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Abstract
We compute the mod 2 homology of the spectrum tmf of

topological modular forms by proving a 2-local equivalence
tmf ∧DA(1) ≃ tmf1(3) ≃ BP 〈2〉, where DA(1) is an eight cell
complex whose cohomology doubles the subalgebra A(1) of the
Steenrod algebra generated by Sq1 and Sq2. To do so, we give,
using the language of stacks, a modular description of the ellip-
tic homology of DA(1) via level three structures. We briefly
discuss analogs at odd primes and recover the stack-theoretic
description of the Adams–Novikov spectral sequence for tmf.

1. Introduction

1.1. Results
Let tmf be the E∞-ring spectrum of connective topological modular forms of

Goerss, Hopkins, Mahowald, Miller, and Lurie. See [10] for a survey and [29, 7]
for detailed treatments. The spectrum tmf is constructed from a derived version of
the moduli stack Mell of elliptic curves, and its homotopy groups approximate both
the stable homotopy groups of spheres and the ring of integral modular forms.

The primary goal of this paper is to compute the mod 2 cohomology of tmf, as a
module over the Steenrod algebra. Namely, we give a proof of the following result:

Theorem 1.1 (Hopkins–Mahowald [14]). There is an isomorphism

H∗(tmf;Z/2) ≃ A//A(2)
def
= A⊗A(2) Z/2, (1)

where A is the mod 2 Steenrod algebra and A(2) ⊂ A is the subalgebra generated by
Sq1, Sq2, Sq4.

The computation is carried out by exhibiting a 2-local eight cell complex DA(1)
and demonstrating an equivalence (also due to [14]),

tmf ∧DA(1) ≃ BP 〈2〉 , (2)

which is a tmf-analog of Wood’s theorem ko ∧ Σ−2CP
2 ≃ ku. This equivalence implies

the result on H∗(tmf;Z/2) using Hopf algebra manipulations, and it enables the
description of the Adams–Novikov spectral sequence of tmf via the Weierstrass Hopf
algebroid or the moduli stack of cubic curves.
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The form of BP 〈2〉 encountered can be identified with the spectrum tmf1(3) of
connective topological modular forms of level 3 studied by Hill–Lawson [12] and by
Lawson–Naumann [18]. In particular, we prove:

Theorem 1.2. At the prime 2, we have an equivalence of tmf-modules

tmf ∧DA(1) ≃ tmf1(3).

At the prime 3, there is an analog as well: one has a three cell complex X3 such
that

tmf ∧X3 ≃ tmf1(2).

1.2. Methods
We now give a brief overview of the method of proof used in this paper.
Suppose we knew the homology of tmf, i.e., (1). In this case, one could construct

the eight cell complex DA(1) such that, as an A(2)-module, we have

H∗(DA(1);Z/2) ≃ A(2)/(Sq1).

We would then see by direct computation that tmf ∧DA(1) had the same homology as
BP 〈2〉 and could produce the equivalence (2) with some more effort (or by appealing
to [3] at least after 2-completion). In this paper, we will work in reverse: we will prove
(2) directly by working with stacks and then deduce the description of the homology.

Our proof of (2) proceeds by first replacing tmf by Tmf, the non-connective, non-
periodic version of tmf, and by working with the derived version ofMell. In particular,
we calculate Tmf∗(DA(1)). To do so, we describe the module E0(DA(1)), for E an
elliptic homology theory, in terms of Mell: in other words, we identify a certain vector
bundle on the moduli stack of elliptic curves as arising from an eight-fold cover of
(Mell)(2).

Technical theorem. Let E be an elliptic homology theory associated to a generalized
elliptic curve C → Spec(R), classified by a flat map Spec(R) → Mell. Then there is
a natural identification of R = E0-modules between E0(DA(1)) and the universal R-
algebra over which C acquires a Γ1(3)-structure.

This proof of identification relies on a basic technical trick, of which we explain a
more elementary form.

Construction. Consider the scheme Pn
C
=(Spec(C[x0, x1, . . . , xn])\(0, . . . , 0)) /Gm.

This scheme is very well-behaved; it is smooth and proper. It is an open substack of
the Artin stack X ⊂ Spec(C[x0, x1, . . . , xn])/Gm.

