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COFIBRANCY OF OPERADIC CONSTRUCTIONS IN

POSITIVE SYMMETRIC SPECTRA

LUÍS ALEXANDRE PEREIRA

(communicated by Brooke Shipley)

Abstract
We show that when using the underlying positive model

structure on symmetric spectra one obtains cofibrancy condi-
tions for operadic constructions under much milder hypothesis
than one would need for general categories. Our main result
provides such an analysis for a key operation, the “relative com-
position product” ◦O between right and left O-modules over a
spectral operadO, and as a consequence we recover (and usually
strengthen) previous results establishing the Quillen invariance
of model structures on categories of algebras via weak equiva-
lences of operads, compatibility of forgetful functors with cofi-
brations and Reedy cofibrancy of bar constructions.

Key to the results above are novel cofibrancy results for n-
fold smash powers of positive cofibrant spectra (and the relative
statement for maps). Roughly speaking, we show that such n-
fold powers satisfy a (new) type of Σn-cofibrancy which can be
viewed as “lax Σn-free/projective cofibrancy” in that it deter-
mines a larger class of cofibrations still satisfying key technical
properties of “true Σn-free/projective cofibrancy”.

1. Introduction

Operads provide a convenient way to codify many types of algebraic structures on
a category C, such as monoids, commutative monoids or, when C has extra structure,
Lie algebras, En-algebras, among others. Indeed, any of these types of structures can
be identified with the algebras in C over a specific operad.

When C is additionally a suitable model category it is then natural to ask whether
the category of algebras over a fixed operad O, denoted AlgO(C), inherits a model
structure from C and, moreover, just how compatible such a model structure on
AlgO(C) is with the underlying model structure on C. Technical reasons then make it
desirable for C and AlgO(C) to be cofibrantly generated model categories (briefly, this
means (trivial) cofibrations can be built via colimits from certain generating ones),
and one quickly finds that the biggest obstacle to tackling the questions above is the
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fact that general colimits in AlgO(C) are not underlying colimits in C, so that proving
properties of the (intended) cofibrations in AlgO(C) requires a substantial amount of
work.

More generally, related problems occur when studying other natural operadic con-
structions. Indeed, one of the most compact ways of describing operads is as the
monoids over a certain monoidal structure ◦, the composition product, and many
operadic constructions, such as right modules, left modules and algebras (which are
special left modules “concentrated in degree 0”), are then derived from ◦. However, ◦
is an unusual monoidal structure which behaves quite differently with respect to each
of its variables, in particular preserving colimits in the first variable but not in the
second, and one then finds that studying operadic constructions in a model category
context naturally requires answering the non-obvious question of which cofibrations
are actually preserved by ◦, and when.

When dealing with a general model category C answering the questions above seems
to require mild to severe cofibrancy conditions on the operad O itself (cf. [18]). The
main goal of this paper is to prove that for the category SpΣ of symmetric spectra,
however, these questions can be answered while making minimal to no cofibrancy
assumptions on O, at least provided one uses the positive S model structure as the
underlying model structure on SpΣ.

1.1. Main results

Positive model structures on spectra were introduced by Mandell, May, Schwede
and Shipley in [11] and soon after used by Shipley in [16] to establish the existence
of a projective model structure of symmetric ring spectra where cofibrations are com-
patible with the forgetful functor from symmetric ring spectra to spectra. Since then,
many other results have shown the usefulness of positive structures when studying
algebras over an operad, such as the existence of projective model structures for alge-
bras over any simplicial operad shown by Elmendorf and Mandell in [1], strengthened
to hold for any spectral operad by Harper in [3], and the compatibility between cofi-
brations and the forgetful functor for more general operads shown by Harper and
Hess in [5].

Our main result, Theorem 1.1 below, follows this trend by establishing a quite
thorough control of the way ◦ (or more generally, its relative version ◦O for right
and left O-modules) interacts with cofibrations. We encourage the reader daunted
by the technical nature of the result to first peruse Section 1.2, where consequences
of Theorem 1.1 (including stronger versions of the results mentioned in the previous
paragraph) are discussed.

Theorem 1.1. Let O be an operad in SpΣ and consider the relative composition
product

ModrO ×ModlO
−◦O−
−−−−→ Sym.

Regard ModlO as equipped with the projective positive S stable model structure and
Sym as equipped with the S stable model structure.

Suppose f2 : M → M̄ is a cofibration between cofibrant objects in ModlO. Then if
the map f1 : N → N̄ in ModrO is an underlying cofibration (resp., monomorphism)
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in Sym, so is their pushout product with respect to ◦O,

M ◦O N̄
∨

M◦ON

M̄ ◦O N
f1�

◦O f2
−−−−−−→ M̄ ◦O N̄ .

Further, f1 �
◦O f2 is also a weak equivalence if either f1 or f2 is.

Technically speaking, most of the ingredients needed for our proof of Theorem 1.1
are adapted from arguments used in [1, 3, 5] to prove the original versions of the
results which we recover in Section 1.2. However, two important new ingredients
deserve special mention.

The first of these is found in Proposition 5.20, which extends crucial filtrations
of certain pushouts in AlgO(C) used in [1, 3, 5] by still providing such filtrations
after composing with M ◦O (−) for some M ∈ ModrO. Note that as we do not assume
C = SpΣ, these filtrations should be relevant in a general setting.

The second ingredient is a more thorough characterization of what makes positive
model structures so convenient. It is well known that, for A any Σn-spectrum and X
a positive S cofibrant spectrum, there is a canonical weak equivalence

(A ∧X∧n)Σn
∼ (A ∧X∧n)hΣn

(1)

and, indeed, this key result essentially suffices to carry out the proofs in [16, 1].
However, since (1) makes no explicit reference to cofibrations, one quickly finds it
insufficient when trying to establish cofibrancy results in AlgO. The natural way to
fix this would be to guess that (1) ought to be a consequence of X∧n being built from
free Σn-cells, or put in model category terminology, it being (genuinely) Σn-cofibrant
(indeed, were that the case combining Remark 2.23 with [9, Thm 5.3.7] would yield
(1)). Unfortunately, this turns out to be false (cf. [4]; also, check Remark 2.19), though
fortunately not by much.1 Indeed, our second ingredient is a (new) type of “lax Σn-
cofibrancy” in (SpΣ)Σn , which we formally call S Σ-inj Σn-proj cofibrancy, such that
(i) X∧n is “lax Σn-cofibrant” for positive cofibrant X; (ii) “lax Σn-cofibrations” share
the key technical properties of (genuine) Σn-cofibrations. The formal results follow.

Theorem 1.2. Let SpΣ be equipped with the positive S stable model structure and
(SpΣ)Σn with the S Σ-inj Σn-proj stable model structure.

Then for f : A→ B a cofibration in SpΣ its n-fold pushout product

f�n : Qn
n−1(f)→ B∧n

is a cofibration in (SpΣ)Σn , which is a weak equivalence if f is.
Furthermore, if A is cofibrant in SpΣ then Qn

n−1(f) (resp., f∧n : A∧n → B∧n) is

cofibrant (resp., cofibration between cofibrant objects) in (SpΣ)Σn .

Theorem 1.3. Consider the bifunctor

(SpΣ)G × (SpΣ)G
−∧G−
−−−−→ SpΣ,

where the first copy of (SpΣ)G is regarded as equipped with the S Σ-inj G-proj stable
model structure. Then ∧G is a left Quillen bifunctor if either:

1In fact, such a result was “proven” in the author’s thesis via an induction argument using incorrect
base cofibrancy claims. A key impetus for this paper is to correct those base claims.
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(a) Both the second (SpΣ)G and the target SpΣ are equipped with the respective
monomorphism stable model structures;

(b) Both the second (SpΣ)G and the target SpΣ are equipped with the respective S
stable model structures.

In terms of the existent literature, Theorems 1.2 and 1.3(a) are most closely related
to [4, Props. 4.28*, 4.29*], which they both significantly generalize and improve on
from a technical standpoint (cf. Remark 2.24). Further, Theorem 1.3 is strongly moti-
vated by [9, Thm 5.3.7] (which, as hinted at above, implies the (genuine) Σn-cofibra-
tion analogue result).

1.2. Consequences
In this section we list a series of less technical results that can easily be deduced

from Theorem 1.1 (or, in the case of the first part of Theorem 1.4, its proof).

Theorem 1.4. Let O be any operad in SpΣ, and let SpΣ, Sym be equipped with the
respective positive S stable model structures.

Then the respective projective positive S model structures on AlgO, ModlO
exist and are simplicial model structures.

Further, if O → Ō is a stable equivalence in each degree then the induce-forget
adjunctions

Ō ◦O (−) : AlgO ⇄ AlgŌ : fgt, Ō ◦O (−) : ModlO ⇄ ModlŌ : fgt

are Quillen equivalences.

In the case of algebras over the commutative operad, Theorem 1.4 was first proven
in [16], and for general simplicial operads in [1]. A result nearly identical to Theo-
rem 1.4 was the main result of [3]. Our result is a slight generalization of the latter
in the sense that our model structure on ModlO has a larger class of cofibrations (cf.
the discussion preceding [3, Thm. 1.3]).

Theorem 1.5. Let O be an operad in SpΣ which is S cofibrant in Sym. Then, equip-
ping AlgO,ModlO with their respective projective positive S stable model structures
and SpΣ, Sym with their respective S stable model structures, the forgetful functors

fgt : AlgO → SpΣ, fgt : ModlO → Sym

send cofibrations between cofibrant objects to cofibrations between cofibrant objects.

In the case of algebras over the commutative operad Theorem 1.5 was first proven
in [16], and extended to algebras and modules over general operads satisfying some
cofibrancy conditions in [5]. Our result improves on the latter by relaxing the cofi-
brancy conditions on the operad.

Theorem 1.6. Suppose Sym is equipped with the positive S stable model structure
and consider an operad O in SpΣ, right O-module M and a left O-module N such
that the unit map I → O (resp., M and N) is an underlying cofibration (resp., are
cofibrant objects) in Sym. Then the bar construction

Bn(M,O, N) = M ◦ O◦n ◦N

is Reedy cofibrant with respect to the model structure on Sym.
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A very similar result to Theorem 1.6 was first proven in [5]. Our result improves
it by using more general cofibrancy conditions and allowing O(0) 6= ∗.

Remark 1.7. One advantage of Theorems 1.4, 1.5 and 1.6 versus the original results
in [3, 5] that they generalize is that the cofibrancy conditions used are more consistent
across results. This makes it easier to use the results in tandem, a relevant feature in
upcoming joint work between the author and Kuhn.

Theorem 1.8. Suppose A is projective positive S cofibrant in AlgO or, more gener-
ally, in ModlŌ. Then the functor

ModrO
(−)◦OA
−−−−−→ SpΣ or, more generally, ModrO

(−)◦OA
−−−−−→ Sym

preserves homotopy fiber sequences.

1.3. Directions for future work
A key motivation for the work in this paper comes from upcoming joint work

between the author and Kuhn where we study certain filtrations built using M ◦O (−)
type functors. Since we need to iterate such functors while obtaining homotopically
meaningful constructions (cf. Theorem 1.8), it becomes necessary to understand how
those functors interact with cofibrancy conditions.

Additionally, there are two natural directions in which to try to generalize the
results in this paper.

The first direction would be to extend Theorem 1.1 to multicategories/colored
operads in SpΣ, following [1]. In light of a recent preprint [18] by White and Yau
investigating when analogues of Theorems 1.4, 1.5 hold for general categories, this
seems likely to be a formal question.

A second direction would be to extend our main results to other categories. A
natural candidate for such a generalization is given by the (simplicial) genuine G-
symmetric spectra of Hausmann [6], as those share the underlying categories used in
this paper. Such a generalization is the subject of upcoming joint work between the
author and Hausmann.

1.4. Outline of the paper
Section 2 introduces the required basic notation and terminology.
Section 3 defines and proves the existence (Theorems 3.6, 3.7, 3.8) of the three

model structures on (SpΣ)G necessary to formulate Theorems 1.2 and 1.3.
Section 4 proves the key properties of the S Σ-inj G-proj stable model structures

featured in Theorems 1.2 and 1.3, namely those results themselves as well as two
minor but essential “change of group” results (Propositions 4.1 and 4.2).

