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ON THE COHOMOLOGY OF ORIENTED GRASSMANN
MANIFOLDS
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(communicated by Donald M. Davis)

Abstract
This paper presents a new approach to studying the kernel

of the additive homomorphism from Hq(Gn,k) to Hq+1(Gn,k)
given by the cup-product with the first Stiefel–Whitney class
of the canonical k-plane bundle over the Grassmann manifold
Gn,k of all k-dimensional vector subspaces in Euclidean n-space.
This method enables us to improve the understanding of the
Z2-cohomology of the “oriented” Grassmann manifold G̃n,k of
oriented k-dimensional vector subspaces in Euclidean n-space.
In particular, we derive new information on the characteristic
rank of the canonical oriented k-plane bundle over G̃n,k and the

Z2-cup-length of G̃n,k. Our results on the cup-length for three

infinite families of the manifolds G̃n,3 confirm the corresponding
claims of Fukaya’s conjecture from 2008.

Dedicated to Professor Ulrich Koschorke on the occasion of his 75-th birthday.

1. Introduction

The Z2-cohomology algebra of the “unoriented” Grassmann manifold Gn,k (k �
n− k) of k-dimensional vector subspaces in Rn has a simple description in terms of
generators and relations [3]: we can write

H∗(Gn,k) = Z2[w1, . . . , wk]/In,k, (1)

where dim(wi) = i and the ideal In,k is generated by the k homogeneous components
of (1 + w1 + · · ·+ wk)

−1 in dimensions n− k + 1, . . . , n. If γn,k (briefly γ) denotes
the canonical k-plane bundle over Gn,k, then the indeterminate wi is a representative
of the ith Stiefel–Whitney class wi(γ) in the quotient algebra H∗(Gn,k). For wi(γ),
we shall also use wi as an abbreviation. Note that all cohomology in this paper will
be taken with coefficients in Z2. Also note that wi = wi(γ) should not be confused
with the Stiefel–Whitney classes of the manifold, namely wi(Gn,k) = wi(TGn,k), the
Stiefel–Whitney classes of its tangent bundle.
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Besides γn,k and its (n− k)-dimensional orthogonal complement γ⊥n,k (briefly γ⊥),
over Gn,k we have a nontrivial line bundle ξ = det(γ) = det(γ⊥). Then the “oriented”

Grassmann manifold G̃n,k of oriented k-dimensional vector subspaces in Rn which,
of course, is a double cover of Gn,k, can be interpreted as the 0-sphere bundle of ξ
([9, Corollary 12.3] or [12, Theorem 5.7.11]), to which one has an exact sequence of
Gysin type,

ψ−→ Hj−1(Gn,k)
w1−→ Hj(Gn,k)

p∗
−→ Hj(G̃n,k)

ψ−→ Hj(Gn,k)
w1−→ . (2)

We write here and elsewhere Hj−1(Gn,k)
w1−→ Hj(Gn,k) for the homomorphism given

by the cup-product with the Stiefel–Whitney class w1(ξ) = w1 = w1(γ
⊥), and

p : G̃n,k → Gn,k is the obvious covering projection. Note that G̃n,k is always orientable
as a manifold, whereas Gn,k is an orientable manifold if and only if n is even.

It is known [14] that Im(p∗ : H∗(Gn,k) −→ H∗(G̃n,k)) is a self-annihilating sub-

space of H∗(G̃n,k) of half the dimension. Very little is known about the algebra

H∗(G̃n,k), apart from the cases of (n− 1)-dimensional spheres G̃n,1
∼= Sn−1 and com-

plex quadrics G̃n,2. This is due to the fact that it is difficult to obtain information on
cohomology classes that generate

Im(ψ) ∼= H∗(G̃n,k)/Ker(ψ) = H∗(G̃n,k)/Im(p∗). (3)

A reason for this is that, in general, it is hard to calculate explicitly in H∗(Gn,k) and
determine the kernel of w1; of course, by (2), the latter vector space is the same as
Im(ψ).

Over G̃n,k we have the canonical oriented k-plane bundle γ̃n,k (briefly γ̃), which is
isomorphic to p∗(γ). As a consequence, p∗(wi) = w̃i for all i, where w̃i is an abbrevia-
tion, used throughout the paper, for the Stiefel–Whitney class wi(γ̃n,k); note w̃1 = 0.

The subspace C(j;n, k) := Im(p∗) of the Z2-vector space Hj(G̃n,k) is the character-
istic subspace (all its elements can be expressed in the Stiefel–Whitney characteristic
classes of γ̃n,k; that is why we call it by this name). If we denote dim(C(j;n, k)) by

χj(G̃n,k) and dim(Im(ψ)) by αj(G̃n,k), then (see (3))

χj(G̃n,k) + αj(G̃n,k) = bj(G̃n,k),

the right-hand side being the jth Z2-Betti number of G̃n,k.
Recall [10, 8] that, for a real vector bundle α over a path-connected CW -complex

X, its characteristic rank, charrank(α), is defined to be the greatest integer q, 0 �
q � dim(X), such that every cohomology class in Hj(X), 0 � j � q, is a polynomial
in the Stiefel–Whitney classes wi(α) ∈ Hi(X). In particular (see [7]), if TM is the
tangent bundle of a smooth closed connected manifold M , then charrank(TM) is the
characteristic rank of M , denoted charrank(M).

