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ZURAB JANELIDZE

(communicated by Maria Cristina Pedicchio)

Abstract
In this paper we provide an axiomatic analysis of the classical

diagram chasing method of Mac Lane, that relies on duality and
chasing elements of pointed sets, which allows one to generalize
this method from abelian categories to non-abelian ones. Among
the examples where the generalized method can be used are all
modular semiexact categories in the sense of Grandis (which
include all Puppe–Mitchell exact categories) and sequentiable
categories in the sense of Bourn (which include all semi-abelian
categories, and in particular, the categories of group-like struc-
tures). The method turns out to be closely related to the essen-
tial features of these categories. At the same time, in some sense,
it simplifies the usual proofs of some of the standard diagram
lemmas in them.

Introduction

The so-called “diagram chasing” is a technique introduced by Mac Lane [24] for
proving homological diagram lemmas in concrete categories of structures, and in gen-
eral abelian categories. Since then this technique has been adapted to many different
general contexts. In an abelian category, the technique is very efficient thanks to
duality: by dualising a half of the proof of a diagram lemma one obtains the complete
proof. This means that a category-theoretic proof of a homological diagram lemma in
a concrete abelian category, such as the category of abelian groups, is in some sense
more elegant than the set-theoretic proof involving elements. One of the main aims of
this paper is to show that a similar statement can be made for some of the diagram
lemmas in many of the principal non-abelian categories, which includes categories of
group-like structures, and many more.

Half a century of developments, following the proposal for an axiomatic approach in
the study of the category of groups made in [23], leads to the notion of a semi-abelian
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category [16]; semi-abelian categories are to categories of group-like and slightly more
general structures (e.g., loops, groups, rings, algebras, modules, etc.), as abelian cate-
gories are to categories of modules. A semi-abelian category is a finitely complete Barr
exact [1], Bourn protomodular [5] pointed category having binary sums. Abelian cat-
egories are precisely those semi-abelian categories whose duals are also semi-abelian.
Thus, semi-abelian categories cannot exhibit as much duality as abelian categories
can. Nevertheless, already in [29] it is shown that some of the diagram lemmas can
be proved by duality in non-abelian categories such as the category of groups. This is
perhaps not too surprising, since a short exact sequence in these categories, including
all semi-abelian ones, can be still defined in a self-dual way. The present paper can
be seen as a revival of this line of research, which builds on some of the more recent
developments in categorical algebra, and at the same time, exposes some concealed
links between these developments and observations concerning diagram lemmas in
abelian categories due to Mac Lane.

In [19], it was shown that certain principal properties of semi-abelian categories
can be given a self-dual form by representing a semi-abelian category C through a
“projection” onto C — a functor from some category B to C, and in particular, the
right functor for this purpose is the Grothendieck bifibration B → C of subobjects of
the semi-abelian category C. By “duality” with respect to such structure we mean
the usual duality for a functor, as defined in, e.g., [25], which takes dual of both
categories, and replaces the functor with its dual functor B

op → C
op. It seems that

much of the non-dual theory of semi-abelian categories can be recovered from a more
general self-dual theory developed in the context of a category equipped with a functor
to it. This in some way resembles how projective plane geometry allows to develop
a self-dual treatment of certain topics in Euclidean plane geometry (see, e.g., [28]).
Another analogy with the ideas emerging from projective geometry is the role played
by subobject lattices, which are usually the fibres of the functor required for the above
purposes — see the Prefaces of the two recent monographs [11, 12] where Grandis
explains why he calls his approach to homological algebra, based on subobject lattices
(more precisely, lattices of normal subobjects), a “projective approach”. It should be
remarked, however, that the role of subobject lattices for similar purposes as we have
in mind is in some sense hinted already in the very first paper [23] where duality of
the context of a category is explored for the first time, and which later gave rise to the
modern self-dual notion of an abelian category (for a brief history of the development
of this notion, see the note to the chapter on abelian categories in [25]). Another
place where the importance of viewing objects in a category via their subobjects is
emphasized in the work of Mac Lane is in his subobject chasing technique [24]. In
some sense, the present paper together with [19, 20, 21] show how these ideas can be
brought together and merged with more recent developments in categorical algebra,
giving rise to what should perhaps be called, adopting and extending the terminology
of Grandis, a “projective approach to non-abelian algebra”.

Let us briefly sketch Mac Lane’s technique of chasing subobjects in an abelian
category C (see [24, 25]). It can be formalised as a list of preservation–reflection
properties of a (covariant) functor F : C → Set∗ defined as follows:

� for each object X in C, the elements of the pointed set F (X) are subobjects of
X, with the base point being the subobject given by a null morphism 0 → X;
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� for each morphism f : X → Y in C, a subobject of X given by a monomorphism
m : M → X is mapped by F (f) to the subobject of Y given by the monomor-
phism m′ in the decomposition fm = m′e of fm into an epimorphism followed
by a monomorphism (m′ is the “image” of m under f).

We call F the covariant pointed subobject functor, as in [17]. The required preser-
vation–reflection properties of this functor are:

� a morphism f : X → Y in C is a null morphism if and only if F (f) is a null
morphism of pointed sets, i.e., ImF (f) = {0} (where 0 denotes the base point
of the pointed set F (Y ));

� it is an epimorphism if and only if F (f) is surjective;

� it is a monomorphism if and only if F (f) is injective, and if and only if KerF (f)=
{0} (i.e., if F (f)(x) = 0 then x = 0);

� a sequence

X
f �� Y

g �� Z

of morphisms in C is exact at Y if and only if the corresponding sequence

F (X)
f �� F (Y )

g �� F (Z)

of morphisms of pointed sets is exact at F (Y ), i.e., ImF (f) = KerF (g).