Section 5 deals with proving Theorem 1.1 and its “corollaries” Theorems 1.4, 1.5,
1.6 and 1.8. Key to this is Subsection 5.2 and in particular Proposition 5.20, which
improves crucial filtration results used in [1, 3, 5], among others.

Much of the paper, namely Sections 3 and 4, is devoted to building the notion of
“lax Σn-cofibrancy” needed to state Theorems 1.2 and 1.3 and then proving those
results. However, the reader interested only in Theorem 1.1 (or its consequences)
should be able to skip ahead to Section 5, provided he is willing to accept Theorems 1.2
and 1.3 (and Propositions 4.1 and 4.2) as given.
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2. Basic definitions and notation

We assume the reader is familiar with the basics on symmetric spectra (as found
in [9] or [14]) and cover in Sections 2.1, 2.2 and 2.3 only the minimum needed to
establish notation and some less standard basic results.

Likewise, we assume the reader is familiar with the basics on cofibrantly generated
model categories (as in [8]) and recall in Sections 2.4 and 2.5 only two notions that
play a key role for us: injective/projective model structures and left Quillen bifunctors.

2.1. Pointed G-simplicial sets
Throughout we let (S∗,∧, S

0) denote the closed monoidal category of pointed sim-
plicial sets together with its monoidal structure ∧ and unit S0.

We will make use of the following standard notation:

• for A a set, A · (−) denotes the (constant) coproduct over A (cf. [10]);

• ∆k, ∂∆k and Λk
l denote the standard, boundary and horn (unpointed) simplicial

sets (cf. [2, I.1]);

• X+ denotes the pointed simplicial set obtained by adding a disjoint base point
to the (unpointed) simplicial set X;

• Sn = (∆1/∂∆1)∧n denotes the pointed n-sphere.

Definition 2.1. Let G be a finite group. The category SG∗ of pointed G-simplicial
sets is the category of functors G→ S∗.

Given X,Y in SG∗ , X ∧ Y has a diagonal G-action and, giving S0 the trivial action,
∧ becomes a monoidal structure in SG∗ . In fact, one has the following.

Proposition 2.2. (SG∗ ,∧, S
0) form a closed symmetric monoidal category.

Further, both the left and right adjoint in the trivial-fixed point adjunction

triv : S∗ ⇄ SG∗ : (−)G

are monoidal functors.

The less obvious half of Proposition 2.2 follows since X ∧ Y = colim(∗ ← X ∨ Y →
X × Y ) together with the following (which we will need later).

Proposition 2.3. Any pushout diagram in SG∗

A

f

X

B Y,

with f a monomorphism remains a pushout diagram after applying (−)G.

Proof. Monomorphisms are transfinite compositions of maps adding a single orbit,
so that one reduces to f = G/H · (∂∆k

+ → ∆k
+). The claim is now clear.
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Remark 2.4. By the theory of enriched categories (see, for example, [12, Chap. 3]),
Proposition 2.2 implies that SG∗ is a tensored and cotensored S∗-enriched category, and
hence also simplicially enriched, tensored and cotensored. Explicitly, we note that the
mapping space for X,Y ∈ SG∗ is Map(X,Y )G, the G-fixed points of the conjugation
action on the mapping space of the underlying X,Y ∈ S∗.

2.2. G-spectra
Throughout Σ will denote the usual skeleton of the category of finite sets and

bijections. Explicitly, the objects of Σ are the sets m = {1, 2, · · · ,m} for m > 0.

Definition 2.5. The category of symmetric sequences in pointed simplicial sets is
the category SΣ∗ of functors from Σ to S∗.

Remark 2.6. Unpacking Definition 2.5, a symmetric sequenceX consists of a sequence
Xm,m > 0 of pointed simplicial sets, each with a left Σm-action. One then has inclu-
sions SΣm

∗ →֒ SΣ∗ , which we often omit to simplify notation.

Definition 2.7. The tensor product X ⊗ Y of X,Y ∈ SΣ∗ is defined by

(X ⊗ Y )m =
∨

i+j=m

Σm ·
Σi×Σj

Xi ∧ Yj

together with the obvious Σm-actions.

The following is proven in [9, Sec. 2.2].

Proposition 2.8. (SΣ∗ ,⊗,1) form a symmetric monoidal category where the unit 1
is the sequence 1 such that 10 = S0 and 1m = ∗ for m > 0.

It is well known that the symmetric sequence S, the sphere spectrum, defined by
Sm = Sm is a symmetric monoid with respect to ⊗. General theory then implies that
modules over S themselves form a symmetric monoidal category.

Definition 2.9. The category SpΣ of symmetric spectra is the category of modules
over S in SΣ∗ . The smash product X ∧ Y of X,Y ∈ SpΣ is the coequalizer

X ⊗ S ⊗ Y ⇒ X ⊗ Y → X ∧ Y.

Remark 2.10. Throughout we will need to consider spectraX such that each levelXm

is acted on by multiple symmetric groups (e.g., when X = Y ∧n). To avoid confusion,
we will reserve the letter m for the structure index of spectra.

Definition 2.11. Let G be a finite group. The category (SpΣ)G of G-spectra is the
category of functors G→ SpΣ.

Just as for pointed simplicial sets, the smash product X ∧ Y of X,Y ∈ (SpΣ)G has
a diagonal G-action. The following is immediate.

Proposition 2.12. Both (SpΣ,∧, S) and ((SpΣ)G,∧, S) form closed symmetric mon-
oidal categories. Further, all functors in the following adjunctions are monoidal

S ⊗ (−) : S∗ ⇄ SpΣ : (−)0, S ⊗ (−) : SG∗ ⇄ (SpΣ)G : (−)0,

triv : SpΣ ⇄ (SpΣ)G : (−)G.
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Remark 2.13. The theory of enriched categories [12, Chap. 3] implies that (SpΣ)G is
enriched, tensored and cotensored over both S∗ and SpΣ, and hence also simplicially
enriched, tensored and cotensored.

2.3. S stable and positive S stable model structures on SpΣ

Definition 2.14. The S stable model structure (resp., positive S stable model struc-
ture) on SpΣ is the cofibrantly generated model structure such that

• the generating cofibrations are the maps

S ⊗
(
Σm/H · (∂∆k

+ → ∆k
+)

)

for m > 0 and any H 6 Σm (resp., m > 1 and any H 6 Σm);

• weak equivalences are the stable equivalences of spectra.

Remark 2.15. Our terminology follows [9, 16] rather than [14, 3] which refer to S
cofibrations as “flat cofibrations”. However, we make no explicit use of the maps
referred to in [9, 16, 14, 3] simply as “cofibrations”, even though our results also
apply to those given that they are a subclass of S cofibrations.

Remark 2.16. The proof of Proposition 3.13 shows that a S cofibration A→ B is also

a positive S cofibration iff A0
≃
−→ B0 is an isomorphism. We hence use positivity as

a hypothesis in our results only if necessary and never as a conclusion, leaving it to
the curious reader to check by direct calculation if positivity conclusions hold.

2.4. Injective and projective model structures

Definition 2.17. Let C be a model category, M a monad on C and AlgM the category
of algebras over M .

The injective model structure on AlgM , if it exists, has as cofibrations (resp., weak
equivalences) the underlying cofibrations (resp., weak equivalences) in C.

The projective model structure on AlgM , if it exists, has as fibrations (resp., weak
equivalences) the underlying fibrations (resp., weak equivalences) in C.

Remark 2.18. Since most usual model structures are cofibrantly generated, it is often
easier to build projective structures (cf. [15, Lemma 2.3]) than injective ones.

Remark 2.19. When in the presence of two monads, building injective structures does
not in general commute with building projective structures.

A key example is given by comparing what we call the Σm-inj G-proj model struc-
ture on SG×Σm

∗ , built as the Σm-injective structure over the G-projective structure
over the standard model structure on S∗, with the G-proj Σm-inj model structure on
SG×Σm
∗ , which reverses the two constructions.

The former is shown to exist in Proposition 3.3, and examining the generating
cofibrations, listed when proving Proposition 3.1, yields that cofibrations are those
monomorphisms A →֒ B adding only G-free simplices. Conversely, the latter is built
by replacing the condition H ∩G× ∗ = ∗ in Proposition 3.1 with H ⊂ ∗ × Σm, so
that cofibrations are those monomorphisms adding only simplices with such H as
isotropies.
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The need to distinguish between these two types of cofibration was first discovered
by Pavlov and Scholbach and pointed to the author by Harper (see [4] for a discus-
sion). In short, the fact that for Xm ∈ SΣm

∗ ⊂ SΣ∗ , m > 1, then (Xm)⊗n ∈ SΣmn×Σn
∗ ⊂

SΣ×Σn
∗ is only “Σn-proj” cofibrant in the first sense (compare this with the proof of

Theorem 1.2) is the key motivation for the S Σ-inj Σn-proj stable model structure
on (SpΣ)Σn introduced in this paper.

Remark 2.20. Remark 2.18 notwithstanding, we will often produce and iterate injec-
tive and projective structures. In fact, cofibrations in any of our model structures are
obtained by iterating such constructions, and the interested reader will find we often
choose names accordingly. As a typical example, the S Σ-inj G-proj cofibrations in
(SpΣ)G of Theorems 1.2 and 1.3 can be built by building a S-projective structure
(abbreviated to S following [9, 16]) over a Σ-injective structure over a G-projective
structure over the standard model structure in SN∗ .

2.5. Pushout product and left Quillen bifunctors

Definition 2.21. Consider a bifunctor ⊗ from categories C, D to a category E , i.e.,
a functor of the form

C × D
−⊗−
−−−→ E .

Given maps c
f
−→ c̄ in C and d

g
−→ d̄ in D, we define their pushout product f � g (some-

times denoted f �⊗ g to avoid confusion) to be the induced map

c⊗ d̄ ∐
c⊗d

c̄⊗ d
f�g
−−−→ c̄⊗ d̄.

For model categories C, D, E one defines the following (cf. [8, Def. 4.2.1]).

Definition 2.22. A bifunctor C × D
−⊗−
−−−→ E between model categories is called a

left Quillen bifunctor if

• for c ∈ C (resp., d ∈ D), the functors c⊗ (−) : D → E (resp., (−)⊗ d : C → E)
have right adjoints;

• ⊗ satisfies the pushout product axiom: for f a cofibration in C and g a cofibration
in D, f � g is a cofibration in E , which is trivial if f or g is.

Remark 2.23. If C, D are cofibrantly generated, a standard “retract of a transfinite
composition of pushouts” argument (cf. [8, Lemma 4.2.4]) shows that it suffices to
check the pushout product axiom for generating (trivial) cofibrations.

Remark 2.24. It is immediate that if⊗ is a left Quillen bifunctor then both: (i) c⊗ (−),
(−)⊗ d are left Quillen for cofibrant c ∈ C, d ∈ D; (ii) for f in C and g in D cofibra-
tions between cofibrant objects, then so is f ⊗ g.

However, as Remark 2.23 shows, it is technically preferable to verify the pushout
product axiom rather than (i) or (ii). Indeed, that axiom is required to argue (i) via
a filtration of c, d and the analogue of Remark 2.23 fails for (ii).

3. Model structures on G-spectra

In this section we build the model structures featured in Theorems 1.2 and 1.3.
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Sections 3.1 and 3.2 build the S Σ-inj G-proj model structure on (SpΣ)G, the new
“lax G-projective” structure capturing (for G = Σn) the Σn-cofibrancy of X∧n when
X is positive cofibrant. We closely follow the four model structures approach of [16],
Section 3.1 dealing with SG×Σm

∗ and Section 3.2 with (SpΣ)G.
Section 3.3 builds the auxiliary monomorphism stable and S stable model struc-

tures on (SpΣ)G that appear in Theorem 1.3 and which, while technically novel, are
just injective versions of the eponymous structures on SpΣ (cf. [9]).

3.1. Σ-inj G-proj model structure on SG×Σm
∗

The following is well known. Remark 2.19 discusses the condition on H.