Now the greatest integer q such that

α0(G̃n,k) = α1(G̃n,k) = · · · = αq(G̃n,k) = 0

is nothing but the characteristic rank of γ̃n,k, briefly charrank(γ̃n,k).
Of course, we have

α1+charrank(γ̃n,k)(G̃n,k) �= 0,

since 1 + charrank(γ̃n,k) is the least degree, in which an “anomalous” (not expressible
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exclusively in the Stiefel–Whitney classes of γ̃n,k) generator of H∗(G̃n,k) appears.
Note that (see (2)) charrank(γ̃n,k) � j (for some j) if and only if p∗ : Hi(Gn,k) −→
Hi(G̃n,k) is surjective or, equivalently, w1 : H

i(Gn,k)→ Hi+1(Gn,k) is injective, for
all non-negative integers i � j.

When we know that some cohomology group of G̃n,k, in a degree not exceeding

half of dim(G̃n,k), does not vanish, we can use it to obtain an upper bound for

charrank(γ̃n,k). More precisely, due to the fact that the subspace Im(p∗) ⊂ H∗(G̃n,k)
is self-annihilating, one can easily adjust the proof of [2, Theorem 2.1] to verify that

if Ht(G̃n,k) �= 0 for some t � 1
2k(n− k), then we have

charrank(γ̃n,k) � k(n− k)− t− 1.

Under certain conditions, the characteristic rank of a vector bundle over a smooth
closed connected manifold M and the Z2-cup-length, denoted by cup(M), are nicely
related, as shown in the following generalization of [7, Theorem 1.1] which, in par-
ticular, will be used (in Section 3) for deriving upper bounds or exact values for the

cup-length of G̃n,k.

Theorem 1.1 (Naolekar and Thakur [10]). Let M be a connected closed smooth d-
dimensional manifold. Let α be a vector bundle over M satisfying the following: there
exists j, j � charrank(α), such that every monomial wi1(α) · · ·wis(α), 0 � it � j, in
dimension d vanishes. Then

cup(M) � 1 +
d− j − 1

rM
,

where rM is the smallest positive integer such that H̃rM (M) �= 0.

In addition, for any j � charrank(γ̃n,k), one sees that both the w1-homomorphisms
in the Gysin sequence (2) are injective and the homomorphism p∗ : Hj(Gn,k) −→
Hj(G̃n,k) is surjective, thus we have

Hj(G̃n,k) ∼= Hj(Gn,k)/Im(w1 : H
j−1(Gn,k)→ Hj(Gn,k)).

Of course, now dim(Im(w1 : H
j−1(Gn,k)→ Hj(Gn,k))) = bj−1(Gn,k). Consequently,

if j � charrank(γ̃n,k), then we have for the Betti number bj(G̃n,k) that

bj(G̃n,k) = bj(Gn,k)− bj−1(Gn,k).

The difference of the Z2-Betti numbers of the Grassmann manifold Gn,k on the
right-hand side is readily calculable from the Poincaré polynomial, and is nothing
but the number of linearly independent semi-invariants of degree k and weight j of

a binary form of degree n− k, provided j � k(n−k)
2 (note that the latter number

equals 1
2dim(Gn,k)), by a theorem of Cayley and Sylvester (see [11, Satz 2.21]). This

interesting interpretation of the Betti numbers bj(G̃n,k) for

j � min{charrank(γ̃n,k), k(n− k)

2
}

seems to have remained unnoticed thus far.
Theorem 2.1 in [8], on lower bounds or exact values for charrank(γ̃n,k) (3 � k �

n− k), gives information on the structure of the Z2-cohomology of the manifold G̃n,k.
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In the present paper, we add further results. As compared to [8], we present a different
approach to studying the kernel of w1. Some of the new results on the characteristic
rank presented here imply new exact values of the Z2-cup-length of G̃n,k. In partic-

ular, our results on the cup-length of three infinite families of the manifolds G̃n,3 in
Theorem 3.6(2) confirm the corresponding claims of Fukaya’s conjecture [4, p. 196].

2. An approach to studying the kernel of w1

The aim of this section is to develop tools for studying the kernel of the homomor-
phism w1 : H

j(Gn,k) −→ Hj+1(Gn,k).
A key rôle will be played by the fact that, for the Z2-vector space Hj(Gn,k) (k �

n− k), the set

{wa1
1 · · ·wak

k ;

k∑
i=1

iai = j,

k∑
i=1

ai � n− k} (4)

is an additive basis. This follows from [9, Corollary 6.7]; another proof can be found
in [5]. We shall refer to the basis (4) as “standard basis” in this paper. We say that
an element, wa1

1 · · ·wak

k ∈ Hj(Gn,k), of the standard basis is regular (with respect to
the homomorphism w1 : H

j(Gn,k) −→ Hj+1(Gn,k)) if its w1-image is an element of

the standard basis for Hj+1(Gn,k), that is, if
∑k

i=1 ai < n− k. An element of the
standard basis that is not regular is said to be singular.