These properties are established in Theorem 2.2 in [24]. The covariant pointed sub-
object functor reduces diagram chasing in an abelian category, to chasing diagrams
of pointed sets. Since the dual of an abelian category C is still an abelian category,
we get a similar list of properties for the contravariant functor C

op → Set∗ which
assigns to an object X the pointed set of quotients of X in C, with the base point
given by the null quotient X → 0. Now, exactness of a sequence in an abelian cate-
gory C is equivalent to exactness of the same sequence in the dual category C, and
so sometimes it becomes possible to use the covariant pointed subobject functor for
establishing one half of a diagram lemma, and the contravariant quotient functor, for
the other half. When these two halves are dual statements, the proof of the first half
is sufficient to prove the entire lemma. Moreover, often one of the two dual halves
of a diagram lemma requires subtraction and addition of elements/subobjects, while
the other one does not. In these cases, proving the “easier” dual half suffices to prove
the entire lemma. This advantage of proving diagram lemmas in the context of an
abelian category is in fact inherent also in non-abelian contexts, as we show in the
present paper.

Note that in an abelian category C, via the standard kernel-cokernel correspon-
dence, quotients of X can be identified with subobjects of X (in an abelian category,
any subobject is normal), and then the dual of the covariant pointed subobject func-
tor becomes the contravariant pointed subobject functor F ′ : Cop → Set∗. Mac Lane’s
diagram chasing technique becomes then based on the properties listed above, of the
two functors:

F : C → Set∗, F ′ : Cop → Set∗.

It turns out that abelianness of the category C here is less significant, and the power of
the diagram chasing technique lies essentially in the fact that the two functors above
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agree with each other in a suitable sense. As we will see, similar pairs of functors can
be constructed also for the categories studied in non-abelian algebra, and hence we
get a new simplified approach to proving some of the standard diagram lemmas in
these categories. In particular, this is the case for all sequentiable categories in the
sense of Bourn [6] (which include the above-mentioned semi-abelian categories), as
well as for all modular semiexact categories in the sense of Grandis [10, 12].

A general analysis of Mac Lane’s subobject chasing technique in terms of the
covariant pointed subobject functor, and the corresponding generalization to non-
abelian categories, has already been carried out in [17, 18]. However, the theory
developed there is not a self-dual one. The new approach explored in the present work
is to consider both the covariant and the contravariant pointed subobject functors
simultaneously — this enforces the theory with duality, similar to the one present in
the classical context of an abelian category.

It must be made clear that the intention of this work is not to provide a general
axiomatic context for treating all diagram lemmas of homological algebra. Instead,
our aim is to identify those lemmas whose proofs in the classical abelian case can
be carried out by arguments that rely solely on chasing elements of pointed sets and
duality. For instance, we show by a counterexample that the “middle 3× 3 lemma”
cannot be proved using our technique. However, we do not exclude the possibility of
a future specialization of the context we propose in the present paper, still general
enough not to exclude principal examples, that would encompass all desirable diagram
lemmas.

This work leads also to some other open questions and conjectures. For instance,
there is an impression that any diagram lemma that can be proved for abelian groups
can be also proved for non-abelian groups. It seems as well that any diagram lemma
that can be proved for abelian groups, where the hypothesis is just exactness of
sequences (and not that a certain composite of morphisms is a null morphism, as
in the middle 3× 3 lemma), and the conclusion is of the same type (and does not
include existence of a new morphism, as in the snake lemma), can be also proved in
the general context considered in this paper.

The paper is organized in two sections, apart from this introduction. In the first
section, we develop the general theory and in the second section we discuss examples
and applications. The first section requires minimal knowledge of category theory.
We assume only that the reader is familiar with the notions of category and functor,
as introduced in [8]. In the second section, we assume that the reader is familiar with
basic material on categories from [25]; while some other basic concepts from category
theory that are required to understand a large part of the section have been recalled
in sufficient detail (e.g., the notion of a regular category [1]), and some parts are
most elementary, an in-depth understanding of a few remaining parts substantially
rely on the cited literature (and in a few places, knowledge of the basic theory of
Grothendieck fibrations [14, 15]).

1. General theory

Preliminaries 1.1 (Zero object; exact sequence of pointed sets). Recall from [25]
that a zero object in a category is an object which admits a unique morphism to any
other object, and a unique morphism from any other object, i.e., it is an object which
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is both initial and terminal. In particular, in the category Set∗ of pointed sets, such
object exists and is given by a singleton pointed set. We denote it by 0.

For a pointed set X, we write ∗X to denote its base point. A morphism of pointed
sets is a constant map if and only if it factors through the zero object 0. A sequence

A
u �� B

v �� C

of morphisms in Set∗ is exact when Ker v = Imu, where Imu = {u(a) | a ∈ A} and
Ker v = {b ∈ B | v(b) = ∗X}.
Conditions 1.2. For a pair of functors

(−)∗ : C → Set∗, (−)∗ : Cop → Set∗,

we consider the following conditions:

(D1) For a sequence

X
f �� Y

g �� Z (1)

of morphisms in C, the sequence

X∗
f∗ �� Y∗

g∗ �� Z∗

is exact in Set∗ if and only if the sequence

Z∗ g∗
�� Y ∗ f∗

�� X∗

is exact in Set∗.
(D2) For a morphism f : X → Y in C, the following conditions are equivalent: (a) f∗

is injective; (b) the sequence

0 �� X∗
f∗ �� Y∗

is exact in Set∗; (c) f∗ is surjective, or equivalently, the sequence

Y ∗ f∗
�� X∗ �� 0

is exact in Set∗. Similarly, the following conditions are equivalent: (d) f∗ is
injective; (e) the sequence

0 �� Y ∗ f∗
�� X∗

is exact in Set∗; (f) f∗ is surjective, or equivalently, the sequence

X∗
f∗ �� Y∗ �� 0

is exact in Set∗.
(D3) For a morphism f : X → Y in C, the map f∗ is a bijection if and only if f∗ is

a bijection and if and only if f is an isomorphism.

Definition 1.3. A diagram chasing context consists of a category C equipped with
a pair of functors as above satisfying (D1) and (D2). When (D3) is also satisfied then
the diagram chasing context is called a strict diagram chasing context.
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Objects and morphisms of a diagram chasing context are those of the ground
category C. In a diagram chasing context, a sequence (1) of morphisms is said to be
an exact sequence, when the corresponding sequences displayed in (D1) are exact in
Set∗.

