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CONTINUITY OF COARSE SHAPE GROUPS

NIKOLA KOCEIĆ BILAN

(communicated by Alexander Mishchenko)

Abstract
We show that every coarse shape group can be obtained

as the inverse limit of an inverse system of the groups com-
ing from an HPol⋆-expansion. This provides a way of comput-
ing of these interesting topological invariants (whose algebraic
structure is significantly richer than those of the homotopy and
shape groups) in an easier manner. It is proven that, for inverse
systems of compact polyhedra, the coarse shape group functor
commutes with the inverse limit.

1. Introduction and preliminaries

Since its foundation the main goal of algebraic topology was to obtain some func-
torial relations between topology and algebra. One of the most important ideas of
algebraic topology is to assign certain algebraic objects to different topological spaces.
This idea allows studying of isomorphisms between corresponding algebraic structures
instead of topological isomorphisms (homeomorphisms, homotopy or shape equiva-
lences). This approach has a full significance for those spaces for which it is much
easier to consider algebraic properties instead of topological ones. A desirable prop-
erty of such algebraic objects is non-triviality and, moreover, that they properly rep-
resent a complicated structure of some topological objects by their, sufficiently rich,
algebraic structure. The homotopy group functor πk, relating the pointed homotopy
category HTop⋆ and the group category Grp, provides good information on spaces
having good local properties (such as: polyhedra, CW -complexes or, more generally,
spaces having the homotopy type of ANR-s). Outside that class, algebraic tools of
shape theory (e.g., the shape group functor π̌k and homotopy pro-group functor pro-
πk which relate the pointed shape category Sh⋆ to the categories Grp and pro-Grp,
respectively) are more suitable. The standard example is the Warsaw circle whose
global similarity with the 1-sphere S1 structure is not detected by homotopy theory.
However, there are many spaces which neither shape theory nor its algebraic tools can
treat in a sufficiently good way. The standard examples for that are solenoids whose
rather complicated structure is not detected by the shape group functor, since the
shape groups of solenoids vanish in all dimensions. Coarse shape theory, which func-
torially generalizes shape theory, was founded in [5] to overcome such problems. The
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category frame for this theory is the (pointed) coarse shape category Sh∗ (Sh∗⋆), hav-
ing (pointed) topological spaces as objects and having the (pointed) shape category
Sh (Sh⋆) as a subcategory. There are several algebraic coarse shape invariants induced
by the functors pro∗-πk : Sh

∗
⋆ → pro∗-Grp (see [4]) and π̌∗k : Sh

∗
⋆ → Grp, n ∈ N (see

[3]). The functor π̌∗k assigns to every pointed space (X,x0) the k-th coarse shape group
π̌∗k (X,x0) having the k-th shape group π̌k (X,x0) as a subgroup. For a pointed com-
pactum, unlike the shape groups, coarse shape groups fit into a long exact sequence
(see [2]). Therefore the study of coarse shape groups can be very useful, especially
when the corresponding shape groups vanish as for solenoids. Besides obvious advan-
tages which coarse shape groups have over shape groups, if one compares coarse
shape groups with homotopy pro-groups, it is easy to notice that studying coarse
shape groups is usually more fruitful. Namely, for a pointed compactum (X,x0), the
triviality of pro-πk (X,x0) is equivalent to the triviality of π̌∗k (X,x0) = 0, k ∈ N, but
on the other hand, pro-πk (X,x0) does not have the algebraic structure of a group
while π̌∗k (X,x0) does. In other words, the coarse shape groups keep information which
homotopy pro-groups have and which are usually lost in the inverse limit process
needed to obtain shape groups. However, although coarse shape groups provide use-
ful information on a pointed space, on the other hand, a certain disadvantage is that
they are too large and it is not easy to compute them for a concrete space (excepting
a polyhedron). In [1], an explicit formula for computing coarse shape groups of a
pointed compactum whose bonding homomorphisms of its homotopy pro-groups are
monomorphisms is given. In the present paper we give a more general and useful
formula for computing a coarse shape group of any space. It will be shown that every
coarse shape group can be obtained as the inverse limit of a group inverse system
(Theorem 2.1) instead of applying the original definition in a natural but rather com-
plicated manner. Since, for inverse systems of compact polyhedra, the coarse shape
group functor commutes with the inverse limit, we may use the term “continuity of
the coarse shape group” (Corollary 3.1). A similar discussion about continuity, con-
cerning the functor lim

←
, one can find in [7] (for the coarse and weak shape categories)

and in [6] (for homology and shape groups).