On the one hand, the geometry of X is much worse than that of Pn
C
: it has a

special point x, given by the image of the origin, whose stabilizer is a Gm. On the
other hand, the study of vector bundles or coherent sheaves on X is vastly simpler than
the analogous study on Pn

C
, as they are given by graded modules over a polynomial

ring. As an example, one has an analog of Nakayama’s lemma:

Lemma. Any morphism of coherent sheaves F → G on X inducing a surjection at
the point x is a surjection globally.
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In this paper, we will work with the moduli stack Mell of generalized elliptic
curves, which is analogous to Pn

C
: it has good geometry, but it generally hard to

study vector bundles on it. There is, however, another moduli stack Mcub classifying
cubic curves, which contains Mell as an open substack. As in the above analogy,
Mcub has a distinguished point with a bigger stabilizer for which one can prove an
analog of Nakayama’s lemma. Our main identification relies on the observation that
the association E 7→ E0(DA(1)), which defines a vector bundle on (Mell)(2), actually
canonically extends to the larger stack (Mcub)(2). As a result, it is possible to get a
handle on this vector bundle using the distinguished point in Mcub. After identifying
the vector bundle, we use the descent spectral sequence to compute Tmf∗(DA(1)).
Finally, the description of tmf∗(DA(1)) from that of Tmf∗(DA(1)) follows from the
gap theorem in π∗Tmf.

The above summarizes the key technical work in the paper. In the rest of the paper,
we calculate the homology H∗(tmf;Z/2) by studying the map tmf → tmf ∧DA(1) ≃
BP 〈2〉 and determining the image in homology, as the homology of BP 〈2〉 is known
as a subalgebra of the dual Steenrod algebra. The precise determination of the image
relies on a few techniques with Hopf algebras.

This paper is organized as follows. Section 2 reviews the language of stacks and, in
particular, the role of the moduli stack MFG of formal groups and states the results
we need about tmf. Section 3 is purely algebraic and describes a vector bundle on the
stack Mell. Section 4 shows that this vector bundle arises from the eight cell complex
DA(1) and discusses the analog at odd primes. Section 5 contains the main remaining
computations, in particular, of the homology.

1.3. Previous work

There is a significant literature on tmf and the homology of tmf has certainly been
treated before. For instance, the notes of Rezk [29, sec. 20–21] give an entirely different
approach to the calculation of H∗(tmf;Z/2). Rezk’s starting point is different from
ours; we take the description via sheaves of spectra as given, whereas Rezk assumes the
tmf-homology of the Thom spectrum X(4). In particular, the calculation of MU∗tmf
is carried out in [29, Prop. 20.4] and we will reprove it here as well.

The equivalence (2) is due to Hopkins–Mahowald. The existence of an eight cell
complex DA(1) with the property that tmf ∧DA(1) is complex-orientable arises from
the heuristic that the moduli stack of cubic curves has an eight-fold cover at the prime
2 which is the quotient by Gm of an affine scheme (cf. the notes to Hopkins’s talk in
[7, Ch. 9]).
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2. The language of stacks

Let X be a spectrum. The homotopy groups π∗X may be complicated, but often
their calculation can be attacked by choosing an appropriate resolution of X by
simpler spectra. This formalism can be expressed efficiently using the language of
stacks. The language has been described in the course notes [13, 20] and in the
talk of Hopkins [7, Ch. 7]. Other references on the this viewpoint, especially on the
moduli stack of formal groups, are [27] and [9]. We will briefly summarize what we
need below.

2.1. Stacks and spectra
Suppose that R is a fixed A∞-ring spectrum. The structure on R enables one

to build the cobar construction, a cosimplicial spectrum CB•(R) with CBs(R) =
R∧(s+1) and with the coface and codegeneracy maps arising in a standard manner
from the unit S0 → R and the multiplication R ∧R → R. Under good conditions, for
a spectrum X, the cosimplicial diagram

R•(X)
def
= X ∧ CB•(R) = {X ∧R→

→X ∧R ∧R
→
→
→

. . . }

will be a resolution of X in the sense that the natural map X → Tot(R•(X)) is an
equivalence. If so, then one has a homotopy spectral sequence

Es,t
2 = πsπtR

•(X) =⇒ πt−sX. (3)

If R = MU is complex bordism, and X is connective, then the associated spectral
sequence is the Adams–Novikov spectral sequence.