Lemma 1.4. For a morphism f : X → Y in a diagram chasing context the following
conditions are equivalent:

(a) The sequence

X
f �� Y

1Y �� Y

is exact.

(b) Both f∗ and f∗ are constant maps.

(c) f∗ is a constant map or f∗ is constant map.

(d) The sequence

X
1X �� X

f �� Y

is exact.

Proof. This follows from (D1) and the fact that when f is a morphism of pointed sets,
both (a) and (d), with exactness there meaning the usual exactness for morphisms of
pointed sets recalled above, are equivalent to f being a constant map.

Definition 1.5. A morphism f in a diagram chasing context is said to be a null
morphism if it satisfies the equivalent conditions 1.4(a)–(d).

Remark 1.6. If for every object X there exists a null morphism with codomain X,
then, thanks to (D1), the condition (b) in (D2) can be dropped. Indeed, in this case
the sequence in (b) can be replaced with the sequence

W∗
e∗ �� X∗

f∗ � � Y∗ ,

where e is a null morphism with codomain X. By (D1), exactness of this sequence is
equivalent to exactness of the sequence

Y ∗ f∗
�� X∗ e∗ �� W ∗

and since e∗ here is a constant map, exactness of the above sequence becomes equiv-
alent to surjectivity of f∗, which gives us (c).

Similarly, if for every object X there exists a null morphism with domain X, then
the condition (e) in (D2) can be dropped.

Definition 1.7. An object X in a diagram chasing context is a null object when 1X
is a null morphism. A morphism f : X → Y in a diagram chasing context is said to
be an equivalence when f∗ is a bijection, or equivalently, when f∗ is a bijection.

Lemma 1.8. For an object X in a diagram chasing context the following conditions
are equivalent:

(a) 1X is a null morphism.
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(b) Both X∗ and X∗ are singletons, where by a “singleton” we mean a pointed
set which is isomorphic to 0, i.e., a pointed set whose base point is its unique
element.

(c) X∗ is a singleton or X∗ is a singleton.

Proof. This is a trivial consequence of the fact that a pointed set is a singleton if and
only if its identity morphism is a constant map.

Remark 1.9. Note that in a diagram chasing context every isomorphism is an equiv-
alence. Axiom (D3) states that the converse is also true.

In a diagram chasing context we can carry out many of the diagram chasing argu-
ments in an essentially identical way as we would in the case of the context of an
abelian category, relying on duality. We illustrate this by proving the so-called “five
lemma” below.

Lemma 1.10 (Five lemma in a diagram chasing context). In a diagram chasing
context, for any commutative diagram

X1
f1 ��

h1

��

X2
f2 ��

h2

��

X3
f3 ��

h3

��

X4
f4 ��

h4

��

X5

h5

��
Y1 g1

�� Y2 g2
�� Y3 g3

�� Y4 g4
�� Y5

where the horizontal rows are exact sequences, if h1, h2, h4, h5 are equivalences, then
h3 is an equivalence. In a strict diagram chasing context, we can also conclude that
h3 is an isomorphism.

Proof. To show that h3 is an equivalence, it suffices to show that the sequence

0 �� (X3)∗
(h3)∗ �� (Y3)∗ �� 0

is exact. As it is classically done in the context of an abelian category (see, e.g., [25]),
we will first show exactness of this sequence at (X3)∗, and deduce exactness at (Y3)∗
by duality. After applying (−)∗ to the entire diagram in the lemma, we can carry out
the following standard diagram chase:

x′′
�

9

��

x′ � 5 ��
�

6

��

x � 3 ��
�

1

��

•�
4

��
• �

8
�� • �

7
�� 0 �

2
�� 0 .

Commutativity of the diagram alone does not force (f1)∗x′′ = x′. However, it does
force (h2)∗(f1)∗x′′ = (h2)∗x′, which implies that (f1)∗x′′ = x′. After this, x = 0, which
shows exactness of the above sequence at (X3)∗. A symmetric argument, using the
functor (−)∗ in the place of (−)∗, will prove exactness of the sequence

0 �� (Y3)
∗ (h3)

∗
�� (X3)

∗ �� 0

at (Y3)
∗, which is equivalent to exactness of the previous sequence at (Y3)∗.
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Remark 1.11 (Other diagram lemmas in a diagram chasing context). We must remark
that in a diagram chasing context, as defined above, we expect to be able to establish
only those diagram lemmas which in an abelian category could be proved, using only
elementary diagram chasing arguments, avoiding subtraction or addition of elements,
thanks to duality. Among such diagram lemmas are, apart from the five lemma and its
various partial formulations, also the upper and the lower 3× 3 lemmas, and exactness
of the long sequence in the snake lemma, once a suitable connecting morphism has
been given (see [18]). The “cross lemma” in the sense of [18] can be also proved in a
diagram chasing context. It is not difficult to invent new diagram lemmas that can be
proved in a diagram chasing context. For instance, such is the “dragon lemma” which
states that if all sequences in the diagram below are exact, then so are the sequences
0 → X → Y and B → A → 0.
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To prove exactness of the sequence 0 → X → Y , apply the functor (−)∗ to the dia-
gram and chase elements from the left “head” of the dragon to its right “head” and
then back, along to top part of the dragon. Exactness of the sequence B → A → 0
follows by duality.

It turns out that the middle 3× 3 lemma cannot be proved in a diagram chasing
context. We show this below by constructing a counterexample.

Definition 1.12. In a diagram chasing context, define a short exact sequence to be
a sequence

X
f �� Y

g �� Z

of morphisms such that the sequence

0 �� X∗
f∗ �� Y∗

g∗ �� Z∗ �� 0

is exact in Set∗, or equivalently, the sequence

0 �� Z∗ g∗
�� Y ∗ f∗

�� X∗ �� 0
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is exact in Set∗. The middle 3× 3 lemma states that in a commutative diagram

A11
f11 ��

g11

��

A12
f12 ��

g12

��

A13

g13

��
A21

f21 ��

g21

��

A22
f22 ��

g22

��

A23

g23

��
A31

f31

�� A32
f32

�� A33

if the composite of morphisms in the middle row is a null morphism, and the remaining
rows are short exact sequences, as well as all three columns, then the middle row is
also a short exact sequence.