Let us recall some elementary notions about coarse shape (see [5]). The pointed
homotopy category HTop⋆ has all pointed spaces (X,x0) for its objects and the
morphisms are all pointed homotopy classes [f ] of mappings of pointed spaces,
f : (X,x0) → (Y, y0). In this paper morphisms of the category HTop⋆ will usually
be denoted by omitting the brackets. The restriction of the class of objects of HTop⋆
to pointed polyhedra yields the full subcategory HPol⋆ ⊆ HTop⋆. An S∗-morphism
(f, fn

µ ) : (X,x0) → (Y ,y0) of inverse systems (X,x0) = ((Xλ, xλ) , pλλ′ ,Λ) and
(Y ,y0) = ((Yµ, yµ) , qµµ′ ,M), in the category HTop⋆, consists of an index function
f : M → Λ, and of a set of homotopy classes fn

µ :
(
Xf(µ), xf(µ)

)
→ (Yµ, yµ) , n ∈

N, µ ∈ M, such that, for every related pair µ ⩽ µ′ in M , there exists a λ ∈ Λ,
λ ⩾ f(µ), f (µ′), and there exists an n ∈ N so that, for every n′ ⩾ n, fn′

µ pf(µ)λ =

qµµ′fn′

µ′ pf(µ′)λ. An S∗-morphism (f, fn
µ ) : (X,x0) → (Y ,y0) is said to be equiva-

lent to an S∗-morphism (f ′, f ′nµ ) : (X,x0) → (Y ,y0), denoted by (f, fn
µ ) ∼ (f ′, f ′nµ ),

provided every µ ∈ M admits a λ ∈ Λ, λ ⩾ f(µ), f ′(µ), and an n ∈ N, such that, for
every n′ ⩾ n, fn′

µ pf(µ)λ = f ′n
′

µ pf ′(µ)λ. The category pro∗-HTop⋆ has as objects all
inverse systems (X,x0) of pointed spaces and as morphisms all equivalence classes
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f∗ = [(f, fn
µ )] of S

∗-morphisms (f, fn
µ ). It is related with the (well-known) category

pro-HTop⋆ via the “inclusion” functor J : pro-HTop⋆ → pro∗-HTop⋆ which keeps
inverse systems fixed and to each morphism f = [(f, fµ)] of pro-HTop⋆ assigns a
morphism J (f) of pro∗-HTop⋆ represented by

(
f, fn

µ

)
, fn

µ = fµ, µ ∈ M , n ∈ N.
The category HPol⋆ is a pro-reflective subcategory of HTop⋆ (see [6]) which

means that, for every pointed space (X,x0), there exists an HPol⋆-expansion of
(X,x0) which is a morphism p = [(pλ)] : (X,x0) → (X,x0) = ((Xλ, xλ) , pλλ′ ,Λ) of
pro-HTop⋆, where (X,x0) is an inverse system of pointed polyhedra. Let p : (X,x0)→
(X,x0) and q : (Y, y0) → (Y ,y0) be HPol⋆-expansions of pointed spaces (X,x0) and
(Y, y0), respectively. A pointed coarse shape morphism F ∗ : (X,x0) → (Y, y0) is an
equivalence class ⟨f∗⟩ which is represented by a morphism f∗ : (X,x0) → (Y ,y0) of
pro∗-HPol⋆. The pointed coarse shape category Sh∗⋆ has for its objects all pointed
topological spaces (X,x0), while a morphism set Sh∗⋆((X,x0), (Y, y0)) consists of all
equivalence classes F ∗ = ⟨f∗⟩ of morphisms f∗ =

[
(f, fn

µ )
]
: (X,x0) → (Y ,y0) of

pro∗-HPol⋆ ranging over the corresponding expansions. The functor J induces a
faithful functor J : Sh⋆ → Sh∗⋆, which keeps the object fixed, relating the pointed
shape category Sh⋆ with the Sh∗⋆. A coarse shape morphism F ∗ is said to be induced
provided there exists a shape morphism F such that F ∗ = J (F ). A connection
between Sh∗⋆ and the pointed homotopy category HTop⋆ is given by the functor
S∗ = J ◦ S : HTop⋆ → Sh∗⋆ where S denotes the shape functor S : HTop⋆ → Sh⋆.