Of course,

dim(Im(w1 : H
j(Gn,k) −→ Hj+1(Gn,k)))

is greater than or equal to the number of regular elements of the standard basis for
Hj(Gn,k) and

dim(Ker(w1 : H
j(Gn,k) −→ Hj+1(Gn,k))) = αj(G̃n,k)

does not exceed the number of singular elements of the standard basis for Hj(Gn,k).
The latter inequality can be concretized. Indeed, let p({1, 2, . . . , k − 1}, x) denote
the number of partitions of a non-negative integer x into parts, each taken from the
set {1, 2, . . . , k − 1}; in particular, if x � k − 1, then p({1, 2, . . . , k − 1}, x) = p(x)
is the total number of partitions of x.

Proposition 2.1. For the Grassmann manifold Gn,k (2 � k � n− k), we have the
following:

(a) If 1 � x � n− k, then all the elements in the standard basis for Hn−k−x(Gn,k)

are regular, thus we have αn−k−x(G̃n,k) = 0.

(b) If x � 0, then precisely p({1, 2, . . . , k − 1}, x) elements of the standard basis for

Hn−k+x(Gn,k) are singular; thus αn−k+x(G̃n,k) � p({1, 2, . . . , k − 1}, x).
Proof. Part (a). Let wa1

1 · · ·wak

k be an element of the standard basis inHn−k−x(Gn,k).
We have

k∑
i=1

ai �
k∑

i=1

iai = n− k − x,

thus the equality
∑k

i=1 ai = n− k is impossible; in other words, each basis element
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is now regular.

Part (b). If wa1
1 · · ·wak

k is a singular element of the standard basis inHn−k+x(Gn,k),
then clearly a1 + a2 + · · ·+ ak = n− k, whence

a2 + 2a3 + · · ·+ (k − 1)ak = x.

Since a1 is uniquely determined by the equation a1 = n− k − a2 − · · · − ak, the num-
ber of singular elements of the standard basis is equal to p({1, 2, . . . , k − 1}, x).

Remark 2.2. Of course, the vanishing of αn−k−x(G̃n,k) for all x in Proposition 2.1(a)
is equivalent to the known inequality [8, (2.5)] charrank(γ̃n,k) � n− k − 1.

The next lemma is elementary and stated without proof.

Lemma 2.3. Let �a1, . . . ,�am,�b1, . . . ,�bn be linearly independent vectors in a vector
space V over a field K. If �c1, . . . ,�cs (s � n) are linearly independent vectors in the

linear span [�b1, . . . ,�bn] ⊂ V , then also the vectors �a1, . . . ,�am,�c1, . . . ,�cs are linearly
independent.

In Z2[w1, . . . , wk], let w̄i(w1, . . . , wk) (briefly w̄i) denote the homogeneous com-
ponent of (1 + w1 + · · ·+ wk)

−1 = 1 + w1 + · · ·+ wk + (w1 + · · ·+ wk)
2 + . . . in di-

mension i. Of course, in particular, w̄i with i = n− k + 1, n− k + 2, . . . , n are the
generators of the ideal In,k; see (1). In addition, let gi(w2, . . . , wk) (briefly just gi)
denote the reduction of w̄i(w1, . . . , wk) modulo w1. We note that w̄i is a represen-
tative of the Stiefel–Whitney class wi(γ

⊥) ∈ Hi(Gn,k); we shall also use w̄i as an
abbreviation for wi(γ

⊥).
If i = n− k + 1, n− k + 2, . . . , n, then the polynomials gi(w2, . . . , wk) are repre-

sentatives of some multiples (by an abuse of notation, also denoted by gi(w2, . . . , wk),
briefly gi) of the first Stiefel–Whitney class w1 in the quotient algebra H∗(Gn,k).
The singular elements of the standard basis in Hn−k+x(Gn,k) (x � 0), when mul-
tiplied by w1, do not produce elements of the standard basis in Hn−k+x+1(Gn,k).
Combined with Lemma 2.3 (where we take those elements of the standard basis
divisible by w1 in the rôle of the vectors �ai and the others in the rôle of the vec-
tors �bj), this explains why the following proposition focuses on elements of the form

wb2
2 · · ·wbk

k gn−k+1+i ∈ Hn−k+x+1(Gn,k) (i = 0, 1, . . . , k − 1).

Proposition 2.4. For a non-negative integer x, we associate with Hn−k+x+1(Gn,k)
(2 � k � n− k) the set

Nx(Gn,k) :=
k−1⋃
i=0

{wb2
2 · · ·wbk

k gn−k+1+i; 2b2 + 3b3 + · · ·+ kbk = x− i}.

(1) The cardinality of Nx(Gn,k) is equal to p({1, 2, . . . , k − 1}, x), which is the
same (by Proposition 2.1) as the number of singular elements in the standard
basis for Hn−k+x(Gn,k).

(2) If x � n− k − 1, then each element of Nx(Gn,k) consists exclusively of mono-
mials wc2

2 · · ·wck
k such that c2 + · · ·+ ck � n− k, thus of elements not divisible

by w1 and belonging to the standard basis of Hn−k+x+1(Gn,k).
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(3) If x � n− k − 1 and there are t linearly independent (over Z2) elements in the
set Nx(Gn,k), then

αn−k+x(G̃n,k) � p({1, 2, . . . , k − 1}, x)− t.