Counterexample 1.13. [A diagram chasing context where the middle 3× 3 lemma
fails] We now show that the middle 3× 3 lemma is not necessarily true, even in a
strict diagram chasing context. In the middle 3× 3 lemma as formulated above, one
requires that the sequence

0 �� (A21)∗
(f21)∗ �� (A22)∗

(f22)∗ �� (A23)∗ �� 0

is exact. It is easy to prove exactness at (A21)∗, and by duality, deduce exactness at
(A23)∗. However, exactness at (A22)∗ cannot be established. To show this, consider
the free category C over the graph

X u ��
Yv��

a ��

d ��
Zc�� b��

satisfying the identities

vu = 1X , ca = uv = bd, ba = 1Y = cd, au = du, vb = vc.

Notice that this system of identities is invariant under interchanging u with v, a with
c, and b with d and then changing the order of composition. This gives rise to an
isomorphism of categories I : Cop → C, whose inverse is its dual, which is identity on
objects, and under which a �→ c and b �→ d. We will use this isomorphism below.

The next step is to remark that the category C has 19 morphisms, with the com-
position given in Table 1. The identities corresponding to those which we used to
define the category C hold for the diagram

({0}, 0) u∗ ��
({0, 1}, 0)v∗��

a∗ ��

d∗ ��
({0, 1, 2, 3}, 0)c∗��

b∗��

of pointed sets, where u∗ and v∗ are uniquely determined, while the other maps are
defined as follows:

a∗(x) = x,

b∗(x) =
{

1, x = 1,
0, x ∈ {0, 2, 3},

c∗(x) =
{

1, x ∈ {2, 3},
0, x ∈ {0, 1},
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◦
1 X

u
a
u

v
u
v

1 Y
a

d
a
u
v

v
b

u
v
b

b
c

1 Z
a
b

d
c

a
c

d
b

a
u
v
b

1 X
1 X

v
v
b

u
u

u
v

u
v
b

a
u

a
u

a
u
v

a
u
v
b

v
1 X

v
v

v
b

v
b

v
b

u
v

u
u
v

u
v

u
v
b

u
v
b

u
v
b

1 Y
u

u
v

1 Y
u
v
b

b
c

a
a
u

a
u
v

a
a
u
v
b

a
b

a
c

d
a
u

a
u
v

d
a
u
v
b

d
b

d
c

a
u
v

u
a
u
v

a
u
v

a
u
v
b

a
u
v
b

a
u
v
b

v
b

1 X
v

v
v

v
b

v
b

v
b

v
b

v
b

v
b

u
v
b

u
u
v

u
v

u
v

u
v
b

u
v
b

u
v
b

u
v
b

u
v
b

u
v
b

b
u

1
Y

u
v

u
v

b
b

u
v
b

c
u
v
b

u
v
b

c
u

u
v

1 Y
u
v

c
u
v
b

c
u
v
b

b
u
v
b

1 Z
a
u

a
d

a
u
v

1 Z
a
b

d
c

a
c

d
b

a
u
v
b

a
b

a
u

a
a
u
v

a
u
v

a
b

a
b

a
u
v
b

a
c

a
u
v
b

a
u
v
b

d
c

a
u

a
u
v

d
a
u
v

d
c

a
u
v
b

d
c

a
u
v
b

d
b

a
u
v
b

a
c

a
u

a
a

a
u
v

a
c

a
u
v
b

a
c

a
u
v
b

a
b

a
u
v
b

d
b

a
u

d
a
u
v

a
u
v

d
b

d
b

a
u
v
b

d
c

a
u
v
b

a
u
v
b

a
u
v
b

a
u

a
u
v

a
u
v

a
u
v

a
u
v
b

a
u
v
b

a
u
v
b

a
u
v
b

a
u
v
b

a
u
v
b

Table 1: Composition table for the category in Counterexample 1.13
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d∗(x) = 2x.

Thus, the above diagram determines a functor (−)∗ : C → Set∗. Similarly, the functor
(−)∗ = I(−)∗ = (−)∗ ◦ I : Cop → Set∗, where I is the isomorphism defined above, is
determined by the diagram

({0}, 0) v∗ ��
({0, 1}, 0)

u∗��
c∗ ��

b∗ ��
({0, 1, 2, 3}, 0).

a∗�� d∗��

With the help of Table 2, and the display given below, it is a simple routine to verify
that this pair of functors constitutes a strict diagram chasing context.

In the following display, consider the diagram

X
u ��

u

��

Y
1Y ��

a

��

Y

1Y

��
Y

d ��

1Y

��

Z
b ��

c

��

Y

v

��
Y

1Y
�� Y

v
�� X

1�

��

� �� 1�

��

0�

��

� �� 0�

��

� �� 0�

��

3 �

��

�

��

2 �





�

��

1�

��

�
��

1�

��

� �� 1�

��

0�

��

� �� 0�

��

� �� 0�

��1 � �� 1 �

��
0 � �� 0 � �� 0

at the top left corner, seen as a diagram in C. This diagram meets all assumptions
stated in the middle 3× 3 lemma, but the middle sequence is not an exact sequence.
Hence, the middle 3× 3 lemma fails in the strict diagram chasing context that we
have constructed. The figure in the bottom right corner of the above display sketches
the image of the previous diagram under the functor (−)∗; to obtain the image of the
same diagram under the functor (−)∗, simply rotate this figure by 180◦ around its
centre.

2. Examples and applications

Preliminaries 2.1 (Subobjects in regular categories). The class of regular proto-
modular categories is a wider class of categories than the class of semi-abelian cate-
gories. Hence, they include categories of various group-like structures, as well as the
category of, say, topological groups which is not a semi-abelian category. As we will
see below, functorial analysis of diagram chasing brings us very close to the essence
of this class of categories.

