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THE GHOST LENGTH AND DUALITY ON THE CHAIN AND
COCHAIN TYPE LEVELS

KATSUHIKO KURIBAYASHI

(communicated by J.P.C. Greenlees)

Abstract
We establish equalities between cochain and chain type levels

of maps by making use of exact functors which connect appro-
priate derived and coderived categories. Relevant conditions for
levels of maps to be finite are extracted from the equalities which
we call duality on the levels. Moreover, we give a lower bound
of the cochain type level of the diagonal map on the classifying
space of a Lie group by considering the ghostness of a shriek map
which appears in derived string topology. A variant of Koszul
duality for a differential graded algebra is also discussed.

1. Introduction

This work is a sequel to previous one [32, 33] in which new topological invariants
have been studied.

In [2], Avramov, Buchweitz, Iyengar and Miller introduced a numerical invariant
of an objects in a triangulated category, which is called the level. The invariant counts
the number of steps to build the given object out of some fixed object via triangles. It
seems to be cone length in the category. Jørgensen [24, 25, 26] developed categorical
representation theory of spaces employing the singular (co)chain complexes of spaces.
In the context of such work, the cochain and chain type levels of maps between
topological spaces have been defined and studied in [32, 33].

The cochain type level of a map α : Y → X indeed provides a lower bound on the
number of spherical fibrations which describe a factorization of α in a relevant sense;
see [32, Proposition 2.11]. On the other hand, the chain type level of the identity
map on a space Y gives an upper bound of the L.-S. category of Y in rational case;
see [33, Corollary 2.9]. The L.-S. category is also considered a homotopy invariant
counting the number of cofibrations which construct a given space. Therefore, it is
natural to anticipate that the levels of maps inherit duality between fibrations and
cofibrations, namely Eckmann–Hilton duality. For example, one might expect that
chain and cochain type levels fit into appropriate equalities, which we may call duality
on the levels.
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In this article, we establish such equalities between these two kinds of levels; see
Theorem 2.4 below. One of the highlights in getting the result is that we make use of a
variant of Koszul duality for differential graded algebras which is given by considering
exact functors between certain derived and coderived categories; see [21, 28, 38, 46]
for Koszul duality. In fact, Theorem 3.3 below describes such a variant. We can
take the singular chains of a space as a coalgebra in Theorem 3.3. In consequence,
the commutative diagrams of categories in the theorem give duality of the levels in
Theorem 2.4.

Let X be a space and LX the free loop space, namely the space of all continuous
maps from the circle S1 to X with compact-open topology. String topology initi-
ated by the fascinating paper of Chas and Sullivan [8] describes a rich structure in
the homology of the free loop space LM of a closed oriented manifold M . A basic
one of the string operations is the so-called loop product on the shifted homology
H∗+dimM (LM). The key to defining these operations is to construct a shriek map
(an Umkehr map or a wrong way map) associated with the diagonal map on M .

Félix and Thomas [17] generalized the construction of shriek maps on manifolds
to that on Gorenstein spaces. This enables us to develop string topology in appropri-
ate derived categories; see [36, 37] for torsion and extension functor descriptions of
loop (co)products and their applications. It is important to mention that the class of
Gorenstein spaces contains the classifying spaces of connected Lie groups, Borel con-
structions more general, Poincaré duality spaces and hence closed oriented manifolds;
see [12, 13, 44].

Let BG be the classifying space of a connected Lie group G. In [9], Chataur and
Menichi showed that the homology H∗(LBG;K) with coefficients in a field K carries
the structure of homological conformal field theory (HCFT). The integration along
the fibre of a Borel fibration plays a crucial role in defining the HCFT operations. In a
derived categorical setting, the integration is considered the homomorphism induced
by a shriek map on the derived category D(C∗(BG×BG)) of differential graded
modules (DG modules) over the cochain algebra C∗(BG×BG) with coefficients in
K; see [17, Theorems 5 and 13].

Another aim of this article is to consider behavior of such shriek maps in the
derived category D(C∗(BG×BG)), more generally in D(C∗(BG×n)). In particular,
we see that non-triviality of a shriek map associated with the diagonal map on BG in
D(C∗(BG×n)) gives a lower bound of the ghost length of C∗(BG); see Theorem 2.11
and Remark 5.2. In consequence, a lower bound of the cochain type level of the
diagonal map BG → BG×n is obtained; see Proposition 2.12. We mention that the
notion of ghosts has been actually introduced by Christensen [10] in a more general
framework.

We conclude this section with comments on topics related to the invariant level.
Our attempt in [32, 33] and this paper is closely related to the work in [5, 11, 47, 49].
Indeed, the dimension dim T of a triangulated category T , which is introduced by
Rouquier [47]; see also [7], is defined by

dim T = inf{d ∈ N | thickd+1
T (C) = T for some object C in T }.

Here thick
j
T (C) denotes the jth thickening which is a subcategory of T used when

defining the level; see Section 2. Thus the dimension gives a global invariant of trian-
gulated categories.
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The results in [5] due to Benson, Iyengar and Krause are concerned with the
classification of thick subcategories of a triangulated category. In [11, 2.1 Theorem],
Dwyer and Greenlees give an equivalence between categories of torsion and complete
modules. Moreover, the result [11, 4.6 Proposition] asserts that torsion modules are
chain complexes built from a fixed complex. Then these also clarify global nature of
thick or localizing subcategories.

On the other hand, the level considered here captures properties of individual
objects, which come from topological spaces via the singular chain and cochain func-
tors; see Remark 2.3 below.

In [12], Dwyer, Greenlees and Iyengar have developed Morita theory in algebraic
topology by making use of ring spectra. In particular, the result [12, 3.16 Proposition]
describes a necessary and sufficient condition for the level of a map to be finite. Very
recently, Mao [39] has introduced a new numerical invariant for DG modules, which
is defined by replacing thick subcategories in the definition of the level with localizing
ones. The invariant of a bounded below DG module coincides with the ghost length
plus one; see [39, Theorem A].

Following [49], the string topology category invented by Blumberg, Cohen and
Teleman [6] can be regarded as a full subcategory of one of the derived categories
that we deal with in this paper. Then we can expect that machinery used in order
to investigate the invariant level is applicable to the study of the string topology
category; see Remark 3.9 for such expectation. It is worth noting that the recent
result [49, Theorem 1.2] due to Shamir, which is concerned with the string topology
category, is deduced by relying on the results in [5, 11] cited above.

2. Results

To describe our results more precisely, we first recall from [2, Section 2] the defini-
tion of the level of an object in a triangulated category T . We say that a subcategory
of T is strict if it is closed under isomorphisms in T .

For a given object C in T , we define the 0th thickening by thick0T (C) = {0} and
thick1T (C) to be the smallest strict full subcategory which contains C and is closed
under taking finite coproducts, retracts and all shifts. Moreover for n > 1 define
inductively the nth thickening thicknT (C) by the smallest strict full subcategory of
T which is closed under retracts and contains objects M admitting a distinguished
triangle M1 → M → M2 → ΣM1 in T for which M1 and M2 are in thickn−1

T (C) and
thick1T (C), respectively. A triangulated subcategory C of T is said to be thick if it is
closed under taking retracts. Then the thickenings provide a filtration of the smallest
thick subcategory thickT (C) of T containing the object C:

{0} = thick0T (C) ⊂ · · · ⊂ thicknT (C) ⊂ · · · ⊂ ∪n�0thick
n
T (C) = thickT (C).

For an object M in T , we define a numerical invariant levelCT (M), which is called
the C-level of M , by

levelCT (M) := inf{n ∈ N |M ∈ thicknT (C)}.
It turns out that the C-level of an object M in T counts the number of steps required
to build M out of the object C via triangles. For more details and general features
of the level, we refer the reader to [2, Sections 2 and 3].
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Let K be a field of arbitrary characteristic and R a DG (that is, differential graded)
algebra overK. Let D(R) denote the derived category of DG right R-modules. Observe
that the category D(R) comes equipped with the structure of a triangulated category
[27], in particular with the shift functor Σ defined by (ΣM)n = Mn+1.

We here recall from [32] and [33] two numerical topological invariants defined by
the level in a triangulated category D(R). Unless otherwise explicitly stated, it is
assumed that a space has the homotopy type of a connected CW complex whose
cohomology with coefficients in the underlying field is locally finite.

Let B be a space and T OPB the category of maps with the target B; that
is, an object of T OPB is a map f : X → B and a morphism form f : X → B to
g : X → B is a map α : X → Y which satisfies the condition that f = g ◦ α. For any
object f : X → B, the normalized singular cochain C∗(X;K) with coefficients in K is
regarded as a DG right module over the cochain algebra C∗(B;K) via the induced map
C∗(f) : C∗(B;K) → C∗(X;K). Thus the cochain functor gives rise to a contravariant
functor from the category T OPB to the triangulated category D(C∗(B;K)):

C∗(s(−);K) : T OPB → D(C∗(B;K)),

where s(f) denotes the source of an object f in T OPB .