In particular, if x � n− k − 1 and the set Nx(Gn,k) is linearly independent,
then

w1 : H
n−k+x(Gn,k) −→ Hn−k+x+1(Gn,k)

is a monomorphism and αn−k+x(G̃n,k) vanishes.

Proof. Part (1). The set {wb2
2 · · ·wbk

k gn−k+1+i; 2b2 + 3b3 + · · ·+ kbk = x− i} consists
of p({2, . . . , k}, x− i) elements. Thus the cardinality of Nx(Gn,k) is equal to

k−1∑
i=0

p({2, . . . , k}, x− i). (5)

If S is a set of positive integers and p(S, j) is the number of partitions of j whose
parts are from S, then (see [1, Theorem 1.1] if needed) we have, for |q| < 1,∑

i�0

p(S, i)qi =
∏
i∈S

(1− qi)−1.

Since

(1 + q + q2 + · · ·+ qk−1)

k∏
i=2

(1− qi)−1 =

k−1∏
i=1

(1− qi)−1,

the cardinality of Nx(Gn,k) (the sum in (5)) is p({1, 2, . . . , k − 1}, x).
Part (2). Since each element of Nx(Gn,k) is some wb2

2 · · ·wbk
k gn−k+1+i such that

2b2 + 3b3 + · · ·+ kbk = x− i, it consists of monomials of the form

wb2
2 · · ·wbk

k wc2
2 · · ·wck

k = wb2+c2
2 · · ·wbk+ck

k ,

where
∑k

i=2 i(bi + ci) = n− k + x+ 1. Thus, if x � n− k − 1, then

k∑
i=2

(bi + ci) �
n− k + x+ 1

2
� n− k.

Part (3). This is obviously implied by Lemma 2.3 and the first two parts of this
proposition.

3. Results on the characteristic rank and cup-length

In this section, the tools developed in Section 2 yield new bounds or exact results
on the characteristic rank of γ̃n,k (for odd n, also on the characteristic rank of G̃n,k).

These lead to obtaining infinitely many new exact values of the cup-length of G̃n,3,
regarded as likely in Fukaya’s conjecture [4, p. 196].

Theorem 3.1. For the oriented Grassmann manifold G̃n,k (4 � 2k � n), with the
unique integer t such that 2t−1 < n � 2t, we have the following:
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(1) If n is odd, then charrank(γ̃n,2) � n− 2, and if n is even, then charrank(γ̃n,2) �
n− 3.

(2) If s = 1 or s = 2, r is a non-negative integer, and 2t−1 + � s−1
2 � < n < 2t − s−

2, then charrank(γ̃n+r,3+r) � n+ s− 2. If 3 � s � 6 and 2t−1 + � s−1
2 � < n <

2t − s− 2, then charrank(γ̃n,3) � n+ s− 2.

In addition, if n is odd, then the replacement of the canonical bundle γ̃n,k by the

corresponding manifold G̃n,k gives the corresponding result on charrank(G̃n,k).

Proof. It is known ([8, Theorem 2.1] and the final part of its proof) that if n is odd,

then charrank(γ̃n,k) = charrank(G̃n,k). Thus it suffices to prove Parts (1) and (2).
Part (1). By Remark 2.2, charrank(γ̃n,2) � n− 3 for all n. If n is odd, then

N0(Gn,2) (see Proposition 2.4) only contains gn−1. From (1 + w2)
−1 = 1 + w2 + w2

2 +

w3
2 + · · · , one sees that gn−1 �= 0. Thus, by Proposition 2.4(3), αn−2(G̃n,2) vanishes

and we have

charrank(γ̃n,2) � n− 2.

Part (2) We shall repeatedly use the fact that, by [8, Lemma 2.3(i)],

gi(w2, w3) = 0 if and only if i = 2j − 3 for some j � 2. (6)

The following lemma (when combined with (6)) will also be useful; cf. each of the
four tables that occur in the proof of Theorem 3.1.

Lemma 3.2. For Gn,3, let gi denote the same polynomial in Z2[w2, w3] as in the rest
of this paper.

(a) If m �= 4 is such that gm−1 �= 0 and gm �= 0, then w2
2gm−1 + w3gm �= 0.

(b) If m �= 9 is such that gm−2 �= 0 and gm+1 �= 0, then w3
2gm−2 + w3gm+1 �= 0.

Proof of the lemma. We know [6], for all j � 1, that

gj =
∑

j
3�i� j

2

(
i

3i− j

)
w3i−j

2 wj−2i
3 . (7)

Part (a). Of course, a necessary condition for w2
2gm−1 + w3gm = 0 is that

w2
2 | gm and w3 | gm−1. (8)

Writing m = 6a+ b (0 � b � 5), from (7), one either directly sees that w2
2gm−1 +

w3gm �= 0, or that the divisibility condition (8) is not satisfied.
Indeed, if b = 0, then gm, and if b = 1, then gm−1 is equal to w2a

3 + · · ·+ w3a
2 , thus

the condition (8) fails for b = 0, 1. Similarly, if b = 2, then gm, and if b = 3, then
gm−1 is equal to w2w

2a
3 + · · ·+ w3a+1

2 , thus the condition (8) fails for b = 2, 3.
If b = 4, then we see that the condition (8) is fulfilled. But one calculates that

w2
2gm−1 + w3gm is equal to

aw2
2w

2a+1
3 + · · ·+ αw3a−4

2 w5
3 + βw3a−1

2 w3
3 + aw3a+2

2 w3,

where the third last and second last coefficients are abbreviated,

α =

(
3a− 1

5

)
+

(
3a

4

)
, β =

(
3a

3

)
+

(
3a+ 1

2

)
.