Suppose now that R is also homotopy commutative, and for each s, π∗R
∧(s+1) is

concentrated in even degrees. Then we get a cosimplicial commutative ring π∗R
∧(s+1),

over which π∗(R
∧s+1 ∧X) is a cosimplicial module. If R∗R is flat over R∗, the diagram

π∗R
→
→π∗(R ∧R)

→
→
→

. . .

is determined by its 2-truncation, and it is a commutative Hopf algebroid. This
presents a stack X. Furthermore, the cosimplicial π∗R

•-module π∗R
•(X) defines a

quasi-coherent sheaf on X, i.e., a comodule over the Hopf algebroid (R∗, R∗R). We
shall denote this by F(X).

The chain complex

π∗(R ∧X) → π∗(R ∧R ∧X) → . . . ,

whose cohomology is the E2 page of (3), can be identified with the cobar complex

R∗(X) → R∗(R)⊗R∗
R∗X → . . . ,

which computes the cohomology of the sheaf F(X). In particular, the spectral se-
quence (3) can be written as

Hs(X,F(X)) =⇒ πt−sX.

It is convenient to make one further modification. The rings R∗, R∗R are graded
rings, and the sheaves F(X) come from graded comodules over the Hopf algebroid
(R∗, R∗R). Let us now suppose that R∗, R∗R are evenly graded. The grading deter-
mines (and is equivalent to) a Gm-action on the Hopf algebroid (R∗, R∗R), or on the
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stack Y, such that an element in degree 2k is acted on by Gm with eigenvalue given by
the character χk : Gm → Gm, χk(u) = uk. We can regard F(X) as the sum of comod-
ules Feven(X)⊕Fodd(X), where each of the two summands inherits a Gm-action in
a similar manner. That is, Feven(X) is given a Gm-action in the same manner, and
Gm acts on F2k+1(X) by the character χk.

If we form the stack Y = X/Gm, then Y comes with a tautological line bundle ω,
corresponding to the (R∗, R∗R)-comodule R∗+2. Moreover, Feven and Fodd descend to
functors into Mod(Y), which is equivalent to the category of evenly graded comodules
over (R∗, R∗R). The spectral sequence can be written

Es,t
2 =⇒ πt−sX, Es,t

2 =

{
Hs(Y,Feven(X)⊗ ωt′) if t = 2t′

Hs(Y,Fodd(X)⊗ ωt′) if t = 2t′ + 1.

We now recall Quillen’s theorem.

Definition 2.1. MFG is the moduli stack of formal groups. In other words, MFG is
the 2-functor MFG : Ring → Gpd assigning to any commutative ring A the groupoid
of formal group schemes X → Spec(A) which are Zariski locally (on A) isomorphic
to Spf(A[[x]]) as pointed formal schemes.

When R = MU (as we will henceforth assume), Quillen’s theorem states that there
is an equivalence between the stack that one builds from the evenly graded Hopf
algebroid (MU∗,MU∗MU) and the moduli stack of formal groups.

We can often describe the quasi-coherent sheaves Feven(X),Fodd(X) on MFG in
terms of the geometry of formal groups.

Example 2.2. The line bundle ω described above on MFG (that is, associated to the
(MU∗,MU∗MU)-comodule MU∗+2, which arises topologically from S−2) assigns to
a formal group X the cotangent space OX(−e)/OX(−2e) of functions on X that
vanish at zero, modulo functions that vanish to order two (that is, the dual to the
Lie algebra).

2.2. Stacks associated to ring spectra
We will also need a means of extracting stacks from ring spectra which may not

be as well-behaved as MU (cf. [7, Ch. 7]). Suppose X is a homotopy commutative
ring spectrum. Then the above cosimplicial diagram

X ∧MU →
→X ∧MU ∧MU

→
→
→

. . .

is a diagram of ring spectra itself, and the associated diagram of homotopy groups is a
diagram of commutative rings ifMU∗X is evenly graded. Consequently, the associated
sheaf F(X) = Feven(X) on the stack MFG is a sheaf of commutative rings, and can
be used to present another stack, affine over MFG.

Definition 2.3. We write Stack(X) for the stack built in the above manner. Equiva-
lently, Stack(X) is the stack associated to theHopf algebroid (MU∗X,MU∗(MU ∧X)).

Example 2.4. Consider X = MU . Recall that Spec(π∗(MU ∧MU)) classifies a
pair of formal group laws with a strict isomorphism between them. The scheme
Spec(π∗(MU ∧MU ∧MU)) corresponds to a triple of formal group laws with strict
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isomorphisms between them. It follows that the associated stack is equivalent to the
Gm-quotient of Spec(L), where L is the Lazard ring. More generally, whenever R is a
complex-orientable ring spectrum with π∗R evenly graded, the stack Stack(R) is the
Gm-quotient of Spec(R∗). It follows in particular that for such R, the sheaf F(R) is
the push-forward of the structure sheaf under the map Spec(R∗)/Gm → MFG.

