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FOR MODEL CATEGORIES

MARC STEPHAN

(communicated by J. Daniel Christensen)

Abstract
We introduce and compare two approaches to equivariant

homotopy theory in a topological or ordinary Quillen model
category. For the topological model category of spaces, we
generalize Piacenza’s result that the categories of topological
presheaves indexed by the orbit category of a fixed topologi-
cal group G and the category of G-spaces can be endowed with
Quillen equivalent model category structures. We prove an anal-
ogous result for any cofibrantly generated model category and
discrete group G, under certain conditions on the fixed point
functors of the subgroups of G. These conditions hold in many
examples, though not in the category of chain complexes, where
we nevertheless establish and generalize to collections an equiv-
ariant Whitehead Theorem à la Kropholler and Wall for the
normalized chain complexes of simplicial G-sets.

1. Introduction

For any topological group G, Piacenza ([26, VI. §6], [28]) showed that the cate-
gory of G-spaces and the category of orbit diagrams form Quillen equivalent model
categories. This works more generally for any collection F of closed subgroups of G
that contains the trivial subgroup. Explicitly, the category of continuous contravari-
ant diagrams of spaces indexed by the full subcategory OF of the orbit category with
orbit spaces G/H for H ∈ F equipped with the projective model structure is Quillen
equivalent to the category of G-spaces with the F-model structure, where the weak
equivalences and fibrations are the maps that are taken to weak equivalences and
fibrations by each H-fixed point functor for H ∈ F .

Replacing the category of spaces with an arbitrary topological model category C or
working with a discrete group G and any model category C, we explore the following
questions.

1. Does the category CG of G-objects in C admit the F-model structure?

2. Does the category of orbit diagrams CO
op

F admit the projective model structure?

3. If so, are CG and CO
op

F Quillen equivalent model categories?
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Results in the discrete setting
Our main result in the discrete setting (Theorem 2.10) provides a positive answer

to these three questions for cofibrantly generated C when the H-fixed point functors
satisfy the cellularity conditions stated in Proposition 2.6. The following examples
are contained in §2.3.

Example 1.1. The cellularity conditions hold and a positive answer to the three afore-
mentioned questions is obtained if C is

1. the category of simplicial sets with the Quillen model structure, cubical sets or
any other presheaf category with a cofibrantly generated model structure such
that the generating cofibrations are monomorphisms,

2. the category of simplicial groups,

3. the category of small categories with the Thomason model structure by work of
Bohmann et aliae [3],

4. the category of posets with Raptis’s model structure [31] by joint work with
May and Zakharevich [27],

5. any cofibrantly generated left Bousfield localization of the above examples or any
category of diagrams in the above examples with the projective model structure,

6. any of the following models for (∞, 1)-categories: the model of complete Segal
spaces, quasi-categories, simplicial categories or the two models of Segal cate-
gories by work of Bergner [2].1

In all the examples above, the right Quillen equivalence CG → CO
op

F takes a G-
object to its fixed point diagram. If any of the first two questions above admits a
positive answer for a model category C and discrete group G, then the answer to the
corresponding question for the category C∗ of pointed objects in C is positive as well,
and if the fixed point diagram functor is a Quillen equivalence for C, then the fixed
point diagram functor for C∗ is a Quillen equivalence as well (Lemma 2.13).

In §2.4, we provide an example, where the fixed point functors fail to satisfy the
cellularity conditions and the fixed point diagram functor is not a Quillen equivalence.

Example 1.2. If C is the category of non-negatively graded chain complexes with
the projective model structure, then the model structures on the category of orbit
diagrams CO

op

F and the category of G-objects CG exist, but the fixed point diagram
functor is not a Quillen equivalence in general.

One motivation for establishing F-model structures for collections of subgroups
F is to obtain equivariant Whitehead Theorems for collections [24, 1.6]. With an
equivariant Whitehead Theorem we mean loosely that a map f : X → Y between
G-objects is a G-homotopy equivalence provided that the map fH on H-fixed point
objects is a weak equivalence for all subgroups H of G. In the form for collections, we
only need to check that fH is a weak equivalence for those subgroups H that appear
as isotropy groups of X and Y .

1Her results can be generalized from finite to discrete groups using [3, 2.3] for the model of simplicial
categories, and that taking fixed points of G-sets preserves directed colimits of diagrams where each
arrow is a monomorphism for the models of Segal categories.
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Kropholler and Wall proved an equivariant Whitehead Theorem [22, 1.2] on chain
complexes with several applications. It states that for any discrete group G and ring
R, an equivariant map f : X → Y between G-CW complexes induces an equivariant
homotopy equivalence C(f ;R) on augmented cellular chain complexes with coeffi-
cients in R provided that C(fH ;R) : C(XH ;R)→ C(Y H ;R) is a homotopy equiv-
alence for all subgroups H of G. Kropholler and Wall’s proof also works for the
unaugmented cellular chain complexes and then implies a simplicial set version in
which CW complexes are replaced by simplicial sets and the cellular chain complexes
by normalized chain complexes. We provide a conceptual proof of this simplicial set
version of the equivariant Whitehead Theorem and generalize it to collections.

Theorem 2.21. Let R be a ring and F a collection of subgroups of G. Let f : X → Y
be a map between simplicial G-sets such that all isotropy groups of simplices of X
and Y belong to F . The map C(f ;R) : C(X;R)→ C(Y ;R) between normalized chain
complexes is an equivariant homotopy equivalence if a) the induced map C(X;R)H →
C(Y ;R)H is a quasi-isomorphism for all H ∈ F , or b) the induced map C(XH ;R)→
C(Y H ;R) is a quasi-isomorphism for all H ∈ F .

Results in the topological setting

For topological model categories C, we prove the analogue of Theorem 2.10 for
compact Lie groups G.

Theorem 3.17. Suppose that G is a compact Lie group and that C is cofibrantly
generated. Let F be a collection of closed subgroups of G containing the trivial sub-
group such that for any H ∈ F , the H-fixed point functor satisfies the cellularity
conditions 2.6. Then there is a Quillen equivalence CO

op

F ⇆ CG between the category
of contravariant orbit diagrams with the projective model structure and of G-objects
with the F-model structure.

The cellularity conditions are often not required to establish the model structures.
We show that if G is a compact Lie group and C is cofibrantly generated, then CO

op

F

admits the projective model structure. If in addition every object of C is fibrant and
the cofibrations are monomorphisms, then the category of G-objects CG admits the
F-model structure (Proposition 3.11 b)).

For arbitrary topological groups G and cofibrantly generated topological model
categories C such that the cellularity conditions hold, some extra work is required
to establish desired cofibrantly generated model structures on CO

op

F and CG, but the
cellularity conditions ensure that the model structures will be Quillen equivalent
again. As an example, we extend the motivating result that for any topological group
G, the categories of orbit diagrams of spaces and of G-spaces are Quillen equivalent,
from spaces to diagrams of spaces with the projective model structure.

Model category theoretic techniques

The model structures are obtained by transfer along not just one left adjoint but
along a set of adjoints (Theorem A.1), as outlined in Appendix A. There, we summa-
rize also the terminology about cofibrantly generated model categories [19, 18] and
prove a general version of Quillen’s path object argument (Lemma A.4).
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Context and related work

Families or collections of subgroups are used in formulating isomorphism conjec-
tures for K- and L-theory [24] and the study of subgroup complexes [29].

A different approach to equivariant homotopy theories was developed by Dwyer
and Kan [8].

Kropholler and Wall’s proof of their theorem [22, 1.2] is algebraic and works more
generally [22, 1.3] for any equivariant chain map f between augmented chain com-
plexes of based permutation modules such that for every subgroup H of G, the dif-
ferentials and f restrict to maps between the free modules on the H-fixed points of
the bases. Their proof can be modified to generalize this algebraic version also to
collections. In [17], Hambleton and Yalçın gave a different, homological algebra proof
of the algebraic version of the equivariant Whitehead Theorem via the orbit category.