Proposition 3.1. For G any finite group there exists a cofibrantly generated mo-
del structure on SG×Σm

∗ such that weak equivalences (resp., fibrations) are the maps
A→ B such that AH → BH is a weak equivalence (resp., fibration) in S∗ for any
H 6 G× Σm satisfying H ∩G× ∗ = ∗. Further, this is a left proper cellular simplicial
model category.

Proof. We apply the usual small object argument in [8, Thm. 2.1.19] with the gen-
erating sets I, J built from those in S∗ by inducing along each H. Explicitly,

I =
⋃

H∩G×∗=∗

{(G× Σm)/H · (∂∆k
+ → ∆k

+)},

J =
⋃

H∩G×∗=∗

{(G× Σm)/H · (Λk
l+ → ∆k

+)}.

Only the claim that maps in J-cell are weak equivalences is non-obvious. This follows
for maps in J by direct calculation, for pushouts of those by Proposition 2.3 and for
transfinite compositions since those commute with (−)H . Left properness, cellularity,
and the simplicial model structure axioms are clear.

Remark 3.2. Analogous model structures can be built using more general conditions
on H, such as families of subgroups.

Proposition 3.3. For G any finite group there exists a cofibrantly generated model
structure on SG×Σm

∗ , which we call the Σm-inj G-proj model structure, where

• cofibrations are as in the model structure in Proposition 3.1;

• weak equivalences are the underlying weak equivalences in S∗.

Further, this is a left proper cellular simplicial model category.

Proof. This follows by left Bousfield localization using [7, Thm. 4.1.1] with respect
to a suitably chosen set of maps S. We set (cf. [16, Prop. 1.3])

S =
{
G× Σm ·H EH+ → ((G× Σm)/H)+ : H ∩G× ∗ = ∗

}
,

where EH denotes a simplicial classifying space for H. It remains to show that the
S-equivalences are precisely the underlying weak equivalences.

Since the maps in S are underlying weak equivalences between cofibrant objects, [7,
Prop. 3.3.18(1)] applied to the forget-free power adjunction

fgt : SG×Σm
∗ ⇄ S∗ : (−)

×(G×Σm)

yields that all S-local equivalences are underlying weak equivalences.
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To prove the converse it suffices to show that between S-local objects any levelwise
weak equivalence is a weak equivalence in the sense of Proposition 3.1. Since a fibrant
object X is S-local precisely if one has induced weak equivalences

XH = Map
(
(G× Σm/H)+ , X

)G×Σm ∼
−→ Map (G× Σm ·H EH+, X)

G×Σm = XhH ,

the result follows due to (−)hH preserving underlying weak equivalences.

3.2. Existence of the S Σ-inj G-proj stable model structure
As in [16, Prop. 2.2], Proposition 3.3 induces a level model structure on (SpΣ)G.

Proposition 3.4. For G any finite group there exists a cofibrantly generated model
structure on (SpΣ)G, which we call the S Σ-inj G-proj level model structure,
where

• weak equivalences are the maps X → Y such that Xm → Ym,m > 0 are under-
lying weak equivalences in S∗.

• fibrations are the maps X → Y such that Xm → Ym,m > 0 are underlying fibra-
tions in the Σm-inj G-proj model structure on SG×Σm

∗ .

Further, this is a left proper cellular simplicial model category.

Proof. Let Im (resp., Jm) denote the sets of generating (resp., trivial) cofibrations
for each Σm-inj G-proj model structure regarded as maps in SG×Σ

∗ . The proof of
the existence of the model structure follows exactly as in [16, Prop. 2.2] by setting
I =

⋃
m>0 S ⊗ Im (resp., J =

⋃
m>0 S ⊗ Jm) as the set of generating (resp., trivial)

cofibrations in (SpΣ)G. The claims of left properness, cellularity, and the simplicial
model structure axioms are again straightforward.

Remark 3.5. Analyzing the proofs of Propositions 3.1 and 3.4 yields an explicit de-
scription of the generating cofibrations in Proposition 3.4 (and Theorem 3.6)

I =
{
S ⊗

(
(G× Σm)/H ·

(
∂∆k

+ → ∆k
+

))
: m > 0, H ∩G× ∗ = ∗

}
.

Theorem 3.6. For G any finite group there exists a cofibrantly generated model
structure on (SpΣ)G, which we call the S Σ-inj G-proj stable model structure,
where

• cofibrations are as in the model structure in Proposition 3.4;

• weak equivalences are the underlying stable equivalences in SpΣ.

Further, this is a left proper cellular simplicial model category.

Proof. This again follows by left Bousfield localization using [7, Thm. 4.1.1], this
time localizing with respect to the set (cf. [16, Thm. 2.4])

SG =
{
S ⊗

(
G× Σm+1 · S

1 → G× Σm · S
0
)
: m > 0

}
.

It remains to check that SG-equivalences coincide with stable equivalences.
For G = ∗ this is well known since then our model structure reduces to that of [16,

Thm. 2.4].
We will reduce the general case to the case G = ∗. To do so, start by considering the

S G-proj Σ-inj stable model structure on (SpΣ)G, which is built as the G-projective
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model structure over the model structure on SpΣ in the previous paragraph. We claim
this model structure can alternatively be built by first building its level version, then
localizing with respect to SG. Since both procedures create localizations of said level
version, it suffices to check that they lead to the same local objects, and that follows
since SG = G · S∗.

To relate this to our intended model structure, consider the identity Quillen equiv-
alence

Id: (SpΣ)G ⇄ (SpΣ)G : Id,

where the left hand (SpΣ)G has the S G-proj Σ-inj level model structure and the
right hand (SpΣ)G has the S Σ-inj G-proj level model structure. It now suffices to
check both sides have the same SG-local equivalences, and this is clear since mapping
spaces can be simultaneously computed using cofibrant replacements in the left hand
side and fibrant replacements in the right hand side.

3.3. Monomorphism stable and S stable model structures
When G = ∗, the existence of the following model structure is asserted without

proof in the discussion preceding [9, Thm. 5.3.7]. For the sake of completeness (and
as a warm-up to Theorem 5.46), we include a proof sketch combining arguments of [9,
Sec. 5] with the localization machinery of [7, Thm. 4.1.1].

Theorem 3.7. For G any finite group there exists a cofibrantly generated model
structure on (SpΣ)G, which we call the monomorphism stable model structure,
where

• cofibrations are the maps X → Y such that Xm → Ym is a monomorphism of
pointed simplicial sets for each m > 0;

• weak equivalences are the underlying stable equivalences in SpΣ.

Further, this is a left proper cellular simplicial model category.

Proof. We start by building the analogue level weak equivalence model structure.
When G = ∗, this is precisely the injective level structure in [9, Thm. 5.1.2], and
the interested reader can check that the somewhat lengthy proof there generalizes.
Instead, we point out that much of the argument can be streamlined by instead
verifying the conditions in [8, Thm. 2.1.19].

Setting I (resp., J) to be a set of representatives of monomorphisms (resp., mono-
morphisms that are level weak equivalences) between countable G-spectra (cf. proof
of [9, Thm. 5.1.2]), parts 1, 2, 3 of [8, Thm. 2.1.19] are immediate, part 4 follows
since J ⊂ I and colimits are levelwise and part 5 follows by noting that I contains
the maps of the form S ⊗

(
G× Σm · (∂∆

k
+ → ∆k

+)
)
, so that I-inj consists of level

equivalences. For the harder part 6, one needs to show a lift exists in any diagram

A

f

X

g

B Y,

with f ∈ W ∩ I-cof and g ∈ J-inj. This generalizes [9, Lemma 5.14(6)], the proof of
which applies without change once one generalizes [9, Lemma 5.17] to G-spectra.
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The latter can be done by simply choosing the FC subspectra in the proof of [9,
Lemma 5.17] to be G-subspectra, finishing the existence argument for the level model
structure. Left properness, cellularity and the simplicial model structure axioms are
again straightforward.

To produce the stable version, one again applies [7, Thm. 4.1.1] to the set SG in
the proof of Theorem 3.6, showing that the weak equivalences are as described by
arguing as in the last paragraph of the proof of that theorem.

Theorem 3.8. For G any finite group there exists a cofibrantly generated model
structure on (SpΣ)G, which we call the S stable model structure, where

• a set of generating cofibrations is

I =
{
S ⊗

(
(G× Σm)/H ·

(
∂∆k

+ → ∆k
+

))
: m > 0, any H 6 G× Σm

}
;

• weak equivalences are the underlying stable equivalences in SpΣ.

Further, this is a left proper cellular simplicial model category.

Proof. This is an analogue of Theorem 3.6, now without conditions on H. The same
proof, starting with analogues of Propositions 3.1, 3.3 and 3.4, applies.

Proposition 3.9. The S stable model structure on (SpΣ)G is the injective model
structure over the S stable model structure on SpΣ.

More explicitly, the S stable cofibrations (resp., weak equivalences) in (SpΣ)G are
the underlying S stable cofibrations (resp., weak equivalences) in SpΣ.

To prove Proposition 3.9 we start by recalling a well known inductive procedure
to build maps of spectra (cf. [14, II.5], [9, Sec. 5.2]).

Definition 3.10. Define S̄ ∈ SpΣ by S̄0 = ∗, S̄m = Sm together with the obvious
structure maps and let i : S̄ → S be the inclusion. For A ∈ SpΣ, define its m-th latch-
ing object to be LmA = (S̄ ∧A)m for m > 0. Note that i induces a m-th latching
map

LmA
lmA
−−−→ Am.

Given spectra A,B define a map up to degree m from A to B to be a list of maps
{fm̄ : Am̄ → Bm̄}06m̄6m compatible with the spectra structure maps up to degree m.
The importance of latching maps comes from the following result (used implicitly
in [9, Sec. 5.2.2]. Also, compare with [13, Obs. 3.9]).

Lemma 3.11. A map {fm̄ : Am̄ → Bm̄}06m̄6m−1 up to degree m− 1 naturally in-
duces a map LmA→ LmB. Further, extensions to a map {fm̄ : Am̄ → Bm̄}06m̄6m

up to degree m are in natural bijection with dashed arrows

LmA

lmA

LmB

lmB

Am Bm.

Remark 3.12. By naturality Lemma 3.11 generalizes to (SpΣ)G.

Proposition 3.9 will follow from the following analogue of [9, Sec. 5.2.2].
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Proposition 3.13. The S stable cofibrations in (SpΣ)G are those maps f : A→ B
such that (f � i)m : Am ∨LmA LmB → Bm is a monomorphism for all m > 0.

Proof. X → Y is a S stable trivial fibration iff XH
m → Y H

m are trivial fibrations in
S∗ for all m > 0, H 6 G× Σm, i.e., iff Xm → Ym are genuine G× Σm fibrations for
m > 0. By Lemma 3.11, building a lift in the left hand diagram

A

f

X Am ∨LmA LmB

(f�i)m

Xm

B Y Bm Ym

is the same as building successive lifts in the right hand diagrams for m > 0. Since
monomorphisms have the left lifting property against genuine fibrations, the given
condition is sufficient.

For the converse, by [8, Lemma 4.2.4] it suffices to check (f � i)m is a monomor-
phism when f is a generating cofibration. Letting

f = S ⊗ ((G× Σm)/H · ∂∆k
+

f ′

−→ (G× Σm)/H ·∆k
+)

one has f � i = f ′ �⊗ i (where �⊗ denotes the pushout product with respect to the

bifunctor SΣ∗ × SpΣ
⊗
−→ SpΣ) so that the result is now clear.

Proof of Proposition 3.9. Cofibrations are underlying since forgetting the G-action
does not change the characterization in Proposition 3.13. The case of weak equiva-
lences is obvious.

Remark 3.14. In Section 5.3 we will use the Σr-injective model structure on (SpΣ)G×Σr

with regard to the S Σ-inj G-proj model structure on (SpΣ)G. We call this the S
Σ× Σr-inj G-proj stable model structure, and build it just as in Theorems 3.6 and 3.8
using as generating cofibrations

I =
{
S ⊗

(
(G× Σm × Σr)/H ·

(
∂∆k

+ → ∆k
+

))
: m, r > 0, H ∩G× ∗ × ∗ = ∗

}
.