Definition 2.1. Let f be an object of T OPB . The cochain type level of the map f
is defined by the C∗(B;K)-level of the DG module C∗(s(f);K), namely

level
C∗(B;K)
D(C∗(B;K))(C

∗(s(f);K)).

Let Ff be the homotopy fibre of a map f : X → B. The Moore loop space ΩB
acts on the space Ff by the holonomy action. Thus the normalized chain complex
C∗(Ff ;K) is a DG module over the chain algebra C∗(ΩB;K). The normalized singular
chain and the homotopy fibre construction enable us to obtain a covariant functor

C∗(F(−);K) : T OPB → D(C∗(ΩB;K))

from the category T OPB to the triangulated category D(C∗(ΩB;K)).

Definition 2.2. Let f be an object of T OPB . The chain type level of the map f is
defined by the C∗(ΩB;K)-level of the DG module C∗(Ff ;K), namely

level
C∗(ΩB;K)
D(C∗(ΩB;K))(C∗(Ff ;K)).

More generally, we call the levels of objects in D(C∗(ΩB;K)) and in D(C∗(B;K))
the chain type levels and the cochain type levels, respectively. In what follows, the
coefficients in the singular (co)chain complex and their homology are often omitted
if the context makes them clear.

Remark 2.3. Let T c be the full subcategory of the triangulated category T = D(A)
consisting of compact objects, where A = C∗(Sd;K). The result [48, Proposition 6.6]
implies that for any i ∈ N, there exists an indecomposable object Zi in T c such that
levelAT Zi = levelAT cZi = i+ 1. On the other hand, dim T c = ∞. In fact, if dim T c =
l < ∞, then there is an object C in T c such that T c = thickl+1

T c (C). This yields that

levelCT cM � l + 1 for any object M ∈ T c. Since C is compact, it follows from [27,
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Theorem 5.3] that levelAT C = n for some n. Then a triangular inequality (Lemma 4.1)
implies that

levelAT M � levelAT C · levelCT M � n(dim T c + 1)

for any M in T c. As mentioned above, we have an indecomposable object Z in T c

with levelAT Z > n(dim T c + 1), which is a contradiction.

One of our main theorems reveals a remarkable relationship between the two kinds
of levels.

Theorem 2.4. Let B be a simply-connected space and f : X → B an object in T OPB.
Then one has (in)equalities

(1) dimH∗(X;K) � level
C∗(ΩB)

D(C∗(ΩB))(C∗(Ff )) = level K
D(C∗(B))(C

∗(X)) and

(2) dimH∗(Ff ;K) � level
C∗(B)

D(C∗(B))(C
∗(X)) = level K

D(C∗(ΩB))(C∗(Ff )).

As mentioned in the Introduction, the theorem is deduced from a correspondence
between the triangulated categories D(C∗(ΩB)) and D(C∗(B)), which is a variant of
Koszul duality for DG algebras; see Theorem 3.3, Proposition 3.6 and Theorem A.4.
More precisely, we deduce the results by means of exact functors between the trian-
gulated categories which are compatible with the covariant functor C∗(F(-)) and the
contravariant functor C∗(s(-)). These would allow us to call the equalities in Theo-
rem 2.4 duality on the (co)chain type levels. Algebraic versions of the equalities above
deserve mention. They appear in Remark 3.8.

We here describe another evidence that the equalities in Theorem 2.4, which are
topological versions, exhibit the duality. By definition, the homotopy fibre Ff for a
given map f : X → B fits into a sequence

ΩB
i �� Ff

p �� X
f �� B,

in which p is a fibration with ΩB the fibre. We observe that the maps i and f give
the chain C∗(Ff ) and the cochain C∗(X) a C∗(ΩB)-module structure and a C∗(B)-
module structure, respectively. Since the map p connects those maps i and f , it seems
that (in)equalities in Theorem 2.4 reflect homological duality of the fibration in some
sense. In fact, the Eilenberg–Moore type quasi-isomorphism relative to a fibration
[14, 15] is an important ingredient for proving the main theorem; see Proposition 3.6.

Theorem 2.4 and a triangular inequality on the levels (Lemma 4.1) allow us to
compare the chain and cochain type levels of maps.

Proposition 2.5. Under the same assumption as in Theorem 2.4, one has inequali-
ties

level
C∗(ΩB)

D(C∗(ΩB))(C∗(Ff )) � level
C∗(ΩB)

D(C∗(ΩB))(K) · level C∗(B)
D(C∗(B))(C

∗(X))

� dimH∗(B;K) · level C∗(B)
D(C∗(B))(C

∗(X)) and

level
C∗(B)

D(C∗(B))(C
∗(X)) � level

C∗(B)
D(C∗(B))(K) · level C∗(ΩB)

D(C∗(ΩB))(C∗(Ff ))

� dimH∗(ΩB;K) · level C∗(ΩB)
D(C∗(ΩB))(C∗(Ff )).
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As a corollary of Theorem 2.4, we have criteria for the levels of maps to be finite.
Let M be an object of the triangulated category D(R) of DG-modules over a DG
algebra R. Then it is immediate that dimH(M) < ∞ if level K

D(R)M < ∞. Thus we
have the following result.

Corollary 2.6. Let f : X → B be a map with B simply-connected.

(1) level
C∗(ΩB)

D(C∗(ΩB))(C∗(Ff )) is finite if and only if so is dimH∗(X;K).

(2) level
C∗(B)

D(C∗(B))(C
∗(X)) is finite if and only if so is dimH∗(Ff ;K).

This corollary is essentially a special case of [18, Proposition 2.3]; see also [2,
Theorem 4.8] for other equivalence conditions for the level to be finite.

Let X be a simply-connected rational space. The result [33, Corollary 2.9] states
that

catX � level
C∗(ΩX)
D(C∗(ΩX))Q− 1,

where catX stands for the L.-S. category of X. Moreover, a simple calculation in [33,
Example 6.4] enables us to conclude that if X is a simply-connected rational H-space
with dimH∗(X;Q) < ∞, then the above inequality turns out to be the equality. On
the other hand, the inequality can be strict as we will see below.

Example 2.7. Let X be an infinite wedge of spheres of the form
∨

α Snα . Then
catXQ = catX = 1. By applying Corollary 2.6(1) to the case where idX : X → X,

we see that level
C∗(ΩX)
D(C∗(ΩX))Q = ∞. In fact, H∗(X;Q) is of infinite dimension.

The following proposition, which is derived from Corollary 2.6(2) and the totally
fibred square construction [45, Section 3], is of interest to us. Indeed, the result
suggests that the study of the levels for maps contributes to determining the homotopy
types of spaces.

Proposition 2.8. Let π : X → B be a map between simply-connected spaces with
a right homotopy inverse s : B → X. We regard the map π and s as objects in

T OPB and T OPX , respectively. Then both of levels level
C∗(B;K)

D(C∗(B;K))C
∗(X;K) and

level
C∗(X;K)

D(C∗(X;K))C
∗(B;K) are finite if and only if H∗(Fπ;K) = K. In particular, the

both of the two levels with coefficients in Z/p are finite if and only if π : X → B is a
homotopy equivalence after p-completion.

Let q : X → B be a trivial fibration with H∗(Fq;K) finite dimensional. Then
the C∗(B;K)-level of C∗(X;K) in D(C∗(B;K)) is just one for any field K in gen-
eral. In fact, we see that C∗(X;K) ∼= C∗(B;K)⊗H∗(Fq;K) in D(C∗(B;K)). This
implies that C∗(X;K) is a coproduct of shifts of C∗(B;K) and hence C∗(X;K) is in
thick1D(C∗(B;K))(C

∗(B;K)). On the other hand, for a spherical fibration Sl → X →
B, we obtain a characterization for the C∗(B;K)-level of C∗(X;K) to be two; see
Proposition 4.2. Combining the result with Proposition 2.5, we have the following
proposition.
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Proposition 2.9. Let B be a simply-connected space. Suppose that there exists a
sequence of fibrations

F1 −→ X1
p1−→ B, F2 −→ X2

p2−→ X1, . . . , Fn −→ Xn
pn−→ Xn−1,

in which Xi is simply-connected for 1 � i < n and H∗(Fi;K) ∼= H∗(Sni ;K) for some
ni. Then one has inequalities

level
C∗(B;K)

D(C∗(B;K))C
∗(Xn;K) � 2n and

level
C∗(ΩB;K)

D(C∗(ΩB;K))C∗(Ff ;K) � 2n · dimH∗(B;K),

where f = pn ◦ · · · ◦ p1.
In rational case, the result [32, Proposition 2.7] gives a better estimate of C∗(B;Q)-

level of C∗(Xn;Q) than that of Proposition 2.9 provide each ni is odd.
In order to describe another main theorem, we recall a numerical invariant for DG

modules related to the level. Let A be a DG algebra. We call a morphism f : M → N
in the derived category D(A) a ghost if H(f) = 0. An object M in D(A) is said to
have ghost length n, denoted gh.len.M = n, if every composite

M
f1 �� Y1

f2 �� · · · fn+1 �� Yn+1

of n+ 1 ghosts is trivial in D(A), and there exists a composite of n ghosts from M
which is non-trivial in D(A); see [22].