The main results in this paper were proved in the author’s master’s thesis [33]
from 2010. May and Guillou have independently investigated equivariant homotopy
theory for more general enrichments as well [15, 16].
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2. The discrete setting

This section contains a modest extension of ideas in unpublished notes [14] of
Guillou.

Let G be a group and C a Quillen model category [30].

After defining the category of G-objects CG in C and fixed point functors, we want
to equip CG with the F-model structure, where the weak equivalences and fibrations
are the maps that are taken to weak equivalences and fibrations, by eachH-fixed point
functor for H in a fixed collection F of subgroups of G. The strategy is to construct
left adjoints to the H-fixed point functors and then to apply Transfer Theorem A.1.
The second approach to equivariant homotopy theory for C is to equip the category
of orbit diagrams CO

op

F with the projective model structure. We then compare the
two approaches. They turn out to be Quillen equivalent in a variety of examples.

2.1. G-objects

Identify the group G with the category with one object ∗ and set of morphisms G.

Definition 2.1. The category of G-objects in C is the category CG of functors from
G to C. For a subgroup H of G, the H-fixed point functor (−)H is defined as the
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composition

CG → CH
lim
−→ C

of the restriction functor with the limit functor.

As long as the required limit exists, we can of course use the same definition in
any category.

Denote the category of sets by Set.

Example 2.2. The category of G-objects in Set coincides with the category of G-sets,
i.e., of sets with a G-action. Moreover, for any subgroup H of G, the H-fixed point
functor takes a G-set X to its ordinary fixed point set

XH = {x ∈ X|hx = x for all h ∈ H}.

We are interested in the existence of the following model category structure.

Definition 2.3. Let F be a collection of subgroups of G, i.e., a set of subgroups that
is closed under conjugation. The category CG is said to admit the F-model structure
if it is a model category with weak equivalences and fibrations the maps that are
taken to weak equivalences and fibrations in C by each H-fixed point functor with
H ∈ F .

The strategy to equip CG with the F-model structure is to assume that C is cofi-
brantly generated and to transfer its model structure along the left adjoints of the
fixed point functors (−)H with H ∈ F . Abstractly, the left adjoint of (−)H is the
composition

C → CH → CG

of the constant diagram functor and the induction functor, i.e., the left Kan extension
functor of the inclusion functor H → G. An explicit description involves the orbit set
G/H as a counterpart. Consider G/H as a G-set with action of g ∈ G on a coset
g′H defined by (gg′)H. It is well-known [5] that G/H represents the H-fixed point
functor (−)H : SetG → Set.

Lemma 2.4. Evaluating a G-map G/H → X in the coset H yields an isomorphism

Set
G(G/H,X) ∼= XH

that is natural in the G-set X.

Before the explicit description of the left adjoint of (−)H , recall that C is cocom-
plete and complete and thus tensored and cotensored over Set. Indeed, we have
isomorphisms

C(X ⊗A,B) ∼= Set(X, C(A,B)) ∼= C(A,X ⋔ B)

that are natural in the set X and objects A, B of C where the tensor X ⊗A is the
copower

∐
X A and the cotensor X ⋔ B is the power

∏
X B.

For any object A of C and homogeneous G-set G/H, denote the composition

G
G/H
−→ Set

−⊗A
−→ C

by G/H ⊗A.
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Lemma 2.5. The functor G/H ⊗− : C → CG is left adjoint to the H-fixed point
functor.

Proof. The adjunction isomorphism is the composite

CG(G/H ⊗A,X) ∼= SetG(G/H, C(A,X))

∼= C(A,X)H

∼= C(A,XH),

where the first isomorphism is induced by the isomorphism expressing that C is ten-
sored, the second isomorphism is given by Lemma 2.4 and the third one comes from
the fact that C(A,−) preserves limits.

For cofibrantly generated C, we can transfer the model structure from C to the
category ofG-objects in C under a condition on the fixed point functors. The condition
is motivated by the following fact from equivariant topology. Recall that a G-CW
complex ([34, p. 98], [26, p. 13]) is a G-space that is obtained by attaching equivariant
disks G/K ×Dn along their boundaries G/K × Sn−1. Let H be a subgroup of the
(discrete) group G. Applying the H-fixed point functor to a G-CW complex X yields
a CW complex XH as the H-fixed point functor preserves the colimits involved in
the building process of X and takes an equivariant disk G/K ×Dn to the disjoint
union of disks (G/K)H ×Dn.

Proposition 2.6. Let G be a group and F a collection of subgroups of G. Suppose
that for any H ∈ F , the H-fixed point functor satisfies the following cellularity con-
ditions:

i) (−)H preserves directed colimits of diagrams in CG, where each underlying arrow
in C is a cofibration,

ii) (−)H preserves pushouts of diagrams, where one leg is of the form

G/K ⊗ f : G/K ⊗A→ G/K ⊗B,

for K ∈ F and f a cofibration in C, and

iii) for any K ∈ F and object A of C, the induced map

(G/K)H ⊗A→ (G/K ⊗A)H

is an isomorphism in C.

If C is cofibrantly generated, then the category of G-objects CG admits the F-model
structure and is cofibrantly generated.

Proof. Denote the set of generating cofibrations of C by I and of generating acyclic
cofibrations by J . We apply the Transfer Theorem A.1 to the adjunctions {G/H ⊗
−, (−)H}H∈F . As C is complete and cocomplete, so is the functor category CG. To
check conditions i) and ii), we use Lemma A.3, which in turn applies by the cellularity
conditions. Indeed, writing IF = {G/H ⊗ f |f ∈ I,H ∈ F}, note that the underlying
map in C of a relative IF -cell complex is a transfinite composition of pushouts of
coproducts

∐
G/K f of generating cofibrations of C, in particular a transfinite com-

position of cofibrations and therefore a cofibration itself. Thus by the cellularity con-
ditions for H ∈ F , the H-fixed point functor takes a relative IF -cell complex to a
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transfinite composition of pushouts of coproducts
∐

(G/K)H f of generating cofibra-

tions, which proves a) of Lemma A.3. Condition c) holds by the cellularity condition i).
One shows b) and d) similarly.

Remark 2.7. Instead of the cellularity condition iii), we could have required the com-
posite (G/K ⊗−)H to take generating cofibrations to cofibrations and generating
acyclic cofibrations to acyclic cofibrations. The form stated in the proposition is cru-
cial for comparing the F-model structure with the orbit diagrams in C.

A toy example, where condition iii) does not hold for H = G = C2 the cyclic group
of order two and K the trivial subgroup, is the object A = 1 in the category 0→ 1
of two objects and one non-identity morphism as depicted.

Examples of cofibrantly generated model categories where the cellularity conditions
are satisfied for any F are given in §2.3. The checking of the cellularity condition ii)
can be reduced to generating cofibrations f as in [3].

Proposition 2.8. Let F be a collection of subgroups of G. Let C be a cofibrantly gen-
erated model category. Suppose that for any H ∈ F , the H-fixed point functor satisfies
the cellularity condition i) and the cellularity condition ii) for generating cofibrations
f : A→ B. Then the H-fixed point functor satisfies the cellularity condition ii) for all
cofibrations f : A→ B.

2.2. Orbit diagrams and comparison of the two approaches

The second approach to equivariant homotopy theory for the model category C
is via contravariant orbit diagrams with levelwise weak equivalences and fibrations,
i.e., with the projective model structure. As for any functor category, this works for
cofibrantly generated C. The indexing category is the following.

Let F be a collection of subgroups of G. The orbit category OF of G with respect
to F is the full subcategory of the category SetG of G-sets given by the orbit sets
G/H with H ∈ F .