Recall that, for every k ∈ N, the functors π̌∗k : Sh
∗
⋆ → Grp and π̌∗0 : Sh

∗
⋆ → Set⋆

(Set⋆ denotes the category of pointed sets and base point preserving functions) asso-
ciate, with every pointed space (X,x0), the group π̌∗k (X,x0) (for k = 0 the pointed
set) called the k-th coarse shape group. Its underlaying set is Sh∗⋆

((
Sk, s0

)
, (X,x0)

)
,

i.e., the elements of π̌∗k (X,x0) are all pointed coarse shape morphisms A∗ :
(
Sk, s0

)
→

(X,x0), where Sk denotes the standard k-dimensional sphere. Notice that a repre-
sentative of [(anλ)] :

(
Sk, s0

)
→ ((Xλ, xλ) , pλλ′ ,Λ) of A∗ consists of anλ ∈ πk (Xλ, xλ),

for all λ ∈ Λ, n ∈ N. The functor π̌∗k associates with every coarse shape morphism
F ∗ : (X,x0) → (Y, y0) a homomorphism (for k = 0, a base point preserving function)
π̌∗k (F

∗) : π̌∗k (X,x0) → π̌∗k (Y, y0) given by the following formula:

π̌∗k (F
∗) (A∗) = F ∗ ◦A∗, A∗ ∈ π̌∗k (X,x0) .

For every induced coarse shape morphism F ∗ : (X,x0) → (Q, q0) in the category Sh∗⋆,
where Q is a polyhedron, there exists a unique homotopy class [f ] : (X,x0) → (Q, q0)
(a morphism of HTop⋆) such that F ∗ = S∗ ([f ]) (see [6] and [5]). Therefore, if we use
the abbreviation π̌∗k (f) for the homomorphism π̌∗k (S

∗ ([f ])) : π̌∗k (X,x0) → π̌∗k (Y, y0)
there is no possibility for ambiguity.

2. The main result

Theorem 2.1. Let (X,x0) be a pointed space and let

p = [(pλ)] : (X,x0) → (X,x0) = ((Xλ, xλ) , pλλ′ ,Λ)

be an HPol⋆-expansion of (X,x0). Then, for every k ∈ N,

π̌∗k (X,x0) ∼= lim
←

π̌∗k (X,x0) ,
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i.e., the k-dimensional coarse shape group of (X,x0) is isomorphic to the inverse
limit of the inverse system (π̌∗k (Xλ, xλ) , π̌

∗
k (pλλ′) ,Λ) of the k-dimensional coarse

shape groups of the terms (Xλ, xλ) in the category Grp. Moreover, the morphism

π̌∗k(p) = [(π̌∗k (pλ))] : π̌
∗
k (X,x0) → (π̌∗k (Xλ, xλ) , π̌

∗
k (pλλ′) ,Λ)

of pro-Grp induces a group isomorphism

lim
←

π̌∗k(p) : π̌
∗
k (X,x0) → lim

←
π̌∗k (X,x0) .

Proof. Let k ∈ N ∪ {0} and let G denote the inverse limit

G := lim
←

(π̌∗k (Xλ, xλ) , π̌
∗
k (pλλ′) ,Λ)

(in the category Grp) of the inverse system

π̌∗k (X,x0) = (π̌∗k (Xλ, xλ) , π̌
∗
k (pλλ′) ,Λ)

consisting of the coarse shape groups Gλ = π̌∗k (Xλ, xλ). Let

A∗ ∈ π̌∗k (X,x0) = Sh∗⋆
((
Sk, s0

)
, (X,x0)

)
be a coarse shape morphism represented by an

a∗ = [(anλ)] :
(
Sk, s0

)
→ (X,x0) . (1)

Notice that, for every index λ0, the sequence of homotopy classes:

a1λ0
, a2λ0

, . . . , anλ0
, . . . :

(
Sk, s0

)
→ (Xλ0 , xλ0)

induces an S∗-morphism which represents a morphism

a∗λ0
:
(
Sk, s0

)
→ (Xλ0 , xλ0) (2)

of pro∗-HPol⋆ between rudimentary systems. Now, the coarse shape morphism

A∗λ0
=
⟨
a∗λ0

⟩
:
(
Sk, s0

)
→ (Xλ0 , xλ0) (3)

is an element of Gλ0 . Further, since π̌∗k is a functor, for every λ ⩽ λ′, the homotopy
class pλλ′ : (Xλ′ , xλ′) → (Xλ, xλ) induces a homomorphism #pλλ′ := π̌∗k(pλλ′) : Gλ′ →
Gλ. Since, by the property of the S∗-morphism (1), for every λ ⩽ λ′, there exists an
n(λ,λ′) such that

an
′

λ = pλλ′an
′

λ′ ,

for every n′ ⩾ n(λ,λ′), the following equivalence of S∗-morphisms between rudimen-
tary systems holds

(anλ) ∼ (pnλλ′ = pλλ′) ◦ (anλ′) :
(
Sk, s0

)
→ (Xλ, xλ) ,

for every pair of fixed indices λ ⩽ λ′. This implies that

a∗λ = [(pnλλ′)] ◦ a∗λ′

in pro∗-HPol⋆. Consequently, the following equality (of coarse shape morphisms)
holds

A∗λ = S∗ (pλλ′) ◦A∗λ′ .