Thus, of course, w2
2gm−1 + w3gm �= 0 if a is odd. For even a, one readily verifies
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that if a = 8l, 8l + 4, then α = 1, and if a = 8l + 2, 8l + 6, then β = 1, thus again
w2

2gm−1 + w3gm �= 0.
Finally, if b = 5, then gm−1 = · · ·+ w3a+2

2 , thus w3 � gm−1.
Part (b). We proceed similarly as in the proof of Part (a). A necessary condition

for w3
2gm−2 + w3gm+1 = 0 is that

w3
2 | gm+1 and w3 | gm−2. (9)

Writing m = 6a+ b (0 � b � 5), one either directly sees, from (7), that w3
2gm−2 +

w3gm+1 �= 0, or that the divisibility condition (9) is not satisfied. Indeed, if b = 0,
then gm−2 = g6a−2 = g6(a−1)+4 = w3a−1

2 + · · · , and if b = 4, then gm−2 = g6a+2 =

· · ·+ w3a+1
2 , thus w3 � gm−2; the condition (9) fails for b = 0, 4. If b = 1, then gm+1 =

g6a+2 = w2w
2a
3 + · · · , if b = 2, then gm+1 = g6a+3 = w2a+1

3 + · · · , and if b = 5, then
gm+1 = g6(a+1) = w2a+2

3 + · · · , thus w3
2 � gm+1; the condition (9) fails for b = 1, 2, 5.

Finally, let us suppose that b = 3. Then gm+1 = g6a+4 = (a+ 1)w2
2w

2a
3 + · · ·+ w3a+2

2 ,
thus w3

2 � gm+1 if a is even. It remains to see what happens for odd a. If a =
8l + 1 (l � 1), then one calculates that w3

2gm−2 + w3gm+1 = w3
2g6a+1 + w3g6a+4 =

· · ·+ w3a−10
2 w9

3 + · · · �= 0, if a = 8l + 3, then one calculates that w3
2gm−2 + w3gm+1 =

· · ·+ w3a−1
2 w3

3 + · · · �= 0, if a = 8l + 5, then we have w3
2gm−2 + w3gm+1 = · · ·+

w3a−7
2 w7

3 + · · · �= 0 and, finally, if a = 8l + 7, then we have w3
2gm−2 + w3gm+1 = · · ·+

w3a−1
2 w3

3 + · · · �= 0. This proves the lemma.
Now we are ready to verify the claims of Theorem 3.1(2).
Case s = 1. We have 2t−1 < n < 2t − 3 and assumptions of the theorem imply that

n � 9. By [8, Theorem 2.1], we know that charrank(γ̃n+r,3+r) � n− 2. One readily
calculates (see Proposition 2.4) that

N2(Gn,3) = {w2gn−2(w2, w3), gn(w2, w3)}.
Since (see (6)) w2gn−2 �= 0, gn �= 0 and, since w2gn−2 + gn = w3gn−3 �= 0, the set
N2(Gn,3) is linearly independent. At the same time,

N2(Gn+r,3+r) = {w2gn−2(w2, w3, . . . , w3+r), gn(w2, w3, . . . , w3+r)}.
By iterating the obvious “inclusion” Gn,k → Gn+1,k+1 (D 	→ D ⊕ R), we obtain an
inclusion

j : Gn,k → Gn+r,k+r (10)

such that, for the pullbacks, we have j∗(γ) ∼= γ ⊕ rε (here rε is the trivial r-plane
bundle) and j∗(γ⊥) ∼= γ⊥. Of course, for the induced cohomology homomorphism,
we have that j∗(wi) = wi (with the right-hand side zero when k = 3 and i � 4)
and j∗(w̄i) = w̄i. Thus, since the set N2(Gn,3) = j∗(N2(Gn+r,3+r)) is linearly inde-
pendent, N2(Gn+r,3+r) has this property as well. Proposition 2.4(3) implies that

αn−1(G̃n+r,3+r) = 0 and charrank(γ̃n+r,3+r) � n− 1.
Case s = 2. Now 2t−1 < n < 2t − 4 and assumptions of the theorem imply that

n � 9. By the result for s = 1, we know that charrank(γ̃n+r,3+r) � n− 1. Since
w3gn−2 �= 0, w2gn−1 �= 0, and w3gn−2 + w2gn−1 = gn+1 �= 0, the set

N3(Gn,3) = {w3gn−2, w2gn−1}
is linearly independent. Similarly to the case of s = 1, one sees for r > 0 that the
set N3(Gn+r,3+r) = {w3gn−2, w2gn−1, gn+1} is independent. Thus Proposition 2.4(3)
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implies that we have αn(G̃n+r,3+r) = 0 and charrank(γ̃n+r,3+r) � n.