2.3. Even periodic ring spectra
Let X be a spectrum. As we saw, X defines quasi-coherent sheaves Fodd(X),

Feven(X) on the moduli stack MFG of formal groups. These come from MU∗(X)
together with the comodule structure over the Hopf algebroid (MU∗,MU∗MU) and
the grading. Equivalently, we can consider the periodic complex bordism spectrum
MP =

∨
i∈Z

Σ2iMU . In this case, we can write MU∗(X) = MP0(X)⊕MP1(X) and
the even and odd parts of the grading correspond to the two summands.

On the flat site of MFG, there is a classical topological interpretation of these
sheaves.

Definition 2.5 ([1]). A homotopy commutative ring spectra E is even periodic if
πiE = 0 for i odd, and if π2E is an invertible module over π0E with the property
that the multiplication map π2E ⊗π0E π−2E → π0E, is an isomorphism.

Given an even periodic ring spectrum E, the formal scheme SpfE0(CP∞) is a
formal group over E0 (see [1]), and is classified by a morphism q : Spec(E0) → MFG.
If q : Spec(E0) → MFG is flat, then E is called a Landweber-exact theory and one has
functorial isomorphisms:

q∗(ωj ⊗Feven(X)) ≃ E2j(X), q∗(ωj ⊗Fodd(X)) ≃ E2j+1(X).

In particular, for a Landweber-exact theory, E∗(X) can be recovered from the sheaves
Feven(X),Fodd(X). The stack associated to the ring spectrum E is precisely Spec(E0).

Conversely, given a ring R and a flat morphism q : Spec(R) → MFG, the functor

X 7→
⊕

j

q∗
(
ωj ⊗ (Feven(X)⊕Fodd(X))

)

defines a multiplicative homology theory, representable by a Landweber-exact ring
spectrum. The result is a presheaf of multiplicative homology theories on the flat
site of MFG. One reason this point of view is so useful is the following criterion for
flatness over MFG given by the Landweber exact functor theorem. For a discussion
of the Landweber exact functor theorem and its interpretation via the language of
stacks (due to Hopkins), we refer to [24] and [20, Lecture 16].

2.4. Topological modular forms
Although MFG is a very large stack, there are smaller stacks that can be used to

approximate it.

Definition 2.6. Let Mell be the moduli stack of generalized elliptic curves. In other
words, Mell assigns to each commutative ring R the groupoid of all pairs (π : C →
Spec(R), e : Spec(R) → C), where π, e are such that:

1. π is a proper, flat morphism of finite presentation.
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2. The fibers of π have arithmetic genus one, and they are either smooth curves
or curves with a single nodal singularity.

3. e is a section of π whose image is contained in the smooth locus of π.

There is a flat map Mell → MFG which sends each generalized elliptic curve to
its formal completion at the identity, which acquires the structure of a formal group.
Consequently, any spectrum X defines by pullback quasi-coherent sheaves on Mell as
well; we will denote these too by Feven(X),Fodd(X).

As before, the quasi-coherent sheaf F(X) on Mell has a topological interpretation.
Given a flat map q : Spec(R) → Mell classifying an elliptic curve C → Spec(R), one
can construct an elliptic spectrum E: in other words, E is even periodic with E0 = R,
and there is an isomorphism of formal groups

SpfE0(CP∞) ≃ Ĉ,

between the formal group of E and the formal completion of C. In this case, one has
E0(X) ≃ q∗(Feven(X)) and E1(X) ≃ q∗(Fodd(X)). Moreover, there is a functorial
isomorphism

E2j(∗) ≃ ωj , E2j+1(∗) = 0,

where ω is the line bundle on Mell obtained by pulling back ω on MFG.
The work of Goerss, Hopkins, Miller, and Lurie shows that, when we restrict to

étale affines over Mell, E actually can be taken to be an E∞-ring spectrum, and that
the above construction is can be made to be functorial: it defines a sheaf Otop of
E∞-ring spectra on the étale site of Mell. We refer to

Theorem 2.7 (Goerss, Hopkins, Miller, Lurie).

1. (Existence) There is a sheaf Otop of E∞-ring spectra on the étale site of Mell,
such that for Spec(R) → Mell an affine étale open classifying an elliptic curve
C → Spec(R), the E∞-ring Otop(Spec(R)) is an elliptic spectrum corresponding
to C.