Therefore, #pλλ′ (A∗λ′) = A∗λ, which means that (A∗λ | λ ∈ Λ) ∈
∏
λ∈Λ

Gλ belongs to the
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group G = lim
←

(Gλ,#pλλ′ ,Λ). In such a manner we have defined a function

Φ: π̌∗k (X,x0) → G,

which, to every A∗ ∈ π̌∗k (X,x0), assigns Φ (A∗) = (A∗λ | λ ∈ Λ) ∈ lim
←

(Gλ,#pλλ′ ,Λ).

Notice that Φ does not depend on the choice of the representative a∗ of the morphism
A∗. Indeed, assuming (anλ) ∼ (a′nλ ) :

(
Sk, s0

)
→ (X,x0), we infer that, for every λ0,

there exists an n ∈ N, such that an
′

λ0
= a′n

′

λ0
, for every n′ ⩾ n. Hence,(

anλ0

)
∼
(
a′nλ0

)
:
(
Sk, s0

)
→ (Xλ0 , xλ0) ,

which means that both S∗-morphisms represent the same morphism (2) which is a
representative of (3). Thus, Φ (⟨[(anλ)]⟩) and Φ (⟨[(a′nλ )]⟩) agree at all coordinates.

Let us show that the function Φ is, actually, the limit homomorphism

lim
←

π̌∗k(p) : π̌
∗
k (X,x0) → G,

of the morphism

π̌∗k(p) = [(π̌∗k (pλ))] : π̌
∗
k (X,x0) → (Gλ,#pλλ′ ,Λ)

in pro-Grp, which is induced by the homomorphisms

π̌∗k (pλ) : π̌
∗
k (X,x0) → Gλ, λ ∈ Λ.

It is sufficient to check that

π̌∗k (pλ0) = θλ0 ◦ Φ: π̌∗k (X,x0) → Gλ0 ,

for every λ0 ∈ Λ, where θλ0 :
∏
λ∈Λ

Gλ → Gλ0 denotes the projection. Given a λ0, for

an arbitrary A∗ = ⟨[(anλ)]⟩ ∈ π̌∗k (X,x0), an element π̌∗k (pλ0) (A
∗) of Gλ0 is defined as

the coarse shape morphism

S∗(pλ0) ◦A∗ :
(
Sk, s0

)
→ (Xλ0 , xλ0) .

Notice that S∗(pλ0
) is represented by

J(
[(
1Xλ0

, ι
)]
) : (X,x0) → (Xλ0 , xλ0) ,

where the index function ι : {λ0} ↪→ Λ is the inclusion. Therefore, the morphism
S∗(pλ0) ◦A∗ is represented by

[(
anλ0

)]
:
(
Sk, s0

)
→ (Xλ0 , xλ0) which is a∗λ0

, exactly.
Hence,

π̌∗k (pλ0) (A
∗) = S∗(pλ0) ◦A∗ = A∗λ0

= θλ0 ◦ Φ(A∗) .

Thus, the homomorphism lim
←

π̌∗k(p) is equal to Φ.

Next we prove that Φ is a monomorphism. It is sufficient to check that Φ (A∗) = 0
implies A∗ = 0. Assuming Φ (A∗) = 0 we infer that A∗λ = 0 ∈ Gλ, for every coordinate

λ ∈ Λ. It follows that, for every λ ∈ Λ, there exists an nλ, such that an
′

λ = 0 (a null-
homotopic map), for every n′ ⩾ nλ. It follows that the S

∗-morphism (anλ) :
(
Sk, s0

)
→

(X,x0) is equivalent to the trivial one. Thus A∗ = ⟨[(anλ)]⟩ = 0.

In order to prove that Φ is an epimorphism, suppose that (A∗λ | λ ∈ Λ ) is
an arbitrary element of the group G = lim

←
(Gλ, #pλλ′ , Λ). For every λ0 ∈ Λ, let
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anλ0

)
:
(
Sk, s0

)
→ (Xλ0 , xλ0) be an S∗-morphism such that

[(
anλ0

)]
represents A∗λ0

.
Since, for every λ ⩽ λ′, A∗λ = #pλλ′A∗λ′ , it follows that

a∗λ = [(pnλλ′ = pλλ′)] ◦ a∗λ′ .

