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ON THE f -INVARIANT OF PRODUCTS

HANNO VON BODECKER

(communicated by Nicholas J. Kuhn)

Abstract
The f -invariant is a higher version of the e-invariant that

takes values in the divided congruences between modular forms;
in the situation of a cartesian product of two framed manifolds,
the f -invariant can actually be computed from the e-invariants
of the factors. The purpose of this note is to determine the
f -invariant of all such products.

1. Introduction and statement of the result

In order to gain a better understanding of the stable homotopy groups of the
sphere, which, by the Pontrjagin–Thom construction, can be interpreted as the bor-
dism groups of framed manifolds, it proves helpful to organize the information using
suitable invariants. In his seminal work on the J-homomorphism, Adams considered
the d-invariant, which is essentially the degree of a map, and introduced the notion
of an e-invariant [1]. Using complex K-theory, he produced an invariant

eC : π
st
2k+1 → Q/Z,

and determined its image; to be precise, eC maps:

(i) πst
8k+1 onto integer multiples of 1

2 ,

(ii) πst
8k+3 onto integer multiples of B4k+2

4k+2 ,

(iii) πst
8k+5 onto integer multiples of 1,

(iv) πst
8k+7 onto integer multiples of B4k+4

8k+8 .

Moreover, he showed that the optimal values in (ii) and (iv) are attained on the
generators of ImJ in the corresponding dimensions (although ImJ8k+3 actually has
twice the order of the denominator of B4k+2/(4k + 2), which can be seen by mak-
ing use of KO-theory), and constructed an 8-periodic family μ8k+1 (in cokerJ8k+1

if k > 1) detected by (i). The subsequent work of Conner and Floyd using bordism
theory allowed the eC-invariant to be computed via the Todd genus of a complex
null-bordism of the framed manifold in question [6]; even later, the work of Atiyah,
Patodi, and Singer on index theory on manifolds with boundary [3] led to an ana-
lytic formulation of the e-invariant [4], which was used by Deninger and Singhof to
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exhibit an infinite family of nilmanifolds representing (twice) the generator of ImJ in
dimensions 8k + 3 (8k + 7) [7].

Much of the recent progress on our knowledge of πst
∗ can be accredited to the

Adams–Novikov spectral sequence (ANSS),

Ep,q
2 = Extp,qMU∗MU (MU∗,MU∗) ⇒ πst

q−p

and the rich algebraic structure inherent in complex oriented cohomology theories
(see, e.g., [12]). Within this framework, the complex e-invariant can be considered as
taking values in the 1-line of the ANSS, i.e.,

eC : π
st
2k+1 → E1,2k+2

2 ⊆ Q/Z.

Working locally at a prime p and switching to BP , the 1-line is generated by the
alpha elements αi/j ∈ Ext1,2(p−1)i of order pj ; at odd primes, j = 1 + νp (i), and all
these alphas are permanent and detect the generators of ImJ(p). At p = 2 however,
the situation is a little bit more subtle: The elements α4k+3 are not permanent;
furthermore j = 2 + ν2 (i) for i = 2t > 2, but for t = 2k + 1 it is actually α4k+2/2

(i.e., twice the generator of Ext1,8k+4 if k > 0) that is a permanent cycle represented
by an element in ImJ of order eight (cf. [12, Theorem 5.3.7]).

In order to detect second filtration phenomena, Laures introduced the f -invariant,
which is a follow-up to the e-invariant and takes values in the divided congruences
between modular forms [9, 10]. Let us briefly recall its definition: Considering the
congruence subgroup Γ = Γ1(N), set ZΓ = Z[ζN , 1/N ] and denote by MΓ

∗ the graded
ring of modular forms w.r.t. Γ which expand integrally, i.e., which lie in ZΓ[[q]]. The
ring of divided congruences DΓ consists of those rational combinations of modular
forms which expand integrally; this ring can be filtered by setting

DΓ
k =

{
f =

∑k
i=0fi

∣∣∣ fi ∈ MΓ
i ⊗Q, f ∈ ZΓ[[q]]

}
.

Finally, introduce

DΓ

k
= DΓ

k +MΓ
0 ⊗Q+MΓ

k ⊗Q.

Now, if EllΓ denotes the complex oriented elliptic cohomology theory associated to
the universal curve over the ring of modular forms w.r.t. Γ, the composite

E2,2k+2
2 [MU ] → E2,2k+2

2 [EllΓ] → DΓ

k+1
⊗Q/Z

is injective (away from primes dividing the level N) and can be combined with the

composite πst
2k → E2,2k+2

∞ [MU ] → E2,2k+2
2 [MU ] (for the second map, note that there

are no differentials hitting the 2-line). Then, for a fixed level N (which we suppress
from the notation), the f -invariant becomes a map

f : πst
2k → DΓ

k+1
⊗Q/Z.