The maps G/H → G/K of the orbit category are described by Lemma 2.4. For
a ∈ G such that the coset aK is in (G/K)H , i.e., such that a−1Ha ⊂ K, we denote
the corresponding morphism G/H → G/K by Ra. It sends gH to gaK.

We are ready to compare the two approaches. If F contains the trivial subgroup
{e}, then sending a morphism g of G to the G-map G/{e} → G/{e}, h 7→ hg, defines
a functor i : G→ Oop

F .

Lemma 2.9. Let F be a collection of subgroups of G containing the trivial subgroup
{e}. The precomposition functor i∗ : CO

op

F → CG has a fully faithful right adjoint. If
CO

op

F admits the projective model structure and CG admits the F-model structure, then
i∗ is a left Quillen functor.

Proof. We describe explicitly the right adjoint i∗ of i∗. Let i∗ : C
G → CO

op

F be the
functor sending a G-object X to the orbit diagram of its fixed point objects. That is
i∗X(G/H) = XH and i∗X applied to some morphism in OF of the form Ra : G/H →

G/K is the map i∗X(Ra) : X
K → XH induced by the composite XK → X(∗)

X(a)
→

X(∗).
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Then i∗ is right adjoint to i∗. Indeed, let ε : i∗i∗ → idCG be the natural transforma-
tion given in a G-object X by the isomorphism with underlying map X{e} → X(∗)
in C.

We define a natural transformation η : id
CO

op
F
→ i∗i

∗. Let T be an orbit diagram.

For an orbit set G/H of Oop
F , let (ηT )G/H be the map from T (G/H) to

(i∗i
∗(T ))(G/H) = i∗(T )H

in C induced by

T (Re) : T (G/H)→ T (G/{e}) = i∗(T )(∗).

This defines a map ηT : T → i∗i
∗(T ) of orbit diagrams that is natural in T .

One checks that ε is the counit and η is the unit of an adjunction (i∗, i∗). Moreover,
the right adjoint i∗ is fully faithful, since the counit is an isomorphism.

Suppose that CO
op

F admits the projective and CG the F-model structure. It remains
to show that i∗ is a right Quillen functor, i.e., that i∗ preserves fibrations and acyclic
fibrations. But this follows immediately by construction of i∗ and the definition of
the model category structures.

The toy example C = 0→ 1 equipped with the trivial model structure, where the
weak equivalences are the isomorphisms, shows that CO

op

F and CG are not Quillen
equivalent in general. For instance for G the cyclic group of order two and F the
collection of all subgroups, the category of contravariant orbit diagrams has three
objects, which are pairwise non-isomorphic, whereas the category of G-objects in C
has only two objects.

Theorem 2.10. Let G be a group and F a collection of subgroups of G containing
the trivial subgroup. Suppose that C is a cofibrantly generated model category and that
for any H ∈ F , the H-fixed point functor satisfies the cellularity conditions 2.6. Then
there is a Quillen equivalence

i∗ : CO
op

F ⇆ CG : i∗

between the category of contravariant orbit diagrams with the projective model struc-
ture and of G-objects with the F-model structure.

Proof. The category of G-objects CG admits the F-model structure by Proposi-
tion 2.6. Recall [18, 11.6.1] (or deduce from Theorem A.1) that any category of
diagrams in the cofibrantly generated model category C admits the projective model
structure and is again cofibrantly generated. In particular, the category of orbit dia-
grams CO

op

F has generating cofibrations

IOF
= {Oop

F (G/H,−)⊗ f |H ∈ F , f ∈ I},

where I is a set of generating cofibrations of C.
Consider the Quillen pair constructed in the proof of Lemma 2.9. We show that

it is a Quillen equivalence, i.e., that for any cofibrant object T of CO
op

F and fibrant
object X in CG, a morphism f : i∗T → X is a weak equivalence if and only if its
adjoint i∗(f)ηT : T → i∗(X) is a weak equivalence. By definition of the model category
structures, the map f is a weak equivalence if and only if i∗(f) is a weak equivalence.
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Thus (i∗, i∗) is a Quillen equivalence if and only if the unit η is a weak equivalence
in every cofibrant T ∈ CO

op

F .
We conclude by showing that ηT is actually an isomorphism for cofibrant T . As any

cofibrant T is a retract of an IOF
-cell complex, we can assume that T itself is an IOF

-
cell complex. That is, there exists an ordinal λ > 0 and a λ-sequence S : λ→ CO

op

F

with colimit T , starting with S0 the initial object and such that for any β + 1 < λ,
there is a pushout square

Oop
F (G/K,−)⊗A

Oop

F
(G/K,−)⊗f

Sβ

Oop
F (G/K,−)⊗B Sβ+1,

for some K ∈ F and some generating cofibration f in C. Note that for any object C of
C, the G-object i∗(Oop

F (G/K,−)⊗ C) is isomorphic to G/K ⊗ C by the isomorphism
of Lemma 2.4. Moreover, the composite

Oop
F (G/K,−)⊗ C

η
→ i∗i

∗(Oop
F (G/K,−)⊗ C) ∼= i∗(G/K ⊗ C)

evaluated in an orbit set G/H ∈ Oop
F agrees with the composite

Oop
F (G/K,G/H)⊗ C ∼= (G/K)H ⊗ C → (G/K ⊗ C)H .

Thus the unit is an isomorphism in the orbit diagram Oop
F (G/K,−)⊗ C by the cel-

lularity condition iii).
By the cellularity conditions on the fixed point functors and since left adjoints

preserve colimits, it follows that i∗i
∗T is the transfinite composition of pushouts

i∗i
∗(Oop

F (G/K,−)⊗A) i∗i
∗Sβ

i∗i
∗(Oop

F (G/K,−)⊗B) i∗i
∗Sβ+1.

Note that i∗ preserves the initial object. Thus ηS0
is an isomorphism and so is ηT , by

transfinite induction.

Remark 2.11. To show that the Quillen pair is a Quillen equivalence, we only used
the cellularity condition iii) for domains and codomains A of generating cofibrations.

2.3. Positive examples
Let F be a collection of subgroups of the group G and letH ∈ F . We will list exam-

ples of cofibrantly model categories C, where the H-fixed point functor (−)H : CG → C
satisfies the cellularity conditions and thus Theorem 2.10 applies if F contains the
trivial subgroup.

We show first how to build new examples out of given ones.

Lemma 2.12. Suppose that C is cofibrantly generated and that the H-fixed point
functor (−)H : CG → C satisfies the cellularity conditions 2.6. Then the cellularity
conditions are also satisfied for any diagram category CD with the projective model
structure and any left Bousfield localization of C.
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Proof. For C cofibrantly generated, any cofibration in CD with the projective model
structure is a cofibration in each level. Thus the first claim follows since colimits and
limits in CD are calculated objectwise. The second claim follows by definition, as a
left Bousfield localization of C is a new model structure on the category C with the
same cofibrations but more weak equivalences.

Let C∗ denote the category of pointed objects in C, i.e., the category of objects
under the terminal object. Let (−)+ : C → C∗ be the functor that adds a disjoint base
point. It is left adjoint to the underlying functor. Recall that C∗ is a model category
with cofibrations, weak equivalences and fibrations the maps that are so in C.

Lemma 2.13. If CG admits the F-model structure, then so does (C∗)
G. If CO

op

F

admits the projective model structure, then so does (C∗)
Oop

F . If F contains the trivial
subgroup and if i∗ : CO

op

F ⇆ CG : i∗ is a Quillen equivalence, then so is i∗ : (C∗)
Oop

F ⇆

(C∗)
G : i∗.

Proof. The category of G-objects in the category of pointed objects C∗ identifies
with the category (CG)∗ of pointed G-objects. Under this identification, the F-model
structure on (C∗)

G corresponds to (CG)∗ with the underlying model structure from
CG.