The analogue of Proposition 3.9 proving Σr-injectiveness is shown in the same way
by noting that X → Y is a trivial fibration iff XH

m → Y H
m , H ∩G× ∗ × ∗ = ∗ is a

trivial fibration, so that A→ B is a cofibration iff (f � i)m : Am ∨LmA LmB → Bm

is built only out of simplices with isotropies H satisfying H ∩G× ∗ × ∗ = ∗.

4. Properties of S Σ-inj G-proj cofibrations

In this section we prove the key properties of S Σ-inj G-proj cofibrations.

Subsection 4.1 deals with those properties one would expect from genuine G-pro-
jective cofibrations, namely the “change of group” Propositions 4.1 and 4.2 as well
as Theorem 1.3.

Subsection 4.2, the technical heart of the paper, deals with the somewhat lengthier
proof of Theorem 1.2.
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4.1. G-projective type properties

Proposition 4.1. Suppose each category is equipped with its respective S Σ-inj G-
proj stable model structure. Then the functor

(SpΣ)G × (SpΣ)Ḡ
−∧−
−−−→ (SpΣ)G×Ḡ

is a left Quillen bifunctor.

Proof. The existence of right adjoints is formal. It suffices to check the pushout
product axiom (cf. Definition 2.22) between generating (trivial) cofibrations (cf. Re-
mark 2.23) and letting (cf. Remark 3.5)

f = S ⊗
(
(G× Σm)/H ·

(
∂∆k

+ → ∆k
+

))
, g = S ⊗

(
(Ḡ× Σm̄)/H̄ ·

(
∂∆k̄

+ → ∆k̄
+

))

one has (using the identification H × H̄ ⊂ G× Σm × Ḡ× Σm̄ ⊂ G× Ḡ× Σm+m̄)

f � g = S ⊗
(
(G× Ḡ× Σm+m̄)/(H × H̄) ·

(
(∂(∆k ×∆k̄))+ → (∆k ×∆k̄)+

))
,

which is a cofibration since Remark 3.5 implies H × H̄ ∩G× Ḡ× {∗} = ∗.

The extra claim that f � g is a weak equivalence if either f or g is can be checked
by forgetting the actions of G, Ḡ, reducing to [9, Thm. 5.3.7(5)].

Proposition 4.2. Let Ḡ ⊂ G be finite groups, and suppose each category is equipped
with its respective S Σ-inj G-proj stable model structure. Then both

fgt : (SpΣ)G ⇄ (SpΣ)Ḡ : ((−)G·S)Ḡ and G ·Ḡ (−) : (SpΣ)Ḡ ⇄ (SpΣ)G : fgt

are Quillen adjunctions.

Proof. This is immediate for the first adjunction since fgt preserves weak equivalences
and free actions. For the second one, choose a generating cofibration

f = S ⊗
(
(Ḡ× Σm)/H ·

(
∂∆k

+ → ∆k
+

))

so that

G ·Ḡ f = S ⊗
(
(G× Σm)/H ·

(
∂∆k

+ → ∆k
+

))
,

which is again a cofibration since H ∩ Ḡ× {∗} = ∗ implies H ∩G× {∗} = ∗.

That G ·Ḡ (−) applied to a trivial cofibration yields a weak equivalence follows by
forgetting the actions since then G ·Ḡ (−) is a wedge over G/Ḡ.

We now turn to the proof of Theorem 1.3. We will make use of the following
analogue for bifunctors of the “universal property of left Bousfield localizations” in [7,
Prop. 3.3.18(1)].

Lemma 4.3. Suppose

C × D
−⊗−
−−−→ E

is a left Quillen bifunctor, that S is a class of maps between cofibrant objects of
C such that the left Bousfield localization LSC exists, and that D is a cofibrantly
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generated model category for which the generating cofibrations have cofibrant domains
and codomains. Then (recall that as categories LSC = C)

LSC × D
−⊗−
−−−→ E

remains a left Quillen bifunctor iff f ⊗ d is a weak equivalence in E for each f ∈ S
and d a domain or codomain of a generating cofibration of D.

Proof. First note that by Remark 2.23 ⊗ will remain a left Quillen bifunctor precisely
if the pushout product axiom holds when f : c→ c̄ is a trivial cofibration in LSC and
g : d→ d̄ is a generating cofibration in D. Since (−)⊗ d, (−)⊗ d̄ are left Quillen
functors with respect to the original model structure C, [7, Prop. 3.3.18(1)] shows
that the condition in the theorem is necessary and that, if that condition holds, the
horizontal maps in

c⊗ d
∼

c̄⊗ d

c⊗ d̄
∼

c̄⊗ d̄

are trivial cofibrations. The 2-out-of-3 property now implies that f � g is a weak
equivalence, showing that the condition in the theorem is also sufficient.

Proof of Theorem 1.3. The existence of the required right adjoints is formal.

We will prove the remainder of both parts in parallel.

As a first step we prove the analogue result with stable structures replaced by level
structures throughout. Since the generating (trivial) cofibrations in the S Σ-inj G-proj
level model structure all have the form S ⊗ f for some f in (S∗)

G (cf. Remark 3.5),
this reduces to showing the analogue result for the bifunctor

SG×Σ
∗ × (SpΣ)G

−⊗G−
−−−−→ SpΣ,

where SG×Σ
∗ has the Σ-inj G-proj model structure obtained by combining the Σm-inj

G-proj model structures of Proposition 3.3 for each m > 0.

For the monomorphism case, choose (cf. Proposition 3.1) a generating (resp., triv-
ial) cofibration in SG×Σ

∗

f = (G× Σm)/H · f ′

(f ′ a generating (resp., trivial) cofibration in S∗, H ∩G× ∗ = ∗) and a monomor-
phism g in (SpΣ)G. Then, using the identification Σm × Σm̄−m ⊂ Σm̄,

(f �
⊗G g)m̄ ≃

(
(f �

⊗ g)m̄
)
G
≃

(
G× Σm̄ ·

H×Σm̄−m

f ′
�

∧ gm̄−m

)

G

≃

≃ (G\(G× Σm̄)/(H × Σm̄−m)) · f ′
�

∧ gm̄−m,

where the last step follows since the condition H ∩G× ∗ = ∗ implies G acts freely
on cosets (G× Σm̄)/(H × Σm̄−m). It is now clear that f �⊗G g is a monomorphism,
level trivial if either f ′ or all gm are.

For the S level case, note first that by the monomorphism case we need no longer
worry about trivial cofibrations. For the case of regular cofibrations, choose generating
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cofibrations f in SG×Σ
∗ as above and

g = S ⊗
(
(G× Σm̄)/H̄ · g′

)

(g′ a generating cofibration in S∗, any H̄ 6 G× Σm̄) in (SpΣ)G. Then, using the
identification Σm × Σm̄ ⊂ Σm+m̄,

f �
⊗G g =

(
f �

⊗ g
)
G
= S ⊗

(
G\(G×G× Σm+m̄)/(H × H̄) · f ′

� g′
)
,

which is indeed a S cofibration, finishing the proof of the analogue level result.
We now turn to the second step, showing that ∧G remains a left Quillen bifunctor

after stabilizing the model structures. In all cases one is localizing by SG (cf. proofs
of Theorems 3.6, 3.7, 3.8), and hence by Lemma 4.3 it suffices to verify f ⊗G A is a
stable equivalence for f ∈ SG and A a suitably cofibrant G-spectrum. It suffices to
deal with the case of monomorphism cofibrant A (i.e., any A), and since SG = G · S∗
this reduces to the case G = ∗. But for G = ∗ the claim follows by [9, Thm. 5.3.7(5)],
finishing the proof.

4.2. Lax Σn-cofibrancy of n-fold pushout products
In this section we prove Theorem 1.2. Roughly speaking, the proof will follow

by induction using the usual “retract of a transfinite composition of pushouts of
generating cofibrations” description of cofibrations. The main obstacle is the fact
that the n-fold pushout product �n does not respect compositions of maps. Handling
those will require two key technical results, Lemmas 4.8 and 4.10.

To prove Lemmas 4.8, 4.10 and Theorem 1.2 we will need some notation.

Definition 4.4. Let I be a poset and i : I → SpΣ. We denote by i∧n the “cubical”
diagram

i∧n : I×n i×n

−−→ (SpΣ)×n ∧
−→ SpΣ.

Further, for T ⊂ I×n any subset, we denote Qn
T (i) = colimT (i

∧n). Note that when T
is closed under the obvious Σn-action on I×n one obtains an induced Σn-action on
Qn

T (i).

Remark 4.5. Borrowing from [3], we let Qn
t (i) denote Qn

Tt
(i), where i = X → Y is

viewed as a functor (0→ 1)→ SpΣ and Tt is the subset of (0→ 1)×n of those tuples
with at most t 1-entries.

The objects Qn
T (i) are related to latching objects/maps (cf. [13, Obs. 3.8]).

Definition 4.6. Given e ∈ I×n set Tn
e = {ē ∈ I×n : ē < e}. Further, given i : I →

SpΣ, define the latching map of i∧n at e as the natural map

Ln
e (i

∧n) = Qn
Te
(i)

lne (i
∧n)

−−−−−→ i∧n(e).

A straightforward computation reveals the following relationship between latching
maps and the pushout product (cf. [13, Example 4.6]).

Proposition 4.7. Let e1 ∈ I×n1 and e2 ∈ I×n2 , so that (e1, e2) ∈ I×(n1+n2). Then

ln1+n2

(e1,e2)

(
i∧(n1+n2)

)
= ln1

e1 (i∧n1)� ln2

e2 (i∧n2) .
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The following is the key technical lemma in this section. The proof of this result,
which is essentially lifted from the appendix to the author’s thesis,2 explores gen-
eralizations of filtrations found in [1, Sec. 12], [3, Def. 4.13] from single maps to
compositions of maps. A similar result, with modified hypotheses and conclusions
but sharing some of the key ideas in the proof, was proven independently by David
White in [17].

Lemma 4.8. Let i : (0→ 1→ 2)→ SpΣ be a diagram Z0
f1
−→ Z1

f2
−→ Z2 such that

f�n̄
i : Qn̄

n̄−1(fi)→ Z∧n̄
i , 0 6 n̄ 6 n, i = 1, 2

are S Σ-inj Σn̄-proj cofibrations in (SpΣ)Σn̄ .
Choose T ⊂ T̄ ⊂ (0→ 1→ 2)×n symmetric convex (recall T is called convex if

e ∈ T and ē 6 e implies ē ∈ T ) subsets containing any tuple that has at least one
0-entry. Then the map

Qn
T (i)→ Qn

T̄ (i)

is a S Σ-inj Σn-proj stable cofibration.
Additionally, if one also knows that Z∧n̄

0 , 0 6 n̄ 6 n is S Σ-inj Σn̄-proj cofibrant
then the conclusion above holds for any symmetric convex T ⊂ T̄ .

Proof. We deal with the main and additional cases in parallel.
Without loss of generality we assume T̄ is obtained from T by adding the orbit

of some e = (e0, e1, e2) ∈ {0}
×n0 × {1}×n1 × {2}×n2 . Then Tn

e ⊂ T and one has a
pushout diagram

Σn ·
Σn0

×Σn1
×Σn2

Qn
Te
(i)

Σn ·
Σn0

×Σn1
×Σn2

lne (i
∧n)

Qn
T (i)

Σn ·
Σn0

×Σn1
×Σn2

Zn0

0 ∧ Zn1

1 ∧ Zn2

2 Qn
T̄
(i),

so that it suffices to show that the left hand map is a S Σ-inj Σn-proj cofibration,
and by Proposition 4.2 this reduces to showing that the latching map lne (i

∧n) is a S
Σ-inj Σn0

× Σn1
× Σn2

-proj cofibration. Proposition 4.7 then identifies

lne (i∧n) = ln0

e0 (i
∧n0)� ln1

e1 (i
∧n1)� ln2

e2 (i
∧n2) = Z∧n0

0 ∧ f�n1

1 � f�n2

2

(for the identification ln2

e2 (i
∧n2) = f�n2

2 , note that the tuples without 0-entries are
final in Tn2

e2 ⊂ (0→ 1→ 2)×n2). Now note that in the main case T already contains
all tuples with a 0-entry so that it must be n0 = 0, while in the additional case n0

can take any value. In either case Proposition 4.1 finishes the proof.

