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Abstract
Let Wn,k be the Stiefel manifold U(n)/U(n− k). For odd

primes p and for k � (p− 1)(p− 2), we give a homotopy decompo-
sition of the based loop space ΩWn,k as a product of p− 1 factors,
each of which is the based loops on a finiteH-space. Similar decom-
positions are obtained for Sp(n)/Sp(n− k) and O(n)/O(n− k)
and upper bounds on the homotopy exponents are obtained.

1. Introduction

Let Vn,k = O(n)/O(n− k), Wn,k = U(n)/U(n− k) and Xn,k = Sp(n)/Sp(n− k)
be the real, complex and quaternionic Stiefel manifolds, respectively. The topology
of Stiefel manifolds is of long-standing interest, and many of their properties have
been determined. James’ book [J2] on the subject is an excellent exposition of what
was done up to the late 1970s. In terms of homotopy decompositions, Miller [M]
gave stable decompositions of Wn,k and Xn,k, which were later refined in different
ways by Crabb [C] and Yang [Yan]. Unstably, a product decomposition of Wn,k

or Xn,k is unlikely since, in general, Stiefel manifolds are not H-spaces, even when
localized at an odd prime. Nevertheless, Hemmi [He] and Yamaguchi [Yam] have
determined many cases when Wn,k and Xn,k are homotopy equivalent to a product
of odd dimensional spheres when localized at an odd prime.

It is more reasonable to ask for a product decomposition of the loop spaces ΩWn,k

and ΩXn,k. Mimura, Nishida and Toda’s [MNT2] work on mod-p homotopy decom-
positions of simple, compact Lie groups may lead to mod-p decompositions of ΩWn,k

and ΩXn,k. However, the factors would only be opaquely identified as the homotopy
fibres of maps between various factors of the Lie groups. Recently, using a different
approach, Beben [B] and Grbić and Zhao [GZ] gave p-local loop space decomposi-
tions of ΩWn,k for n � (p− 1)(p− 2) and ΩXn,k for n � (p− 1)(p− 2)/2, where the
factors are better identified as the loops on finite H-spaces.

In this paper we greatly improve on Beben’s and Grbić and Zhao’s results. We show
that if k � (p− 1)(p− 2) then for any n there is p-local loop space decomposition
of ΩWn,k as a product of loop spaces on finite H-spaces, and if k � (p− 1)(p− 2)/2
then for any n there is a p-local loop space decomposition of ΩXn,k as a product of
loop spaces on finite H-spaces.

Received November 20, 2015, revised January 25, 2016; published on July 6, 2016.
2010 Mathematics Subject Classification: Primary 55P35, Secondary 55Q52.
Key words and phrases: Stiefel manifold, loop space, decomposition, exponent.
Article available at http://dx.doi.org/10.4310/HHA.2016.v18.n2.a3
Copyright c© 2016, International Press. Permission to copy for private use granted.



60 MAMORU MIMURA and STEPHEN THERIAULT

To state our results explicitly, some notation is needed. From now on, assume that
all spaces and maps have been localized at an odd prime p, and take homology with
mod-p coefficients. Recall that there is a canonical map ΣCPn−1 −→ SU(n) which
induces the inclusion of the generating set in homology. Let CPn,k = CPn−1/CPn−k−1

be the stunted projective space. As will be described later, there is an isomorphism
H∗(Wn,k) ∼= Λ(H̃∗(ΣCPn,k)) and a homotopy equivalence ΣCPn,k �

∨p
i=2 C

i
n,k,

where H∗(Ci
n,k) consists of those elements in H∗(ΣCPn,k) in degrees of the form

2i− 1 + 2k(p− 1) for k � 0.

Theorem 1.1. Localize at an odd prime p. If k � (p− 1)(p− 2) then there is a homo-
topy equivalence

ΩWn,k �
p∏

i=2

ΩBi
n,k,

where Bi
n,k is a finite H-space and H∗(Bi

n,k)
∼= Λ(H̃∗(Ci

n,k)).

