

In this section, we prove that C(M) = NC(M) is a Segal space that satisfies a weak
form of Reedy fibrancy. We first make a definition.
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Definition 6.1. A map f : C → D between categories is said to be a quasifibration
if for any object d ∈ D, the square

C ×D ∗ C

f

∗
d

D

is homotopy cartesian in Cat.

This notion is entirely analogous to the notion of quasifibration in S (defined
for instance in [DT58, Definition 1.1]). More precisely, since N preserves homotopy
cartesian squares, we see that a map f in Cat is a quasifibration if and only if N(f)
is a quasifibration in S.

Proposition 6.2. For each n, the map

Cn → C
n+1
0

is a quasifibration.

Proof. We denote by Dn the category C1 ×C0
×C1 · · · ×C0

C1. This is the category
whose objects are zig-zags in M of the form

m0 −→ m′

0

�

←−↩ m1 −→ · · ·
�

←−↩ mn−1 −→ m′

n

�

←−↩ mn

and morphisms are natural weak equivalences between them. The map of the propo-
sition factors as Cn → Dn → C

n+1
0 . We denote by En the category whose objects are

zig-zags in M of the form

m0 −→ m′

0
�

←− m1 −→ · · ·
�

←− mn−1 −→ m′

n
�

←− mn

and morphisms are natural weak equivalences between them. Note that this notation
conflicts with the one in the proof of Proposition 5.3. There is an inclusion Dn → En

and the map Cn → C
n+1
0 factors as Cn → Dn → En → C

n+1
0 .

(1) We first claim that the map Cn → Dn is a weak equivalence. In fact, as in
the proof of Proposition 5.3, it is an equivalence of categories since pushouts are
determined up to a unique isomorphism.

(2) We claim that the map Dn → En is a weak equivalence. We do the case n = 1,
to keep the notation simple. The general case is a straightforward generalization.
We denote by α : D1 → E1 the inclusion. We construct a map β : E1 → D1. It sends

m
f
−→ a

k
←− n to m

s(k)◦f
−→ a′

c(k)
←− n where s and c are the functor appearing in the

factorization axiom (see axiom 4 of Definition 2.2). Note that we have the following
commutative diagram:

m
f

a n
k

m
s(k)◦f

id

a′

w(k)

n.
c(k)

id

This immediately implies that there are natural transformation β ◦ α→ idD1
and

α ◦ β → idE1
.
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(3) Now we prove that the map En → C
n+1
0 is a fibrillation. For (m0, . . . ,mn)

a sequence of objects of M, we denote by E(m0,m1, . . . ,mn) the fiber of En over
(m0, . . . ,mn) ∈ C

n+1
0 . The assignment (m0, . . . ,mn) 
→ E(m0, . . . ,mn) extends to a

functor P : (Cn+1
0 )op → Cat and the category E is isomorphic to the Grothendieck

construction of P . Hence, by Proposition 4.2 it suffices to prove that P has propertyQ.
By Lemma 2.9, it suffices to prove that P sends products of n+ 1 trivial cofibrations
to weak equivalences. Again, we restrict ourselves to the case n = 1 to simplify the
notation. We want to prove that the functor P : (C2

0)
op
→ Cat sends products of trivial

cofibrations to weak equivalence. We can restrict to maps of the form (u, idm) and
(idm, u) where u is a trivial cofibration of M since any product of trivial cofibrations
is a composite of maps of this form.

But now, we claim that if u : a→ b is a trivial cofibration the map

P (u) : E(b,m)→ E(a,m)

has a left adjoint sending a −→ m′ �

←− m to b −→ b �a m′ �

←− m. The other case is
similar.

(4) Hence, by the previous three paragraphs and by 4.1, it suffices to prove that
the map C(m0, . . . ,mn)→ E(m0, . . . ,mn) is a weak equivalence for any object
(m0, . . . ,mn) in C

n+1
0 (where E(m0, . . . ,mn) denotes the fiber of the map En →

C
n+1
0 over (m0, . . . ,mn)). We can factor this map through D(m0, . . . ,mn). The map

C(m0, . . . ,mn)→ D(m0, . . . ,mn) is an equivalence of categories by uniqueness up to
a unique isomorphism of pushouts exactly as in (1). Similarly, an argument analogous
to (2) implies that D(m0, . . . ,mn)→ E(m0, . . . ,mn) is a weak equivalence.