Recall that a regular category is a finitely complete category C (i.e., a category
having finite limits), in which any morphism f can be factorized f = me as a pullback-
stable regular epimorphism e followed by a monomorphism m. Recall that a regular
epimorphism is a coequalizer of a parallel pair of morphisms. A pullback-stable regular
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Table 2: The two functors in Counterexample 1.13 constitute a strict diagram chasing
context
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epimorphism is a regular epimorphism whose pullback along any morphism is still a
regular epimorphism. In the familiar regular categories of structures (e.g., categories
of groups, rings, etc.), regular epimorphisms are just surjective structure-preserving
maps. Just as in these categories, in any regular category, any regular epimorphism is a
pullback-stable regular epimorphism. Also, in a regular category the class of regular
epimorphisms is closed under composition (in general, the class of pullback-stable
regular epimorphisms is closed under composition in any category with pullbacks).

Recall that a subobject of an object X (in any category C) is an equivalence class
of monomorphisms m : M → X, under the equivalence relation which identifies two
monomorphisms m and m′ when they factor through each other, i.e., m = m′j and
m′ = mj′, for some morphisms j and j′; when this happens, the morphisms j and j′

in the factorizations are unique, and are both isomorphisms, being inverses of each
other. When talking about a subobject we often write one of the members of the
equivalence class. For a morphism f : X → Y in a regular category, the subobject of
Y defined by the monomorphism m in a factorization f = me where e is a regular
epimorphism, is invariant under the factorization and is called the image of f . The
direct image of a subobject m : M → X under a morphism f is defined as the image of
the composite fm. The inverse image of a subobject m : M → X under a morphism
g : W → X is defined as the subobject given by the pullback of the morphism m
along the morphism g. Both of these constructions are well defined, i.e., they are
invariant under each choice made in the construction (the choice of a monomorphism
to represent the subobject, as well as the choice of a pullback). All of these notions
obtain the expected meaning in “familiar regular categories” referred to above.

Subobjects of an object can be ordered under factorization of the monomorphisms
that represent them: we say that a subobject m : M → X of an object X is smaller
than another subobject m′ : M ′ → X, when m factors through m′, i.e., m′j = m for
some morphism j : M → M ′. This order relation is well-defined for each object X and
is in fact a partial order, i.e., it is reflexive, transitive and antisymmetric. As expected,
every morphism f : X → Y gives rise to a Galois connection between the partially
ordered sets (classes) of subobjects of X and subobjects of Y , via the direct and
inverse image along f mappings. Note that every object X in a regular category has
a greatest subobject, given by the monomorphism 1X : X → X (or any isomorphism
with codomain X). The least subobject may not always exist, and when it does we
say that the regular category has least subobjects. This is the case, for instance, when
the regular category has an initial object 0. Then, the least subobject of X is the
image of the unique morphism 0 → X.

For a regular category C having least subobjects, we can define the so-called covari-
ant and the contravariant pointed subobject functors,

(−)∗ : C → Set∗, (−)∗ : Cop → Set∗,
as follows:

� For an object X in C, the elements of the pointed set X∗ are subobjects of X,
and the base point is the least subobject of X. The pointed set X∗ has the same
elements, but its base point is the greatest subobject of X.

� For a morphism f : X → Y in C, the function f∗ : X∗ → Y∗ maps a subobject of
X to its direct image under f , and the function f∗ : Y ∗ → X∗ maps a subobject
of Y to its inverse image under f .
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Theorem 2.2. For a regular category C with least subobjects, the covariant and the
contravariant pointed subobject functors constitute a diagram chasing context if and
only if C is a protomodular category in the sense of Bourn [5]. If C has an initial
object, then the same pair of functors constitute a strict diagram chasing context if
and only if C is a sequentiable category in the sense of Bourn [6].

Proof. As shown in [19], a regular category is protomodular if and only if whenever
a subobject x of an object X is larger than an inverse image f∗(y) of some subobject
y of Y , along a morphism f : X → Y , the subobject x itself is an inverse image of
some subobject of y; notice that since inverse and direct image maps form a Galois
connection, we can equivalently require x = f∗f∗(x). Under the presence of least
subobjects, it is enough to ask this for y being the least subobject 0Y of Y . Following
[19], we call this property right cartesianness of f . As remarked in [19], the dual
property of left cartesianness of f , which states that if x is smaller than the image
of a morphism g : W → X (i.e., the direct image of the largest subobject of W under
g), then x = g∗g∗(x), holds in any regular category; this can be confirmed by the
following construction of the inverse image of x, where monomorphisms representing
relevant subobjects have been labelled by the subobjects:

W ×M M ′

g∗(x)
��

e′ �� M ′

��

x

���
��

��
��

�

W
e

��

g

��M
m

�� X .

Ignore for now the label for the left-most arrow. g = me is the factorization of g as
a regular epimorphism e followed by a monomorphism m. Thus, m represents the
image of g, and since x is smaller than the image of g, we get the dotted arrow above.
Consider a pullback rectangle on the left hand side. Since e is a regular epimorphism,
so must be e′ (pullback-stability of regular epimorphisms). The fact that m is a
monomorphism implies that the outer trapezium is also a pullback. So, the left-most
arrow does indeed represent the inverse image of x under g, as the label indicates.
Since x is a monomorphism and e′ is a regular epimorphism, we see that the direct
image of g∗(x) along g coincides with x.