Similarly, James constructed a quasi-projective space Qn and a map Qn −→ Sp(n)
which induces the inclusion of the generating set in homology. Let Qn,k = Qn/Qn−k

be the stunted quasi-projective space. Then there is an isomorphism H∗(Xn,k) ∼=
Λ(H̃∗(Qn,k)) and a homotopy equivalence Qn,k �

∨p
i=2 R

i
n,k, where H∗(R

i
n,k) consists

of those elements in H∗(Qn,k) in degrees of the form 4i− 1 + 2k(p− 1) for k � 0.

Theorem 1.2. Localize at an odd prime p. If k � (p− 1)(p− 2)/2 then there is a
homotopy equivalence

ΩXn,k �
(p−1)/2∏

i=2

ΩDi
n,k,

where Di
n,k is a finite H-space and H∗(Di

n,k)
∼= Λ(H̃∗(Ri

n,k)).

In the next to last section of the paper we combine Theorem 1.2 with Harris’
odd primary decompositions SO(2n+ 1) � Sp(n) and SO(2n) � S2n−1 × Sp(n− 1)
in order to give analogous odd primary homotopy decompositions for ΩVn,k. Finally,
in the last section of the paper we use the decompositions in Theorems 1.1 and 1.2
in order to deduce upper bounds on the homotopy exponents of Vn,k, Wn,k and Xn,k

for appropriate values of k.

2. Preliminary information on Stiefel manifolds

The material in this section will be valid for either Wn,k or Xn,k, so we will denote
them commonly by Yn,k. There is a canonical fibration

Yn−1,k−1
ε−→ Yn,k

π−→ S2dn−1,

where d = 1 in the complex case and d = 2 in the quaternionic case. Fixing k,
James [J1] showed that there is an integer m > k with the property that the map

Ym,k
π−→ S2dm−1 has a cross-section θ : S2dm−1 −→ Ym,k. Using this, Hemmi [He]
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defined the map

Jk : Yn,k −→ Ω2dmYm+n,k

as the adjoint of the composite

S2dm ∧ Yn,k � S2dm−1 ∗ Yn,k
θ∗1−→ Ym,k ∗ Yn,k

h−→ Ym+n,k,

where h is James’ intrinsic join. Then in the proof of [He, Lemma 3.7(ii)], he showed
the following.

Lemma 2.1. Let Yn,k be either Wn,k or Xn,k. There is a homotopy fibration diagram

Yn−1,k−1
ε ��

Jk−1

��

Yn,k
π ��

Jk

��

S2dn−1

J1

��
Ω2dmYm+n−1,k−1

Ω2dmε �� Ω2dmYm+n,k
Ω2dmπ �� Ω2dmS2d(m+n)−1,

where J1 is the adjoint of the identity map on S2d(m+n)−1.

We wish to determine the connectivity of the homotopy fibre of the map Yn,k
Jk−→

Ω2dmYm+n,k. Let E
2 : S2n−1 −→ Ω2S2n+1 be the double suspension, which is adjoint

to the identity map on S2n+1. It is well known that the homotopy fibre of E2 is
(2np− 4)-connected.

Lemma 2.2. The homotopy fibre of the map Jk : Yn,k −→ Ω2dm Ym+n,k is
(2(d(n− k) + 1)p− 4)-connected.

Proof. Consider the homotopy fibration diagram in Lemma 2.1. Observe that J1 is
the composite Ω2dm−2E2 ◦ · · · ◦ E2. Therefore, the connectivity of the homotopy fibre
of E2 implies that the homotopy fibre of J1 is (2(d(m+ n)− 1)p− 4)-connected. This
implies that the homotopy fibres of Jk−1 and Jk are homotopy equivalent in dimen-
sions strictly less than 2(d(m+ n)− 1)p− 4. Downward induction on k then implies

that the homotopy fibre of Jk is homotopy equivalent to that of S2d(n−k)+1 J1−→
Ω2dmS2d(m+n−k)+1 in dimensions strictly less than 2(d(n− k + 1) + 1)p− 4. Note
this is map J1 is different in dimension from the previous one, but as before, J1
is an iterated suspension, so its homotopy fibre is (2(d(n− k) + 1)p− 4)-connected.
Therefore, the homotopy fibre of Jk has the same connectivity.