7. A Segal category

Recall that CSS denotes the category of simplicial spaces with Rezk’s complete
Segal space model structure (constructed in [Rez01]). We denote by SeCat the
category of Segal precategories (that is of functors Δop

→ S which are discrete in
degree 0) with Bergner’s injective model structure (constructed in [Ber07, Theo-
rem 5.1]). By [Ber07, Theorem 6.3], we have a Quillen equivalence:

i : SeCat � CSS : δ,

where i is the inclusion and δ its right adjoint.
The functor δ is constructed explicitly in [Ber07, Section 6] under the name R.

There is a similar functor also denoted δ sending a simplicial category X to the
pullback

δ(X) X

cosk0Ob(X0) cosk0X0,

where cosk0 denotes the zero-coskeleton functor. We have an obvious isomorphism
N(δX) ∼= δN(X).

Definition 7.1. We say that a simplicial space X is quasifibrant if the canonical
map X → cosk0X0 is levelwise a quasifibration.
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We observe that if X is quasifibrant and is a Segal space, then δ(X) is a Segal
category. The following proposition implies that for quasifibrant simplicial spaces, the
functor δ coincides with its derived functor.

Proposition 7.2. Let f : X → Y be a map between quasifibrant Segal spaces. Then,
f is a Rezk equivalence if and only if δ(f) is a weak equivalence in SeCat.

Proof. (1) First, we claim that for X quasifibrant, the counit map iδ(X)→ X is a
weak equivalence in CSS. We use Lemma 3.3. We have a cartesian square

iδ(X)1 X1

iδ(X)0 × iδ(X)0 X0 ×X0.

By assumption, the map X1 → X0 ×X0 is a quasifibration. Hence, the square is
homotopy cartesian by definition of a quasifibration. The second hypothesis of
Lemma 3.3 is satisfied because the map iδ(X)0 → X0 is a bijection on the zero-
simplices.

(2) Now, we prove the proposition. We have a commutative diagram in SΔ
op

:

iδ(X)

iδ(f)

X

f

iδ(Y ) Y.

By the previous paragraph and the two-out-of-three property, we see that f is a
weak equivalence if and only if iδ(f) is a weak equivalence. It is shown in the proof
of [Ber07, Theorem 6.3] that the functor i reflects weak equivalences. Thus f is a
weak equivalence if and only if δ(f) is a weak equivalence.

We are now ready to introduce the main construction of this paper and prove our
main theorem.

Definition 7.3. We define the Weiss bicategory of M to be the functor W(M) :=
δC(M). We also define W (M) := NW(M).

Remark 7.4. Note that the Weiss bicategory W(M) is not a bicategory but merely a
Tamsamani bicategory (see Remark 3.5 for an explanation of the relationship between
these two concepts). Its name comes from the fact that this construction is very similar
to the bicategory constructed in [Wei99, Remark 1.2].

By Proposition 5.2, the functor C is levelwise weakly equivalent to NR and the
latter functor sends weak equivalences of relative categories to weak equivalences.
It follows that C sends right exact equivalences to weak equivalences. By Proposi-
tion 7.2 and Proposition 6.2, it follows that the functors W and W carry right exact
equivalences to weak equivalences. Moreover, the following theorem together with
Theorem A.2 insures that the Segal category W (M) is a model for the ∞-categorical
localization of M.
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Theorem 7.5. The Segal category W (M) is connected to NR(M) by a functorial
zig-zag of Rezk equivalences.

Proof. The counit iW (M)→ C(M) is a weak equivalence by the first paragraph
of the proof of Proposition 7.2. Moreover, there is a functorial weak equivalence
NR(M)→ C(M) by Proposition 5.2.

Appendix A. Rezk nerve as ∞-localization

The purpose of this appendix is to give a short proof of the fact that Rezk’s relative
nerve construction models the ∞-categorical localization. This proof is sketched by
Christopher Schommer-Pries on Mathoverflow (see [SP12]). We refer the reader to
the second section for background material and notation about relative categories.

We denote by QCat the category of simplicial sets with the Joyal model structure
(see [Lur09, Theorem 2.2.5.1]). We denote by CSS the category of simplicial spaces
with the Rezk model structure (constructed in [Rez01]). We denote respectively by
QCatf and CSS

f the full subcategories spanned by the quasicategories and the Reedy
fibrant complete Segal spaces. For i � 0, we denote by F (i) the nerve of [i] seen as a
levelwise discrete simplicial space.