Case s = 3. We have 2t−1 + 1 < n < 2t − 5; assumptions of the theorem imply that
n � 10. By the result for s = 2, we know that charrank(γ̃n,3) � n. One verifies that
N4(Gn,3) consists precisely of the obviously nonvanishing elements w2

2gn−2, w3gn−1,
and w2gn; they are linearly independent, as the following table shows.

h1 h2 h3 h1w
2
2gn−2 + h2w3gn−1 + h3w2gn

0 1 1 gn+2 �= 0

1 0 1 w2w3gn−3 �= 0

1 1 0 w2
2gn−2 + w3gn−1 �= 0, Lemma 3.2(a)

1 1 1 w2
3gn−4 �= 0

By Proposition 2.4(3), now αn+1(G̃n,3) = 0 and charrank(γ̃n,3) � n+ 1.

Case s = 4. Now 2t−1 + 1 < n < 2t − 6 and, by assumptions of the theorem, we
have n � 18. By the result for s = 3, we know that charrank(γ̃n,3) � n+ 1. We see
that N5(Gn,3) consists precisely of the obviously nonvanishing elements w2w3gn−2,
w2

2gn−1, and w3gn; they are linearly independent, as the following table shows.

h1 h2 h3 h1w2w3gn−2 + h2w
2
2gn−1 + h3w3gn

0 1 1 w2
2gn−1 + w3gn �= 0, Lemma 3.2(a)

1 0 1 w2
3gn−3 �= 0

1 1 0 w2gn+1 �= 0

1 1 1 gn+3 �= 0

So we have proved that αn+2(G̃n,3) = 0, and Proposition 2.4(3) implies that now
charrank(γ̃n,3) � n+ 2.

Case s = 5. We have 2t−1 + 2 < n < 2t − 7 and assumptions of the theorem imply
that n � 19. By the result for s = 4, we know that charrank(γ̃n,3) � n+ 2. One calcu-
lates that N6(Gn,3) consists precisely of the obviously nonvanishing elements w3

2gn−2,
w2

3gn−2, w2w3gn−1, and w2
2gn. The following table shows that they are linearly inde-

pendent.

h1 h2 h3 h4 h1w
3
2gn−2 + h2w

2
3gn−2 + h3w2w3gn−1 + h4w

2
2gn

0 0 1 1 w2gn+2 �= 0

0 1 0 1 gn+4 �= 0

1 0 0 1 w2
2w3gn−3 �= 0

0 1 1 0 w3gn+1 �= 0

1 0 1 0 w2(w
2
2gn−2 + w3gn−1) �= 0, Lemma 3.2(a)

1 1 0 0 (w3
2 + w2

3)gn−2 �= 0

0 1 1 1 w2
2gn + w3gn+1 �= 0, Lemma 3.2(a)

1 0 1 1 w2w
2
3gn−4 �= 0

1 1 0 1 w3(w
2
2gn−3 + w3gn−2) �= 0, Lemma 3.2(a)

1 1 1 0 w3
2gn−2 + w3gn+1 �= 0, Lemma 3.2(b)

1 1 1 1 w3
3gn−5 �= 0
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So we have proved that now αn+3(G̃n,3) = 0. By Proposition 2.4(3), we have

charrank(γ̃n,3) � n+ 3.

Case s = 6. We have 2t−1 + 2 < n < 2t − 8 and assumptions of the theorem imply
that n � 19. By the result for s = 5, we know that charrank(γ̃n,3) � n+ 3. One
calculates that N7(Gn,3) consists precisely of the obviously nonvanishing elements
w2

2w3gn−2, w
3
2gn−1, w

2
3gn−1, and w2w3gn. The following table shows that they are

linearly independent.

h1 h2 h3 h4 h1w
2
2w3gn−2 + h2w

3
2gn−1 + h3w

2
3gn−1 + h4w2w3gn

0 0 1 1 w3gn+2 �= 0

0 1 0 1 w2(w
2
2gn−1 + w3gn) �= 0, Lemma 3.2(a)

1 0 0 1 w2w
2
3gn−3 �= 0

0 1 1 0 (w3
2 + w2

3)gn−1 �= 0

1 0 1 0 w3(w
2
2gn−2 + w3gn−1) �= 0, Lemma 3.2(a)

1 1 0 0 w2
2gn+1 �= 0

0 1 1 1 w3
2gn−1 + w3gn+2 �= 0, Lemma 3.2(b)

1 0 1 1 w3
3gn−4 �= 0

1 1 0 1 w2gn+3 �= 0

1 1 1 0 w2
2gn+1 + w2

3gn−1 = gn+5 �= 0

1 1 1 1 w2
2gn+1 + w3gn+2 �= 0, Lemma 3.2(a)

So we have proved that now αn+4(G̃n,3) = 0. By Proposition 2.4(3), we have

charrank(γ̃n,3) � n+ 4.

The proof of Theorem 3.1 is finished.

Conjecture 3.3. We conjecture that Theorem 3.1(2) holds true for all s � 1 such
that 2t−1 + � s−1

2 � < n < 2t − s− 2, and not just when s � 6.

In the proof of Theorem 3.1(2) for s = 1 or s = 2, we have extended a specific lower

bound for the characteristic rank of G̃n,3 to a lower bound for the characteristic rank

of G̃n+r,3+r (r � 0). The following theorem brings an additional piece of information
on the homomorphism w1 and offers further possibilities for extensions of results on
the characteristic rank of the vector bundle γ̃n,k.