3. Preliminary information on stunted projective spaces

There is a homeomorphism U(n)/U(n− k) ∼= SU(n)/SU(n− k), so Wn,k may be
regarded as SU(n)/SU(n− k). Recall that there is a Hopf algebra isomorphism
H∗(SU(n)) ∼= Λ(x3, . . . , x2n−1), where |x2i−1| = 2i− 1, and the quotient map
SU(n) −→Wn,k induces a projection of coalgebras ontoH∗(Wn,k)∼=Λ(x2(n−k)+1, . . . ,
x2n−1). It is well known that there is a map

γn : ΣCP
n−1 −→ SU(n),

which induces the inclusion of the primitive generating set in homology, and this map
is natural in the sense that there is a commutative diagram
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ΣCPn−k ��

γn−k−1

��

ΣCPn−1

γn

��
SU(n− k) �� SU(n).

Notice that the homology property of γn implies that there is a Hopf algebra isomor-
phism H∗(SU(n)) ∼= Λ(H̃∗(ΣCPn−1)).

Let CPn,k = CPn−1/CPn−k−1 be the stunted projective space. The previous dia-
gram implies that there is an induced map

γn,k : ΣCPn,k −→ SU(n)/SU(n− k) = Wn,k.

Since γn induces an inclusion onto the generating set in homology and the quotient
map SU(n) −→Wn,k is a coalgebra projection in homology, we immediately have the
following.

Lemma 3.1. There is a coalgebra isomorphism H∗(Wn,k)∼=Λ(H̃∗(ΣCPn,k)) and γn,k
induces the inclusion of the primitives.

Next, by [MNT1, Corollary 9.5], there is a homotopy equivalence

ΣCPn−1 �
p∨

i=2

Ai,

where H∗(Ai) consists of all those elements in H∗(ΣCPn−1) in degrees of the form
2i− 1 + 2k(p− 1) for k � 0. Since the map CPn−k−1 −→ CPn−1 is homotopy equiv-
alent to the inclusion of the (2(n− k))-skeleton, the homotopy decompositions for
ΣCPn−k−1 and ΣCPn−1 can be made compatible as follows. For 2 � i � p, let A′i be
the (2(n− k) + 1)-skeleton of Ai and let ji : A

′
i −→ Ai be the skeletal inclusion. Then

by connectivity the composite
∨p

i=2 A
′
i

∨p
i=2 ji−−−−→ ∨p

i=2 Ai
�−−−−→ ΣCPn−1 lifts through

the skeletal inclusion ΣCPn−k−1 −→ ΣCPn−1 and this lift induces an isomorphism
in homology and so is a homotopy equivalence. That is, there is a homotopy commu-
tative diagram

∨p
i=2 A

′
i

∨p
i=2 ji ��

�
��

∨p
i=2 Ai

�
��

ΣCPn−k−1 �� ΣCPn−1.

For 2 � i � p, let Ci
n,k = Ai/A

′
i. Then by taking homotopy cofibres in the previous

diagram we obtain the following.

Lemma 3.2. There is a homotopy equivalence ΣCPn,k �
∨p

i=2 C
i
n,k where H∗(Ci

n,k)
consists of all those elements in H∗(ΣCPn,k) in degrees of the form 2i− 1 + 2k(p− 1)
for k � 0.

Combining Lemmas 3.1 and 3.2 we obtain the following.

Lemma 3.3. The composite
∨p

i=2 C
i
n,k

�−→ ΣCPn,k
γn,k−→Wn,k induces the inclusion

of the primitives in homology and there is a coalgebra isomorphism H∗(Wn,k) ∼=
⊗p

i=2Λ(H̃∗(C
i
n,k)).
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Similarly, there is a Hopf algebra isomorphism H∗(Sp(n)) ∼= Λ(x3, . . . , x4n−1), and
James [J2] showed that there is a quasi-projective space Qn and a map δn : Qn −→
Sp(n) which induces the inclusion of the primitive generating set in homology. This
inclusion is compatible with the inclusion of Sp(n− k) into Sp(n) so we obtain a
stunted quasi-projective space Qn,k = Qn/Qk and a map δn,k : Qn,k −→ Xn,k which
induces the inclusion of the primitives in homology. By [MNT1], there is a homotopy

equivalence Qn �
∨(p−1)/2

i=2 Pi where H∗(Pi) consists of those elements in H∗(Qn) in
degrees of the form 4i− 1 + 2k(p− 1) for k � 0, and for skeletal reasons this homo-
topy equivalence is compatible with the inclusion of Qn−k into Qn. So if P ′i is the
(4(n− k) + 1)-skeleton of Pi and Ri

n,k = Pi/P
′
i we obtain the analogue of Lemma 3.3.

Lemma 3.4. The composite
∨(p−1)/2

i=2 Ri
n,k

�−→ Qn,k
δn,k−→ Xn,k induces the inclusion

of the primitives in homology and there is a coalgebra isomorphism H∗(Xn,k) ∼=
⊗(p−1)/2

i=2 Λ(H̃∗(Ri
n,k)).

4. Loop space decompositions of Stiefel manifolds

In what follows, we will describe a homotopy decomposition for ΩWn,k and then
indicate alterations for ΩXn,k. For 2 � i � p, let si be the composite

si : C
i
n,k ↪→

p∨
i=2

Ci
n,k

�−→ ΣCPn,k
γn,k−→Wn,k.

Ideally, one would like to: (i) construct a space Bi
n,k with the property that

H∗(Bi
n,k)

∼= Λ(H̃∗(Ci
n,k)); (ii) extend si to a map ti : B

i
n,k −→Wn,k; and (iii) multi-

ply the maps ti together to obtain a map
∏p

i=2 B
i
n,k −→Wn,k which, by Lemma 3.3,

induces an isomorphism in homology and so is a homotopy equivalence. However,
Wn,k is not an H-space in general so step (iii) is likely out of the question, and steps
(i) and (ii) may also be out of reach in general. Instead, we will carry out steps (i)
and (ii) for a range of values of k, and then loop in order to multiply.

To begin, we construct the space Bi
n,k for a range of values of k. Cohen and

Neisendorfer [CN] gave a construction of finite p-local H-spaces satisfying many
useful properties. The ones we need are listed below.

Theorem 4.1. Fix a prime p. Let A be a CW -complex consisting of � odd dimen-
sional cells, where � < p− 1. Then there is a finite H-space M(A) with the following
properties:

(a) there is an isomorphism of Hopf algebras H∗(M(A)) ∼= Λ(H̃∗(A));
(b) there is a map j : A −→M(A) which induces the inclusion of the generating set

in homology.

Suppose that k � (p− 1)(p− 2). The number k corresponds to the number of
generators in H∗(Wn,k). By Lemma 3.1, this corresponds to the number of cells in
ΣCPn,k. So by Lemma 3.2, each Ci

n,k has at most p− 2 cells. Theorem 4.1 therefore

implies that there is an H-space Bi
n,k = M(Ci

n,k) with the property that H∗(Bi
n,k)

∼=
Λ(H̃∗(Ci

n,k)).
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Next, we wish to extend the map Ci
n,k

si−→Wn,k to a map Bi
n,k

ti−→Wn,k. As an
intermediate step, we use a universal property of the Cohen–Neisendorfer H-spaces
M(A) proved in [T1].

Proposition 4.2. Let A, M(A) and j be as in Theorem 4.1. Let Z be a homo-
topy associative, homotopy commutative H-space. Then any map f : A −→ Z can
be extended to an H-map f : M(A) −→ Z and this is the unique H-map such that
f ◦ j � f .

Since Ω2mWm+n,k is homotopy associative and homotopy commutative, Proposi-
tion 4.2 implies that there is a homotopy commutative diagram

Ci
n,k

j ��

si

��

Bi
n,k

si

��
Wn,k

Jk �� Ω2mWm+n,k,

(1)

where si is the unique H-map such that j ◦ si � Jk ◦ si. In Proposition 4.3 we give
conditions for when si lifts through Jk.

Notice that k records the number of generators in H∗(Wn,k). As H∗(Wn,k) ∼=
Λ(H̃∗(ΣCPn

n−k)), this is equivalent to recording the number of cells in ΣCPn
n−k.

The decomposition ΣCPn
n−k �

∨p
i=2 C

i
n,k partitions the cells of ΣCPn

n−k cyclically

to the Ci
n,k’s as dimension increases. So if k � (p− 1)(p− 2) then each Ci

n,k has at
most p− 2 cells. Therefore, provided k � (p− 1)(p− 2), we can apply Theorem 4.1
to each Ci

n,k.

Suppose that Ci
n,k has r cells, for some r < p− 1. Then H∗(Bi

n,k)
∼= Λ(H̃∗(Ci

n,k)),

so Bi
n,k has rank r (where rank refers to the number of spheres appearing in a rational

decomposition of Bi
n,k).

Proposition 4.3. Let k � (p− 1)(p− 2). Suppose that Bi
n,k has rank r, for some

r < p− 1. If n� (p− 1)r then the map Bi
n,k

si−→ Ω2mWm+n,k lifts through Jk to Wn,k.

Proof. Step 1: The dimension of Bi
n,k. If the highest dimensional cell of Ci

n,k is
in dimension 2t− 1, then the other cells are in dimensions 2t− 1− 2(p− 1), . . . ,

2t− 1− 2(r − 1)(p− 1). Since H∗(Bi
n,k)

∼= Λ(H̃∗(Ci
n,k)), we therefore have the di-

mension of Bi
n,k being

dimBi
n,k = (2t− 1) + (2t− 1− 2(p− 1)) + · · ·+ (2t− 1− 2(r − 1)(p− 1))

= (2t− 1)r − 2(p− 1)(1 + · · ·+ r − 1)

= (2t− 1)r − 2(p− 1)(r − 1)r/2

= (2t− 1)r − (p− 1)(r − 1)r.

Since the dimension of Ci
n,k is at most 2n− 1, for any Bi

n,k of rank r we obtain

dimBi
n,k � (2n− 1)r − (p− 1)(r − 1)r.

Step 2: The connectivity of Jk. Lemma 2.2 shows that the connectivity of Wn,k
Jk−→

Ω2mWm+n,k is the same as the connectivity of the iterated suspension S2(n−k)+1 −→
Ω2mS2m+2(n−k)+1, where S2(n−k)+1 is the bottom cell of Wn,k. So to determine the
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connectivity of Jk in the rank r case, we need to identify the least dimension d of
the bottom cell in any Bi

n,k of rank r. This is the same as the least dimension of the

bottom cell in any Ci
n,k with r cells.

In the decomposition ΣCPn
n−k �

∨p
i=2 C

i
n,k the homology classes of ΣCPn

n−k are

distributed to the Ci
n,k’s cyclically as dimension increases. So the wedge summand

with the least dimensional bottom cell is C2
n,k. Further, the dimension of C2

n,k is at
least 2n− 1− 2(p− 2). So the smallest value for the dimension d of the bottom cell
in C2

n,k is

d = (2n− 1− 2(p− 2))− 2(r − 1)(p− 1)

= 2n− 1 + 2− 2r(p− 1)

= 2(n− r(p− 1) + 1)− 1.

Therefore, by Lemma 2.2, the connectivity of Jk satisfies

conn Jk � 2(n− r(p− 1) + 1)p− 4.

Step 3: comparing dimBi
n,k and connJk. Let c=2(n− r(p− 1) + 1)p− 4. Since the

map Wn,k
Jk−→ Ω2mWm+n,k is c-connected, if X is any CW -complex of dimension less

than or equal to c+ 1 then there is an epimorphism [X,Wn,k]
(Jk)∗−−→ [X,Ω2mWm+n,k].

Consequently, if the dimension of Bi
n,k is � c+ 1 then the map Bi

n,k
si−→ Ω2mWm+n,k

will lift through Jk.
By Step 1, dimBi

n,k � (2n− 1)r − (p− 1)(r − 1)r, so aim for conditions on n and r
so that

(2n− 1)r − (p− 1)(r − 1)r � c+ 1 = 2(n− r(p− 1) + 1)p− 3. (2)

Reorganizing, this inequality is the same as

2(p− 1)(p− r)r − r − p+ 3 � 2n(p− r). (3)

Since we are assuming that all spaces and maps are localized at p � 3, we have
3− p− r < 0. So inequality (3) will hold provided that

2(p− 1)(p− r)r � 2n(p− r),

that is, inequality (3) holds provided that

(p− 1)r � n. (4)

Therefore, if n � (p− 1)r then (2) holds, implying that dimBi
n,k � connJk + 1, and

so si lifts through Jk.

By Proposition 4.3, the map Bi
n,k

si−→ Ω2mWn,k lifts through Jk to a map

ti : B
i
n,k −→Wn,k.

Lemma 4.4. In homology, the map Bi
n,k

ti−→Wn,k induces the coalgebra inclusion of

Λ(H̃∗(Ci
n,k)) into H∗(Wn,k) ∼= ⊗p

i=2Λ(H̃∗(C
i
n,k)).

Proof. Consider the diagram
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Ci
n,k

j ��

si

��

Bi
n,k

si

��

ti

�����
���

���
��

Wn,k
Jk �� Ω2mWm+n,k.

The outer square homotopy commutes by (1) and the lower right triangle homotopy
commutes since ti is a lift of si through Jk. For the upper left triangle, observe
that Ci

n,k has dimension at most 2n− 1, which is less than the connectivity of Jk by
Lemma 2.2, so Jk is a homotopy equivalence in dimensions � 2n− 1. Therefore, the
upper right triangle homotopy commutes because its composition with Jk homotopy
commutes. Thus the entire diagram homotopy commutes. This implies that ti is an
extension of si.

In homology, (si)∗ is the inclusion of H̃∗(Ci
n,k) into H∗(Wn,k). Therefore the same

is true of the restriction of (ti)∗ to the generating set of H∗(Bi
n,k)

∼= Λ(H̃∗(Ci
n,k)).

A standard argument using the reduced diagonal and inducting on monomial length
therefore implies that (ti)∗ is a coalgebra isomorphism from H∗(Bi

n,k) onto the sub-

coalgebra Λ(H̃∗(Ci
n,k)) of H∗(Wn,k).

Now we turn to homotopy decompositions and the proof of Theorem 1.1.

Theorem 4.5. Let k � (p− 1)(p− 2) and fix r < p− 1. Suppose that B2
n,k, . . . , B

p
n,k

all have rank at most r. If n � (p− 1)r then there is a homotopy equivalence

ΩWn,k �
p∏

i=2

ΩBi
n,k.