The ghost length of a DG module M gives a lower bound of the level of M .

Proposition 2.10 ([48, Lemma 6.7] [33, Proposition 7.5]). For any M ∈ D(A), one
has

gh.len.M + 1 � levelAD(A)(M).

Let BG be the classifying space of a connected Lie group G. Since the diagonal map
Δ: G → G×G is a homomorphism, it induces a map BG → BG×2, which is regarded
as the diagonal map BG → BG×BG under a homotopy equivalence between BG×2

and BG×BG. We give an estimate for the cochain type level of the composite

Δ(n−1) : BG
BΔ �� BG×2 �� · · · B(1×Δ)�� BG×n

by considering the ghostness of a shriek map associated with the map B(1×Δ):
BG×l → BG×(l+1); see [17] and Section 5 for shriek maps on a Gorenstein space.

Theorem 2.11. Let BG be the classifying space of a connected Lie group G whose
cohomology with coefficients in K is isomorphic to a polynomial algebra. Then in the
derived category D(C∗(BG×n)), one has

n− 1 � gh.len.C∗(BG).

The assumption for a Lie group G in Theorem 2.11 is satisfied for any field K if the
homology H∗(G;Z) is torsion free. Moreover, the classical Lie groups SO(n), Spin(n)
for n � 9, the exceptional Lie groups G2 and F4 satisfy the assumption in the case
where the field K is of characteristic 2 while the integral homology groups of these
Lie groups have 2-torsion; see [41].
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The proof of Theorem 2.11 uses the Leray–Serre and the Eilenberg–Moore spectral
sequences. The key to the proof is the non-triviality of the loop coproduct in string
topology on the classifying space of a Lie group [9, 34]. Therefore it is hard to expect
an algebraic proof of the theorem.

By Proposition 2.10 and Theorem 2.11, we have the following result.

Proposition 2.12. Under the same assumption as in Theorem 2.11,

n � level
C∗(BG×n)
D(C∗(BG×n)(C

∗(BG)) � (n− 1) dimQH∗(BG;K) + 1,

where QH∗(BG;K) stands for the vector space of indecomposable elements of the
algebra H∗(BG;K). Assume further that QH∗(BG;K)2j+1 = 0 for j � 0. Then

level
C∗(BG×n)
D(C∗(BG×n))(C

∗(BG)) = (n− 1) dimQH∗(BG;K) + 1.

For example, we consider the orthogonal group SO(3). Since the mod 2 cohomology
H∗(BSO(3);Z/2) is a polynomial algebra generated by the second and the third
Stiefel–Whitney classes, it follows that

2 � gh.len.C∗(BSO(3);Z/2) + 1 � level
C∗(BSO(3)×2)
D(C∗(BSO(3)×2))(C

∗(BSO(3))) � 3.

Remark 2.13. Let FΔ(n−1) be the homotopy fibre of the map Δ(n−1) : BG → BG×n.
Then the fibration FΔ(n−1) → BG admits the holonomy right action of ΩBG×n and
is weakly equivalent to the fibration BG×BG×n EG×n → BG with the holonomy
right action of G×n; see, for example, [16, Proposition 2.11]. Then the duality in
Theorem 2.4 (2) implies that

level
C∗(BG×n)
D(C∗(BG×n))(C

∗(BG)) = levelKD(C∗(G×n))(C∗(BG×BG×n EG×n)).

We observe that BG×BG×n EG×n is homotopy equivalent to a homogeneous space
of the form G×n/ΔG = G×(n−1), where Δ: G → G×n denotes the diagonal map. In
fact, we have a homotopy fibre square

G×n/ΔG
� �� BG×BG×n EG×n ��

��

EG×n

��
G×n/ΔG �� �� BG

Δ
�� BG×n.

The rest of the article is organized as follows. In Section 3, we prove Theorem 2.4.
Section 4 is devoted to proving Propositions 2.5, 2.8 and 2.9. Section 5 presents proofs
of Theorem 2.11 and Proposition 2.12. In Appendix, we recall results on a coderived
category due to Lefèvre–Hasegawa [38] on which we rely when proving Theorem 2.4.
Moreover, a variant of Koszul duality due to He and Wu [21] is discussed.

3. Proof of Theorem 2.4

As we will see below, for an object f in T OPB , we obtain quasi-isomorphisms
which connect DG modules C∗(s(f)) and C∗(Ff ) by making use of the bar and
cobar constructions. In order to prove Theorem 2.4, we incorporate such the quasi-
isomorphisms into arguments on appropriate derived and coderived categories.
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For a graded vector space V , we denote by V ∨ the graded dual HomK(V,K),
namely (V ∨)−k = (V ∨)k = HomK(V

k,K). We say that V is locally finite if V i is of
finite dimension for each i.

Definition 3.1. (i) Let A be an augmented DG algebra over K with differential of
degree +1 and mod−A the category of DG right A-modules. The derived category
D(mod−A) of DG right A-modules is the localization of the homotopy category of
mod−A at the class of quasi-isomorphisms.
(ii) Let C be a co-augmented DG coalgebra over K with differential of degree +1 and
comod−C the category of cocomplete DG right C-comodules; see the Appendix. The
coderived category D(comod−C) of cocomplete DG C-comodules is the localization
of the homotopy category of comod−C at the class of weak equivalences; see [38] and
also the Appendix.

We shall write D(A) and Dc(C) for D(mod−A) and D(comod−C), respectively.

By definition, a simply-connected algebra A satisfies the condition that A0 = K,
A1 = 0 and Ai = 0 for i < 0. We call a coalgebra C simply-connected if C0 = K,
C−1 = 0 and Ci = 0 for i > 0. In what follows, we assume that an algebra and a
coalgebra are endowed with an augmentation and a co-augmentation, respectively
and that they are defined over a field K.

Let F : comod−C → C∨−mod be a functor given by sending a cocomplete DG
right C-comodule to the DG left C∨-module with the same underlying K-module
and whose multiplication is given by the natural composite

C∨ ⊗M → C∨ ⊗M ⊗ C → C∨ ⊗ C ⊗M → M.

Composing the vector space dual functor ( )∨ with F , we have an exact functor

tD : D(comod−C)
F∗−−−−→ D(C∨−mod)

( )∨−−−−→ D(mod−C∨)

from the coderived category to the derived category; see Remark A.1.

We deal with the bar and cobar constructions below. For the (co)algebra and
(co)module structures of these constructions, see [14, Section 2], [15, Section 4] and
[43]. We also refer the reader to [23] for differential graded objects.

Let A be a DG algebra and consider the bar resolution B(A;A) → AK of K. Let
B(A) be a DG coalgebra defined by B(A) = K⊗A B(A;A). By using the twisted
tensor product construction associated with the natural twisting cochain τ : B(A) →
A of degree +1, we have a pair of adjoint functors

Dc(B(A))
L:=−⊗τA ��

D(A).
R:=−⊗τB(A)
��

For more details, see [43], [38, Ch. 2], [28] and also Appendix. We write RA for the
functor −⊗τ B(A). The definition of the twisted tensor product enables us to deduce
that RA coincides with the functor −⊗A B(A;A). For a right A-module M , we may
write B(M ;A) for M ⊗A B(A;A). For a coalgebra C and a right C-comodule N , let
Ω(N ;C) denote the cobar construction; see, for example, [14, Section 2].

The duality on the bar and cobar constructions yields the following result.
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Proposition 3.2. Let C be a simply-connected DG coalgebra with H(C) locally finite.
Then there exists an equivalence

Θ: D(ΩC) → D(B(C∨)∨)

of triangulated categories such that for a DG C-comodule N with H(N) locally finite
and bounded above,

Θ(Ω(N ;C)) ∼= B(N∨;C∨)∨.

Proof. Let u : A = TV
�−→ C∨ be a TV-model for the simply-connected DG algebra

C∨ in the sense of Halperin and Lemaire [20]. By assumption, H(C∨) is locally finite.
Then without loss of generality, we can assume that A is also locally finite; see [14,
Proposition 4.2].