To prove the first part of the theorem, we begin by showing that the validity of
the implication

Ker g∗ = Im f∗ ⇒ Ker f∗ = Im g∗ (2)

(for sequences (1)) in (D1) is already equivalent to the above criterion for protomod-
ularity (i.e., right cartesianness of every morphism), while the reverse implication as
well as (D2) can be deduced from it. We begin by analyzing each of the equalities in
the implication above:

� Ker g∗ consists of all those subobjects m : M → Y of the object Y from the
display (1), such that g∗(m) is the least subobject 0Z of Z. It is thus the down-
closure of g∗(0Z). On the other hand, the image of f , which can be obtained as
the direct image f∗(1X) of 1X under f , is the greatest element in Im f∗ and so by
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left cartesianness of f , Im f∗ is the down-closure of f∗(1X). Thus, the equality
Ker g∗ = Im f∗ is equivalent to g∗(0Z) = f∗(1X).

� Ker f∗ consists of those subobject m of Y , such that f∗(m) is the largest subob-
ject of X. Thus, it is the up-closure of f∗(1X). It then follows that the equality
Ker f∗ = Im g∗ is equivalent to having g∗(0Z) = f∗(1X) and g being right carte-
sian.

From this we can conclude that (2) states that every morphism g such that g∗(0Z) =
f∗(1X) for some morphism f , is right cartesian. Since we can always find such f
(simply take f to be a monomorphism which represents the subobject g∗(0Z)), the
implication is equivalent to every morphism being right cartesian, and hence to pro-
tomodularity.

The reverse implication to (2) holds trivially, after the above analysis of the equali-
ties in it. The equivalences (a)⇔(c) and (d)⇔(f) in (D2) hold because f∗ and f∗ form
a Galois connection between ordered sets of subobjects. The equivalence (b)⇔(c) is
due to right cartesianness and the equivalence (e)⇔(f) is due to left cartesianness.

Recall that a sequentiable category is a regular protomodular category with an
initial object 0, such that the unique morphism 0 → 1 from an initial object 0 to
a terminal object 1 is a monomorphism. This gives rise to well-behaved notions of
kernel and cokernel, which extend the usual notions of kernel and cokernel from a
pointed category, see [6]. To see that (D3) holds in a sequentiable category, first note
that already in any regular category, f∗ being surjective implies that f∗ is a regular
epimorphism. As shown in [6], in a sequentiable category any regular epimorphism is
a cokernel of its kernel. f∗ being injective gives that its kernel is trivial, and hence f
must be an isomorphism. Conversely, if (D3) holds in a regular protomodular category
with an initial object 0, then we can decompose the unique morphism 0 → 1,

0
e �� H

m �� 1,

into a regular epimorphism e followed by a monomorphism m, and note that since
the initial object 0 has only one subobject, the sequence

0 �� 0
e �� H

is exact. This implies that e∗ is injective by (D2). At the same time, being a regular
epimorphism, by left cartesianness, e∗ is surjective. So e∗ is a bijection, and hence
e is an isomorphism by (D3). Then, since m is a monomorphism, so must be the
composite me, which concludes the proof.

Examples 2.3 (Regular protomodular categories with least subobjects). An example
of a regular protomodular category with an initial object 0 which is not a sequentiable
category, is the dual of the category of sets. A sequentiable category in which the
unique morphism 0 → 1 is an isomorphism (which is the same as a pointed regular
protomodular category), is called a homological category in [4]. For an extensive
list of examples of sequentiable and homological categories, see [6, 4]. Among these
categories are all usual pointed categories of group-like structures, and more generally,
all semi-abelian categories (which include all abelian categories). In particular, the
category of groups is one of such categories. The fact that any homomorphism of
groups is cartesian (in the sense recalled in the proof of Theorem 2.2) is of course one
of the basic facts about groups — see, e.g., Theorem II.22 in [2].
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Corollary 2.4. A homological category in the sense of [4] is the same as a pointed
regular category C for which the covariant and the contravariant pointed subobject
functors constitute a (strict) diagram chasing context.

Remark 2.5 (Application). Theorem 2.2 describes a large class of examples of diagram
chasing contexts. At the same time, it can be seen as an “application” of diagram
chasing contexts, as it shows that, in some sense, a sequentiable category is precisely
the type of regular category having least subobjects to which the subobject chasing
technique from abelian categories, relying on duality, can be adapted. It also gives a
similar new conceptual insight to protomodularity of a regular category having least
subobjects, as does Corollary 2.4 to homological categories.

Examples 2.6 (Modular semiexact categories). Another large class of examples of a
diagram chasing context is provided by the pairs of the covariant and the contravariant
pointed normal subobject functors of modular semiexact categories in the sense of
Grandis [10]. These include all abelian categories, as well as the category of graded
abelian groups, the categories of projective spaces and projective linear maps over a
field, and others — see [11, 12]. We will now recall a definition for these categories,
although we will treat the present topic somewhat briefly since here we do not have
any major new remarks to make.

The concept of a semiexact category, due to Grandis, has its origins in [9, 22].
Intuitively, it is a category C equipped with a structure that allows to define kernels
and cokernels abstractly, relative to the structure. As shown in [13], such structure
can be equivalently given as a full and faithful functor

C D,��

which has a left adjoint and a right adjoint, with the counit of the first adjunction
being a monomorphism admitting pullbacks along arbitrary morphisms, and the unit
being an identity, and dually, the unit of the second adjunction being an epimor-
phism admitting pushouts along arbitrary morphisms, and counit an identity. These
pullbacks and pushouts allow to define kernels and cokernels, while the category D

represents the subcategory of null objects of a semiexact category. For instance, when
D above is a singleton category, we recover the context of a pointed category with its
usual notions of kernel and cokernel. See the above reference for further details.

The structure of a semiexact category can be also equivalently presented, in some
sense, in a more “projective” way, as a functor

B �� C

having suitable (self-dual) properties — see [20]. In particular, B can be obtained as
the category of “short exact sequences” in C, and then the projection B → C assigns
to the short exact sequence the middle object in the sequence. Equivalently, the
functor B → C is the Grothendieck bifibration of “normal subobjects” in C. It arises
via the standard Grothendieck construction from the “transfer functor” in the sense of
Grandis, which assigns to each object the lattice of its normal subobjects. By assigning
to an object X in C the pointed set whose elements are objects in the fibre at X, with
the initial object of the fibre as the base point, we obtain what we call the covariant
pointed normal subobject functor of the semiexact category. The contravariant pointed
normal subobject functor of the semiexact category is defined dually, by selecting the
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terminal object, instead of the initial object, as the base point. The values of these two
functors at morphisms are defined, as expected, via cocartesian and cartesian liftings
(in the sense of the theory of Grothendieck fibrations), respectively, i.e., they are given
by direct and inverse images of normal subobjects along morphisms. Equivalently, we
can get these two functors by composing the “transfer functor” of Grandis [10, 12]
with suitable forgetful functors.