Remark 4.9. While it is straightforward to generalize Lemma 4.8 to longer composi-
tions (of three or more maps), such generalizations will not be necessary.

Lemma 4.10. Let Z0
f1
−→ Z1

f2
−→ Z2 be as in Lemma 4.8.

2That appendix proved the analogous claim for Σn-projective cofibrations, an ultimately useless
fact since the Σn-projective analogue of Theorem 1.2 fails for generating cofibrations.
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If one knows additionally that Z∧n̄
0 , 0 6 n̄ 6 n is S Σ-inj Σn̄-proj cofibrant, then

the maps (where the Qn
n̄ objects are defined in Remark 4.5)

Qn
n̄(f2f1)

∨

Qn
n̄(f1)

Qn
n̄+1(f1)→ Qn

n̄+1(f2f1), 0 6 n̄ < n

are S Σ-inj Σn-proj stable cofibrations.

Further, absent the additional condition, the result still holds when n̄ = n− 1.

Proof. This is a direct consequence of Lemma 4.8 by identifying all objects with
Qn

T (i) for some T . For Qn
k (f1) this is T

1
k , the subset of tuples with no 2-entries and at

most k 1-entries, while for Qn
k (f2f1) it is T

2
k , the subset of tuples with at least n− k

0-entries (or equivalently, at most k 2-or-1-entries). The result then follows by noting
that T 2

n̄ ∩ T 1
n̄+1 = T 1

n̄ and T 2
n̄ ∪ T 1

n̄+1 ⊂ T 2
n̄+1.

All we are now missing to prove Theorem 1.2 is the following lemma, which handles
the pushout case (compare with [3, Prop. 6.13]).

Lemma 4.11. Consider a pushout diagram

A

i

C

f

B D.

If i�n is a (trivial) S Σ-inj Σn-proj cofibration in (SpΣ)Σn then so is f�n.

Proof. It suffices to show that

Qn
n−1(i)

i�n

Qn
n−1(f)

f�n

B∧n D∧n

is itself a pushout diagram. This is [3, Prop. 6.13], where it is left as an exercise.
Alternatively, note that the pushout product� is a bifunctor between arrow categories
(cf. [13, Def. 4.4.]) which takes pushout diagrams in each arrow variable to pushout
diagrams, so that the result follows by considering the arrow category diagram i�n →
f � i�(n−1) → f�2 � i�(n−2) → · · · → f�n.

We now prove Theorem 1.2. The proof is similar to that of [4, Prop. 4.28*] (also,
compare [3, Prop. 4.28]), except now boosted by Lemma 4.10.

Proof of Theorem 1.2. Since weak equivalences ignore the Σn-action and the S stable
model structure on SpΣ is monoidal (cf. [9, Thm. 5.5.1]), we need not worry about
trivial cofibrations.

We argue by induction on a description of a positive S cofibration f in SpΣ as a
retract of a transfinite composition of pushouts of generating cofibrations.
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The base case is that of a generating cofibration f = S ⊗ (Σm/H · (∂∆k
+ → ∆k

+))
for some m > 1, H 6 Σm. Then, using the identifications H×n ⊂ (Σm)×n ⊂ Σmn,

f�n = S ⊗
(
Σmn/H

×n ·
(
∂(∆k)×n

+ → (∆k)×n
+

))
,

which is a S Σ-inj Σn-proj cofibration since the condition m > 1 implies the map
(
Σmn/H

×n ·
(
∂(∆k)×n

+ → (∆k)×n
+

))

is built by adding only Σn-free simplices.
We now move to the general case. As usual, retracts cause no difficulty, and we

hence focus on a transfinite composition

A0
f0
−→ A1

f1
−→ A2

f2
−→ A3

f3
−→ · · · → Aκ = colimβ<κ Aβ (2)

(we use the convention Aβ = colimγ<β Aγ for each limit ordinal β < κ) where each
fβ : Aβ → Aβ+1 is the pushout of a generating positive S cofibration iβ . Further, for
β 6 κ, denote by f̄β : A0 → Aβ the full composite of {fγ}γ<β . Since the Q

n
t construc-

tions preserve filtered colimits (since so does ∧ in each variable), the main claim will
follow if the vertical map of κ-diagrams (κ-th map excluded)

Qn
n−1(f0) Qn

n−1(f1f0) Qn
n−1(f2f1f0) · · · Qn

n−1(f̄κ)

A∧n
1 A∧n

2 A∧n
3 · · · A∧n

κ

(3)

is a κ-projective cofibration between κ-diagrams with respect to the underlying S Σ-
inj Σn-proj model structure. One thus reduces to inductively checking that the relative
latching maps A∧n

β ∨Qn
n−1

(f̄β) Q
n
n−1(fβ f̄β)→ A∧n

β+1 for successor ordinals β + 1 are S

Σ-inj Σn-proj cofibrations (note that Q
n
n−1(f̄0) = A∧n

0 , so that this covers the leftmost
map in (3), and that latching conditions for limit ordinals are trivial). This now follows

by applying Lemma 4.11 to iβ , fβ and Lemma 4.10 to A0
f̄β
−→ Aβ

fβ
−→ Aβ+1 (note that

f̄�n
β , n > 0 is a S Σ-inj Σn-proj cofibration by the induction hypothesis), finishing

the proof of the main claim.
For the extra claim, note that applying the main claim of the result to the map

∗ → A yields that A∧n̄, n̄ > 0 is S Σ-inj Σn̄-proj cofibrant (since Qn̄
n̄−1(∗ → A) = ∗).

The additional conditions in Lemma 4.10 are hence satisfied and the strengthened
conclusions now allow us to conclude the κ-cofibrancy for 0 6 n̄ < n of the vertical
κ-diagram map (κ-th map excluded)

Qn
n̄(f0) Qn

n̄(f1f0) Qn
n̄(f2f1f0) · · · Qn

n̄(f̄κ)

Qn
n̄+1(f0) Qn

n̄+1(f1f0) Qn
n̄+1(f2f1f0) · · · Qn

n̄+1(f̄κ),

thereby showing Qn
n̄(f̄κ)→ Qn

n̄+1(f̄κ) is a S Σ-inj Σn-proj cofibration. Since Q
n
0 (f̄κ) =

A∧n, this finishes the proof.

5. Cofibrancy of operadic constructions

The goal of this section is to prove Theorems 1.1, 1.4, 1.5, 1.6 and 1.8.
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Subsection 5.1 recalls some required operadic terminology and basic results.
Subsection 5.2 proves Proposition 5.20, a filtration result that is key to the proof

of Theorem 1.1.
Subsection 5.3 extends the model structures of Section 3 to the category Sym of

spectral symmetric sequences and proves for them analogues of the key results in
Section 4.

Finally, the main proofs are found in Subsections 5.4 and 5.5.

5.1. Definitions: operads, modules and algebras
We now recall some standard operadic terminology. We do so in terms of a gen-

eral closed symmetric monoidal category C in order to greatly streamline the proof
of Theorem 1.1. Indeed, even when proving only the algebra case of Theorem 1.1,
Definition 5.15 makes it necessary to nonetheless understand left modules, making it
convenient to unify the discussion using Proposition 5.14.

Definition 5.1. Let (C,⊗,1) denote a closed symmetric monoidal category.
The category Sym(C) of symmetric sequences in C is the category of functors

Σ→ C.
Further, for G a finite group the category SymG(C) of G-symmetric sequences in

C is the category of functors G→ Sym(C).

Remark 5.2. A symmetric sequence X is formed by objects X(r) ∈ C, r > 0 each with
a left Σr-action. To avoid confusion when C = SpΣ or a related category, we reserve
the letter r for this external index and keep m as the internal spectrum index, so that
Xm(r) denotes the m-th simplicial set of X(r).

We now recall the two usual monoidal structures on Sym(C). For our purposes the
composition product ◦ is the most important of the two, with the tensor product ⊗̌
playing an auxiliary role.

Definition 5.3. Given X,Y ∈ Sym(C) we define their tensor product to be

(X ⊗̌ Y )(r) =
∐

06r̄6r

Σr ·
Σr̄×Σr−r̄

X(r̄)⊗ Y (r − r̄)

and their composition product to be

(X ◦ Y )(r) =
∐

r̄>0

X(r̄)⊗Σr̄

(
Y ⊗̌r̄(r)

)
. (4)

One has the following result (for a discussion of reflexive coequalizers see, for
example, [3, Def. 3.26] and the propositions immediately following it).

Proposition 5.4. Let (C,⊗,1) be a closed symmetric monoidal category with initial
object ∅. Then

• (Sym, ⊗̌, 1̌) is a closed symmetric monoidal category, with unit 1̌(0) = 1, 1̌(r) =
∅, r > 1;

• (Sym, ◦, I) is a (non-symmetric) monoidal category, with unit I(1) = 1, I(r) =
∅, r 6= 1.
Further, ◦ commutes with all colimits in the first variable and with filtered col-
imits and reflexive coequalizers in the second variable.
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Definition 5.5. An operad O in C is a monoid object in Sym(C) with respect to ◦,
i.e., a symmetric sequence O together with multiplication and unit maps

O ◦ O → O, I → O

satisfying the usual associativity and unit conditions.

Definition 5.6. Let O be an operad in C. A left module N (resp., right module M)
over O is an object in Sym(C) together with a map

O ◦N → N (resp., M ◦ O →M)

satisfying the usual associativity and unit conditions. The category of left modules
(resp., right modules) over O is denoted ModlO (resp., ModrO). Further, left modules
X over O concentrated in degree 0 (i.e., such that X(r) = ∅ for r > 1) are called
algebras over O. The category of algebras over O is denoted AlgO.

Proposition 5.7. The categories ModrO, ModlO and AlgO have all small limits and
colimits.

Further, all limits and colimits in ModrO are underlying in Sym(C), and likewise

for all limits, filtered colimits and reflexive coequalizers in both ModlO and AlgO.

Definition 5.8. Given M ∈ ModrO, N ∈ ModlO, their relative composition product is
the reflexive coequalizer

M ◦O N = colim(M ◦ O ◦N ⇒ M ◦N).

Lemma 5.9. Consider the bifunctors

ModlO × Sym(C)
−◦−
−−−→ ModlO, ModrO ×ModlO

−◦O−
−−−−→ Sym(C).

◦ preserves any colimit in the ModlO variable and ◦O preserves reflexive coequalizers
and filtered colimits in the ModlO variable.

Proof. Since any M ∈ ModlO is a reflexive coequalizer colim(O ◦ O ◦M ⇒ O ◦M) of
free left modules, it suffices to verify the claim for diagrams of free left modules and
free maps, and for those the result follows by Proposition 5.4.

Remark 5.10. We will also use the analogue of Definition 5.6 for the category SymG(C).
One has a formal analogue of Proposition 5.4 for SymG(C) using the same monoidal
structures ⊗̌ and ◦ (with diagonal G-action) and units (with trivial G-action), so that
operads and their left modules, right modules and algebras in SymG(C) are defined
just as above.

Iterating the Sym construction will allow us to use Proposition 5.14 to reduce the
study of left modules to that of algebras.

Definition 5.11. The category BSym(C) of bi-symmetric sequences in C is the cate-
gory Sym(Sym(C)) of symmetric sequences of symmetric sequences in C.
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Remark 5.12. Since an object X ∈ BSym(C) is formed by objects X(r, s) ∈ C, r, s > 0
with Σr × Σs-actions one has two different inclusions

(−)r : Sym(C) →֒ BSym(C), (−)s : Sym(C) →֒ BSym(C)

defined by

X r(r, s) =

{
X(r), if s = 0

∅, if s 6= 0
, Xs(r, s) =

{
X(s), if r = 0

∅, if r 6= 0
.

Following Definition 5.3 one can build two monoidal structures in BSym(C) which

we denote by ˇ̌⊗ and ◦̌r. Here we mark the composition product ◦̌r to indicate that r
is kept as the operadic index. Note that while ˇ̌⊗ behaves symmetrically with respect
to the indexes r and s, ◦̌r does not.