Let Δ: C → C ⊗ C be the comultiplication on C. Then the multiplicationm : C∨ ⊗
C∨ → C∨ is defined by the composite

C∨ ⊗ C∨ = C∨ ⊗ C∨ q′→ (C ⊗ C)∨
Δ∨
→ C∨ = C∨,

where q′ denotes the natural quasi-isomorphism. We have a commutative diagram

A∨ m∨
�� (A⊗A)∨ A∨ ⊗A∨

∼=
q′′��

(C∨)∨
m∨

��

u∨

��

(C∨ ⊗ C∨)∨

(u⊗u)∨
��

C∨∨ ⊗ C∨∨q′

�
��

u∨⊗u∨

��

C

q �
��

Δ
�� C ⊗ C,

q⊗q

��

where q and q′′ are the natural quasi-isomorphisms. In fact, the commutativity of the
lower square follows from that of the diagram

(C∨)∨
Δ∨∨

�� (C ⊗ C)∨∨ (q′)∨ �� (C∨ ⊗ C∨)∨

C

q

��

Δ
�� C ⊗ C

q

��

q⊗q
�� C∨∨ ⊗ C∨∨.

q′
��

Observe that q′′ : A∨ ⊗A∨ → (A⊗A)∨ is an isomorphism because A is locally finite.
This implies that u∨ ◦ q : C → A∨ is a quasi-isomorphism of coalgebras. We then have
a sequence of quasi-isomorphisms of algebras

ΩC
ρ:=Ω(u∨q)

�
�� Ω(A∨) ∼=

μ1 �� B(A)∨ B(C∨)∨.
μ2

�
��

Thus the result [30, Proposition 4.2] enables us to obtain equivalences of triangulated
categories

D(ΩC)
−⊗L

ΩCΩ(A∨)��
D(Ω(A∨))

ρ∗
���

−⊗L
Ω(A∨)

B(A)∨
��
D(B(A)∨)

μ∗
1

���
μ∗
2

�
�� D(B(C∨)∨).

We define Θ: D(ΩC) → D(B(C∨)∨) by the composite.
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Let C1
�−→ N∨ be an A-semifree resolution for N∨; see [14, Propositions 4.6 and

4.7]. Since H∗(N) is locally finite, we may assume that so is the A-module C1; see [14,
Proposition 4.6]. Then we can define a comodule structure on C∨

1 by the composite

c : C∨
1 −→ (C1 ⊗A)∨

∼=←− C∨
1 ⊗A∨. The same argument as above allows us to obtain

a commutative diagram

C∨
1

c �� C∨
1 ⊗A∨

N
ΔN

��
�
��

N ⊗ C,

�
��

in which vertical arrows are quasi-isomorphisms. Thus we have an isomorphism
Ω(N ;C) ∼= ρ∗Ω(C∨

1 ;A
∨) in D(ΩC). Moreover, it follows from the locally finiteness

of C1 and A that Ω(C∨
1 ;A

∨) is isomorphic to μ∗
1(B(C1;A)

∨) and μ∗
2(B(C1;A)

∨) ∼=
B(N∨;C∨)∨ in D(B(C∨)∨). This completes the proof.

We have a crucial result on exact functors which connect the triangulated categories
D(ΩC) and D(C∨) for a coalgebra C. The result is a key to proving the duality on
chain and cochain type levels described in Theorem 2.4.

Let A and C be an augmented DG algebra and a co-augmented cocomplete
DG coalgebra, respectively. The result [14, Proposition 2.14] asserts that for a C-

comodule N , there exist a quasi-isomorphism σC : C
�→ BΩC of coalgebras and a

quasi-isomorphism σN : N
�→ B(Ω(N ;C); ΩC) of C-comodules.

Theorem 3.3. (i) Under the same assumption as above on the coalgebra C, one has
a commutative diagrams up to isomorphism

Dc(C)Ω( ;C)

��

tD

��
D(ΩC)

RΩC

�� Dc(BΩC)
tD

�� D((BΩC)∨)
−⊗L

(BΩC)∨C∨
� �� D(C∨);

(σ∨
C)∗��

that is, there exists a natural isomorphism between two composite functors from Dc(C)
to D((BΩC)∨). Moreover, all the functors between (co)derived categories are exact.

(ii) Let C be a simply-connected DG coalgebra with H(C) locally finite. Let Dlf,−
c (C)

denote the full subcategory of Dc(C) consisting of comodules whose cohomologies are
locally finite and bounded above. Then one has a commutative diagram up to isomor-
phism

Dlf,−
c (C)Ω( ;C)

��

tD

��
D(ΩC)

Θ

� �� D((B(C∨))∨) Dc(B(C∨))
tD

�� D(C∨),
RC∨

��

in which all the functors are exact.

Proof. (i) Let τ : C → ΩC be the canonical twisting cochain. Then Ω( ;C) is nothing
but the functor L = -⊗τ ΩC mentioned in Theorem A.2 below. In particular, we see
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that Ω( ;C) is exact. Moreover, it follows that for any N in Dc(C),

tD(B(Ω(N ;C); ΩC)) = B(Ω(N ;C); ΩC)∨ � N∨ = (σ∨
C)

∗tD(N)

in D((BΩC)∨). This implies that the diagram is commutative up to isomorphism.

(ii) Proposition 3.2 yields that for any N in Dlf,−
c (C),

Θ(Ω(N ;C)) ∼= B(N∨;C∨)∨ = (tD ◦RC∨ ◦ tD)(N).

We have the result.

In order to prove Theorem 2.4, we recall important results on the level.

Lemma 3.4 ([48, Lemma 3.9]). Let M be a DG-module over a non-negative simply-
connected or non-positive connected DG algebra A. Assume that M is bounded below
if A is non-negative and is bounded above if A is non-positive. Then

dimH(M ⊗L
A K) � levelAD(A)(M).

The difference between the dimension ofH(M ⊗L
A K) and the level is also of interest

to us. In general, the difference is very large. The proof of Lemma 3.4 which we provide
below exhibits the fact.

Proof of Lemma 3.4. If dimH(M ⊗L
A K) = ∞, then the assertion is immediate.

By assumption, the module M admits a minimal semi-free resolution F
�→ M

endowed with a filtration {F l}l�0 of F ; see [13, 16] and [15, Section 2]. We thus ob-

tain triangles
∐

i Σ
n0
iA → F 1 → ∐

j Σ
n1
jA →, F 1 → F 2 → ∐

j Σ
n2
jA →, . . . , Fn−1 →

Fn → ∐
j Σ

nn
j A →, . . . . The minimality of the semi-free resolution enables us to

deduce that

H(M ⊗L
A K) = H(F ⊗A K) = F ⊗A K =

∐
s�0

∐
j

Σns
jK.

Suppose that dimH(M ⊗L
A K) is of finite dimension. Then it follows that there exists

an integer n such that Fn � M and each index j runs in finite numbers. Thus we
see that M ∈ thickn+1

D(A)(A). If n
s
j = 0 for any j and s, then M � 0 and hence the

result is obvious. Without loss of generality, we can assume that for any s,
∐

j Σ
ns
jA

is non-trivial. We then have

dimH(M ⊗L
A K) = dim

n∐
s=0

∐
j

Σns
jK � n+ 1 � level A

D(A)(M).

This completes the proof.

Let γ : T → U be an exact functor of triangulated categories. Then we have the
following result.

Lemma 3.5 ([2, Theorem 2.4(6)]). levelCT (M) � level
γ(C)
U (γ(M)).



THE GHOST LENGTH AND DUALITY ON THE CHAIN AND COCHAIN TYPE LEVELS 119

Let B be a simply-connected space and f : X → B a map. Recall from [14, Theo-
rem II] a quasi-isomorphism of DG-modules

(3.1) Φ: Ω(C∗(X);C∗(B))
�−−−−→ C∗(Ff ),

which is compatible with actions of ΩC∗(B) and C∗(ΩB) via a quasi-isomorphism of
DG algebras

(3.2) φ : ΩC∗(B) → C∗(ΩB),

where Ω(N ;C∗(B)) denotes the cobar construction of the right C∗(B)-comodule N .
We mention that the quasi-isomorphisms Φ and φ are induced from the universal
constructions due to Adams [1]; see also [14, Section 3].

We connect the category T OPB with D(C∗(ΩB)) and D(ΩC∗(B)).

Proposition 3.6. Let B be a simply-connected space. One has a commutative dia-
gram up to isomorphism

D(C∗(ΩB))

φ∗

��

T OPB

C∗(F(−))��
C∗(s( ))

��
C∗(s( ))

��
D(ΩC∗(B))

−⊗L
ΩC∗(B)C∗(ΩB) �

��

Dlf,−
c (C∗(B))

Ω( ;C∗(B))
��

tD
�� D(C∗(B)).

Proof. The quasi-isomorphisms in (3.1) and (3.2) enable us to conclude that the left
hand-side square is commutative up to isomorphism. By definition, the right hand-
side triangle is commutative.

Remark 3.7. We write η and ν for the composites -⊗L
(BΩC)∨ C∨ ◦ tD ◦RΩC∗(B) ◦ φ∗

and -⊗L
ΩC∗(B) C∗(ΩB) ◦Θ−1 ◦ tD ◦RC∗(B), respectively; see Theorem 3.3 and Propo-

sition 3.6. Then it follows that η(C∗(ΩB)) ∼= η(C∗(F(∗→B))) ∼= C∗(∗) ∼= KC∗(B) and

ν(C∗(B)) ∼= νC∗(s(id : B → B)) ∼= C∗(F(id)) ∼= C∗(∗) ∼= KC∗(ΩB).