2. (Gap theorem) Moreover, πj(Γ(Mell,O
top)) = 0 for −21 < j < 0.

We refer to [7, Lectures 11–12] for a treatment of the construction of the sheaf
Otop and to [4] and [7, Lecture 13] for some of the computations of the homotopy
groups. See also the masters thesis of Konter [17] for the latter.

They define

Tmf = Γ(Mell,O
top), tmf = τ>0(Tmf),

where τ>0 denotes the connective cover. In other words, Tmf is the E∞-ring spectrum
of global sections of Otop, constructed as a homotopy limit of the associated elliptic
spectra as Spec(R) → Mell ranges over étale morphisms. Since Tmf is constructed as
a homotopy limit, we have a descent spectral sequence

Hi(Mell, π2jO
top) = Hi(Mell, ω

j) =⇒ π2j−iTmf.

More generally, if X is a spectrum, then we get a spectral sequence

Hi(Mell, πj(O
top ∧X)) =⇒ πj−i(Tmf ∧X). (4)

Here we use the fact that Tmf ∧X ≃ Γ(Mell,O
top ∧X); the fact that this holds for

any X, not necessarily finite, follows because Mell → MFG is tame (cf. [22, Th. 4.14
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and 7.2]). A knowledge of Feven(X) and Fodd(X), or equivalently of π0(O
top ∧X)

and π1(O
top ∧X), is the information necessary to identify the E2-page of the spectral

sequence.
The following case, which is that of interest to us, offers a simplification of the

spectral sequence:

Definition 2.8 ([1]). A connective spectrum X is even if H∗(X;Z) is free and con-
centrated in even dimensions. We can make a similar definition for a p-local spectrum,
for a prime p.

In the even case, the sheaf Feven(X) on MFG can be interpreted in the following
way: for a flat morphism q : Spec(R) → MFG, the R-module q∗Feven(X) is identi-
fied with E0(X) for E the Landweber-exact, even-periodic ring spectrum associated
with q. It follows from the (degenerate) Atiyah–Hirzebruch spectral sequence that
E1(X) = 0, and in particular Fodd(X) = 0, F(X) = Feven(X). We find that F(X)
can be simply viewed as a sheaf on MFG or Mell. In this case, the Adams–Novikov
spectral sequence can be written as

Hi(MFG,F(X)⊗ ωj) =⇒ π2j−i(X)

and the descent spectral sequence can be written as

Hi(Mell, ω
j ⊗F(X)) =⇒ π2j−i(Tmf ∧X).

3. A vector bundle on Mcub

In this section, we will introduce the moduli stack Mcub of cubic curves and exhibit
an eight-dimensional vector bundle at the prime 2.

3.1. The stack Mcub

For our purposes, it will be convenient to work over the larger stack of all cubic
curves. The results on cubic curves that we need can be found in [5].

Definition 3.1. Given a scheme S, a cubic curve over S is a map p : E → S which is
flat and proper of finite presentation, together with a section e : S → E whose image
is contained in the smooth locus of p. The geometric fibers of p are required to be
reduced, irreducible curves of arithmetic genus one. We denote by Mcub the stack
which assigns to each commutative ring R the groupoid of cubic curves over Spec(R).
Below, we will recall a Hopf algebroid presentation of Mcub.

Definition 3.2. There is a line bundle ω on the stack Mcub, which assigns to
a cubic curve p : C → Spec(R), e : Spec(R) → C the R-module of sections of
OC(−e)/OC(−2e): that is, the cotangent space along the zero section e, or the dual
to the Lie algebra.

If p : E → S is a cubic curve, there are three possibilities for each geometric fiber:
it can be an elliptic curve, a nodal cubic in P2, or a cuspidal cubic in P2 (isomorphic
to the projective closure of the curve defined by y2 = x3). In the first two cases,
there are no infinitesimal automorphisms. However, the multiplicative group Gm acts
on the cuspidal curve. In particular, Mcub is only an Artin stack, which contains
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the Deligne–Mumford stack Mell as an open substack. The complement of Mell in
Mcub is given by the vanishing locus of the modular forms c4 ∈ H0(Mcub, ω

4) and
∆ ∈ H0(Mcub, ω

12) (cf. [5] for expressions for these).
Zariski locally on S, a cubic curve can be described as a subscheme of P2

S cut out
by a cubic equation

y2 + a1xy + a3y = x3 + a2x
2 + a4x+ a6. (5)

In order to show this, one has to choose coordinates x, y (which are chosen as sections
of appropriate line bundles). Consequently, one can write down an explicit presenta-
tion of this stack via a Hopf algebroid. We sketch this below.