Both of the following results follow by a straightforward calculation.

Proposition 5.13. (−)r, (−)s are monoidal functors from the symmetric monoidal

structure ⊗̌ to the symmetric monoidal structure ˇ̌⊗.

(−)r is a monoidal functor from the monoidal structure ◦ to the monoidal struc-
ture ◦̌r.

Proposition 5.14. Let O be an operad in C. There is a natural isomorphism of
categories

(−)s : ModlO(C)
≃
−→ AlgOr(Sym(C)).

5.2. Filtrations

This subsection proves Proposition 5.20, which provides the key filtrations to prove
Theorem 1.1. These filtrations are adapted from [1, 3], among others, except we here
show that such filtrations also hold after applying M ◦O (−) for some M ∈ ModrO.
This is partly enabled by an alternate definition of OA.

Definition 5.15. Let O be an operad in C and A ∈ AlgO regarded as an element of
ModlO. We define

OA = O ∐A, (5)

were the coproduct is taken in ModlO. Additionally, for M ∈ ModrO we define

MA = M ◦O OA.

Remark 5.16. As noted to the author by Harper, (5) appeared as [5, Prop. 5.52].
However, we benefit from using (5) as our definition of OA, hence streamlining the
proofs of Propositions 5.18, 5.19 versus similar results in [5].

Remark 5.17. There are adjunctions

ι : AlgO ⇄ ModlO : (−)(0) (−)(0) : ModlO ⇄ AlgO : (̃−),

where ι is the inclusion and Ã(0) = A, Ã(r) = ∅ for r > 1. In particular, colimits in
AlgO can be computed after the inclusion into ModlO and OA(0) = A.
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Proposition 5.18. Let A ∈ AlgO and X ∈ Sym(C). Then there is a natural isomor-
phism of ModlO-valued functors

(O ◦X)∐A ≃ OA ◦X =
∐

r>0

OA(r)⊗Σr
X⊗̌r.

Additionally, for M ∈ ModrO there is a natural isomorphism of Sym(C)-valued func-
tors

M ◦O ((O ◦X)∐A) ≃MA ◦X =
∐

r>0

MA(r)⊗Σr
X⊗̌r.

Proof. We compute (applying Lemma 5.9 to the coproduct O ∐A)

OA ◦X = (O ∐A) ◦X ≃ (O ◦X)∐ (A ◦X) = (O ◦X)∐A,

where A ◦X = A since A is in degree 0. The additional claim is obvious.

Proposition 5.19. Given M ∈ ModrO, X ∈ C and A ∈ AlgO one has natural isomor-
phisms of Sym(C)-valued functors

MOX∐A(−) = (M ◦O (O ∐O ◦X ∐A)) (−) ≃
∐

r>0

MA(r + (−))⊗Σr
X⊗r.

Proof. This follows formally using the (−)r, (−)s functors. Combining Proposition 5.14
to change perspective to AlgOr(Sym(C)) with Proposition 5.18 yields

(M ◦O (O ∐O ◦X ∐A))
s
≃M r ◦rOr (Os ∐Or ◦r Xs ∐As) ≃M r

Os∐As ◦r Xs. (6)

Applying Proposition 5.18 and noting As = Ar (as A is an algebra) we compute

M r

Os∐As = M r ◦rOr (Or ∐Os ∐As) = M r ◦rOr (Or ◦r (Ir ∐ Is)∐As) ≃

≃M r

As ◦r (Ir ∐ Is) = M r

Ar ◦r (Ir ∐ Is) ≃ (MA)
r
◦r (Ir ∐ Is),

showing M r

Os∐As(r, s) ≃MA(r + s). Plugging into (6) finishes the proof.

We now turn to the key result in the subsection. Qr
r−1(f) is defined in Remark 4.5.

Proposition 5.20. Consider any pushout in AlgO(C) of the form

O ◦X

O◦f

h
A

O ◦ Y B,

(7)

and let M ∈ ModrO. Then, in the underlying category C,

M ◦O B ≃ colim
(
AM

0 → AM
1 → AM

2 → · · ·
)
, (8)

where AM
0 = M ◦O A and the AM

r are built inductively from pushout diagrams

MA(r)⊗Σr
Qr

r−1(f) AM
r−1

MA(r)⊗Σr
Y ⊗r AM

r .

(9)



COFIBRANCY OF OPERADIC CONSTRUCTIONS IN POSITIVE SYMMETRIC SPECTRA 157

Remark 5.21. To streamline the proof of Theorem 1.1 we will need to apply Propo-
sition 5.20 to the category ModlO, a move enabled by Proposition 5.14. This is
mostly straightforward, with occurrences of C replaced by Sym(C) and ⊗ replaced
by ⊗̌, though defining MN ∈ BSym(C) when N ∈ ModlO requires some care. Analyz-
ing Proposition 5.14 and Definition 5.15 leads to the definition

MN = M r

N s = M r ◦̌rOr(Or ∐N s). (10)

Note that this is compatible with Definition 5.15 when N = A is an algebra since
then As = Ar so that M r

As = M r

Ar = (MA)
r.

Remark 5.22. When M = O, (10) appeared as [5, Prop. 5.52], albeit with transposed
indexes due to differing conventions. Our convention has one nice advantage: filtra-
tions of MA follow by Remark 5.21 without a separate proof.

The remainder of the subsection is dedicated to proving Proposition 5.20. We
essentially adapt the proof of [3, Prop. 4.20], although we substantially repackage the
argument using a more categorical perspective.

For motivation we note that, in short, the proof of [3, Prop. 4.20] follows by noticing
that A∐O◦X O ◦ Y is built out of terms of the form

OA (|w|)⊗ w⊗(X,Y ), (11)

where w⊗(X,Y ) denotes a word (or non-abelian monomial) for the operation ⊗ in
the letters X,Y (e.g., X ⊗ Y ⊗X, Y ⊗ Y ⊗X ⊗ Y ) and |w| its length, glued along
certain maps between them.3 The filtration (8) is then obtained by analyzing a long
list of compatibility relations satisfied by those maps.

One drawback of such an approach is that it can be hard to keep track of the
compatibilities that need to be verified. Instead, our approach will be to first identify
a “diagram category of words” W together with a functor F : W → C defined on
objects by (11) and for which A∐O◦X O ◦ Y = colimW F . Then, sinceW will encode
all the necessary maps and compatibilities, the desired filtration (8) will follow from
a filtration W6r of W itself.

To motivate the definition, note that W needs enough arrows to describe: (i) the
Qr

r−1 constructions of Remark 4.5, i.e., W should contain the “r-cube categories”
(x→ y)×r; (ii) the Σr-action on Qr

r−1; (iii) maps between the terms in (11) that
remove some X letters (induced by h : O ◦X → A in (7)).

This desiderata will likely remind some readers of Grothendieck constructions (cf.,
for example, [12, Construction 7.1.9]).

Definition 5.23. Consider the functor (Fininj denoting (a skeleton of) finite sets and
injections) (x→ y)(−) : Fininjop → Cat defined by r = {1, 2, · · · , r} 7→ (x→ y)r, r > 0
and let G denote the corresponding Grothendieck construction. Explicitly, objects of

3We note, however, that the need to deal with non-abelian monomials, rather than abelian ones,
is somewhat hidden in the presentation of the proof in [3]. We recommend the reader interested in
gleaning why these are needed to focus on the last two paragraphs of that proof.
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G are pairs

(r, w ∈ (x→ y)r)

and an arrow (r, w)→ (r∗, w∗) is a pair

(ι : r∗ →֒ r, w ◦ ι→ w∗)

(note that, since (x→ y)r∗ is a poset, arrows are determined by their first component)
with composition defined in the obvious way.

Notation 5.24. To ease notation we will when convenient refer to an object of G by
its second component w and to an arrow by its first component ι.

Remark 5.25. Objects (r, w) ∈ G can be identified with words w(x, y) on letters x
and y where r = |w|, the length of the word. Further, we let |w|x (resp., |w|y) denote
the number of x’s (resp., y’s) in w.

Given a word w = l1l2 · · · lr with li ∈ {x, y} and an injection ι : r∗ →֒ r, one has
w ◦ ι = lι(1)lι(2) · · · lι(r∗), which we think of as the word obtained by removing the
letters of w in positions not in ι(r∗) and suitably shuffling the remaining letters. An
arrow w → w∗ can then be interpreted as an injection ι : |w∗| →֒ |w| such that, after
removing and shuffling letters of w to obtain w ◦ ι, one can obtain w∗ from w ◦ ι by
further replacing some x’s with y’s (now without shuffling).

Note that hence any ι : w → w∗ has a natural factorization w → w ◦ ι→ w∗.

Comparing the description in Remark 5.25 with the desiderata for W, we see that
G has more arrows than desired, namely those that remove y letters.

Definition 5.26. W is the subcategory of G with all objects and the arrows
ι : (r, w)→ (r∗, w∗) such that w(r − ι(r∗)) ⊂ {x} or, equivalently, |w|y = |w ◦ ι|y.

Further, for each r > 0, let W6r (resp., Wr) denote the full subcategory of those
w ∈ W satisfying |w| 6 r (resp., |w| = r).

Notation 5.27. It will be convenient to name certain types of arrows in W:

• a shuffle is an arrow σ : w → w ◦ σ for σ ∈ Σop
|w|;

• a tidy arrow is an arrow π : w = w̄xa → w∗ for π the inclusion |w∗| = |w̄| ⊂ |w|;

• a removing arrow is an arrow w → y|w|y ;

• a replacing arrow is an arrow w → y|w|.

Definition 5.28. W̄ is the subcategory of W with the same objects but only the
shuffles, removing and replacing arrows.

Remark 5.29. Keeping the intuition of Remark 5.25, tidy arrows remove some x’s at
the end of a word and then replace some x’s by y’s without any shuffling, removing
arrows remove all x’s (perhaps shuffling) and replacing arrows replace all x’s by y’s
(perhaps shuffling).

The key to proving Proposition 5.20 are the following lemmas building F : W → C
and establishing some categorical results about W.
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Lemma 5.30. The pushout diagram (7) and M ∈ ModrO(C) naturally induce a func-
tor

FM : W → C.

Proof. We define FM on objects in the obvious way as

FM (w(x, y)) = MA(|w|)⊗ w⊗(X,Y ). (12)

For arrows, we first declare that for a shuffle σ : w → w ◦ σ,

MA(|w|)⊗ w⊗(X,Y )
FM (σ)
−−−−→MA(|w|)⊗ (w ◦ σ)⊗(X,Y )

is the map defined by the action of σ−1 ∈ Σ|w| on MA(|w|) and by shuffling w⊗(X,Y ).
Since any arrow can be made tidy by pre-composing with a shuffle, it remains to
coherently define FM on tidy arrows. For a tidy arrow π : w = w̄(x, y)xa → w∗(x, y),
define FM (π) via the diagram (with vertical maps the summand inclusions induced
by Proposition 5.18 and writing O(−) for O ◦ (−))

MA(|w|)⊗ w̄⊗(X,Y )⊗X⊗a MA(|w∗|)⊗ w⊗
∗ (X,Y )

M ◦O
(
O(w̄∐(X,Y ))∐OX∐a ∐A

)
M ◦O

(
O(w∐

∗ (X,Y ))∐A
)
.

FM (π)

M◦O(Of∗∐h∗∐idA)

(13)

FM (π) is well defined since πσ is tidy only for σ ∈ Σa ⊂ Σ|w| and such shuffles do
not change (13). It follows that FM is well defined on all arrows.

We now verify FM respects compositions. This is clear when composing either
two shuffles or two tidy arrows, and since general two-fold compositions factor as
w

σ
−→ w ◦ σ

π
−→ w∗

σ∗−→ w∗ ◦ σ∗
π∗−→ w∗∗ with σ, σ∗ shuffles and π, π∗ tidy, it remains

to show FM (σ∗π) = FM (σ∗)F
M (π). Identifying σ∗ ∈ Σ|w∗| ⊂ Σ|w|, one has σ∗πσ

−1
∗

tidy, so that by definition FM (σ∗π) = FM (σ∗πσ
−1
∗ )FM (σ∗). The claim now follows

since (13) respects the action of σ∗.