Moreover, we see that η(K) ∼= η(C∗(F(id : B→B))) ∼= C∗(B) and

ν(K) ∼=ν(C∗(s(∗ → B))) ∼= C∗(F(∗→B)) ∼= C∗(ΩB).

We are now ready to prove our main theorem.

Proof of Theorem 2.4. It follows from [16, Proposition 19.2] that B(C∗(ΩB);C∗(ΩB))
is a C∗(ΩB)-semifree resolution of K. Then the result [15, Proposition 6.7] yields that

C∗(X) � C∗(Ff )⊗C∗(ΩB) B(C∗(ΩB);C∗(ΩB)) � C∗(Ff )⊗L
C∗(ΩB) K.

By virtue of Lemma 3.4, we have the first inequality.
Let Ff → EX → B be the fibration associated with the map f : X → B. Since

there exists a homotopy equivalence j : X → EX which is in T OPB , it follows that,
as vector spaces,

H∗(C∗(X)⊗L
C∗(B) K) ∼= TorC∗(B)(C

∗(X),K) ∼= TorC∗(B)(C
∗(EX),K) ∼= H∗(Ff ).

Observe that the third isomorphism is induced by the Eilenberg–Moore map; see,
for example, [19, Theorem 3.3]. By applying Lemma 3.4 again, one has the second
inequality.



120 KATSUHIKO KURIBAYASHI

It follows from Lemma 3.5, Theorem 3.3 (i), Proposition 3.6 and Remark 3.7 that

level
C∗(ΩB)
D(C∗(ΩB))(C∗(Ff )) � level K

D(C∗(B))(C
∗(X)).

Theorem 3.3 (ii) yields the converse inequality. The same argument as above works
well to obtain the equality in (2).

Remark 3.8. Let C be a co-augmented cocomplete DG coalgebra with H(C) locally
finite and M an object in Dlf,−(C). Then Theorem 3.3 yields algebraic versions of
equalities in Theorem 2.4. Indeed, we have equalities

levelΩC
D(ΩC)(Ω(M ;C)) = levelKD(C∨)(M

∨) and

levelC
∨

D(C∨)(M
∨) = levelKD(ΩC)(Ω(M ;C)).

Remark 3.9. As mentioned in the Introduction, the string topology category StM for
a simply-connected oriented manifoldM is a full subcategory of D(C∗(ΩM)); see [49].
Then Proposition 3.6 and Theorem 3.3 may generalize the result [6, Theorem 2.8]
on the Dwyer–Kan equivalence between StM and the full subcategory of D(C∗(M))-
modules consisting of objects in the image of the functor C∗(s( )). This will be
discussed in a forthcoming paper [35].

4. Proofs of Propositions 2.5, 2.8 and 2.9

We here recall some full subcategories of a triangulated category T before proving
Proposition 2.5.

Let A be a subcategory of T and addΣ(A) the smallest full subcategory of T that
contains A and is closed under finite coproducts, all shifts and isomorphisms. The
category smd(A) is defined to be the smallest full subcategory of T that contains A
and is closed under retracts. For full subcategories A and B of T , let A ∗ B be the full
subcategory whose objects L occur in a triangle M → L → N → ΣM with M ∈ A
and N ∈ B. Then we see that thicknT (C) = smd(addΣ(C)∗n); see [7] and [2, 2.2.1].

A triangular inequality on levels is described in the following lemma.

Lemma 4.1 (cf. [48, The proof of 6.3.2(3)]). Let T be a triangulated category and

C, C ′ objects in T . If levelCT M � n and levelC
′

T C � l, then levelC
′

T M � nl.

Proof. It suffices to prove that if M ∈ thicknT (C) and C ∈ thicklT (C
′), then M ∈

thicknlT (C ′).
Since the thickening thicklT (C

′) is closed under finite coproducts, all shifts and
retracts, it follows that addΣ(C) ⊂ thicklT (C

′) and hence thick1T (C) ⊂ thicklT (C
′).

Assume that thickiT (C) ⊂ thickilT (C
′) for i�n− 1. For any objectM ∈ thicknT (C),

there exists a triangle M1 → M ′ → M2 → ΣM1 such that M is a retract of M ′,
M1 ∈ thickn−1

T (C) and M2 ∈ thick1T (C). This yields that

M ∈ smd(thick
(n−1)
T (C) ∗ thick1T (C))

⊂ smd(smd(addΣ(C ′)∗(n−1)l) ∗ smd(addΣ(C ′)∗l))

= smd(addΣ(C ′)∗(n−1)l ∗ addΣ(C ′)∗l)

= thicknlT (C ′).

Observe that the first equality follows from [7, Lemma 2.2.1]. This completes the
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proof.

Proof of Proposition 2.5. Lemma 4.1 and Theorem 2.4 induce the inequalities. In
fact, we see that

level
C∗(ΩB)
D(C∗(ΩB))(C∗(Ff )) = level K

D(C∗(B))(C
∗(X))

� level K
D(C∗(B))(C

∗(B)) · level C∗(B)
D(C∗(B))(C

∗(X))

= level
C∗(ΩB)
D(C∗(ΩB))(K) · level C∗(B)

D(C∗(B))(C
∗(X))

� dimH∗(B) · level C∗(B)
D(C∗(B))(C

∗(X)).

We here observe that C∗(Fid) ∼= K in D(C∗(ΩB)) for the homotopy fibre Fid of the
identity map on B. The second inequalities follow from the same consideration as
above. Observe that the based loop space ΩB is the homotopy fibre of the map
∗ → B.

Proof of Proposition 2.8. By replacing the square

B
s ��

=
��

X

π
��

B =
�� B,

which is homotopy commutative, to a totally fibred square, we have a commutative
diagram

B
s ��

�ι2 ��

X

ι1� ��
ΩFπ

�� B′ �� X ′,

in which ι1 and ι2 are homotopy equivalences and bottom sequence is a fibration; see
[45, Propositions 3.2.2 and 3.2.3]. The map ι1 gives rise to an equivalence

C∗(ι1)
∗ : D(C∗(X)) → D(C∗(X ′))

of triangulated categories. It is readily seen that C∗(ι1)∗(C∗(B)) ∼= C∗(B′). This
yields that

level
C∗(X′)
D(C∗(X′))C

∗(B′) = level
C∗(X)
D(C∗(X))C

∗(B).

In view of the Leray–Serre spectral sequence of the path-loop fibration ΩFπ →
PFπ → Fπ, we see that H

∗(Fπ;K) = K if and only if H∗(ΩFπ;K) and H∗(Fπ;K) are
of finite dimension. Observe that Fπ is simply-connected since π has a right inverse.
By Corollary 2.6 (2), we have the result.

Before proving Proposition 2.9, we consider a special case for the assertion.

Proposition 4.2. Let F → X → B be a fibration with B simply-connected. Suppose
that H∗(F ;K) ∼= H∗(Sl;K) as a graded vector space. Then one has

level
C∗(B;K)

D(C∗(B;K))C
∗(X;K) � 2.

Moreover, level
C∗(B;K)

D(C∗(B;K))C
∗(X;K)= 2 if and only if H∗(X;K) is not a free H∗(B;K)-

module.
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The following lemma serves to prove Proposition 4.2.

Lemma 4.3. Let X → B be an object in T OPB. Then level
C∗(B)

D(C∗(B))C
∗(X) = 1 if

and only if H∗(X;K) is a free H∗(B;K)-module.

Proof. Suppose that level
C∗(B)
D(C∗(B))C

∗(X) = 1. Then by definition, we see that C∗(X)

is a retract of a free C∗(B)-module. Therefore H∗(X) is a projective H∗(B)-module
and hence H∗(X) is a free H∗(B)-module; see, for example, [16, page 274, Remark 1].

We see that level
H∗(B)
D(H∗(B))H

∗(X) = 1 if H∗(X) is a free H∗(B)-module. The result

[33, Corollary 7.3] implies that level
C∗(B)
D(C∗(B))C

∗(X) is less than or equal to the level

level
H∗(B)
D(H∗(B))H

∗(X). This completes the proof.

Proof of Proposition 4.2. Let Sl be the homotopy fibre of the projection X → B. We
observe that H∗(Sl;K) ∼= H∗(F ;K) ∼= H∗(Sl;K). In order to prove the proposition, it
suffices to show that level K

D(C∗(ΩB))C∗(Sl) � 2. This follows from Theorem 2.4 (2). We
define a DG subalgebra R of C∗(ΩB) by R0 = K, R1 = Ker d and R�2 = C�2(ΩB).
It is immediate that the inclusion i : R → C∗(ΩB) is a quasi-isomorphism. Then the
map i induces an equivalence of categories i∗ : D(C∗(ΩB)) → D(R). Moreover, we
have i∗(K) = K and i∗(C∗(Sl)) = C∗(Sl). Therefore, we conclude that

level K
D(C∗(ΩB))C∗(Sl) = level K

D(C∗(R))C∗(Sl).