Proposition 3.4. For the Grassmann manifold Gn,k (1 � k � n− k) and any posi-
tive integer l not exceeding n− 1, we have the following:

(1) If the homomorphism w1 : H
l(Gn,k) −→ H l+1(Gn,k) is injective, then also

w1 : H
l(Gn+1,k+1) −→ H l+1(Gn+1,k+1) is injective.

(2) An obvious consequence of (1) is that if charrank(γ̃n,k) � l then, for any non-
negative integer r, we have charrank(γ̃n+r,k+r) � l.
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Proof. Let j : Gn,k → Gn+1,k+1 denote the inclusion described in (10). The diagram

H l(Gn+1,k+1)
w1 ��

j∗

��

H l+1(Gn+1,k+1)

j∗

��
H l(Gn,k)

w1 �� H l+1(Gn,k)

obviously commutes. Let us suppose that the lower homomorphism w1 is injective;
we should prove that the upper homomorphism w1 is injective as well.

The standard basis vectors (see (4)) in H l(Gn+1,k+1) are

wa1
1 (γn+1,k+1) · · ·wak

k (γn+1,k+1)w
ak+1

k+1 (γn+1,k+1), (11)

such that a1 + 2a2 + · · ·+ kak + (k + 1)ak+1 = l and a1 + a2 + · · ·+ ak + ak+1 �
n− k. The images, under w1 : H

l(Gn+1,k+1)→ H l+1(Gn+1,k+1), of those vectors (11)
having ak+1 = 0 are linearly independent. Indeed, these images are

w1+a1
1 (γn+1,k+1) · · ·wak

k (γn+1,k+1);

the vectors j∗(w1+a1
1 (γn+1,k+1) · · ·wak

k (γn+1,k+1)) = w1+a1
1 (γn,k) · · ·wak

k (γn,k) (being
images of the standard basis vectors wa1

1 (γn,k) · · ·wak

k (γn,k) ∈ H l(Gn,k) under the
injective linear map w1 : H

l(Gn,k)→ H l(Gn,k)) are linearly independent. Thus also
w1+a1

1 (γn+1,k+1) · · ·wak

k (γn+1,k+1) are linearly independent. In addition, the images
under w1 : H

l(Gn+1,k+1)→ H l+1(Gn+1,k+1) of those vectors (11) having ak+1 � 1 are
also linearly independent, because all the standard basis vectors (11) having ak+1 � 1
are regular. Indeed, we have for any of these standard basis vectors in H l(Gn+1,k+1)
that

(a1 + a2 + · · ·+ ak + ak+1) + kak+1 � a1 + 2a2 + · · ·+ kak + (k + 1)ak+1 = l,

thus

a1 + a2 + · · ·+ ak + ak+1 � l − kak+1 � l − k � n− k − 1.

Finally, the w1-images of all the standard basis vectors (11) of H l(Gn+1,k+1) are
linearly independent. Indeed, let us suppose that a linear combination of all these
images vanishes, that is,∑

α(a1,...,ak,0)w
1+a1
1 wa2

2 · · ·wak

k +
∑

ak+1�1

α(a1,...,ak,ak+1)w
1+a1
1 wa2

2 · · ·wak

k w
ak+1

k+1 = 0.

(12)
When mapped by j∗ : H l+1(Gn+1,k+1)→ H l+1(Gn,k), this gives that∑

α(a1,...,ak,0)w
1+a1
1 (γn,k)w

a2
2 (γn,k) · · ·wak

k (γn,k) = 0,

implying that all the coefficients α(a1,...,ak,0) vanish, since w1+a1
1 (γn,k) · · ·wak

k (γn,k)
are linearly independent. So the left-hand side of (12) is reduced to a linear combi-
nation of vectors already known to be linearly independent, we have∑

ak+1�1

α(a1,...,ak,ak+1)w
1+a1
1 (γn+1,k+1)w

a2
2 (γn+1,k+1) · · ·wak+1

k+1 (γn+1,k+1) = 0,

thus also all the coefficients α(a1,...,ak,ak+1) (ak+1 � 1) must vanish. This finishes the
proof of Proposition 3.4.
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Remark 3.5. The assumption l � n− 1 in Proposition 3.4(1) is the best possible,
in the sense that the claim is false, in general, for l = n. Indeed, w1 : H

7(G7,2)→
H8(G7,2) is readily seen to be a monomorphism (apply Proposition 2.4(3); the set
N2(G7,2) = {w2g6} is linearly independent), but the homomorphism w1 : H

7(G8,3)→
H8(G8,3) is not injective (by a calculation in the cohomology algebra H∗(G8,3), (1),
or consulting Stong’s result on the height of w1 in [13], one sees that the kernel of
this homomorphism contains w7

1 �= 0).

Theorem 3.1 enables us to derive, among others, new exact results on the charac-
teristic rank and Z2-cup-length of three infinite families of the manifolds G̃n,3.

Theorem 3.6. For the oriented Grassmann manifolds G̃n,k (4 � 2k � n) we have
the following:

(1) If n is odd, then

charrank(γ̃n,2) = n− 2, cup(G̃n,2) =
n− 1

2
,

and if n is even, then

charrank(γ̃n,2) = n− 3, cup(G̃n,2) =
n

2
.