Recall that a functor J → I between diagram categories is called final if for any
functor F : I → C (where C is a category with all small colimits) one has

colimI F = colimJ F |J .

We will need several finality conditions for subcategories of W. In all cases we show
them by verifying (cf. [10, IX.3 Thm. 1]) that for all i ∈ I the under categories i ↓ J
are non-empty (this will always be obvious) and connected.

Lemma 5.31. The subcategory W̄ is final in W.

Proof. w ↓ W̄ is connected iff any two arrows in W with source w are connected by
a zigzag of post-compositions with arrows in W̄. For such an arrow ι : w → w∗ the
natural decomposition w → w ◦ ι→ w∗ satisfies |w|y = |w ◦ ι|y, |w ◦ ι| = |w∗|, so that
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by picking any arrows w∗ → y|w∗| and w ◦ ι→ y|w|y one has a diagram

w
rm

y|w∗| w∗rp
w ◦ ι

rp

rm
y|w|y ,

(14)

where arrows marked rp are replacing and arrows marked rm are removing. The
marked arrows exhibit a zigzag in w ↓ W̄ between ι and idw.

Lemma 5.32. Let W̄yr denote the full subcategory of W̄ of objects that admit arrows
to yr. The group Σyr of shuffles of yr is final in W̄yr .

Proof. Since any w is isomorphic up to shuffle to some ybxa, it suffices to check
all ybxa ↓ Σyr are connected, i.e., that all arrows ybxa → yr in W̄ are connected by
post-composing with a shuffle. Both cases b = r and a+ b = r are clear.

Lemma 5.33. The subcategory W6(r−1) is final in W6r − yr.

Proof. When |w| 6 r − 1 one has an initial object idw in w ↓ W6(r−1), which is hence
connected. When |w| = r, w ↓ W6(r−1) is connected precisely if any two arrows w →
w∗ with |w∗| 6 r − 1 are connected by a zigzag of post-compositions with arrows in
W̄6(r−1). For any such arrow ι : w → w∗ the natural decomposition w → w ◦ ι→ w∗

satisfies |w|y = |w ◦ ι|y 6 r − 1, |w ◦ ι| = |w∗| 6 r − 1 so that diagram (14) exhibits a
zigzag between ι and an arrow w → y|w|y . As in Lemma 5.32, all of the latter arrows
are connected by post-composing with a shuffle (in fact, it suffices to check this for
w = ybxa).

Lemma 5.34. W6r =(W6r − yr) ∪Wr. In fact, N(W6r)=N(W6r − yr) ∪N(Wr).

Proof. Arrows inW never decrease | − |y, hence any string of arrows inW6r involving
the object yr must in fact be a string of arrows in Wr.

Lemma 5.35.

M ◦O B ≃ colimW FM .

Proof. Note first that by Lemma 5.31 it suffices to show M ◦O B ≃ colimW̄ FM .
By general considerations one can describe B as a reflexive coequalizer

B ≃ colim ((O ◦ (X ∐ Y )∐A) ⇒ (O ◦ Y )∐A)

and hence by Proposition 5.18 and Lemma 5.9

M ◦O B ≃ colim(MA ◦ (X ∐ Y )
f∗

h∗

MA ◦ Y ). (15)

Now note that

MA ◦ (X ∐ Y ) =
∐

i,j>0

MA(i+ j)⊗Σi×Σj
X⊗i ⊗ Y ⊗j ,

with the reflexive map in (15) naturally identifyingMA ◦ Y with the subobject formed
by the i = 0 summands. Since by naturality of Propositions 5.18 and 5.19 the maps
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being equalized in (15) send summands to summands, repackaging universal proper-
ties allows one to rewrite

M ◦O B = colimM F̄M .

HereM is the diagram category whose objects we denote by monomials xiyj , i, j > 0
together with unique non-identity arrows xiyj → yi+j , xiyj → yj for i 6= 0 (note that
non-identity arrows can never be composed). F̄M is defined on objects by

F̄M (xiyj) = MA(i+ j)⊗Σi×Σj
X⊗i ⊗ Y ⊗j

is induced on arrows xiyj → yi+j by the map f∗ in (15) and on arrows xiyj → yj by
the map h∗.

There is an obvious functor W̄ →M defined by w 7→ x|w|xy|w|y (arrows are mapped
in the only possible way and functoriality is trivial since non-identity arrows in M
cannot be composed). We claim F̄M = LanW̄→M FM . By [10, X.3.1]

(LanW̄→M FM )(xiyj) = colimW̄↓xiyj FM |W̄↓xiyj . (16)

When i 6= 0, W̄ ↓ xiyj is just the groupoid of words w with |w|x = i, |w|y = j, while
for yr it is the category W̄yr of Lemma 5.32 containing the final group Σyr . In either
case, the formula (16) computes the quotient of the terms in (12) by the obvious shuffle
groupoid action and hence coincides with F̄M on objects. To see (16) also coincides
with F̄M on arrows consider the commutative diagrams (with vertical maps induced
by codiagonals and writing O(−) for O ◦ (−))

O(Y ∐j ∐X∐i)∐A
f∗

∇∗

OY ∐(i+j) ∐A

∇∗

O(Y ∐j ∐X∐i)∐A
h∗

∇∗

OY ∐j ∐A

∇∗

O(Y ∐X)∐A
f∗

OY ∐A O(Y ∐X)∐A
h∗

OY ∐A.

Since FM is defined using (shuffles) of the top maps, and F̄M is defined using the
bottom maps, we conclude (16) indeed equals F̄M on maps. Noting that left Kan
extensions have the same colimit finishes the proof.

Proof of Proposition 5.20. By the previous lemma M ◦O B ≃ colimW FM . We define
AM

r = colimW6r
FM , so that (8) is immediate since the W6r filter W. It is straight-

forward to check that Lemma 5.34 implies one has pushout diagrams

colimWr−yr FM colimW6r−yr FM

colimWr
FM colimW6r

FM ,

and it hence suffices to verify these diagrams have the form (9). The two diagrams
coincide on the bottom right corner by definition and on the top right corner by
Lemma 5.33. The left hand maps of the two diagrams are seen to coincide by direct
computation since the tidy arrow subcategory of Wr is precisely (x→ y)r and it is
easy to check that colimWr

FM =
(
colim(x→y)r F

M
)
Σr

and similarly forWr − yr.

5.3. Model structures on Sym and SymG

Notation 5.36. In what follows we abbreviate Sym(SpΣ) simply as Sym.
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We now introduce for Sym the analogues of the model structures in Section 3 and
show that the main results in Section 4 formally imply their Sym analogues.

Definition 5.37. The S stable (resp., monomorphism stable) model structure on Sym

is obtained by combining the S stable (resp., monomorphism stable) model structures
on (SpΣ)Σr in all degrees (cf. Section 3.3).

Definition 5.38. The positive S stable model structure on Sym is the model structure
obtained by combining the positive S stable model structure in SpΣ on degree r = 0
with the S stable model structures on (SpΣ)Σr in degrees r > 1 (cf. Sections 2.3
and 3.3).

Remark 5.39. To motivate the use of the word “positive” in the previous definition,
recall that each X ∈ Sym is composed of pointed simplicial sets Xm(r), making it a
bi-graded object. Since ⊗̌ is additive in both gradings, one can think of m+ r as the
total degree of Xm(r).

We will also want to have an analogue for SymG of the Σ-inj G-proj S stable model
structure on (SpΣ)G.

Definition 5.40. The S Σ× Σ-inj G-proj stable model structure on SymG is the
model structure obtained by combining the S Σ× Σr-inj G-proj stable model struc-
tures on all degrees r > 0 (cf. Remark 3.14).

What follows are formal analogues for Sym of Propositions 4.1 and 4.2 and Theo-
rems 1.3 and 1.2.

Proposition 5.41. Suppose all categories are equipped with their respective S Σ× Σ-
inj G-proj stable model structure. Then the bifunctor

SymG × SymḠ −∧̌−
−−−→ SymG×Ḡ

is a left Quillen bifunctor.

Proof. Existence of the right adjoints is formal. Now recall that

(X ⊗̌ Y )(r) =
∨

06r̄6r

Σr ·
Σr̄×Σr−r̄

X(r̄) ∧ Y (r − r̄).

By injectiveness of the model structures (cf. Remark 3.14), we can ignore the symmet-
ric group actions, so that ∧̌ is a wedge of bifunctors for each of which Proposition 4.1
applies.

Proposition 5.42. Let Ḡ ⊂ G be finite groups, and suppose each category is equipped
with the respective S Σ× Σ-inj G-proj stable model structure. Then both adjunctions

fgt : SymG
⇄ SymḠ : ((−)G·S)Ḡ and G×Ḡ (−) : (SymΣ)Ḡ ⇄ (SymΣ)G : fgt

are Quillen adjunctions.

Proof. This is obvious from Proposition 4.2 since we are dealing with injective model
structures (cf. Remark 3.14).
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Proposition 5.43. Consider the bifunctor

SymG × SymG −∧̌G−
−−−−→ Sym,

where the first copy of SymG is regarded as equipped with the S Σ× Σ-inj G-proj
stable model structure. Then ∧̌G is a left Quillen bifunctor if either:

(a) Both the second SymG and the target Sym are equipped with the respective
monomorphism stable model structures;

(b) Both the second SymG and the target Sym are equipped with the respective S
stable model structures.

Proof. This follows immediately by combining the “wedge of bifunctors” argument
from the proof of Proposition 5.41 with Theorem 1.3.

Proposition 5.44. Let Sym be equipped with the positive S stable model structure
and SymΣn with the S Σ× Σ-inj Σn-proj stable model structure.

Then for f : A→ B a cofibration in Sym its n-fold pushout product

f�n : Qn
n−1(f)→ Bn

is a cofibration in SymΣn , which is a weak equivalence when f is.
Furthermore, if A is cofibrant in Sym then Qn

n−1(f) (resp., f ∧̌n : A∧̌n → B∧̌n) is

cofibrant (resp., cofibration between cofibrant objects) in SymΣn .

Proof. Note first that by injectiveness (cf. Remark 3.14) we need only worry about
the Σn-actions and can ignore the Σr-actions.

Computing X1∧̌ · · · ∧̌Xn iteratively and regrouping terms we get

(X1∧̌ · · · ∧̌Xn)(r) =
∨

{φ : r→n}

X1(φ
−1(1)) ∧ · · · ∧Xn(φ

−1(n)).

Since the shuffle isomorphisms for ∧̌ involve a post-composition Σn-action on the set
{φ : r → n} indexing the wedge summands, the Σn-coset decomposition

(X1∧̌ · · · ∧̌Xn)(r) =
∨

(φ̄)∈{φ : r→n}/Σn

∨

φ∈(φ̄)

X1(φ
−1(1)) ∧ · · · ∧Xn(φ

−1(n)) (17)

is compatible with those shuffle isomorphisms, so that it suffices to verify the conclu-
sions of the theorem for each of the subfunctors formed by the wedge summands over
a single coset

(
φ̄
)
∈ {φ : r → n}/Σn.

Now consider a map f : A→ B in Sym. Without loss of generality we can assume
that the representative φ̄ misses precisely the first n̄ elements in n, so that when
computing f�n the Σn-isotropy of the φ̄ wedge summand (i.e., the subgroup sending
that summand to itself) is Σn̄, and hence the component of f�n corresponding to the(
φ̄
)
subfunctor in (17) can be rewritten as

Σn ·
Σn̄

f(0)�
∧n̄

�
∧ f

(
φ−1(n̄+ 1)

)
�

∧ · · ·�∧ f
(
φ−1(n)

)
.

We need to show that this is a S Σ-inj Σn-proj cofibration if f is a positive S
cofibration. This follows by first applying Theorem 1.2 to f(0)�

∧n̄, then applying
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Proposition 4.1 to conclude f(0)�
∧n̄ �∧ f(φ−1(n̄+ 1))�∧ · · ·�∧ f(φ−1(n)) is a S

Σ-inj Σn̄-proj cofibration, and finishing by applying Proposition 4.2.
The additional claims assuming A is positive S cofibrant follow by the same argu-

ment by noting that f1 �
∧ f2, f1 ∧ f2 are cofibrations between cofibrant objects if so

are f1, f2 and using the additional statements in Theorem 1.2.