For (C, wC) a (not necessarily small) relative category, we denote by L(C, wC)
or LC if there is no ambiguity the quasicategory obtained by taking the homotopy
coherent nerve of a fibrant replacement (in the Bergner model structure on simplicially
enriched categories) of the hammock localization of C. We denote by L : RCat→ QCat
the restriction of L to small relative categories.

It is proved in [Hin13, Proposition 1.2.1] that for a relative category (C, wC), the
quasicategory L(C, wC) is a model for the∞-categorical localization in the sense that
it represents a functor weakly equivalent to the functor QCatf → S sending X to

Map(NC, X)×h
Map(NwC,X) Map(NwC, ιX),

where ιX is the maximal Kan complex contained in X.
Let p∗1 : QCat→ CSS be the functor sending a simplicial set to the same simplicial

set seen as a levelwise discrete simplicial space. It is proved in [JT07] that the functor
p∗1 is a left Quillen equivalence. Using Hinich result, we can thus deduce easily that
the functor CSSf → S sending X to Map(p∗1L(C, wC), X) coincides up to natural weak
equivalences with the functor

X 
→ Map(p∗1NC, X)×h
Map(p∗

1
NwC,X) Map(p∗1NwC, cX0),

where cX0 denotes the constant simplicial space on the space X0. Our goal is to show
that p∗1L(C, wC) is weakly equivalent to NR(C, wC).

Our proof is based on a theorem of Toën. We denote by τ the map from CSS to
itself induced by precomposition with the functor (−)op : Δ→ Δ.

Theorem A.1 (Toën). Let C be a relative category and f, g : LC→ LCSS be two cat-
egorical equivalences (i.e. weak equivalences in Joyal’s model structure). Then either
f is homotopic to g or f is homotopic to L(τ) ◦ g.

Proof. The map L(τ) induces a map Z/2→ QCat(LCSS,LCSS). According to [Toë05,
Théorème 6.3], it induces a weak equivalence from Z/2 to the group of homotopy auto-
morphisms of LCSS. Let h be a map LCSS→ LC which is a homotopy inverse to f .
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Then g ◦ h is a homotopy automorphism of LCSS and hence is homotopic to L(τ) or
to L(id). Therefore, f is either homotopic to g or to L(τ) ◦ g.

We can now prove the main result of this appendix.

Theorem A.2. Let (C, wC) be a relative category. Then, in the model category CSS,
the object NR(C, wC) is weakly equivalent to p∗1L(C, wC).

Proof. We first observe that p∗1L and NR are two equivalences of relative categories
from RCat to CSS. For NR, this follows from [BK12c, Lemma 5.4 and Theorem 6.1].
For p∗1L this follows from the fact that p∗1 is an equivalence by the main theorem
of [JT07] and that L is an equivalence as the composite of two equivalences (the
hammock localization is an equivalence by [BK12a, Proposition 3.1 and Section 2.5]
and the homotopy coherent nerve is an equivalence by [Lur09, Theorem 2.2.5.1]).
Hence, we have two relative equivalences p∗1L and NR from RCat to CSS. If we
can prove that L(p∗1L) is homotopic to L(NR), this will imply that for any relative
category NR(C, wC) is connected by a zig-zag of weak equivalences to p∗1L(C, wC) and
conclude the proof.

According to Proposition A.1, it suffices to prove that L(p∗1L) is not homotopic
to L(τ ◦NR). Let us consider the map (d0, d1) : [0] � [0]→ [1]. We observe that the
functor p∗1L sends this map to

(d0, d1) : F (0) � F (0)→ F (1)

and τ ◦NR sends it to

(d1, d0) : F (0) � F (0)→ F (1).

If the two functors were homotopic, by passing to the homotopy category of CSS, we
would find a natural isomorphism between the following two functors from HoCSS to
equalizer diagrams of sets

X 
→ ((d0, d1) : π0(X1) ⇒ π0(X0)), and X 
→ ((d1, d0) : π0(X1) ⇒ π0(X0)).

In particular, taking X to be the nerve of the category freely generated by the
oriented graph • ← • → •, we would find an isomorphism between this graph and
the graph • → • ← • which is a contradiction.
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