(2) If q � 4, then

charrank(γ̃2q−1+1,3) = 2q−1 + 1, cup(G̃2q−1+1,3) = 2q−1 − 3,

charrank(γ̃10,3) = 11, cup(G̃10,3) = 5,

and, if q � 5, then

charrank(γ̃2q−1+2,3) = 2q−1 + 4, cup(G̃2q−1+2,3) = 2q−1 − 3,

charrank(γ̃2q−1+3,3) = 2q−1 + 7, cup(G̃2q−1+3,3) = 2q−1 − 3.

Remark 3.7. The results on the cup-length in Theorem 3.6(2) confirm the corre-
sponding claims of Fukaya’s conjecture [4, p. 196]; another claim contained in this
conjecture was proved in [8].

Proof. Part (1). Let us first suppose that n is odd. It is clear (for instance, from

(1)) that w
n−3
2

2 ∈ Hn−3(Gn,2) is not a multiple of w1, thus we have w̃
n−3
2

2 �= 0 and

cup(G̃n,2) � n−1
2 . We know, from Theorem 3.1, that charrank(γ̃n,2) � n− 2. Thus

Theorem 1.1 implies that cup(G̃n,2) � n−1
2 , and we see that cup(G̃n,2) =

n−1
2 , as

claimed. At the same time, this shows that charrank(γ̃n,2) � n− 2 (charrank(γ̃n,2) �
n− 1 would imply a false inequality, cup(G̃n,2) � n−2

2 ), and so charrank(γ̃n,2) =
n− 2. [To see that charrank(γ̃n,2) � n− 2, it also suffices to compare the Betti num-
bers bn−1(Gn,2) =

n−1
2 and bn(Gn,2) =

n−3
2 , readily calculated from the Poincaré

polynomial.]

Now let us suppose that n is even. First, we note that G̃4,2
∼= S2 × S2; clearly

χ2(G̃4,2) = 1 = α2(G̃4,2), charrank(γ̃4,2) = 1, and cup(G̃4,2) = 2, as claimed. So we

may suppose that n � 6. Then w
n−2
2

2 ∈ Hn−2(Gn,2) cannot be a multiple of w1, thus
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we have w̃
n−2
2

2 �= 0 and cup(G̃n,2) � n
2 . We know, from Theorem 3.1, that

charrank(γ̃n,2) � n− 3;

Theorem 1.1 gives cup(G̃n,2) =
n
2 . We know, from Theorem 3.1, that

charrank(γ̃n,2) � n− 3.

Admitting that charrank(γ̃n,2) � n− 2 implies a false inequality, cup(G̃n,2) � n−1
2 .

[An alternative: since bn−2(Gn,2) =
n
2 and bn−1(Gn,2) =

n−3
2 , the homomorphism

w1 : Hn−2(Gn,2) −→ Hn−1(Gn,2) is not injective, and we conclude that
charrank(γ̃n,2) � n− 3.] Thus charrank(γ̃n,2) = n− 3, as claimed.

Part (2). We first note that, for any non-negative integer x, one has an obvious

“inclusion” j̃ : G̃2q−1,3 → G̃2q−1+x,3, such that j̃∗(γ̃2q−1+x,3) ∼= γ̃2q−1,3. Thus, in coho-

mology, j̃∗(w2q−1−4
2 (γ̃2q−1+x,3)) = w2q−1−4

2 (γ̃2q−1,3). It was proved in [7, p. 77] that
the latter cohomology class does not vanish. As a consequence, we have that

cup(G̃2q−1+x,3) � 2q−1 − 3. (13)

For G̃2q−1+1,3 (q � 4), Theorem 3.1(2) with s = 2 implies that

charrank(γ̃2q−1+1,3) � 2q−1 + 1.

Then, from Theorem 1.1, we obtain that cup(G̃2q−1+1,3) � 2q−1 − 3, thus we have

(see (13)) cup(G̃2q−1+1,3) = 2q−1 − 3 and charrank(γ̃2q−1+1,3) = 2q−1 + 1.

For G̃2q−1+2,3 with q = 4, that is, for G̃10,3, Theorem 3.1(2) with s = 3 applies and

gives that charrank(γ̃10,3) = 11. Thus from Theorem 1.1, we obtain that cup(G̃10,3) �
5 which, when combined with (13), implies that cup(G̃10,3) = 5 and charrank(γ̃10,3) =

11. Let us continue with G̃2q−1+2,3, q � 5. Then Theorem 3.1(2) with s = 4 implies

that charrank(γ̃2q−1+2,3) � 2q−1 + 4. From Theorem 1.1, we see that cup(G̃2q−1+2,3)�
2q−1 − 3; this, jointly with (13), yields

cup(G̃2q−1+2,3) = 2q−1 − 3 and charrank(γ̃2q−1+2,3) = 2q−1 + 4,

as claimed.

For G̃2q−1+3,3 with q � 5, we apply Theorem 3.1(2) with s = 6 and see that

charrank(γ̃2q−1+3,3) � 2q−1 + 7. Theorem 1.1 implies that cup(G̃2q−1+3,3) � 2q−1 − 3
which, when combined with (13), shows that

cup(G̃2q−1+3,3) = 2q−1 − 3 and charrank(γ̃2q−1+3,3) = 2q−1 + 7,

indeed. The proof of Theorem 3.6 is finished.
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