Remark 5.45. All definitions and results in this subsection generalize to the category
BSym = Sym(Sym). Indeed, one can define monomorphism, S and positive S stable
model structures on BSym and S Σ× Σ× Σ-inj Σn-proj stable model structures on
BSymΣn by just repeating Definitions 5.37, 5.38 and 5.40 except now replacing the
initial structures on SpΣ with their eponymous analogues on Sym. Further, analyzing
the proofs of Propositions 5.41, 5.42, 5.43 and 5.44 it is clear that those results
themselves imply the analogue BSym results.

5.4. Proof of Theorem 1.1

Proof of Theorem 1.1. To simplify the discussion and notation somewhat, we first
deal with the case where f2 is a map in AlgO ⊂ ModlO.

Writing f2 : A→ B, note first that if A = O(0), then f1 ◦O A is a S cofibration
(resp., monomorphism), since f1 ◦O O(0) ≃ f1 ◦O O ◦ ∗ ≃ f1 ◦ ∗ ≃ f1(0). Otherwise,
the same conclusion follows by first running the full proof for the map O(0)→ A.

We now write f2 as a retract of a transfinite composition of a κ-diagram F : κ→
SpΣ where each successor map is a pushout of a generating cofibration, just as in (2).
As usual, retracts cause no difficulty so we reduce to the case of f2 the transfinite
composition of F. Recalling that ◦O commutes with transfinite compositions in the
second variable (cf. Lemma 5.9) and setting f1 : M → N , one sees that f1 �

◦O f2 will
be a suitable cofibration provided that M ◦O F→ N ◦O F is a κ-projective cofibration
between κ-diagrams. Since cofibrancy at β = 0 is satisfied due to the previous para-
graph, this amounts to verifying the cofibrancy of f1 �

◦O F(β → β + 1) for β < κ (the
condition for limit ordinals being automatic since ◦O commutes with transfinite com-
positions in the second variable). One hence reduces to the case where f2 : A→ B is
the pushout of a generating cofibration O ◦X → O ◦ Y , such as in Proposition 5.20.
Borrowing the notation from that proposition we see that it suffices to show that the
vertical map of filtration ω-diagrams (recall that ω denotes (0→ 1→ 2→ · · · ))

AM
0 AM

1 AM
2 AM

3 AM
4 · · ·

AN
0 AN

1 AN
2 AN

3 AN
4 · · ·

is a suitable ω-projective cofibration. More explicitly, we need to show that each of
the “pushout corner maps” AM

r

∐
AM

r−1

AN
r−1 → AN

r , r > 0 (note that AM
−1 = AN

−1 =×

∗) is a S cofibration (resp., monomorphism). Using the inductive description (9) this
reduces to showing that the “pushout corner maps” of the diagrams

MA(r) ∧Σr
Qr

r−1 MA(r) ∧Σr
Y ∧r

NA(r) ∧Σr
Qr

r−1 NA(r) ∧Σr
Y ∧r
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are themselves S cofibrations (resp., monomorphisms). Combining Theorems 1.2
and 1.3 this reduces to showing that MA(r)→ NA(r), r > 0 is a S cofibration (resp.,
monomorphism), or rather, that MA → NA is a S cofibration (resp., monomorphism)
in Sym. Recalling from Definition 5.15 that MA → NA can be written as

M ◦O (O ∐A)→ N ◦O (O ∐A),

we see that this last claim would follow directly from a different instance of the
theorem we are trying to prove, namely the case of the maps f1 : M → N in ModrO
and f̃2 : O → O ∐A in ModlO. Since A is assumed cofibrant, it can be written as a
retract of a transfinite composition of pushouts of generating cofibrations, and one
hence reduces to the case A = colimβ<κ Aβ where each Aβ → Aβ+1 is the pushout of
some generating positive S cofibration OXβ → OYβ in AlgO.

Note now that one can repeat all of the arguments so far for f1 and for the fil-
tration f̃2,β : O ∐Aβ → O ∐Aβ+1 of the map f̃2 : O → O ∐A. Firstly, repeating the
“κ-projective cofibration” argument, the β = 0 condition is now that f1 ◦O O = f1 is
a S cofibration (resp., monomorphism), which is just one of the hypotheses, and the
limit ordinal condition is again automatic. One hence reduces to showing, by induc-
tion on β < κ, that the theorem holds for f1 and each f̃2,β . Since f̃2,β is a pushout
of OXβ → OYβ , one again reduces to showing that the map of filtration diagrams
(built using Proposition 5.20 as described in Remark 5.21)

(O ∐Aβ)
M
0 (O ∐Aβ)

M
1 (O ∐Aβ)

M
2 (O ∐Aβ)

M
3 · · ·

(O ∐Aβ)
N
0 (O ∐Aβ)

N
1 (O ∐Aβ)

N
2 (O ∐Aβ)

N
3 · · ·

is a suitable ω-cofibration, and again one reduces to checking that the pushout corner
maps of each diagram

MO∐Aβ
(r)∧̌Σr

Qr
r−1,β MO∐Aβ

(r)∧̌Σr
Y ∧̌r
β

NO∐Aβ
(r)∧̌Σr

Qr
r−1,β NO∐Aβ

(r)∧̌Σr
Y ∧̌r
β

(18)

are S cofibrations (resp., monomorphisms) in Sym. Arguing as before (but replac-
ing uses of Theorems 1.2 and 1.3 by uses of their Sym analogues Propositions 5.44
and 5.43) one reduces to checking that MO∐Aβ

→ NO∐Aβ
is a S cofibration (resp.,

monomorphism) in BSym. The result now follows from the calculation in the proof of
Proposition 5.19, which identifies MO∐Aβ

(r, s)→ NO∐Aβ
(r, s) with MAβ

(r + s)→
NAβ

(r + s), together with the transfinite induction hypothesis (which, explicitly,
states that (MAγ

→ NAγ
)γ6β is a projective cofibration).

Tracing through the steps above we also see that indeed f1 �
◦O f2 will be a weak

equivalence if either f1 or the original f2 is.

Finally, we explain what changes when f2 is a general cofibration between cofibrant
objects in ModlO. Using Proposition 5.14 to transfer the question to AlgOs(Sym), all
of the discussion above follows through by replacing uses of Theorems 1.2 and 1.3 by
their Sym analogues, Propositions 5.44 and 5.43. The only caveat is that when running
the second filtration argument in the proof (specifically, when analyzing (18)), one
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instead uses the BSym analogues mentioned in Remark 5.45.

5.5. Proofs of Theorems 1.4, 1.5, 1.6 and 1.8

We now derive Theorems 1.4, 1.5, 1.6, 1.8 from our main result, Theorem 1.1.
Some of the proofs will make use of the following model structure on ModrO.

Theorem 5.46. Let O be an operad in SpΣ. There exists a cofibrantly generated
model structure on ModrO, which we call the monomorphism stable model struc-
ture, such that cofibrations and weak equivalences are underlying in the monomor-
phism stable model structure on Sym. Further, this is a left proper cellular simplicial
model category.

Proof. This is a generalization of Theorem 3.7 and the same proof applies with only
minor changes, hence we list only those.

Again one starts by proving a level equivalence result by verifying the conditions
in [8, Thm. 2.1.19]. Choosing κ to be an infinite cardinal larger than the number of
simplices in O (counted over operadic, spectral and simplicial gradings), we define
the set I (resp., J) of generating cofibrations (resp., trivial cofibrations) to be a set
of representatives of monomorphisms (resp., monomorphisms that are weak equiv-
alences) between right modules with less than κ simplices. Parts 1, 2, 3, 4 of [8,
Thm. 2.1.19] are again immediate, and part 5 follows by noting that I contains the
maps

(
S ⊗

(
Σm × Σr ·

(
∂∆k

+ → ∆k
+

)))
◦ O. Part 6 reduces to showing a suitable “κ

analogue” of [9, Lemma 5.1.7], and again the proof in [9] generalizes by noting that
all relative homotopy groups have less than κ elements and by building the FC sub-
spectra as sub-right modules rather than just subspectra. Left properness, cellularity
and the simplicial model structure axioms are again straightforward.

To produce the desired stable version one again applies [7, Thm. 4.1.1], now local-
izing with respect to the set SO =

⋃
r>0(Σr · S∗) ◦ O. That the resulting weak equiv-

alences are as described follows by arguing exactly as in the last paragraph of the
proof of Theorem 3.6, using an identity adjunction to compare with the O-projective
model structure on ModrO over the S stable model structure in Sym (this latter model
structure is easily seen to exist by [15, Lemma 2.3]).

Proof of Theorem 1.4. To show the model structures exist it suffices (cf. [15, Lemma
2.3]) to check that for J a set of generating trivial cofibrations, any transfinite com-
position of pushouts of maps in O ◦ J is a weak equivalence. Noting that the proof of
Theorem 1.1 uses such a decomposition of f2 and setting f1 = ∗ → O it is always the
case that f1 ◦O A is a monomorphism, so that repeating the first half of that proof
one reduces to verifying that ∗ = ∗A → OA is a monomorphism, which is obviously
the case even if A is not cofibrant.

To verify the Quillen equivalence statement it suffices to show that the adjunc-
tion unit maps A→ Ō ◦O A, or (O → Ō) ◦O A, are weak equivalences whenever A is
cofibrant. Applying Theorem 1.1 with f2 = O(0)→ A and noting that f ◦O O(0) =
f ◦O O ◦ ∗ = f ◦ ∗ = f(0) shows that the functor (−) ◦O A preserves all weak equiv-
alences that are also monomorphisms. It then follows from Theorem 5.46 combined
with Ken Brown’s lemma [7, Cor. 7.7.2] that (−) ◦O A preserves all weak equivalences,
finishing the proof.



COFIBRANCY OF OPERADIC CONSTRUCTIONS IN POSITIVE SYMMETRIC SPECTRA 167

Proof of Theorem 1.5. Apply Theorem 1.1 to f1 = (∗ → O) and f2 the intended cofi-
bration between cofibrant objects.

Lemma 5.47. Consider positive S cofibrations fi : Ai → Bi, 1 6 i 6 n in Sym all
with positive S cofibrant domains. Then their pushout product with respect to ◦,

�
◦(f1, f2, · · · , fn)

is a positive S cofibration in Sym between positive S cofibrant objects in Sym, which
is a weak equivalence if any of the fi is.

Proof. The proof follows by induction on n.
The case n = 2 is a essentially a particular case of Theorem 1.1 with O = I, except

with an extra claim about positiveness. The extra claim follows by equation (4) which
shows that (X ◦ Y )0(0) = ∗ if both X0(0) = ∗ and Y0(0) = ∗.

For the induction case, recalling that ◦ preserves colimits in the first variable yields

�
◦(f1, f2, · · · , fn) = (�◦(f1, f2, · · · , fn − 1))�◦ fn

(note, however, that the similar equation with brackets on the right fails), and the
result follows by combining the induction hypothesis with the n = 2 case.

Proof of Theorem 1.6. Recall that the degeneracies of Bn(M,O, N) are formed using
only the unit map η : I → O. The result now follows from Lemma 5.47 since the maps
whose cofibrancy must be verified are the maps

�
◦(∗ →M,η, · · · , η, ∗ → N),

where η is allowed to appear any number of times.

Proof of Theorem 1.8. By the existence of the monomorphism (resp., O-projective S)
stable model structure on ModrO (cf. Theorem 5.46 (resp., its proof)) together with
the fact that colimits (resp., limits) are underlying, homotopy cofiber (resp., fiber)
sequences in ModrO match the underlying homotopy cofiber (resp., fiber) sequences
in Sym. Therefore, homotopy fiber and cofiber sequences in ModrO coincide since Sym
is stable. Noting that the argument in the proof of Theorem 1.4 shows (−) ◦O A
is already a left derived functor, and hence preserves homotopy cofiber sequences,
finishes the proof.
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