Let E → Spec(R) be a cubic curve, given by a cubic equation (5). Given one choice
of x, y, the collection of other choices of coordinates is parametrized by

x = u2x′ + r,
y = u3y′ + su2x′ + t,

(6)

where u ∈ R∗ and r, s, t ∈ R. These are the isomorphisms between Weierstrass curves.
In particular, we can represent Mcub as a Hopf algebroid (the Weierstrass Hopf

algebroid) over the ring Z[a1, a2, a3, a4, a6]. The left and right units come from the
transformation laws of a cubic equation, and the comultiplication comes from com-
position of isomorphisms.

Suppose given a cubic curve (5), and suppose one makes a change of coordinates
as in (6). Then the new Weierstrass cubic, in coordinates x′, y′, has the form

y′2 + a′1x
′y′ + a′3y

′ = x′3 + a′2x
′2 + a′4x

′ + a′6,

where:

ua′1 = a1 + 2s,

u2a′2 = a2 − sa1 + 3r − s2,

u3a′3 = a3 + ra1 + 2t,

u4a′4 = a4 − sa3 + 2a2r − (t+ rs)a1 + 3r2 − 2st,

u6a′6 = a6 + ra4 + r2a2 + r3 − ta3 − t2 − rta1.

The stack Mcub is presented either by the Hopf algebroid

(Z[a1, . . . , a6],Z[a1, . . . , a6][u
±1, r, s, t]),

or by the graded Hopf algebroid

(Z[a1, . . . , a6],Z[a1, . . . , a6][r, s, t]), |ai| = 2i and |r| = 4, |s| = 2, |t| = 6.

The grading is doubled as in topology.
Given a cubic curve E → Spec(R), there is induced a structure of commutative

group scheme on the smooth locus E◦ → Spec(R) (see Proposition 2.7 of [6]). In fact,
E◦ can be described as the relative Picard scheme Pic0E/Spec(R); see Theorem 2.6 of
[6]. This is also described in Proposition 2.5 of III in [30]. In particular, we can take
the formal completion at the zero section and get a formal group over R. This gives
a morphism of stacks

Mcub → MFG.
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Example 3.3. The geometric points ofMcub fall into four types in characteristic p > 0.
There are the ordinary elliptic curves, which map to height one formal groups, as do
the nodal elliptic curves. There are supersingular elliptic curves, which map to height
two formal groups. Finally, there is the cuspidal cubic, which maps to the additive
formal group (of infinite height).

Consequently, given a spectrum X, defining sheaves Feven(X),Fodd(X) on MFG,
we can pull back to define a sheaf (which we will still denote by the same notation)
on Mcub. If X is an even spectrum, then F(X) = Feven(X) will be a vector bundle
on Mcub too. Note, however, that the map Mcub → MFG is no longer flat, unlike the
map Mell → MFG.

We note that the line bundle ω on MFG pulls back to the line bundle ω on
Mcub; given an elliptic curve p : C → Spec(R), e : Spec(R) → C, the R-module
OC(−e)/OC(−2e) is also the Lie algebra of the formal group. In particular, it can also
be described as associated to the graded comodule Z[a1, . . . , a6] over the Weierstrass
Hopf algebroid with the grading shifted by 2.

3.2. An eight-fold cover of Mcub

Henceforth, in this section, we work localized at 2 throughout: in particular, stacks
such as Mcub will really mean Mcub ×Spec(Z) Spec(Z(2)). We will exhibit an eight-
dimensional vector bundle on Mcub (which we will later see corresponds to a finite
spectrum) by producing a finite flat cover p : T → Mcub, for T a simpler stack. The
associated vector bundle will be p∗OT . We refer to Section 4.5 below for a discussion
of the modular interpretation.

Namely, we take for T the stack-theoretic quotient

T = Spec(Z(2)[α1, α3])/Gm,

where the Gm-action corresponds to the grading of the ring Z(2)[α1, α3] with |α1| =
2, |α3| = 6, where the grading is doubled in accordance with topology. In other words,
we can think of T as the stack associated to the prestack sending a ring R to the
groupoid of pairs of elements (α1, α3) ∈ R, with

Hom((α1, α3), (α
′
1, α

′
3)) =

{
u ∈ R∗ : uα1 = α′

1, u
3α3 = α′

3

}
.