Proof. By Proposition 4.3, each map Bi
n,k

si−→ Ω2mWm+n,k lifts through Jk to a

map Bi
n,k

ti−→Wn,k, whose image in homology induces the coalgebra inclusion of

Λ(H̃∗(Ci
n,k)) into H∗(Wn,k) ∼= ⊗p

i=2Λ(H̃∗(C
i
n,k)). In general, if X is a space whose

homology is a torsion free exterior algebra on a generating set V then applying
the Serre spectral sequence to the path-loop fibration shows that ΩX has homol-
ogy a torsion free polynomial algebra generated by the desuspension of V . In our
case, we obtain H∗(ΩWn,k) ∼= ⊗p

i=2Z/pZ[Σ
−1H̃∗(Ci

n,k)] and the image of (Ωti)∗ is

the Hopf algebra inclusion of Z/pZ[Σ−1H̃∗(Ci
n,k)]. Thus, if μ is the loop multiplica-

tion on ΩWn,k, the composite
p∏

i=2

ΩBi
n,k

∏p
i=2 Ωti−−−−→

p∏
i=2

ΩWn,k
μ−−−−→ ΩWn,k

induces an isomorphism in homology and so is a homotopy equivalence.

Proof of Theorem 1.1. Let k � (p− 1)(p− 2). We want to show that for any such
k, the asserted homotopy decomposition of ΩWn,k holds for any n > k. If
(r − 1)(p− 1) < k � r(p− 1) for some r < p− 1, then every Bi

n,k has rank either
r or r − 1, so the asserted decomposition of ΩWn,k holds by Theorem 4.5, provided
that n � (p− 1)r.

As the rank of Bi
n,k equals the number of cells in Ci

n,k, having each Ci
n,k with r or

r − 1 cells implies that ΣCPn,k must have at least (p− 1)(r − 1) + 1 cells. That is,
n � (p− 1)(r − 1) + 2. But Theorem 4.5 only holds when n � (p− 1)r. So there are
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p− 2 cases for rank r in the range (p− 1)(r − 1) + 2 � n < (p− 1)r that are so far
unaccounted for.

By different methods, in [B, GZ] it is shown that if n � (p− 1)(p− 2) then the
asserted homotopy equivalence holds for ΩWn,k. This range includes the missing p− 2
cases above. Thus, in the rank r case, for any n � (p− 1)(r − 1) + 2 we obtain the
asserted homotopy equivalence for ΩWn,k.

As this holds for every 1 � r < p− 1, we obtain the asserted homotopy equivalence
for ΩWn,k for every k � (p− 1)(p− 2) and n > k.

Proof of Theorem 1.2. This follows exactly as in the proof of Theorem 1.1. Here, we
use the stunted quasi-projective space Qn

n−k with

H∗(Qn
n−k)

∼= Z/pZ{x4(n−k+1)−1, . . . , x4n−1}
in place of ΣCPn,k, and the corresponding homotopy equivalence

Qn
n−k �

(p−1)/2∨
i=2

Ri
n,k,

where H∗(Ri
n,k) consists of those elements in H∗(Qn

n−k) in degrees of the form

4i− 1 + 2k(p− 1) for some k � 0. If Di
n,k is the H-space M(Ri

n,k) obtained by apply-
ing Theorem 4.1, then arguing as in Proposition 4.3 we obtain:

(i) dimDi
n,k � (4n− 1)r − 2(p− 1)(r − 1)r;

(ii) conn Jk � 4(n− r(p− 1) + 1)p− 4;

(iii) inequality (4) is again (p− 1)r � n.

The subsequent arguments leading to the proof of Theorem 1.1 then carry overmutatis
mutandis.

5. Real Stiefel manifolds

The real Stiefel manifold is Vn,k = O(n)/O(n− k) ∼= SO(n)/SO(n− k). For an
odd prime p, Harris [Ha] showed that there are homotopy equivalences:

SO(2n+ 1) �p Spin(2n+ 1) �p Sp(n),

SO(2n) �p Spin(2n) �p Spin(2n− 1)× S2n−1.