In a more geometrical fashion, the f -invariant can be formulated as an elliptic
genus of manifolds with corners of codimension two [10]; as shown in the author’s
thesis [13], this allows to use techniques from index theory to understand and, at
least in some cases, to calculate the f -invariant analytically (see also [5] for a –
slightly different – analytical approach to the f -invariant). In the situation of the
product of two framed manifolds, the f -invariant can actually be computed from the



ON THE f-INVARIANT OF PRODUCTS 171

eC-invariants of the factors. The purpose of this note is to determine the f -invariant
of all such products:

Theorem 1.1. Let x4k−1 be a generator of ImJ in dimension 4k − 1 and let μ8k+1

be a representative of the μ-family constructed by Adams. Then, for the level N = 3,
we have:

(i) f(x2
3) ≡ 1

2

(
E2

1−1
12

)2

,

(ii) f(x2
7) ≡ 1

2

(
E4−1
240

)2
,

(iii) f(μ8k+1μ8k′+1) ≡ 1
2
E1−1

2 ,

(iv) f(μ8k+1x8k′−1) ≡ 1
2
E4−1
240 ,

(v) f(μ8k+1x8k′+3) ≡ 0.

Furthermore, for any level N > 1, we have:

(vi) f(x4k−1x4k′−1) ≡ 0,

unless k = k′ equals one or two.

Some comments are in order before presenting the proof:
First of all, we have to admit that at even levels N = 2l, i.e., when two is inverted,

our theorem does not provide anything new, since the products of alpha elements at
odd primes are known to vanish [11] (although our result does not rely on this fact).
At odd levels however, things become more interesting:

It might be somewhat amusing to find the two 8-periodic families (iii) and (iv),
each (within its family) admitting the same representative of the f -invariant, but
the experienced reader will surely recognize these as corresponding to μ8(k+k′)+2 in
cokerJ and ηx8(k+k′)−1 in ImJ , respectively.

Furthermore, our result shows that beyond these two families, only the exceptional
cases (i) and (ii) (corresponding to the Kervaire elements of product type) admit a
non-trivial f -invariant.

Summarizing, and bearing in mind that we work on the level of manifolds, i.e.,
representatives of permanent cycles, this theorem may be thought of as an elliptic
(and strengthened) analog of [12, Theorem 5.5.8].

2. Proof of Theorem 1.1

The determination of the f -invariant of a product from the eC-invariants of its
factors is made possible by the following result:

Lemma 2.1. [13] Let Y1, Y2 be odd-dimensional framed manifolds, and let m(Yi)
be any modular form of weight (dimYi + 1)/2 w.r.t. the fixed congruence subgroup
Γ = Γ1(N) such that m̄(Yi) = m(Yi)− eC(Yi) ∈ ZΓ[[q]]. Then we have

f(Y1 × Y2) ≡ m̄(Y1)eC(Y2) ≡ −m̄(Y2)eC(Y1).

In particular, the f -invariant of a product is antisymmetric under exchange of the
factors.

Besides the knowledge of the possible values of the eC-invariant, we need some
elementary number theory:
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Lemma 2.2. For n � 1 and any positive integer d, we have:

(i)
(
dp

n−1(p−1) − 1
)
dn ≡ 0 mod pn,

(ii)
(
d(2n

′+1)2n − 1
)
dn+2 ≡ 0 mod 2n+2.

Proof. Part (i) is a simple consequence of the Euler–Fermat theorem (cf., e.g., [2])
which states that for (a,m) = 1, we have:

aϕ(m) ≡ 1 mod m,

where ϕ(m) = m
∏

p|m
(
1− 1

p

)
is the Euler totient.

The refinement (ii) stems from the fact that for odd d2n
′+1 = 2k + 1:

(2k + 1)2
n

= 1 + 2n2k +
2n (2n − 1)

2
4k2 +

∑
i�3

(
2n

i

)
(2k)

i

= 1 + 2n+1
(
k + (2n − 1) k2

)
+

∑
i�3

(
2n

i

)
(2k)

i

≡ 1 mod 2n+2,

since ν2 (i!) < i and ν2 ((2
n)!/ (2n − i)!) � n+ 1 for i � 3.