To produce the cover p : T → Mcub, observe first that there is a map
Spec(Z(2)[α1, α3]) → Mcub classifying the cubic curve

y2 + α1xy + α3y = x3.

Observe that Gm also acts on the cubic curve in a corresponding fashion as in the
action on Z(2)[α1, α3]. Namely, given an invertible element u, we have the trans-
formation x 7→ u2x, y 7→ u3y from the curve y2 + α1xy + α3y = x3 into the curve
y2 + uα1xy + u3α3y = x3. These isomorphisms allow us to produce the morphism of
stacks T → Mcub, as desired.

Proposition 3.4. The map p : T → Mcub is representable and is a finite, flat cover
of rank eight.

Proposition 3.4 will be proved in the next subsection.
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3.3. Verification of the rank eight cover
The goal of this subsection is to establish Proposition 3.4. To check that a mor-

phism X → Y of stacks is finite and flat, we just need to show that for every map
Spec(R) → Y, the pullback Spec(R)×Y X is a finite flat cover of Spec(R). In our
case, we need to show that for every morphism Spec(R) → Mcub, when one forms the
pullback square,

P T

Spec(R) Mcub,

the fiber product P is an affine scheme, corresponding to the Spec of an algebra which
is a finite, flat R-module of rank eight.

Let us first identify the pullback Spec(R)×Mcub
Spec(Z(2)[α1, α3]) concretely. Sup-

pose that Spec(R) → Mcub classifies a cubic curve in P2
R cut out by the Weierstrass

equation

y2 + a1xy + a3y = x3 + a2x+ a4 + a6, ai ∈ R.

By passing to a Zariski cover of Spec(R), we can always assume this. Then, to form
the pullback of stacks, we have to consider the scheme parametrizing changes of
coordinates (over R) which will transform this equation into an equation

y′2 + a′1x
′y′ + a′3y

′ = x′3 + a′2x
′2 + a′4x

′ + a′6,

where a′2, a
′
4, a

′
6 = 0. In other words, looking back at the previous formulas,

Spec(R)×Mcub
Spec(Z(2)[α1, α3]) is the scheme parametrizing elements u, r, s, t (with

u invertible) satisfying the equations

0 = a2 − sa1 + 3r − s2,
0 = a4 − sa3 + 2a2r − (t+ rs)a1 + 3r2 − 2st,
0 = a6 + ra4 + r2a2 + r3 − ta3 − t2 − rta1.

(7)

In other words, it is R[u±1, r, s, t] modulo the above relations. Taking the pullback
P = Spec(R)×Mcub

T corresponds to taking the Gm-quotient: in other words, we just
have to ignore u.

We find that P is a closed subscheme of affine space A3
R cut out by the three

equations above; by the first relation, r is determined in terms of s, and P is even a
closed subscheme of A2

R cut out by two equations. Our goal is to show that it is finite
flat over Spec(R), of rank eight. Let us first show finiteness.

Lemma 3.5. Let R be a ring, and let a1, a2, a3, a4, a6 ∈ R. Then the quotient of
R[r, s, t] by the above three relations (7) is a finite R-module.

Proof. We can do this in the universal case where R = Z(2)[a1, . . . , a6]. Let I be the
ideal generated by the above relations. In this case, observe that R is naturally a
graded ring (where we set |ai| = 2i), and the ring R[r, s, t]/I is a graded ring too, if
we set

|r| = 4, |s| = 2, |t| = 6.

In other words, the relations defining I are homogeneous. In view of Nakayama’s
lemma, we can now prove finiteness by taking the quotient by the augmentation
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ideal: that is, by working over Z(2), and by setting all the ai = 0 (so that we have
the cuspidal cubic y2 = x3, and the grading of R[r, s, t]/I comes from this grading).
Then the relevant ring is the quotient of Z(2)[r, s, t] by the relations

3r − s2 = 0, 3r2 − 2st = 0, r3 − t2 = 0.

Alternatively, this is the quotient of Z(2)[s, t] under the relations

3(s2/3)2 = 2st, (s2/3)3 = t2.

Since this is a graded Z(2)-module each of whose graded pieces is finitely generated,
we may as well prove finiteness after tensoring with Z/2, by the ungraded version of
Nakayama’s lemma. We then get the Z/2-algebra Z/2[s, t]/(s4, t2), which is evidently
finite over Z/2.