A semiexact category is modular when the change of base adjunctions between
the fibres of the above functor are “modular connections” in the sense of [10] or,
equivalently, “exact connections” in the sense of [12]. The property that defines such
adjunctions is in fact the same as what in the proof of Theorem 2.2 we referred
to as “cartesianness” — in general, as defined in [19], an adjunction is said to be
cartesian when the unit of the adjunction is co-cartesian (i.e., the naturality square is
a pushout), and the counit of the adjunction is cartesian (i.e., the naturality square
is a pullback). A principal example of a modular semiexact category is given by the
category of modular lattices with cartesian adjunctions as morphisms.

Similar arguments as those used in the proof of Theorem 2.2 can be used to show
that the covariant and the contravariant pointed normal subobject functors of a mod-
ular semiexact category give rise to a diagram chasing context (see also Remark 2.8
below). Strictness of this diagram chasing context identifies precisely the Grandis
exact categories [10, 11, 12], which encompass many examples of modular semiex-
act categories. Most of these examples are actually pointed categories. Note that
pointed Grandis exact categories are the same as “quasi exact categories” intro-
duced by Puppe [27], which are also the same as exact categories in the sense of
Mitchell [26]. Note also that abelian categories are precisely those pointed Grandis
exact categories which have finite products. Examples of (pointed) modular semiex-
act categories which are not Grandis exact are given by the categories of topological
vector spaces over topological fields, as mentioned in [12] (see also Example 2.9 and
Remark 2.10 below).

Remark 2.7 (Applications). The present paper gives, in some sense, a simpler way
of proving some of the standard diagram lemmas in well-established abstract non-
abelian contexts, than what appears in the literature (see [6, 4, 17, 18] for proofs
of diagram lemmas in sequentiable/homological categories, and see [10, 12] for those
in modular semiexact categories). In fact, even in particular instances of these con-
texts, where objects are concrete mathematical structures, such as, say, (non-abelian)
groups (which, by the way, form a homological category, but not a modular semiex-
act category), the approach of the present paper is still in some sense simpler than
the more elementary approach based on chasing actual elements of structures, as
the latter relies on operating on elements, and does not make use of duality. Unlike
the context of a homological category in the sense of [4], the context of a modular
semiexact category is self-dual, like that of an abelian category, and the proofs of
diagram lemmas in this context, given in [10, 12], also rely on duality. The method
outlined in this paper still provides in some sense more basic way of proving these
diagram lemmas as it does not use explicitly the ordering of subobjects. On the other
hand, the advantage of the method used in [10, 12] is that the entire diagram chasing
argument is reduced to a single chain of equalities of expressions involving meets and
joins of subobjects (which, in some sense, play an analogous role as addition and
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subtraction when chasing elements of, say, abelian groups), and so this method is
complementary to what the approach of the present paper aims, which is to simplify
diagram chasing by avoiding operations.

Remark 2.8 (Generalization). Both the modular semiexact categories, and protomod-
ular categories with least subobjects, are particular instances of a category with a
specified “locally bounded biform” in the sense of [20], which is at the same time
“cartesian” in the sense of [19]. A cartesian locally bounded biform over a category
C is a faithful Grothendieck bifibration over it, whose fibres are bounded posets,
and where the change of base adjunctions between fibres are cartesian in the sense
described in Examples 2.6. Any cartesian locally bounded biform over a category C

gives rise to a diagram chasing context by regarding the fibres as pointed sets in two
different ways — one with the bottom element being the base point, and the other
with the top element being the base point. Diagram chasing contexts obtained in this
way include those obtained from protomodular categories with least subobjects and
those obtained from modular semiexact categories. We must also remark that from
the proof of Theorem 2.2 one can easily extract a similar result on locally bounded
biforms, of which Theorem 2.2 would be a corollary; we leave this as an exercise for
a reader who is interested in this generalization.

Example 2.9 (Diagram chasing context formed by bounded intervals of a modular
lattice). Consider a lattice L, and consider the order relation O on L, seen as a subset
O ⊆ L× L. In fact, O is a sublattice of the cartesian product L× L of lattices. We can
then regard O as a category. Consider the functor (−)∗ : O → Set∗ which assigns to
an object a = (a0, a1) ∈ O the pointed set a∗ = ({x ∈ L | a0 � x � a1}, a0), and to a
morphism a → b the mapping x �→ x ∨ b0 from a∗ to b∗. Note that a morphism a → b
amounts to the inequalities a0 � b0 and a1 � b1, and so this mapping preserves the
base point, a0 �→ a0 ∨ b0 = b0. A dual construction yields a functor (−)∗ : Oop → Set∗
which assigns to an object a the pointed set ({x ∈ L | a0 � x � a1}, a1), and to a
morphism a → b the mapping x �→ x ∧ a1. We will now show that these two functors
constitute a diagram chasing context if and only if the original lattice L is a modular
lattice. For a sequence

(a0, a1)
u �� (b0, b1)

v �� (c0, c1)

of morphisms in O, we have:

Imu∗ = {x ∨ b0 | a0 � x � a1},
Ker v∗ = {y | b0 � y � b1 and y ∨ c0 = c0} = {y | b0 � y � b1 ∧ c0},

Im v∗ = {z ∧ b1 | c0 � z � c1},
Ker u∗ = {y | b0 � y � b1 and y ∧ a1 = a1} = {b | b0 ∨ a1 � y � b1}.