Concerning modular forms, recall that for even k > 2 the Eisenstein series

Ek = − 2k

Bk
Gk = 1− 2k

Bk

∞∑
n=1

σk−1(n)q
n

is a modular form of weight k w.r.t. the full modular group. Furthermore recall (cf.,
e.g., [8, Section 3.2]) that the ring of modular forms w.r.t. Γ = Γ1(3) is generated by

E1 = 1 + 6
∞∑

n=1

∑
d|n

(
d

3
)qn,

E3 = 1− 9
∞∑

n=1

∑
d|n

(
d

3
)d2qn,

where ( ·· ) is the Legendre Symbol; in passing, we note that (E3
1 − E3)/27 ∈ Z[[q]].

These modular forms satisfy the following useful congruence:

Lemma 2.3.
1

2

{
E2

1 − 1

12
+ (2k + 1)

E3 − 1

9

}
∈ Z[[q]].

Proof. Since

E2
1 = 1 + 12

∞∑
n=1

∑
3�d|n

d qn,

we have to show that

1

2

⎧⎨
⎩
∞∑

n=1

∑
3�d|n

d qn − (2k + 1)

∞∑
n=1

∑
d|n

(
d

3
)d2qn

⎫⎬
⎭ ∈ Z[[q]],
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but obviously

∑
d|n

(
d

3
)d2 ≡

∑
3�d|n

d2 ≡
∑
3�d|n

d mod 2.

Now let us prove the Theorem:

The exceptional cases (i) and (ii)

Looking at the list, we may assume that eC(x3) is given by − 1
12 ; of course, this is

in accordance with the well-known fact that x3 may be represented by the sphere S3

(with the framing induced by quaternion multiplication). So we apply Lemma 2.1,
choose

−m̄(x3) =
E2

1 − 1

12
=

∞∑
n=1

∑
3�d|n

d qn ∈ Z[[q]],

and compute

1

12

E2
1 − 1

12
≡ −1

2

(
E2

1 − 1

12

)2

≡ 1

2

(
E2

1 − 1

12

)2

mod DΓ

4
;

this proves (i).

Similarly, x7 may be represented by the sphere S7 (see, e.g., [6]), resulting in
eC(x7) =

1
240 , so we choose

m̄(x7) =
E4 − 1

240
=

∞∑
n=1

∑
d|n

d3qn ∈ Z[[q]],

and ‘complete the square’, hence establishing (ii).

Remark 2.4. Of course, (i) and (ii) correspond to the Kervaire elements of product
type, i.e., α2

2/2 = β2/2 and α2
4/4 = β4/4 at the prime p = 2. In order to see this on the

level of f -invariants, we may compare (i) and (ii) to the results of [8], i.e.,

f
(
β2/2

) ≡ 1

2

(
E2

1 − 1

4

)2

∈ DΓ

4
⊗Q/Z,

f
(
β4/4

) ≡ 1

2

(
E2

1 − 1

4

)4

+
1

2

(
E2

1 − 1

4

)3

∈ DΓ

8
⊗Q/Z.

Concerning (ii), the fourth Eisenstein series is a modular form of weight four, hence it
follows that E4 = 9E4

1 − 8E1E3 by comparing the first two terms of the q-expansions.
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Consequently, a short computation modulo DΓ

8
reveals:

1

2

(
E4 − 1

16

)2

=
1

2

(
1

2

E4
1 − 1

8
+

1

2

(
E4

1 − E1E3

))2

=
1

2

(
1

4

(
E4

1 − 1

8

)2

+
1

2

E4
1 − 1

8

(
E4

1 − E1E3

)
+

1

4

(
E4

1 − E1E3

)2)

≡ 1

32
E1E3 +

1

2

(
E2

1 − 1

4

)4

+
1

2

(
E2

1 − 1

4

)3

+
1

8

(
E2

1 − 1

4

)2

≡ 1

16

E2
1 − 1

4
+

1

2

(
E2

1 − 1

4

)4

+
1

2

(
E2

1 − 1

4

)3

+
1

16

E4
1 − 1

8
− 1

16

E2
1 − 1

4

≡ 1

2

(
E2

1 − 1

4

)4

+
1

2

(
E2

1 − 1

4

)3

,

since

− 1

32
E1E3 ≡ 1

2

E4 − 1

16
E1E3 ≡ 1

2

E4 − 1

16
E3

≡ E4 − 1

16

1

2
(E3 − 1) ≡ 1

2

E2
1 − 1

4

E4 − 1

16

≡ 1

2

E6 − 1

8

E2
1 − 1

4
≡ − 1

16

E2
1 − 1

4
.