If R is any ring, ai ∈ R for i = 1, 2, . . . , 6, and we form the quotient R[r, s, t]/I
as above, the above proof also shows that there is a set of eight generators of the
R-module R[r, s, t]/I, given by

{
1, s, s2, s3, t, st, s2t, s3t

}
.

Namely, we just need to prove this in the universal case Z(2)[a1, a2, a3, a4, a6], which
reduces by the Nakayama-type argument above to the case of the cuspidal cubic over
Z/2. We have seen that the above elements generate in that case and in fact form a
basis.

Now that we know that the map T → Mcub is finite, flatness is automatic. In fact,
we saw in the proof that for any map Spec(R) → Mcub, the pullback T ×Mcub

Spec(R)
was, up to Zariski localizing on R, of the form R[r, s, t]/I, where I was an ideal
generated by three elements. This implies flatness by the following lemma.

Lemma 3.6. Let X be a noetherian scheme, and let Z ⊂ An
X be a closed subscheme

locally cut out by n equations. Suppose the fibers Zx, x ∈ X are zero-dimensional.
Then Z → X is flat.

Proof. In fact, we may suppose X = Spec(R), for (R,m) a local noetherian ring. We
need to show that the local rings OZ,z are flat R-modules for each z ∈ Z lying over
the maximal ideal of R. The ring OZ,z is obtained from a localization of R[t1, . . . , tn]
at a maximal ideal M ⊃ m, by taking the quotient by n equations f1, . . . , fn. Observe
moreover that the local ring S = R[t1, . . . , tn]M is flat over R, and S/(f1, . . . , fn) is
the localization of a finite R-module. Let k be the residue field of R. Then S ⊗R k is
an n-dimensional regular local ring and (S ⊗R k)/(f1, . . . , fn) is artinian, so f1, . . . , fn
form a regular sequence on S ⊗R k. It follows now from a Nakayama argument (cf. [11,
Prop. 15.1.16]) that f1, . . . , fn are regular on S itself, and that OZ,z = S/(f1, . . . , fn)
is a flat R-module.

Finally, let us show that the map p : Spec(Z(2)[α1, α3])/Gm → Mcub is a cover, i.e.,
that it is surjective. Surjectivity follows because p is finite flat, so that the image is
both open and closed; however, Mcub admits a cover by Spec(Z(2)[a1, a2, a3, a4, a6])
and is thus connected.

The upshot of all this is that the map p : T = Spec(Z(2)[α1, α3])/Gm → Mcub is an
eight-fold flat cover, and consequently the push-forward of the structure sheaf gives
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us an eight-dimensional vector bundle V on Mcub. Our goal is to show that this vector
bundle is realized by an 8-cell complex.

4. Calculation of Tmf∗(DA(1))

In this section, we recall the 2-local complex DA(1) and show that the vector bun-
dle it induces on Mell is the one constructed algebraically in the previous section. We
will do this by producing a map F(DA(1)) → F(MU) and a map from F(MU) to the
vector bundle of the previous section, over Mcub. We will check that the composite is
an isomorphism over the cuspidal cubic over Z/2. This analysis leads to the compu-
tation of Tmf∗(DA(1)) by the descent spectral sequence. In the final subsection, we
will discuss the analog at odd primes.

4.1. The complex DA(1)

In this section, we describe a 2-local complex with eight-dimensional homology.

We start by describing the question mark complex, a variant of which is constructed
in [15, Lem. 7.2]. First, let ν : S3 → S0 and η : S1 → S0 be the usual Hopf maps. We

have ην = 0. We draw the cofiber sequence for η, which runs S1 η
→ S0 → Σ−2CP

2 →
S2 → . . . , and consider the diagram:

S5

Σ2ν
t

S1 η
S0 Σ−2CP

2 S2 Ση
S1

Σ−2HP
2.

The map t drawn as a dotted arrow exists because ην = 0; it is even unique as
π5(S

0) = 0.

Definition 4.1. The question mark complex Q is defined to be the cofiber of t.

A simple calculation shows that H∗(Q;Z/2) is three-dimensional, with a basis
given by the element x0 in degree zero, and Sq2x0 and Sq4Sq2x0.

Definition 4.2. Let DQ = F (Q,S0) be the Spanier–Whitehead dual to Q. We define
the (2-local) complex DA(1) to be the six-fold suspension of the cofiber of the coeval-
uation map S0 → Q ