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Abstract
We show that the spectrum constructed by Everitt and

Turner as a possible Khovanov homotopy type is a product of
Eilenberg–MacLane spaces and is thus determined by Khovanov
homology. By using the Dold–Thom functor it can therefore
be obtained from the Khovanov homotopy type constructed by
Lipshitz and Sarkar.

A Khovanov homotopy type is a way of associating a (stable) space to each link L so
that the classical invariants of the space yield the Khovanov homology of L. There are
two recent constructions of Khovanov homotopy types, using different techniques and
giving different results [ET14, LS14a]. In [ET14] homotopy limits were employed
to build an Ω-spectrum X•L = {Xk(L)} with the following properties:

1. The homotopy type is a link invariant, and

2. the homotopy groups are Khovanov homology:

πi(X•(L)) = Kh−i(L).

The goal of this note is to prove the following result:

Main Theorem. Each of the spaces Xk(L) is homotopy equivalent to a product of
Eilenberg–MacLane spaces.

In [LS14a] the programme of Cohen, Jones and Segal [CJS95] was generalized to
produce a suspension spectrum XKh(L) with the following properties:

1. The homotopy type is a link invariant, and

2. the reduced cohomology is Khovanov homology:

H̃i(XKh(L)) = Khi(L).

As a corollary we obtain that X•(L) is homotopy equivalent to the infinite symmetric
product of XKh(L).
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To prove Theorem 1 we use an explicit model, due to McCord [McC69], of the
Eilenberg–MacLane spaces. Given a monoid G and a based topological space X, let
B(G,X) denote the set of maps u : X → G such that u(x) = 0 for all but finitely many
x ∈ X. Then B(G,X) is a monoid, and if G is a group (the case of interest) then
B(G,X) is a group. Moreover, when G is an abelian topological group the set B(G,X)
can be topologized in a natural way so that the group operation is continuous. This
construction has nice functoriality: letting Ab,Top∗ and AbTop denote, respectively,
the categories of abelian groups, based topological spaces and topological abelian
groups, one has the following result [McC69, Proposition 6.7]:

Proposition 1. McCord’s construction is a bifunctor

B(−,−) : Ab× Top∗ → AbTop.

Furthermore, as a special case of [McC69, Theorem 11.4], for an abelian group G
the space B(G,Sn) is the Eilenberg–MacLane space K(G,n). Thus we may take as
the Eilenberg–MacLane space functor:

B(−, Sn) : Ab → AbTop.

Conversely, the following is [Hat02, Corollary 4K.7, p. 483] (apparently originally
due to Moore; cf. [McC69, p. 295]):

Proposition 2. A path-connected, commutative topological monoid is a product of
Eilenberg–MacLane spaces.

The spaces Xk(L) are built as homotopy limits of diagrams of spaces. Recall that
given a small category C and a (covariant) functor D : C → Top∗ (a diagram), that
holimC D is constructed as follows (see, e.g., [BK72, Section 11.5]). Consider the
product ∏

σ∈N(C)

Hom(Δn, D(cn)) =
∏
n�0

∏
c0→···→cn

Hom(Δn, D(cn)), (1)

where N(C) is the nerve of C consisting of all sequences of composable morphisms

σ = (c0
α1−→ c1

α2−→ · · · αn−→ cn) and Hom denotes the space of continuous maps from
the standard n-simplex. The homotopy limit holimC D is the subspace of this product
consisting of those tuples (fσ)σ∈N(C) such that the following diagrams commute:

Δn−1

di

��

fdiσ �� D(cn)

Id

��
Δn fσ �� D(cn)

Δn−1

dn

��

fdnσ �� D(cn−1)

D(αn)

��
Δn fσ �� D(cn)

Δn+1

si

��

fsiσ �� D(cn)

Id

��
Δn fσ �� D(cn),

(2)

with 0 � i < n on the left and 0 � i � n on the right. Here the di and si are coface
and codegeneracy maps and di and si are the face and degeneracy maps of the nerve
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given by

diσ = (c0
α1−→ · · · ci−1

αi+1αi−→ ci+1 · · · αn−→ cn)

and

siσ = (c0
α1−→ · · · ci Id−→ ci · · · αn−→ cn),

with d0, dn similarly.
The following is well-known, but for completeness we give its (short) proof.