Remark 2.5. From the point of view of arithmetics, the product-type Kervaire ele-
ments (x2

3 = ν2 and x2
7 = σ2) are lucky exceptions: They happen to occur in the

dimensions just low enough to be left unscathed by the congruence (ii) of Lemma 2.2.

The 8-periodic families (iii) and (iv)

According to [1], we have eC(μ8k+1) = 1/2, and this is the only possible non-trivial
value of eC in dimension 8k + 1. Thus, we judiciously choose

f(μ8k+1μ8k′+1) ≡ 1

2

E1E
k
4 − 1

2
∈ DΓ

4(k+k′)+2
⊗Q/Z,

but

1
2
E1E

k
4−1
2 − 1

2
E1−1

2 =
Ek

4−1
4 E1 ∈ Z[[q]]

yields (iii). For (iv), we may assume that eC(x8k′−1) ≡ B4k′/8k′ mod Z, hence

f(μ8k+1x8k′−1) ≡ 1
2
B4k′
8k′ (E4k′ − 1) ≡ 1

2

∑
σ4k′−1(n)q

n ∈ DΓ

4(k+k′)+1
⊗Q/Z,

which is congruent to the desired result by virtue of Lemma 2.2.

Remark 2.6. In order to express (iv) in terms of E1 and E3, it is useful to work out
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the following relation modulo DΓ

4k+1
:

1

2

E4 − 1

16
=

1

2

[(
E2

1 − 1

4

)2

+
1

2

E2
1 − 1

4
+

1

2

(
E4

1 − E1E3

)]

=
1

2

(
E2

1 − 1

4

)2

+
1

2

[
1

2

E2
1 − 1

4
− 1

2
(E3 − 1)

]
− 1

2

E1 − 1

2
E3 +

E4
1 − 1

4

≡ 1

2

(
E2

1 − 1

4

)2

+
1

2

[
1

2

E2
1 − 1

4
− 1

2
(E3 − 1)

]
+

1

2

E1 − 1

2

E2
1 − 1

4
;

furthermore, we observe that for k � 2 the first summand can be dropped due to

1
2

(
E2

1−1
4

)2

≡ 1
2 (E3 − 1)

2 ≡ 1
2E

2
3 ≡ 1

2E
4k−5
1 E2

3 .

Remark 2.7. The elements occurring in part (iii) and (iv) of the theorem also allow
detection via the invariants dR and eR, respectively, cf. [1]. While for low values of k,
k′, the non-triviality of f in these cases is easily checked by hand, the author does
not know how to establish non-triviality for all values of k, k′ in a direct manner.

The generic situation

For (v), we may assume that eC(x8k+3) is represented by B4k+2/(4k + 2), so, for
k > 0, we have

f(x8k+3μ8k′+1) ≡ 1

2

B4k+2(1− E4k+2)

4k + 2
=

∑
σ4k+1(n)q

n,

whereas for k = 0 we have

f(x3μ8k′+1) ≡ 1

2

E2
1 − 1

12
≡ 1

2

{
E2

1 − 1

12
+ Ek′

4 E3 − 1

}

≡ 1

2

{
E2

1 − 1

12
+ E3 − 1

}
mod DΓ

4k′+3
,

which expands integrally by Lemma 2.3.

Turning to (vi) and excluding the cases k = k′ = 1 and k = k′ = 2, we assume that
k � k′; thus

f(x4k−1x4k′−1) ≡
(
ε(k′)

∑
σ2k′−1(n)q

n
)
·
(
ε(k)

B2k

4k

)
,

where ε(k) = 1 for k even and two otherwise.

The theorem of von Staudt–Clausen [2] allows the computation of the denominator
of the Bernoulli numbers. More precisely, let j2k denote the denominator of B2k/2k;
if (p− 1)pn−1|2k, then pn|j2k, and this result is sharp. But by Lemma 2.2 (i) we have:

p−n
∑

σ2k′−1+2k(r)q
r ≡ p−n

∑
σ2k′−1(r)q

r if (p− 1)pn−1|2k,

and the LHS is p−nG2k+2k′ plus a constant, hence vanishes mod D
2(k+k′)

.

Similarly, if k = 2l = (2n′ + 1)2m+1, 2m+4|2j4l (and 2j4l is precisely the order of
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ImJ in dimension 8l − 1), and part (ii) of Lemma 2.2 yields:

1

24+m

(∑
σ2k′−1+4l(r)q

r −
∑

σ2k′−1(r)q
r
)
≡ 0 mod Z[[q]].

This completes the proof.
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