We then get that exactness of the sequence

a∗
u∗ �� b∗

v∗ �� c∗

implies a1 ∨ b0 = b1 ∧ c0, as does exactness of the sequence

c∗ v∗
�� b∗ u∗

�� a∗.
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Under modularity, the equality a1 ∨ b0 = b1 ∧ c0 would be equivalent to exactness of
both sequences. Indeed, this equality readily gives Imu∗ ⊆ Ker v∗. For the converse
inclusion, let y be such that b0 � y � b1 ∧ c0. Then a0 � a1 ∧ b0 � a1 ∧ y � a1. By
modularity, b0 ∨ (a1 ∧ y) = (b0 ∨ a1) ∧ y. Since a1 ∨ b0 = b1 ∧ c0, we can conclude b0 ∨
(a1 ∧ y) = y. This shows Ker v∗ ⊆ Imu∗, as desired. A dual argument will show that
modularity implies Im v∗ = Ker u∗. So, if L is a modular lattice, then (D1) holds. After
this, (D2) can be verified straightforwardly. In fact, the equivalence of (a) and (c),
and, (d) and (f) follows from the fact that for any morphism f : a → b, the induced
maps f∗ and f∗ constitute a Galois connection between two sublattices of L,

{x ∈ L | a0 � x � a1} � {y ∈ L | b0 � x � b1},
while the rest of (D2) follows from (D1) and the fact that for any object a ∈ O we
can find a null morphism into a and from a — indeed, for instance the morphisms
(a0, a0) → a and a → (a1, a1), respectively (see Remark 1.6). Conversely, to deduce
modularity from (D1) and (D2), it suffices to apply (D2) in the special case of a
morphism f : (a ∧ b, a) → (b, a ∨ b) where this time a and b are arbitrary elements of
L. For this morphism, the sequences

0 �� (a ∧ b, a)∗
f∗ �� (b, a ∨ b)∗ ,

0 �� (b, a ∨ b)∗
f∗

�� (a ∧ b, a)∗

are exact, and so by (D2), f∗ must be bijective. Since f∗, f∗ constitute a Galois
connection, this means that the maps f∗ and f∗ are inverses of each other. So as a
consequence of (D2), we can deduce the famous diamond isomorphism theorem in L,
which is well known to be equivalent to modularity of L.

Thus, a modular lattice gives rise to a diagram chasing context. A sequence

a
u �� b

v �� a

of morphisms in this diagram chasing context is exact when a1 ∨ b0 = b1 ∧ c0. A mor-
phism f : a → b is a null morphism when a1 � b0, and it is an equivalence when
a0 = a1 ∧ b0 and b1 = a1 ∨ b0. This diagram chasing context is a strict diagram chas-
ing context if and only if the lattice L has at most one element.

Remark 2.10 (Generalization). The above diagram chasing context of a modular lat-
tice is in fact a particular instance of a diagram chasing context arising from a mod-
ular semiexact category — in the projective presentation of this modular semiexact
category, the “projection” is the composition functor

O ×L O �� O

of the modular lattice L seen as a category (the category O then becomes the category
of morphisms in L). This then naturally gives rise to the question of considering any
category C in the place of the lattice L — we leave this for future investigation, only
remarking here that the composition functor C2 ×C C

2 → C
2, where C

2 denotes the
category of morphisms in C, is a Grothendieck bifibration when C has pullbacks
and pushouts, and requiring the change of base adjunctions of this bifibration to be
cartesian brings us close to the notion of a modular category due to Carboni [7].
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Example 2.11 (Diagram chasing context formed by elements of a Boolean algebra).
In all examples of a diagram chasing context we encountered so far, for any morphism
f , the maps f∗ and f∗ underly an adjunction between posets. This need not be always
the case, as we will now show, albeit with a somewhat artificial example. In it, the
pair of functors for the diagram chasing context are in fact identical to each other.

Consider a Heyting algebra H, regarded as a single object category whose mor-
phisms are elements of H, and composition is given by the meet operation of the
Heyting algebra. For the unique object X in C, define X∗ = X∗ to be the underlying
set of the given Heyting algebra, with the bottom element 0 as the base point. Now
for two elements a, b ∈ H, define

a∗(b) = a∗(b) = a ∧ b.

Then for a sequence

X
u �� X

v �� X

we have

Imu∗ = {b | b � u},

Ker v∗ = {b | v ∧ b = 0} = {b | b � v → 0},

Im v∗ = {b | b � v},

Ker u∗ = {b | u ∧ b = 0} = {b | b � u → 0}
and so exactness of the sequence

X∗
u∗ �� X∗

v∗ �� X∗

is equivalence to u = v → 0, while exactness of the sequence

X∗ X∗u∗
�� X∗v∗

��

is equivalent to v = u → 0. This means that (D1) is equivalent to the Heyting algebra
being a Boolean algebra. It is easy to see that conditions (a), (c), (d) and (f) in
(D2) are each equivalent to f being the top element of the Heyting algebra. So, by
Remark 1.6, we get that once (D1) holds also (D2) holds (the bottom element 0 of
the Boolean algebra is the unique null morphism). To verify this directly, note that
the conditions (b) and (e) in (D2) each state that

f ∧ a = 0 ⇔ a = 0

holds for any a ∈ H. In particular, if we take a = f → 0, we see that f → 0 = 0. This
is in fact not only necessary but also sufficient to have the above equivalence for every
a ∈ H, since f ∧ a = 0 is equivalent to a � f → 0. In a Boolean algebra, f → 0 = 0
is equivalent to f being the top element, which completes what we wanted to show.
Finally, note that (D3) always holds, since the map f ∧ (−) is a bijection if and only
if f is the top element of the Heyting algebra. Thus, we get a diagram chasing context
if and only if we get a strict one, and if and only if the Heyting algebra is a Boolean
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algebra. When this is the case, an exact sequence is a sequence of the form

• a �� • ¬a �� • .

Since, as remarked above, the bottom element 0 of the Boolean algebra is the unique
null morphism, the unique object is a null object if and only if the Boolean algebra
is trivial, i.e., 1 = 0.
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