Similarly, the projective model structure on (C∗)
Oop

F corresponds to (CO
op

F )∗ with
the underlying model structure from CO

op

F .

Recall [19, 1.3.5] that any Quillen pair (F,U) induces a Quillen pair between the
corresponding model categories of pointed objects. If the left adjoint F preserves the
terminal object and if (F,U) is a Quillen equivalence, then the induced Quillen pair
is a Quillen equivalence as well. Thus if i∗ : CO

op

F ⇆ CG : i∗ is a Quillen equivalence,
then so is the induced adjunction (CO

op

F )∗ ⇆ (CG)∗. We conclude by noting that this
induced adjunction identifies with i∗ : (C∗)

Oop

F ⇆ (C∗)
G : i∗.

We are now ready to see some examples.

Note that the H-fixed point functor SetG → Set preserves directed colimits of
diagrams where each arrow is a monomorphisms, preserves pushouts of diagrams
where one leg is a monomorphism and for anyG-setsX and Y , the induced mapXH ×
Y H → (X × Y )H is an isomorphism, as limits commute. Hence if F contains the
trivial subgroup, then Theorem 2.10 applies in the following example and Lemma 2.13
provides the pointed version.

Example 2.14 (Presheaf categories). Let C be the category of simplicial sets with
the Quillen model structure, or any presheaf category with a cofibrantly generated
model structure such that the generating cofibrations are monomorphisms. Then
every cofibration of C is a monomorphism and thus the H-fixed point functor satisfies
the cellularity conditions.

If C is the category sSet of simplicial sets, then the cofibrations of sSetG with the
F-model structure can be described explicitly using the following certainly known
lemma. We denote the standard n-simplex by ∆[n], its boundary by ∂∆[n] and write
Skn : sSet→ sSet for the n-skeleton functor with the convention that Sk−1X = ∅ for
all simplicial sets X.
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Lemma 2.15. Let f : A→ B be a monomorphism in sSet
G. For n > 0, denote the

G-set of non-degenerate n-simplices of B − f(A) by e(B)n and for every orbit of
e(B)n/G choose a representative x. Then we obtain a pushout square

∐
x G/Gx ⊗ ∂∆[n] A ∪ Skn−1B

∐
x G/Gx ⊗∆[n] A ∪ SknB,

where the lower horizontal map in a coset gGx is given by the n-simplex gx of SknB.

Proof. The square is a pushout in sSet by the non-equivariant analogue as G/Gx

identifies with the orbit Gx via gGx 7→ gx. Since this bijection is equivariant, we also
have a pushout square in sSetG.

If F consists only of the trivial subgroup, then it is well-known that the cofibrant
objects are the simplicial sets with a free G-action and more generally by [7, 2.2 (ii)]
that the cofibrations of sSetG are the monomorphisms f : A→ B such that only the
identity element e ∈ G fixes simplices in B − f(A).

The cofibrations of sSetG with the F-model structure for general F are as expected.

Proposition 2.16. A map f : A→ B in sSet
G with the F-model structure is a cofi-

bration if and only if f is a monomorphism and for every x ∈ B − f(A), the stabilizer
Gx is in F .

Proof. Let K be the class of monomorphisms f : A→ B satisfying the isotropy con-
ditions of the statement.

We show that every cofibration of sSetG is in K. Generating cofibrations

G/H ⊗ ∂∆[n]→ G/H ⊗∆[n]

are in K, since the stabilizer of gH ∈ G/H is gHg−1. Note that morphisms of K
are closed under taking pushouts, transfinite composition and retraction. Thus every
cofibration is in K.

Conversely, suppose that f : A→ B is in K. Since f is the transfinite composition
of

A→ . . .→ A ∪ Skn−1B → A ∪ SknB → . . . ,

it follows that f is a cofibration in sSetG by Lemma 2.15.

Let Gr denote the category of groups. For a group A and set X, the copower
X ⊗A is the free product of copies of A indexed by X. Note that

(G/K ⊗A)H ∼= (G/K)H ⊗A,

for any group A. Let F : Set→ Gr denote the free group functor, and let S ⊂ T be
a subset inclusion. Then (−)H preserves the pushout of any diagram of the form

G/K ⊗ FT ← G/K ⊗ FS → X

in GrG. Indeed, the pushout is the coproduct G/K ⊗ F (T − S)
∐

X in Gr. Observe
that (−)H preserves binary coproducts. It follows that (−)H applied to the pushout
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yields

((G/K)H ⊗ F (T − S))
∐

XH

as desired. Since the forgetful functor Gr→ Set creates filtered colimits, we deduce
that (−)H : GrG → Gr preserves directed colimits of diagrams where each arrow is
a monomorphism.

Example 2.17 (Simplicial groups). Let C be the category of simplicial groups sGr with
Quillen’s model structure [30, II p. 3.7], which is cofibrantly generated, as it can be
obtained by transfer from the category of simplicial sets along the free group functor.
Moreover, the pushout of a generating cofibration is a monomorphism in sGr, and,
as monomorphisms of groups are closed under transfinite composition and monomor-
phisms are closed under retraction, every cofibration in sGr is a monomorphism.
Thus the cellularity condition i) is satisfied and so is the cellularity condition iii).
The cellularity condition ii) holds by Proposition 2.8. We conclude that the category
sGrG admits the F-model structure and is Quillen equivalent to the category of orbit
diagrams sGrO

op

F , if F contains the trivial subgroup.

Example 2.18 (Small categories and posets). If C is the category of small categories
Cat with the Thomason model structure, then CatG satisfies the cellularity con-
ditions by the work [3] of Bohmann et aliae and thus CatG admits the F-model

structure and is Quillen equivalent to CatO
op

F , if F contains the trivial subgroup.
Lemma 2.13 implies that also the category of equivariant pointed small categories
(Cat∗)

G admits the F-model structure and that the fixed point diagram functor
(Cat∗)

G → (Cat∗)
Oop

F is a Quillen equivalence if F contains the trivial subgroup.
Similarly, if C is the category of posets Pos with Raptis’s model structure [31], then

PosG satisfies the cellularity conditions by joint work [27] with May and Zakharevich.
Thus PosG and (Pos∗)

G admit the F-model structure and if F contains the trivial

subgroup, they are Quillen equivalent to PosO
op

F and (Pos∗)
Oop

F , respectively.

Bergner applied Theorem 2.10 to various models for (∞, 1)-categories in [2].

2.4. Chain complexes
Let R be a unitary ring. We show that if C is the category of chain complexes Ch(R)

of left R-modules with the projective model structure, then the model structures on
Ch(R)O

op

F and on Ch(R)G exist, but the fixed point diagram functor is not a Quillen
equivalence in general. The model structure on the category of orbit diagrams is
useful for doing homological algebra of coefficient systems, i.e., of orbit diagrams of
R-modules. It identifies with the projective model structure on the category of chain
complexes in the abelian category of coefficient systems. The F-model structure on
equivariant chain complexes will be used to prove an equivariant Whitehead Theorem
for collections.

Let F be a collection of subgroups of G andH ∈ F . Let RMod denote the category
of left R-modules. Then the category of G-objects in RMod is the category of modules
over the group ring R[G] and the H-fixed points are the H-invariants. The cellularity
condition iii) does not hold in general. Indeed, for any R-module A, the fixed point
module (G/K ⊗A)H is MK ⊗A, where MK ⊂ H \ (G/K) is the subset of finite H-
orbits. Nevertheless, as for the category of groups, the H-fixed point functor preserves
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pushouts of the form

G/K ⊗ FT ← G/K ⊗ FS → X,

where F is the free R-module functor and S ⊂ T a subset inclusion, and the H-
fixed point functor preserves directed colimits of diagrams, where each arrow is a
monomorphism.

Example 2.19 (Chain complexes). Let Ch(R) be the category of non-negatively graded
chain complexes of R-modules with the projective model structure [9, 7.2], i.e., the
weak equivalences are the quasi-isomorphisms, and the fibrations are the morphisms
that are epimorphisms in degrees n > 1. Write R〈n〉 for the chain complex given by
R concentrated in degree n. Set D0 = R〈0〉 and for n > 1, let Dn denote the chain
complex that contains R in degree n and in degree n− 1, with differential the identity,
and that is zero in the other degrees. Set S−1 = 0 and for n > 0, let Sn denote
the chain complex R〈n〉. Recall that Ch(R) is cofibrantly generated with generating
cofibrations {Sn−1 → Dn}n>0 and generating acyclic cofibrations {0→ Dn}n>1. By
Remark 2.7 and Proposition 2.8, the category Ch(R)G admits the F-model structure,
but the Quillen pair i∗ : Ch(R)O

op

F ⇆ Ch(R)G : i∗ defined for F containing {e} is not
a Quillen equivalence in general. Indeed, by the proof of Theorem 2.10, the unit
ηT : T → i∗i

∗T would have to be a weak equivalence for cofibrant T , which in general
is not the case for T = Oop

F (G/{e},−)⊗R〈0〉. For instance, if G ∈ F and G is not
the trivial group, then T (G/G) = 0, whereas (i∗i

∗T )(G/G) ∼= R〈0〉.

The category Ch(R)O
op

F identifies with the category of chain complexes in the
abelian category of diagrams Oop

F → RMod, i.e., of coefficient systems. Under the

above identification, the projective model structure on Ch(R)O
op

F is just the projective

model structure on the category of chain complexes in RModOop

F .
The category Ch(R)G identifies with the category of chain complexes of R[G]-

modules. We use the F-model structure on Ch(R)G and on sSetG for a concep-
tual proof of an equivariant Whitehead Theorem on chain complexes for collections.
Kropholler and Wall [22, 1.2] showed that an equivariant map f : X → Y between G-
CW complexes induces an equivariant homotopy equivalence C(f ;R) on augmented
cellular chain complexes provided that C(fH ;R) is a homotopy equivalence for all
subgroups H of G. Their proof also works for the unaugmented cellular chain com-
plexes and the equivariant Whitehead Theorem for cellular chain complexes of G-CW
complexes implies a version for the normalized chain complexes of simplicial G-sets.
We will provide a conceptual proof of this simplicial set version and generalize it to
collections, showing that for f : X → Y in sSetG it is enough to check that the map
on normalized chain complexes C(fH ;R) is a homotopy equivalence for all subgroups
H that appear as isotropy groups of X and Y .

Equip the category ofG-objects in Ch(R) and the category ofG-simplicial sets with
the F-model structure. Let C(−;R) : sSet→ Ch(R) denote the normalized chain
complex functor. Since it is a left Quillen functor, so is the induced functor on G-
objects. Indeed, its right adjoint Ch(R)G → sSetG is right Quillen since it commutes
with the fixed point functors. Together with Proposition 2.16, it follows that C(X;R)
is cofibrant under the hypotheses of the following lemma. Moreover, as any object Z
of Ch(R)G is fibrant, it makes sense to speak about homotopic maps between C(X;R)
and Z.
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Lemma 2.20. Let X be a simplicial G-set such that all isotropy groups of simplices of
X belong to F . Let f, g : C(X;R)→ Z be maps in Ch(R)G from the normalized chain
complex C(X;R) to an equivariant chain complex Z. If f and g are homotopic in the
model category theoretical sense, then f and g are G-equivariantly chain homotopic.

Proof. Note that the usual composite X
∐

X → X ×∆[1]→ X is a factorization of
the fold map into a cofibration followed by a weak equivalence in sSetG with the
F-model structure, i.e., a cylinder object. Application of the left Quillen functor
C(−;R) yields a cylinder object C(X ×∆[1];R) in Ch(R)G, as X is cofibrant. By
assumption, there exists a homotopy H : C(X ×∆[1];R)→ Z from f to g. Now,
consider the composite,

C(X;R)⊗R C(∆[1];R)
∇
→ C(X ×∆[1];R)

H
→ Z,

of the Eilenberg–Zilber map [11, (5.18)] with H. Recall that the normalized chain
complex C(∆[1];R) contains R in degree 1, two copies of R in degree 0 and is zero
in the other degrees. Thus C(X;R)⊗R C(∆[1];R) in degree n+ 1 identifies with

Cn+1(X;R)⊕ Cn+1(X;R)⊕ Cn(X;R).

Let ϕn : Cn(X;R)→ Zn+1 be the restriction of the composite H ◦ ∇ to Cn(X;R).
Then a straightforward computation shows that {(−1)nϕn}n>0 is an equivariant chain
homotopy between f and g.

We apply the Whitehead Theorem for model categories [9, 4.24] to obtain the
following equivariant Whitehead Theorem for collections.

Theorem 2.21. Let G be a group and F a collection of subgroups of G, let R be a
unitary ring. Let f : X → Y be a map between simplicial G-sets such that all isotropy
groups of simplices of X and Y belong to F . The map C(f ;R) : C(X;R)→ C(Y ;R)
between normalized chain complexes is an equivariant homotopy equivalence in each
of the following two situations.

a) The induced map C(X;R)H → C(Y ;R)H is a quasi-isomorphism for all H ∈ F .

b) The induced map C(XH ;R)→ C(Y H ;R) is a quasi-isomorphism for all H ∈ F .

Proof. By assumption, the simplicial G-sets X and Y are cofibrant in sSetG with
the F-model structure and thus C(X;R) and C(Y ;R) are cofibrant in Ch(R)G with
the F-model structure. Moreover, the chain complexes C(X;R) and C(Y ;R) are also
fibrant, since every object in Ch(R)G is fibrant.

Thus in situation a), the map C(f ;R) is a homotopy equivalence in the model
category theoretical sense by the Whitehead Theorem for model categories and thus
an equivariant homotopy equivalence by Lemma 2.20.

In situation b), let LRsSet denote the left Bousfield localization [4, 10.2] of the
category of simplicial sets with respect to the class of H∗(−;R)-isomorphisms. Recall
or deduce directly from Bousfield’s proof of [4, 10.2] that LRsSet is cofibrantly gen-
erated. Thus (LRsSet)

G admits the F-model structure. Since the normalized chain
complex functor C(−;R) : LRsSet→ Ch(R) is a left Quillen functor, the induced
functor from (LRsSet)

G to Ch(R)G with the F-model structures is again left Quillen.
Hence, the functor C(−;R) takes the weak equivalence f between cofibrant objects
in (LRsSet)

G to a weak equivalence, and the proof reduces to the already shown
case a).
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3. The topological setting

We work henceforth in the category of weak Hausdorff k-spaces U (see [23, Appen-
dix A]). In particular, a map i : X → Y in U is called an inclusion if it is a homeomor-
phism from X onto its image i(X) with the k-subspace topology, i.e., the k-ification
of the ordinary subspace topology.

In §3.1, we recall the notions of topological model categories and topological cat-
egories, i.e., categories enriched [21] in U . Enrichment in U is particularly simple.
For instance U -natural transformations between U -functors are just ordinary natu-
ral transformations and thus any adjunction between U -functors is automatically a
U -adjunction.

In §3.2, the three questions of the introduction regarding the existence of the F-
model structure, of the projective model structure and their comparison are studied in
the topological setting. The analogue of Theorem 2.10 holds for compact Lie groupsG.
For a general topological group G some extra work, depending on the particular
example of topological model category C considered, is required to show the existence
of the projective model structure and of the F-model structure. We will see in §3.3
a positive answer to the three questions for any topological group G, when C is the
category of topological diagrams UD indexed by any small topological category D
with the projective model structure.

3.1. Topological model categories
Let U denote the cartesian closed category of weak Hausdorff k-spaces equipped

with the Quillen model structure. We write MapU (X,Y ) for the internal hom of X
and Y . A topological model category C, is a category enriched, tensored and cotensored
over the cartesian closed category U , whose underlying category is equipped with a
model category structure in a compatible way. This means first of all that C is a
topological category : each hom-set C(X,Y ) is topologized as a space MapC(X,Y ) ∈ U ,
such that composition is continuous. Moreover, C is equipped with a functor ⊗ : U ×
C → C, called tensor, and with a functor ⋔ : Uop × C → C, called cotensor, together
with natural isomorphisms

MapC(X ⊗A,B) ∼= MapU (X,MapC(A,B)) ∼= MapC(A,X ⋔ B).

Finally, the category C is equipped with a model category structure such that the
pushout-product axiom holds: for any cofibration f : X → Y in U and any cofibration
i : A→ B in C, the induced map from the pushout Y ⊗A ∪X⊗A X ⊗B to Y ⊗B is
a cofibration in C, which is acyclic if f or i is acyclic.

Example 3.1 ([19, 4.2.11]). The category of spaces U is a topological model category
with tensor the cartesian product and cotensor the internal hom MapU (−,−).

A functor F : D → E between topological categories is a U-functor if

MapD(A,B)→ MapE(FA,FB)

is continuous for all objects A and B of D.

Example 3.2. If D and E are topological categories, then so are Dop and D × E . The
functor MapD : Dop ×D → U is a U -functor and if D is tensored and cotensored, then
⊗ and ⋔ are also U -functors.
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For any small, topological category D, we write CD for the category of U -functors
from D to C. Note that CD is again a topological category, where the space
MapCD (F,G) of natural transformations is a subspace of

∏
d∈D MapC(F (d), G(d))

in U . Moreover, the category CD is tensored and cotensored with tensor X ⊗ F of

X ∈ U and F ∈ CD the composite D
F
→ C

X⊗−
→ C and cotensor X ⋔ F the composite

D
F
→ C

X⋔−
→ C.

We are interested in the existence of the projective model structure on CD, where
the weak equivalences and fibrations are defined levelwise. The case C = U is due to
Piacenza [28, 5.4]. We give a different proof.

Proposition 3.3. Consider the category of U-functors CD from a small topological
category D to a topological model category C. Suppose that C is cofibrantly generated.
The category CD admits the projective model structure and is a topological model
category in each of the following two situations.

a) For any two objects d, d′ of D, the functor MapD(d, d
′)⊗− : C → C preserves

cofibrations and acyclic cofibrations.

b) The model category C is the category U .

Proof. Since C is cotensored and cocomplete, so is CD. Indeed, for a diagram F in
CD, let colimF be the colimit of F calculated in the category of functors from C
to D. Using that C is cotensored, one checks that colimF is a U -functor and thus the
colimit of F in CD. Similarly, since C is tensored and complete, so is CD.

Note that for any object d of D, the evaluation functor evd : C
D → C is right adjoint

to the functor MapD(d,−)⊗− that sends an object A of C to the composite

D
Map

D
(d,−)
−→ U

−⊗A
−→ C.

In both situations, the projective model structure on CD is obtained by the Transfer
Theorem A.1 applied to the right adjoints {evd}d∈D.

In situation a), the assumptions hold by Lemma A.3. Indeed, every evaluation
functor preserves all colimits. Moreover, a transfinite composition of pushouts of
elements of the form MapD(d,−)⊗ f with d ∈ D and f a generating cofibration of C
evaluated in an object d′ ∈ D is a transfinite composition of pushouts of cofibrations
in C and thus a cofibration itself. The same argument works for acyclic cofibrations.

In situation b), the smallness hypotheses reduce to the fact that every space is
small with respect to the inclusions using that closed inclusions are closed under
taking products, pushouts and transfinite compositions. The second condition holds
by Lemma A.4. Indeed, every object X of UD is fibrant and the cotensor I ⋔ X of
the unit interval I ∈ U and X is a path object.

We have shown the existence of the projective model structure on CD. Finally, the
pushout-product axiom is equivalent to the following condition [19, 4.2.2]: for any
cofibration i : A→ B in U and any fibration p : X → Y in CD, the induced map from
the cotensor B ⋔ X to the pullback B ⋔ Y ×A⋔Y A ⋔ X is a fibration in CD, which
is acyclic if f or p is acyclic. But this holds by the pushout-product axiom in C. Thus
CD is a topological model category.



ON EQUIVARIANT HOMOTOPY THEORY FOR MODEL CATEGORIES 199

3.2. Equivariant homotopy theory for topological model categories
Let C be a topological model category. Let G be a topological group, i.e., a group

object in the category of weak Hausdorff k-spaces U . We identify G with the topo-
logical category with one object ∗ and morphism space G.

Definition 3.4. The category of G-objects in C is the category CG of U -functors from
G to C. For a closed subgroup H of G, the H-fixed point functor (−)H is defined as

the composition CG → CH
lim
→ C of the restriction with the (conical) limit functor.

Remark 3.5. Conical limits are defined in [21, (3.57)] for V-functors where V is any
cartesian closed category. For us, it suffices to know that the functor lim: CH → C
takes a U -functor X to the fixed points of the underlying functor X with respect to
the underlying discrete group H.

The restriction to closed subgroups is for point-set topological convenience. For
instance, the set of orbits G/H with the quotient topology will already be weak
Hausdorff. The definition of the H-fixed point functor makes sense for any subgroup
H of G, but (−)H is naturally isomorphic to (−)H̄ , where H̄ denotes the closure
of the set H in G. This follows from the special case [13, §2.1] that XH = XH̄ for
G-spaces X as the induced map

MapC(A, Y
H)→ MapC(A, Y )H

is an isomorphism for any subgroup H and for any objects A of C and Y of CG.

Example 3.6. Recall that the category of weak Hausdorff k-spaces U is a topological
model category with tensor the cartesian product and cotensor MapU (−,−). The
category of G-objects in U coincides with the category of G-spaces, i.e., of spaces
with a continuous G-action. Moreover, for any closed subgroup H of G, the H-fixed
point functor takes a G-space X to its ordinary fixed point space XH = {x ∈ X|hx =
x for all h ∈ H}.

We construct explicit left adjoints to the H-fixed point functors CG → C in order
to transfer the model category structure from C to the following model category
structure on the category of G-objects in C.

Definition 3.7. Let F be a collection of closed subgroups of G. The category CG is
said to admit the F-model structure if it is a model category with weak equivalences
and fibrations the maps that are taken to weak equivalences and fibrations in C by
each H-fixed point functor with H ∈ F .

As in the discrete case, the following lemma is standard.

Lemma 3.8. For a closed subgroup H of G, consider the homogeneous space G/H.
Evaluating a G-map G/H → X in the coset H yields an isomorphism

MapUG(G/H,X) ∼= XH ,

natural in the G-space X.

For any object A of C and homogeneous space G/H considered as a G-space,
denote the composition

G
G/H
−→ U

−⊗A
−→ C

by G/H ⊗A.
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Lemma 3.9. The functor G/H ⊗− : C → CG is left adjoint to the H-fixed point
functor.

Proof. The adjunction isomorphism is the composite

CG(G/H ⊗A,X) ∼= UG(G/H,MapC(A,X))

∼= U(∗,MapC(A,X)H)

∼= U(∗,MapC(A,X
H)) ∼= C(A,XH),

where the first isomorphism is induced by the isomorphism expressing that C is ten-
sored, the second isomorphism is given by Lemma 3.8 and the third one comes from
the fact that MapC(A,−) preserves limits.

In the discrete case, the tensor was the coproduct and thus (G/H)K ⊗− preserved
cofibrations. In the topological setting, this will be true if (G/H)K is cofibrant in U ,
by the pushout-product axiom.

The fact [35] that G/H and (G/H)K are smooth manifolds for any compact Lie
group G and closed subgroups H,K implies the following lemma.

Lemma 3.10. Suppose that G is a compact Lie group. For any closed subgroups H,K
of G, the spaces G/H and (G/H)K are cofibrant in U .

Working with a compact Lie group, we provide two positive answers regarding the
existence of the F-model structure.

Proposition 3.11. Suppose that G is a compact Lie group and that the topological
model category C is cofibrantly generated. Let F be a collection of closed subgroups
of G. The category of G-objects in C admits the F-model structure and is a topological
model category in each of the following two situations.

a) The fixed point functors (−)H for H ∈ F satisfy the cellularity conditions 2.6.

b) The cofibrations of C are monomorphisms, and every object of C is fibrant.

Proof. We apply the Transfer Theorem A.1 to the adjunctions {G/H ⊗−, (−)H}H∈F .
Since C is cotensored and cocomplete, so is the category of U -functors CG. Similarly,
since C is tensored and complete, so is CG.

Note that (G/H)⊗− as a functor to C and (G/H)K ⊗− preserve cofibrations by
Lemma 3.10 and the pushout-product axiom. Thus, in situation a), the conditions of
the Transfer Theorem can be checked as in the discrete case 2.6.

In situation b), note that every object X of CG is fibrant and that the cotensor
I ⋔ X of the unit interval I and the G-object X is a path object for X. Thus, the
second condition of the Transfer Theorem holds by Lemma A.4.

By abuse of notation, denote the set of generating cofibrations of C by I and the
set of generating acyclic cofibrations by J . We show that

IF = {G/H ⊗ f |H ∈ F , f ∈ I}

permits the small object argument. Let A be the domain of a generating cofibration
f of C. Let κ be a cardinal such that A is κ-small relative to the cofibrations. Let
λ > κ be a regular cardinal and X a λ-sequence of relative IF -cell complexes. Note
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that the underlying map of a relative IF -cell complex is a cofibration in C, since G/H
is cofibrant in U . We show that the induced map

colimβ<λ C
G(G/H ⊗A,Xβ)→ C

G(G/H ⊗A, colimX)

is a bijection. This is equivalent to showing that the induced map

colimβ<λ C(A,Xβ)
H → C(A, colimX)H

is a bijection. Since the cofibrations of C are monomorphisms, the functor C(A,X)
is a directed diagram of monomorphisms of G-sets and thus colimβ<λ C(A,Xβ)

H ∼=
(colimβ<λ C(A,Xβ))

H . We conclude by noting that

colimβ<λ C(A,Xβ) ∼= C(A, colimX)

as G-sets by the choice of κ. Similarly, the set JF = {G/H ⊗ f |H ∈ F , f ∈ J} permits
the small object argument.

It is left to show that CG is a topological model category, i.e., that the pushout-
product axiom holds. As in the proof of Proposition 3.3, one checks the equivalent
condition involving the cotensor.

The second approach to equivariant homotopy theory for C is via orbit diagrams.

Definition 3.12. Let F be a collection of closed subgroups of G. The orbit category
OF with respect to F is the topological category given by the full subcategory of UG

with objects the homogeneous spaces G/H for H ∈ F .

Proposition 3.13. Suppose that G is a compact Lie group and that the topological
model category C is cofibrantly generated. Then for any collection of closed subgroups
F of G, the category of U-functors CO

op

F admits the projective model structure.

Proof. The space MapOop

F

(G/H,G/K) is isomorphic to (G/H)K and thus cofibrant
in U by Lemma 3.10. We conclude by Proposition 3.3.

If F contains the trivial subgroup, then we can, as in the discrete setting, compare
the two approaches using the inclusion functor i : G→ Oop

F .

Lemma 3.14. Let F be a collection of closed subgroups of G containing the trivial
subgroup {e}. The precomposition functor i∗ : CO

op

F → CG has a fully faithful right
adjoint i∗. If C

Oop

F admits the projective model structure and CG admits the F-model
structure, then i∗ : CO

op

F → CG is a left Quillen functor.

Proof. The proof is the same as that of its discrete analogue, Lemma 2.9.

Remark 3.15. The functors i∗ and i∗ are U -functors and (i∗, i∗) forms a U -adjunction.

The adjunction (i∗, i∗) is a Quillen equivalence under a requirement on the fixed
point functors.

Proposition 3.16. Suppose that in the situation of Lemma 3.14 the model structures
exist and that there exists a set I of cofibrations of C such that CO

op

F is cofibrantly
generated with generating cofibrations

{MapOop

F

(G/H,−)⊗ f |H ∈ F , f ∈ I}.

If the fixed point functors satisfy the cellularity conditions 2.6, then there is a Quillen
equivalence i∗ : CO

op

F ⇆ CG : i∗.
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Proof. The unit of the adjunction (i∗, i∗) is an isomorphism in cofibrant objects as in
the proof of Theorem 2.10 and a morphism f between G-objects is a weak equivalence
if and only if i∗(f) is so.

Combining Proposition 3.13 and Proposition 3.11 with the previous proposition
yields our main result in the topological setting.

Theorem 3.17. Suppose that G is a compact Lie group and F a collection of closed
subgroups of G containing the trivial subgroup. Suppose that C is a topological model
category that is cofibrantly generated and that for any H ∈ F , the H-fixed point func-
tor satisfies the cellularity conditions 2.6. Then there is a Quillen equivalence

i∗ : CO
op

F ⇆ CG : i∗

between the category of contravariant orbit diagrams with the projective model struc-
ture and of G-objects with the F-model structure.

3.3. Example: Topological diagrams
Let D be a small, topological category. Equip the category of U -functors UD with

the cofibrantly generated, topological, projective model structure obtained in Propo-
sition 3.3. Fix a topological group G in U and a collection F of closed subgroups of
G containing the trivial subgroup.

The following lemma is known and checked by hand using that any fixed point set
of X in UG is closed. A pointed analogue is [25, III Lemma 1.6].

Lemma 3.18. The H-fixed point functor UG → U preserves directed colimits of dia-
grams where each arrow is a monomorphism, preserves pushouts of diagrams where
one leg is a closed embedding as a map in U and for any G-spaces X and Y , the
induced map XH × Y H → (X × Y )H is an isomorphism in U .

For C = UD and any topological group G we obtain a positive answer to all three
questions of the introduction.

Proposition 3.19. There is a Quillen equivalence between the category of U-functors
Oop

F → U
D with the projective model structure and the category of G-objects in UD

with the F-model structure.

Proof. Note that the H-fixed point functors for H ∈ F satisfy the cellularity condi-
tions by Lemma 3.18. If G is a compact Lie group, we are done by Theorem 3.17. For
general G, we apply Proposition 3.16.

Note that the category of G-objects in UD admits the F-model structure. This
can be proved for instance as Proposition 3.11 in the situation b) with the following
adaption regarding the small object arguments for IF and JF . For general G, we
cannot conclude that the underlying map of a relative IF -cell complex is a cofibra-
tion in UD. Nevertheless, it is a levelwise closed inclusion and every object of UD is
small with respect to the levelwise inclusions. Thus, for a domain A of a generating
cofibration of UD, the cardinal κ shall be chosen such that A is κ-small with respect
to the levelwise inclusions and similarly for JF .

Write C = UD. Identifying the category of orbit diagrams CO
op

F with the category
of U -functors UOop

F
×D, Proposition 3.3 implies that CO

op

F admits the projective model
structure with generating cofibrations as desired in Proposition 3.16.
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Write OG for the orbit category of the collection F of all closed subgroups of G.
Taking D to be the category with only one arrow, we recover in particular Elmen-
dorf’s Theorem ([26, VI. 6.3], [26, V. 3.2], [12]) stating that the homotopy categories
Ho(UOop

G ) and Ho(UG) are equivalent.

Corollary 3.20 (Piacenza [26, VI. §6], [28]). There is a Quillen equivalence

UOop

G ⇆ UG

between the category of topological presheaves indexed by the orbit category OG and
the category of G-spaces.

Appendix A. Transferring model category structures along

a set of left adjoints

An important method to equip a category with a model structure is by transfer
along a left adjoint from a cofibrantly generated model category, which we generalize
here to transfer along a set of adjoints without passing through products of model
categories. First, we recall the terminology of cofibrantly generated model categories
in reverse order, using terms that will be introduced subsequently.

A model category C is cofibrantly generated if there exist sets I and J of morphisms
of C that permit the small object argument, such that the acyclic fibrations are the
maps that have the right lifting property with respect to I and the fibrations are the
maps that have the right lifting property with respect to J . The morphisms of I are
called generating cofibrations and the morphisms of J are called generating acyclic
cofibrations. A set K of morphisms in a cocomplete category permits the small object
argument if the domain of every element of K is small relative to the class of relative
K-cell complexes. A relative K-cell complex is a transfinite composition of pushouts
of elements of K, and we denote the class of relative K-cell complexes by K-cell. For
a definition of smallness relative to a class of morphisms, we refer to [19, 2.1.3]. In our
cases, this definition agrees with [18, 10.4.1], as we consider only classes of morphisms
that form a subcategory and that are closed under transfinite composition. Hovey’s
[19] and Hirschhorn’s [18] monographs are excellent introductions to the theory of
cofibrantly generated model categories.

It is standard to lift a cofibrantly generated model category structure along a left
adjoint [6]. The Transfer Theorem of Kan [18, 11.3.2] works more generally for a set
of left adjoints.

Theorem A.1. Let C be a cofibrantly generated model category with generating cofi-
brations I and generating acyclic cofibrations J . Let D be a complete, cocomplete
category. Given a set of adjunctions {Fι : C ⇄ D : Uι}ι, write FI =

⋃
ι {Fι(f); f ∈ I}

and FJ =
⋃

ι {Fι(f); f ∈ J}. Suppose that

i) the sets FI and FJ permit the small object argument and

ii) for all ι, the functor Uι takes relative FJ-cell complexes to weak equivalences.

Then there exists a cofibrantly generated model category structure on D with gener-
ating cofibrations FI, generating acyclic cofibrations FJ and with weak equivalences
and fibrations the maps of D which by every Uι are taken to weak equivalences and
fibrations in C, respectively.
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Proof. We apply the Recognition Theorem [19, 2.1.19]. The class of morphisms that
have the right lifting property with respect to a given class of morphisms K is denoted
by K-inj. Using the numbering of [19, 2.1.19], the following are the nontrivial points
to show.

4. Every relative FJ-cell complex is a weak equivalence and has the left lifting
property with respect to FI-inj.

5. & 6. Let p be a map in D. Then p ∈ FI-inj if and only if p is a weak equivalence
and p ∈ FJ-inj.

Note that for any ι, any map i in C and any map p in D, the lifting problems

Fι(A)

Fι(i)

X

p

Fι(B) Y

and A

i

Uι(X)

Uι(p)

B Uι(Y )

are equivalent by adjointness. Condition 5. & 6. follows. Indeed, a map p of D has
the right lifting property with respect to FI if and only if every Uι(p) is an acyclic
fibration in C. On the other hand, the map p has the right lifting property with respect
to FJ and is a weak equivalence if and only if every Uι(p) is a fibration in C and is a
weak equivalence in C.

We verify that condition 4. holds. Assumption ii) assures that any FJ-cell complex
is a weak equivalence in D. Moreover, any FJ-cell complex has the left lifting property
with respect to FJ-inj and thus with respect to FI-inj, as we have already shown
that FI-inj ⊂ FJ-inj.

Mark W. Johnson already had the idea of lifting model structures along several
adjoints. He and Michele Intermont lift model structures separately and then intersect
them [20, Prop. 8.7].

Remark A.2. To answer a private question of Emanuele Dotto, the transfer theorem
holds also if one works with a set of adjunctions {Fι : Cι ⇄ D : Uι}ι, where each Cι is
a cofibrantly generated model category.

As for the transfer along one left adjoint, the following two lemmas are used to
apply the Transfer Theorem in practice. Recall that for an ordinal λ, a cocomplete
category C and a class of morphisms D of C, a λ-sequence of maps in D is a non-empty
colimit preserving functor X : λ→ C such that for every ordinal β with successor
β + 1 < λ, the map Xβ → Xβ+1 is in D.

Lemma A.3. Consider a set of adjunctions {Fι : C ⇄ D : Uι}ι and FI, FJ as in the
Transfer Theorem A.1. Suppose that for each ι, the functor Uι

a) takes relative FI-cell complexes to cofibrations,

b) takes relative FJ-cell complexes to acyclic cofibrations,

c) preserves the colimit of any λ-sequence of maps in FI-cell and

d) preserves the colimit of any λ-sequence of maps in FJ-cell,

then the conditions i) and ii) of Theorem A.1 are satisfied.
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Proof. Condition ii) of Theorem A.1 holds, since acyclic cofibrations are in particular
weak equivalences.

Concerning condition i), we show that FI permits the small object argument. Let
A be the domain of a map in I. We have to prove that for any ι, the object Fι(A) is
small relative to FI-cell. This means that we have to find a cardinal κ such that for
every regular cardinal λ > κ and λ-sequence X of maps in FI-cell, the induced map

colimβ<λD(Fι(A), Xβ)→ D(Fι(A), colimX)

is an isomorphism. Equivalently, the induced map

colimβ<λ C(A,Uι(Xβ))→ C(A,Uι(colimX))

has to be an isomorphism. By assumption c) the functor Uι preserves the colimit of
X and by c) and a) the composite Uι ◦X : λ→ C is a λ-sequence of cofibrations in C.
Now, the existence of the desired cardinal κ follows from the fact that the domains
of generating cofibrations in a cofibrantly generated model category are small with
respect to the cofibrations [19, 2.1.16].

Similarly, the set FJ permits the small object argument.

Adapting Quillen’s path object argument [30, II p. 4.9] as in [32, Remark A.4], [1,
2.6] yields the following result, which is particularly useful in topological situations.

Lemma A.4. Condition ii) of the Transfer Theorem A.1 holds if D has path-objects
for fibrant objects and a fibrant replacement functor.

Proof. A path-object of an object X of D is a factorization X → Path(X)→ X ×X
of the diagonal map into a weak equivalence followed by a fibration in D. Let X →
RX denote the weak equivalence in D obtained by applying the fibrant replacement
functor to X.

Let i : A→ B be a relative FJ-cell complex. Thus i has the left lifting property
with respect to FJ-inj, the class of maps in D that have the right lifting property
with respect to FJ . In particular, there exists a lift r : B → RA in

A

i

RA

B ∗ .

We will show that for any ι, the composite Uι(Ri) ◦ Uι(r) is a weak equivalence. Then,
as UιA→ UιRA is a weak equivalence by assumption, the 2-out-of-6 property [10,
9.3] applied to

UιA
Uι(i)
→ UιB

Uι(r)
→ UιRA

Uι(Ri)
→ Uι(RB)

implies that Uι(i) is a weak equivalence as desired.
Choose a lift H in

A
i

i

B RB Path(RB)

B
((B→RB),r)

RB ×RA
id×Ri

RB ×RB .

Now, Uι(H) is a right homotopy between the weak equivalence UιB → Uι(RB) and
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the composite Uι(Ri) ◦ Uι(r). Thus the latter map is a weak equivalence as well by
the 2-out-of-3 property of weak equivalences applied twice.
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