Let N be a DG R-submodule of C∗(Sl) defined by N�l−1 = 0, Nl = Im d and Ni =
Ci(Sl) for i > l. Since N is acyclic, it follows that the projection C∗(Sl) → C∗(Sl)/N
is a quasi-isomorphism of R-modules. Moreover, we can construct a triangle in D(R)
of the form Σ−lK → C∗(Sl)/N → K → . In fact, the projection from the quotient
(C∗(Sl)/N)

/
Σ−lK to K is a quasi-isomorphism of R-modules. Then the triangle yields

that level K
D(R)C∗(Sl) = level K

D(R)C∗(Sl)/N � 2. We have the result. The latter half of
the assertion follows from Lemma 4.3.

Remark 4.4. We can prove Proposition 4.2 by means of a minimal semifree resolution

Γ
�→ C∗(X) of C∗(X) as a C∗(B)-module. Indeed, we see that

H∗(K⊗C∗(B) Γ) = H∗(K⊗L
C∗(B) C

∗(X)) = H∗(Sl) = K{1, w},
where deg 1 = 0 and degw = l. This implies that the filtration of F has class at most
2; see [2, 4.1]. Proposition 4.2 follows from [2, Theorem 4.1].

We use again Lemma 4.1 to prove Proposition 2.9.

Proof of Proposition 2.9. Consider the maps C∗(B)
α→ C∗(Xi)

p∗
i+1→ C∗(Xi+1), where

α = (pi ◦ · · · ◦ p1)∗. Then the map α induces an exact functor α∗ : D(C∗(Xi)) →
D(C∗(B)). In view of Proposition 4.2 and Lemma 3.5, we have

2 � level
C∗(Xi)
D(C∗(Xi))

C∗(Xi+1) � level
α∗C∗(Xi)
D(C∗(B)) α∗C∗(Xi+1) = level

α∗C∗(Xi)
D(C∗(B)) C∗(Xi+1).

Therefore, Lemma 4.1 and the induction hypothesis allow us to deduce that

level
C∗(B)
D(C∗(B))C

∗(Xi+1) � level
C∗(B)
D(C∗(B))α

∗C∗(Xi) · level α∗C∗(Xi)
D(C∗(B)) C∗(Xi+1) � 2i · 2.

We have the first inequality. The second inequality follows from Proposition 2.5.
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5. Proofs of Theorem 2.11 and Proposition 2.12

We begin by recalling a shriek map on the classifying space BG of a connected Lie
group G. The classifying space BG is a Gorenstein space of dimension − dimG; see
[13] for more details. Then the result [17, Theorem 12] deduces that

Ext∗C∗(BG×n)(C
∗(BG), C∗(BG×n)) ∼= H∗−(n−1)(− dimG)(BG),

where the DG right C∗(BG×n)-module structure on C∗(BG) is induced by the diago-
nal map Δ(n−1) : BG → BG×n. In particular, we have a generator of the vector space

Ext
−(n−1) dimG
C∗(BG×n) (C∗(BG), C∗(BG×n)) ∼= H0(BG) = K,

which is called a shriek map associated with the diagonal map.

Proof of Theorem 2.11. By assumption, the cohomology H∗(BG) is a polynomial
algebra, say H∗(BG) = K[x1, . . . , xs]. Then H∗(G) is isomorphic to the algebra with
a 2-simple system of generators s−1x1, . . . , s

−1xs, where deg s−1xi = deg xi − 1; see
[40, page 154]. Observe that H∗(G) is the exterior algebra generated by s−1x1, . . . ,
s−1xs if the characteristic of K is odd.

Claim 5.1. In the Leray–Serre spectral sequence {LSE
∗,∗
r , dr} of the fibration G →

BG×(k−1) B(1×Δ)→ BG×k, the generators s−1xi are transgressive. More precisely, for
the transgression τ , one has τ(s−1xi) = λi(xi ⊗ 1− 1⊗ xi) for some non-zero scalar
λi under an isomorphism H∗(BG×k) ∼= H∗(BG×(k−2))⊗H∗(BG)⊗H∗(BG).

Therefore, there is no non-trivial element in LSE
0,∗
∞ for ∗ > 0. This implies that

the shriek map B(1×Δ)! : C∗(BG×(k−1)) → C∗−d(BG×k) is a ghost map, where
d = dimG. In fact, the induced map H∗(B(1×Δ)!) is the integration along the fibre;
see [17, Theorems 5 and 13].

We shall prove that the composition of the shriek maps B(1×Δ)! ◦ · · · ◦BΔ! :
C∗(BG) → C∗−(n−1)d(BG×n) is non-trivial in D(C∗(BG×n)). To this end, we con-
sider the homotopy pullback square

(5.1)

Gn−1 �� LBG×BG · · · ×BG LBG
˜Δ ��

ev0
��

LBG

eva1,...,an��
Gn−1 �� BG

Δ(n−1)

�� BG×n,

where eva1,...,an denotes the evaluation map at points ak = k−1
n for k = 1, . . . , n. We

regard the composite B(1×Δ)! ◦ · · · ◦BΔ! as the shriek map (Δ(n−1))! by choosing
an appropriate orientation class of the fibration Δ(n−1); see, for example, [9, Sec-
tion 2.3, Composition]. In order to show non-triviality of the shriek map (Δ(n−1))!,
it suffices to prove that the shriek map

Δ̃! : C∗(LBG×BG · · · ×BG LBG) → C∗−(n−1)d(LBG)

is non-trivial since Δ̃! is an extension of (Δ(n−1))!; see the proof of [17, Theorem 6].
We observe that H∗(LBG) ∼= H∗(BG)⊗Δ(s−1x1, . . . , s

−1xs) as an algebra.
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Let K = H∗(BG)⊗ ∧(s−1QH∗(BG))⊗H∗(BG) → H∗(BG) be the two sided bar
resolution of H∗(BG); see, for example, [4]. Then we have a projective resolution

K⊗n−1
H∗(BG) → H∗(BG)

⊗n−1
H∗(BG) = H∗(BG)

of H∗(BG) as an H∗(BG)⊗n−1-module.

Let {Er, dr} be the Eilenberg–Moore spectral sequence for the right-hand side pull-
back in the diagram (5.1). Computing the E2-term by using the projective resolution

K⊗n−1
H∗(BG) → H∗(BG) mentioned above, we see that

E∗,∗
2

∼= H
(
H∗(BG)⊗n ⊗Δ(s−1x1,1, . . . , s

−1x1,s, . . . , s
−1xn−1,1, . . . , s

−1xn−1,s)

⊗H∗(BG)⊗nH∗(LBG), ∂(s−1xi,j) = ev∗a1,...,an
(xi,j ⊗ 1− 1⊗ xi+1,j)

)

as a bigraded algebra. Since ev0 � evak
for any k, it follows that ev∗a1,...,an

◦ p∗k � ev0,
where pk : BG×n → BG denotes the projection onto the kth factor. This implies that
ev∗a1,...,an

(xi,j ⊗ 1− 1⊗ xi+1,j) = 0 since ev∗0(xi) = xi. For dimensional reasons, we
see that

E∗,∗
∞ ∼= H∗(LBG)⊗Δ(s−1x1,1, . . . , s

−1x1,s, . . . , s
−1xn−1,1, . . . , s

−1xn−1,s).

This fact enables us to conclude that the Leray–Serre spectral sequence of the upper
fibration in the homotopy pull-back above collapses at the E2-term. Therefore, it
follows that the integration along the fibre H∗((Δ̃)!) is non-trivial. This completes
the proof.

Proof of Claim 5.1. We consider a morphism of homotopy fibrations

G

��

G

��
BG×(k−2) ×BG

1×ΔBG ��

BG×(k−1)���

B(1×Δ)��
BG×(k−2) ×BG×BG BG×k,�

��

in which the horizontal maps are homotopy equivalences. Thus, in order to prove
Claim 5.1, it suffices to show that the result holds for the spectral sequence of the

fibration G → BG
ΔBG→ BG×BG.

Let zi : BG → K := K(K, deg xi) be the map corresponding to the generator xi

of H∗(BG); that is, z∗i (ι) = xi for the fundamental class ι of K. In the Leray–Serre

spectral sequence of the homotopy fibration K(K, deg x− 1) → K
ΔK→ K ×K, the

transgression sends the fundamental class of the fibre to the element ι⊗ 1− 1⊗ ι
up to the multiplication by a non-zero scalar because Δ∗

K(ι⊗ 1− 1⊗ ι) = 0. The
naturality of the morphism induced by zi implies that τ(s−1xi) = λi(xi ⊗ 1− 1⊗ xi)
for some non-zero scalar λi. We have the result.

Remark 5.2. The proof of Theorem 2.11 enables us to conclude that the shriek map

(Δ(n−1))! is the non-trivial generator in Ext
−(n−1) dimG
C∗(BG×n) (C∗(BG), C∗(BG×n)) and it

is a ghost map.
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Proof of Proposition 2.12. We have a fibration of the form G×(n−1) → BG
Δ(n)

→
BG×n. Therefore, we see that H∗(G×(n−1)) ∼= TorH

∗(BG×n)
∗ (H∗(BG),K) and hence

the torsion product is of finite dimension. Then it follows from [33, Lemma 7.1] that

level
C∗(BG)×n

D(C∗(BG×n)(C
∗(BG)) � pdH∗(BG×n)H

∗(BG) + 1,

where pdAM denotes the projective dimension of an A-module M . Let

K⊗n−1
H∗(BG) → H∗(BG)

⊗n−1
H∗(BG) = H∗(BG)

be the projective resolution of H∗(BG) as an H∗(BG)⊗n−1-module introduced in the
proof of Theorem 2.11. This yields that

pdH∗(BG×n)H
∗(BG) � (n− 1) dimQH∗(BG).

We have the upper bound of the level. Proposition 2.10 and Theorem 2.11 give the
lower bound.

We prove the latter half of the assertion. Since H∗(BG;K) is a polynomial algebra
generated by elements with even degree, it follows from [32, Proposition 2.4] that the

homotopy fibration G×(n−1) → BG
Δ(n)

→ BG×n is K-formalizable; see [33, Section 2].
Thus the result [33, Proposition 5.2] implies that

level
C∗(BG×n)
D(C∗(BG×n)(C

∗(BG)) = (n− 1) dimQH∗(BG;K) + 1.

This completes the proof.
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Appendix A. A variant of Koszul duality for DG algebras

In this section, we describe a result concerning Theorem 3.3, which is regarded
as a variant of the Koszul duality for DG algebras. We also refer the reader to the
paper [46] due to Positselski for a more general approach to the derived Koszul
duality.

We begin by recalling the result on a coderived category due to Lefévre–Hasegawa
[38].

Let (A, dA, εA) and (C, dC , εC) be an augmented DG algebra and a co-augmented
DG coalgebra over a field K, respectively. By using the kernel C of the counit of
C, we have a decomposition C = C ⊗K. Let Δ: C → C ⊗ C denote the reduced
coproduct defined by Δ(x) = Δ(x)− x⊗ 1− 1⊗ x. We say that a coaugmented DG

coalgebra is cocomplete if C = ∪l�1Ker (Δ
(l)

: C → C
⊗l+1

), where Δ
(l)

is the iterated

coproduct defined by Δ
(l)

= (Δ⊗ 1⊗l−1) ◦ · · · ◦ (Δ⊗ 1) ◦Δ. By definition, a twisted



126 KATSUHIKO KURIBAYASHI

cochain τ : C → A is a K-linear map of degree +1 such that εA ◦ τ ◦ εC = 0 and

dA ◦ τ + τ ◦ dC + μA ◦ (τ ⊗ τ) ◦ΔC = 0,

where μA and ΔC are the multiplication of A and the comultiplication of C, respec-
tively. Let M be a DG right A-module. Then we defined the twisted tensor product
M ⊗τ C to be the comodule M ⊗ C over C endowed with the differential

d = dM ⊗ 1 + 1⊗ dC − (μM ⊗ 1)(1⊗ τ ⊗ 1)(1⊗ΔC).

For a DG C-comodule N , we define the DG module N ⊗τ A similarly. Let ΔN be
the comodule structure of a DG C-comodule N . We say that N is cocomplete if

N = ∪l�1Ker (Δ
(l)

N : N → N ⊗ C
⊗l
), where ΔN (x) = ΔN (x)− x⊗ 1 for x ∈ N and

Δ
(l)

N denotes the iterated comodule structure defined by the same way as the iterated
coproduct on C.

Let C be a cocomplete DG coalgebra and τ0 : C → ΩC the canonical twisting
cochain. Then the category comod−C of cocomplete DG comodules over C admits
the structure of a model category for which f : N → N ′ is a weak equivalence, by
definition, if and only if f ⊗ 1: N ⊗τ0 ΩC → N ′ ⊗τ0 ΩC is a quasi-isomorphism. For
the details, see [38, Théorème 2.2.2.2]. Observe that f is a weak equivalence, then
f is a quasi-isomorphism. This fact follows form [14, Proposition 2.14]. We define
the coderived category Dc(C), which is a triangulated category, to be the localiza-
tion of the homotopy category of comod−C with respect to the class of all weak
equivalences.

Remark A.1. Let C be a finite dimensional co-augmented coalgebra. The result [42,
1.6.4] due to Montgomery allows one to deduce that the functor F : comod−C →
C∨−mod mentioned in Section 3 is an equivalence of categories. As mentioned above,
weak equivalences between cocomplete DG-comodules are quasi-isomorphisms. Then
we see that F induces a functor F∗ : D(comod−C) → D(C∨−mod) of triangulated
categories. Observe that the functor F∗ is not an equivalence of triangulated categories
in general. In fact, we can regard the exterior algebra ∧(x) as a Hopf algebra with
a primitive element x of degree −1. Forgetting the algebra structure of ∧(x), we
have a DG coalgebra C1 endowed with the trivial differential. The argument in [28,
Section 4] asserts that in (C1)

∨−mod, weak equivalences form a strictly smaller class
than that of quasi-isomorphisms.

On the other hand, the equivalence F allows us to obtain an equivalence

F̃∗ : Dc(C) = D(comod−C)
�−→ D̃(C∨−mod)

of triangulated categories. Here D̃(C∨−mod) denotes the localization of the homotopy
category of C∨−mod with respect to the class of morphisms which come from weak
equivalences in comod−C by F .

The following theorems assert that a coderived category is closely related to a
derived category.

Theorem A.2 ([38, 2.2.3, Lemma 2.2.1.2, Proposition 2.2.4.1]). Let τ : C → A be a



THE GHOST LENGTH AND DUALITY ON THE CHAIN AND COCHAIN TYPE LEVELS 127

twisting cochain. Then one has adjoint functors

Dc(C)
L:=−⊗τA ��

D(A)
R:=−⊗τC

��

between triangulated categories.

Theorem A.3 ([38, Proposition 2.2.4.1]). The following are equivalent.
(i) The map τ induces a quasi-isomorphism Ω(C) → A.
(ii) The canonical map A⊗τ C ⊗τ A → A is a quasi-isomorphism.
(iii) The functor L and R in Theorem A.2 are equivalences.

Let V be a finite dimensional, non-negatively graded vector space with V odd = 0.
Let SV be the polynomial algebra and ∧ΣV the primitively generated coalgebra
whose underlying space is the exterior algebra on ΣV . Then the projection from ∧ΣV
to ΣV and the inclusion form V to SV give rise to a twisting cochain τ : ∧ ΣV → SV .
Thus we have exact functors between derived and coderived categories

D̃((∧ΣV )∨−mod) Dc(∧ΣV )
L:=−⊗τSV ��˜F∗�� D(SV ).
R:=−⊗τ∧ΣV

��

Here F̃∗ stands for the functor defined in Remark A.1.
The existence of the two-sided Koszul resolution (see, for example, [4]) implies

that the functor R gives an equivalence with inverse L. Indeed this follows from the
equivalence of the assertions (ii) and (iii) in Theorem A.3. Moreover, since the vector

space V is of finite dimension, the functor F̃∗ is also an equivalence between D(∧ΣV )
and D((∧ΣV )∨−mod); see Remark A.1.

More generally, the proof of [21, Theorem 4.4] due to He and Wu enables us to
deduce the following result.

Theorem A.4 (cf. [2, Theorem 7.4], [21, Theorem 4.7]). Let A be a locally finite,
simply-connected DG algebra over a field K. Suppose that the dual (BA)∨ to the bar

construction is formal in the sense that (BA)∨ admits a TV -model TV
�→ (BA)∨

together with a quasi-isomorphism TV
�→ H((BA)∨) = ExtA(K,K). Assume further

that ExtA(K,K) is of finite dimension. Then one has equivalences

D̃(ExtA(K,K)−mod)
h

�
��
D(A)

t
��

of triangulated categories. If A is 2-connected, then t satisfies the condition that
t(K) = ExtA(K,K)∨ and t(A) = K in D̃(ExtA(K,K)−mod).

Let A be a 2-connected DG algebra as in Theorem A.4. Then it follows that for
an object M in D(A),

level A
D(A)(M) = level K

˜D(ExtA(K,K)−mod)
(t(M)).