This implies that there exists an n(λ,λ′) ∈ N such that

an
′

λ = pλλ′ ◦ an
′

λ′ ,

for every n ⩾ n(λ,λ′). Therefore, (a
n
λ) :

(
Sk, s0

)
→ ((Xλ, xλ) , pλλ′ ,Λ) is an S∗-mor-

phism such that

Φ (⟨[(anλ)]⟩) = (A∗λ | λ ∈ Λ) .

This completes the proof.

Remark 2.2. Since the category of pointed sets Set⋆ admits inverse limits of inverse
systems, Theorem 2.1 also holds for the dimension k = 0. Indeed, it is routine to check
that the proof remains valid if we replace groups by pointed sets and homomorphisms
by base point preserving functions.

3. An application

If p = [(pλ)] : (X,x0) → ((Xλ, xλ) , pλλ′ ,Λ) is the inverse limit of an inverse sys-
tem of pointed compact polyhedra in the category Top⋆, then, by Theorem 9, I.5.3
of [6], the morphism Hp = [([pλ])] : (X,x0) → ((Xλ, xλ) , [pλλ′ ] ,Λ) of pro-HTop⋆ is
an HPol⋆-expansion of the pointed compact Hausdorff space (X,x0). Therefore, an
immediate consequence of Theorem 2.1, is the property of the continuity of the coarse
shape group functor given in the following corollary.

Corollary 3.1. Let (X,x0) = ((Xλ, xλ) , pλλ′ ,Λ) be an inverse system of pointed
compact polyhedra in the category Top⋆. Then, π̌

∗
k(lim←

(X,x0)) = lim
←

(π̌∗k (X,x0)).

Example 3.2. Let us consider an inverse sequence of groups (Gi, qii+1) , where, for

every i ∈ N, Gi =

( ∏
n∈N

Z
)
/

(⊕
n∈N

Z
)

and qii+1 : Gi+1 → Gi is the homomorphism

qii+1 (g) = pi · g, g ∈ Gi+1, induced by the multiplication by some prime number pi ∈
N. Then, the inverse limit

lim
←

(Gi, qii+1)

is equal, up to an isomorphism, to the group( ∪
(ji)∈NN

∏
i∈N (p0 · · · · · pi−1 · Z)ji

)
/ ∼,

where ∼ is the equivalence relation “to be equal at all but finitely many coordinates”,
NN denotes the set of all sequences in N and p0 = 1. Indeed, since lim

←
(Gi, qii+1) is,

by Corollary 3.1, equal to the coarse shape group π̌∗1
(
Σ(pi), x

)
of a pointed solenoid

Σ(pi), given by a sequence of prime numbers (pi), for any base point x ∈ Σ(pi), the
conclusion follows by [1, Section 3].
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The following corollary gives a characterization of the triviality of a (sequen-
tial) homotopy pro-group via the triviality of the inverse limit of the corresponding
sequence of coarse shape groups.

Corollary 3.3. Let (X,x0) = ((Xi, xi), pii+1) be an inverse sequence of pointed com-
pact polyhedra in the category Top⋆. Then

pro-πk

(
lim
←

(X,x0)
)
∼= 0 if and only if lim

←
(π̌∗k (X,x0)) = 0.

More precisely, the homotopy pro-group (πk (Xi, xi) , πk(pii+1)) is trivial in the cate-
gory pro-Grp if and only if the inverse limit of the group sequence(( ∏

n∈N
πk (Xi, xi)

)
/

(⊕
n∈N

πk (Xi, xi)

)
,

[ ∏
n∈N

πk(pii+1)

])
is trivial, where

[ ∏
n∈N

πk(pii+1)

]
is the homomorphism between quotient groups induced

by πk(pii+1).

Proof. By Theorem 4 of [3], for every pointed space (X,x0) admitting a sequential
HPol⋆-expansion, the triviality of its homotopy pro-group pro-πk (X,x0) is equivalent
to triviality of its coarse shape group π̌∗k (X,x0). Now, we can take the pointed space
lim
←

(X,x0) and apply Corollary 3.1 and the formula for computing the coarse shape

group for a polyhedron [3, Example 1].
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[7] N. Uglešić, Continuity in the coarse and weak shape categories, Mediterr. J.
Math. 9 (2012) 741–766.
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