Proposition 3. Let D : C → Top∗ be a diagram of topological abelian groups and
continuous group homomorphisms. Then the homotopy limit of D is a topological
abelian group.

Proof. Pointwise addition makes the set Hom(Δn, D(cn)) into an abelian group, and
the product in formula (1) is the product (topological abelian) group. It remains to
see that the diagrams (2) describe a subgroup of this product. Suppose that tuples
(fσ) and (gσ) make these diagrams commute. Then the first and last diagrams auto-
matically commute for the pointwise sum (fσ + gσ). The middle diagram for the
pointwise sum becomes,

Δn−1

dn

��

�� Δn−1 ×Δn−1

dn×dn

��

fdnσ×gdnσ �� D(cn−1)×D(cn−1)
+ ��

D(αn)×D(αn)

��

D(cn−1)

D(αn)

��
Δn �� Δn ×Δn fσ×gσ �� D(cn)×D(cn)

+ �� D(cn)

for which the first square obviously commutes, the second commutes since f and g
are in the prescribed subspace and the third commutes from the fact that D(αn) is
a group homomorphism. The inverse operation is similarly seen to be closed, hence
the subspace defined above is a subgroup.

We are now ready for the main theorem:

Theorem 1. Each of the spaces Xk(L) is homotopy equivalent to a product of Eilen-
berg–MacLane spaces.

Proof. Let L be an oriented link diagram with c negative crossings. The space Xk(L)
is constructed as follows. Let I denote the category with objects {0, 1} and a single
morphism from 0 to 1, and In the product of I with itself n times. Let 0 be the initial
object in In, and let P be the result of adjoining one more object to In and a single
morphism from the new object to every object except 0.

In [ET14] it is shown that there is a functor F : P → Ab such that the ith derived
functor of the inverse limit, lim←−P

iF , is isomorphic to the ith unreduced Khovanov

homology of L. The space Xk(L) is constructed by composing this functor with the
Eilenberg–MacLane space functor K(−, k + c) and taking the homotopy limit of the
resulting diagram of spaces.

We may now use the explicit model for Eilenberg–MacLane spaces given by
McCord. By applying Proposition 1 we define a diagram D : P → AbTop as the com-
position B(−, Sk+c) ◦ F : P → Ab → AbTop. By the homotopy invariance property
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of the homotopy limit construction we have

Xk(L) � holimP D.

By Proposition 3, the homotopy limit on the right is itself a topological abelian group,
and hence, by Proposition 2, a product of Eilenberg–MacLane spaces.

Corollary 1. The homotopy type of X•(L) is determined by Kh(L).

The spectrum XKh(L) = {X (k)
Kh (L)} constructed in [LS14a] has the additional

property that the cellular cochain complex of the space X (k)
Kh (L) is isomorphic to the

Khovanov complex of L (up to shift). It follows from the description of the Khovanov
homology of the mirror image (see [Kho00]) that

H̃i(XKh(L)) = Kh−i(−L)

where −L denotes the mirror of L. The infinite symmetric product Sym∞ X (k)
Kh (L) is

seen from the Dold–Thom theorem to be

Sym∞ X (k)
Kh (L) =

∏
n

K(H̃n(X (k)
Kh (L)), n)

from which we have the following:

Corollary 2. For large enough k, the space Xk(−L) is homotopy equivalent to the

infinite symmetric product Sym∞ X (k)
Kh (L).

We end by noting that the analogue of Theorem 1 for the spectra XKh(L) is not
true. For all alternating knots XKh(L) is a wedge of Moore spaces [LS14a], however
there are examples of non-alternating knots for which XKh(L) is not a wedge of Moore
spaces (see [LS14b]).
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