Proof of Theorem A.4. Since A is simply-connected and locally finite, it follows that
the bar construction is also locally finite. Thus we can assume that for the TV -

model TV
�→ (BA)∨, the graded vector space V is locally finite; see the proof of
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Proposition 3.2. Then the sequence of quasi-isomorphisms

E := ExtA(K,K) = H((BA)∨)
�←− TV

�−→ (BA)∨

of DG algebras gives rise to a sequence of quasi-isomorphisms

Ω(E∨)
�−→ Ω(TV ∨)

�←− Ω((BA)∨∨)
�←− Ω(BA)

�−→ A

as DG algebras. Thus we have equivalences

D(Ω(E∨))
α

�
��
D(A)

β
��

of triangulated categories for which β(A) = Ω(E∨) and β(K) = K. The canonical
twisting cochain τ0 : E

∨ → Ω(E∨) induces the identity map Ω(E∨) → Ω(E∨). In view
of Theorem A.3, we have equivalences

D(comod−(E∨))
L

�
��
D(Ω(E∨)).

R=−⊗Ω(E∨)B(Ω(E∨);Ω(E∨))

��

Since E∨ is a finite dimensional coalgebra by assumption, it follows that the functor

F̃∗ : D(comod−(E∨))
�−→ D̃(E−mod),

which is defined in Remark A.1 gives an equivalence of triangulated categories. Then
one has an equivalence t := F̃∗ ◦R ◦ β : D(A) → D̃(E−mod).

The natural map σ : E∨ → BΩ(E∨) and η : B(Ω(E∨); Ω(E∨)) → K are quasi-iso-
morphisms; see [14, Propositions 2.4 and 2.14]. If A is 2-connected, then E∨ is
simply-connected. Then it follows from [14, Remark 2.3] that maps σ and η are
weak equivalences. This implies the latter half of the theorem.

The following proposition provides examples of DG algebras which satisfy the
assumptions in Theorem A.4.

Proposition A.5. Let E be a non-positively graded, connected DG algebra; that is,
E0 = K and Ei = 0 for i > 1. Suppose further that E is formal and of finite dimen-
sion. Put A = Ω(E∨). Then the algebra (BA)∨ is a formal and, as algebras,

H((BA)∨) ∼= ExtA(K,K) ∼= H(E).

In consequence, the DG algebra A satisfies all the assumptions in Theorem A.4. Thus
one has equivalences

D̃(H(E)−mod)
h

�
��
D(Ω(E∨))

t
��

of triangulated categories. Assume further that E∨ is simply-connected. Then one has
t(Ω(E∨)) = K and t(K) = H(E)∨.

Proof. Since E is a finite dimensional DG algebra, it follows from [14, Proposi-

tion 2.14] that there exists a quasi-isomorphism α : E∨ �−→ BA = BΩ(E∨) of coalge-
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bras. Let η : TV
�−→ (BΩ(E∨))∨ be a TV-model. We then have a sequence

E ∼= E∨∨ �←−−−−
α∨◦η

TV
�−−−−→
η

(BA)∨

of quasi-isomorphism of DG algebras. By assumption, the DG algebra E is for-

mal. This enables us to obtain quasi-isomorphisms H(E)
�←− TW

�−→ E. The lifting

lemma [15, Lemma 3.6] yields a quasi-isomorphism TV
�−→ H(E) of DG algebras

and hence (BA)∨ is formal.

Example A.6. Let E be an exterior algebra ∧(x1, . . . , xn) generated by x1, . . . , xn,
where − deg xi is odd for any i. We have an isomorphism H(Ω(E∨)) ∼= H((BE)∨) =
TorE(K,K)∨ of algebras which sends the cycles 〈x∨

i 〉 to [xi]
∨. Moreover, there exists

an isomorphism

η : TorE(K,K) = H(BE)
∼=→ Γ[sx1, . . . , sxn]

of coalgebras such that η([xi]) = sxi, where deg sxi = deg xi − 1 and Γ[sx1, . . . , sxn]
stands for the divided power Hopf algebra with the comultiplication Δ(γi(sxj)) =∑

k+l=j γi(sxj)⊗ γk(sxj); see the proof of [31, Lemma 1.5]. Thus we see that the
algebra H(Ω(E∨)) is isomorphic to the polynomial algebra K[sx∨

1 , . . . , sx
∨
n ], where

deg sx∨
i = − deg xi + 1. Since the algebra Ω(E∨) is free, it follows that there exists a

quasi-isomorphism θ : Ω(E∨)
�→ K[sx∨

1 , . . . , sx
∨
n ] of algebras such that θ(〈x∨

i 〉) = sx∨
i

for i. This implies that Ω(E∨) is formal. Therefore, Theorem A.4 and Proposition A.5
enable us to obtain equivalences

D̃(∧(x1, . . . , xn)−mod)
h

�
��
D(K[sx∨

1 , . . . , sx
∨
n ])

t
��

of triangulated categories. This result is a variant of [2, Theorem 7.4]; see also [28,
Section 4].

References

[1] J.F. Adams, On the cobar construction, Proc. Natl. Acad. Sci. USA 42 (1956),
409–412.

[2] L.L. Avramov, R.-O. Buchweitz, S.B. Iyengar and C. Miller, Homology
of perfect complexes, Adv. Math. 223 (2010), 1731–1781. arXiv:math.AC/
0609008v2.

[3] L.L. Abramov and S.B. Iyengar, Cohomology over Complete Intersections via
Exterior Algebras, London Math. Soc. Lecture Note Ser. 375, Cambridge Uni-
versity Press, Cambridge, 2010, pp. 52–75.

[4] P.F. Baum and L. Smith, Real cohomology of differential Fibre bundles, Com-
ment. Math. Helv. 42 (1967), 171–179.

[5] D.J. Benson, S.B. Iyengar and H. Krause, Stratifying triangulated categories,
J. Topol. 4 (2011), 641–666.

[6] A.J. Blumberg, R.L. Cohen and C. Teleman, Open-closed field theories, string
topology, and Hochschild homology, in: Alpine Perspectives on Algebraic Topol-
ogy, Contemp. Math. 504. Amer. Math. Soc., Providence, RI, 2009, pp. 53–76.



130 KATSUHIKO KURIBAYASHI

[7] A. Bondal and M. Ban den Bergh, Generators and representability of functors
in commutative and non-commutative geometry,Mosc. Math. J. 3 (2003), 1–36.

[8] M. Chas and D. Sullivan, String topology, arXiv:math.GT/0107187.

[9] D. Chataur and L. Menichi, String topology of classifying spaces, J. Reine
Angew. Math. 669 (2012), 1–45.

[10] J.D. Christensen, Ideals in triangulated categories: Phantoms, ghosts and
skeleta, Adv. Math. 136 (1998) 284–339.

[11] W. Dwyer and J.P.C. Greenlees, Complete modules and torsion modules, Amer.
J. Math. 124 (2002), 199–220.

[12] W.G. Dwyer, J.P.C. Greenlees and S. Iyengar, Duality in algebra and topology.
Adv. Math. 200 (2006), 357–402.

[13] Y. Félix, S. Halperin and J.-C. Thomas, Gorenstein spaces. Adv. Math. 71
(1988), 92–112.

[14] Y. Félix, S. Halperin and J.-C. Thomas, Adams’ cobar equivalence, Trans.
Amer. Math. Soc. 329 (1992), 531–549.

[15] Y. Félix, S. Halperin and J.-C. Thomas, Differential graded algebras in topol-
ogy, in: I.M. James (Ed.), Handbook of Algebraic Topology, Elsevier, Amster-
dam, 1995, pp. 829–865.

[16] Y. Félix, S. Halperin and J.-C. Thomas, Rational Homotopy Theory, Grad.
Texts in Math. 205, Springer-Verlag.

[17] Y. Félix and J.-C. Thomas, String topology on Gorenstein spaces, Math. Ann.
345 (2009), 417–452.

[18] A. Frankild and P. Jørgensen, Homological properties of cochain differential
graded algebras, J. Algebra 320 (2008), 3311–3326.

[19] V.K.A.M. Gugenheim and J.P. May, On the theory and applications of differ-
ential torsion products, Mem. Amer. Math. Soc. 142 (1974).

[20] S. Halperin and J.-M. Lemaire, Notions of category in differential algebra, in:
Algebraic Topology: Rational Homotopy, Lecture Notes in Math. 1318, Springer,
Berlin, New York, 1988, pp. 138–154.

[21] J.-W. He and Q.-S. Wu, Koszul differential graded algebras and BGG corre-
spondence, J. Algebra 320 (2008), 2434–2962.

[22] M. Hovey and K. Lockridge, The ghost dimension of a ring, Proc. Amer. Math.
Soc. 137 (2009), 1907–1913.

[23] D. Husemoller, J.C. Moore and J. Stasheff, Differential homological algebra
and homogeneous spaces. J. Pure Appl. Algebra 5 (1974), 113–185.

[24] P. Jørgensen, Auslander–Reiten theory over topological spaces, Comment.
Math. Helv. 79 (2004), 160–182.

[25] P. Jørgensen, The Auslander–Reiten quiver of a Poincaré duality space, Algebr.
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