Therefore, we obtain homotopy equivalences:

Ω(SO(2n+ 1)/SO(2(n−m) + 1)) �p Ω(Sp(n)/Sp(n−m)),

Ω(SO(2n+ 1)/SO(2(n−m) + 2)) �p S2(n−m)+1 × Ω(Sp(n)/Sp(n−m)),

Ω(SO(2n+ 2)/SO(2(n−m) + 1)) �p ΩS2n+1 × Ω(Sp(n)/Sp(n−m)),

Ω(SO(2n+ 2)/SO(2(n−m) + 2)) �p S2(n−m)+1 × ΩS2n+1 × Ω(Sp(n)/Sp(n−m)).

So in each case a homotopy decomposition for ΩVn,k with k � (p− 1)(p− 2) can be
read off from the corresponding homotopy decomposition of ΩXn,k in Theorem 1.2.

6. Exponents

For a space X, the homotopy exponent of X at the prime p is the least power
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of p that annihilates the p-torsion in π∗(X). If this power is a finite number r, write
expp(X) = pr. Notice that if X is simply-connected then as looping shifts homotopy
groups down one dimension, we obtain expp(ΩX) = expp(X). Also, as πm(X × Y ) ∼=
πm(X)⊕ πm(Y ) for all m � 1, we have expp(X × Y ) = max{expp(X), expp(Y )}. So
to find the homotopy exponent of a space X one approach is to establish a homotopy
decomposition of ΩX and determine the exponents of the factors. We apply this to
find upper bounds for the homotopy exponents of Wn,k and Xn,k.

Consider spaces Am,� such that there is a vector space isomorphism (with elements
listed by decreasing degree)

H̃∗Am,�
∼= Z/pZ{x2m−1, x2m−2(p−1)−1, . . . , x2m−2(�−1)(p−1)−1}

and the action of the Steenrod algebra is given by Pj(x2r−1) =
(
r
j

)
x2r+jq−1. The

spaces Ci
n,k, being retracts of ΣCPn,k, satisfy these hypotheses. If � < p− 1, let

Bm,� = M(Am,�) be the H-space obtained by applying Theorem 4.1 to Am,�. The
following was proved in [T2, Theorem 5.1].

Proposition 6.1. If k < p− 2 then expp(Bm,�) � p(�−1)+(m−1).

It is worth noting that the term �− 1 in the exponent bound refers to the � cells
in Am,�, while the term m− 1 refers to the exponent bound for the top dimensional
sphere S2m−1. Here, by [CMN], if p is odd then expp(S

2n−1) = pn−1.
It is also worth noting that the same result should hold true for k = p− 2, but the

methods used in [T2] aimed at a stronger result which used the fact that, if � < p− 2,
then Bm,� is a homotopy associative and homotopy commutative H-space.

For a positive rational number m, let 
m� be the largest integer smaller than m.

Theorem 6.2. The following hold:

(a) if k � (p− 1)(p− 3) then expp(Wn,k) � p�k/(p−1)�+n−1;

(b) if k � (p− 1)(p− 3)/2 then expp(Xn,k) � p�k/(p−1)�+2n−1.

Proof. Suppose that k � (p− 1)(p− 3). By Theorem 1.1, ΩWn,k �
∏p

i=2 ΩB
i
n,k

where Bi
n,k = M(Ci

n,k). If (r − 1)(p− 1) < k � r(p− 1) then at least one Ci
n,k has

r cells and the other Ci
n,k’s have either r or r − 1 cells. Also, precisely one Ci

n,k

(possibly a different one) has the top dimensional cell of CPn,k in dimension 2n− 1.
So Proposition 6.1 implies that expp(B

i
n,k) � pr−1+n−1 for 2 � i � p− 1. Therefore,

expp(Wn,k) � pr+n−2. Noting that r − 1 = 
k/(p− 1)�, we obtain the asserted expo-
nent bound.

The argument for Xn,k is similar.
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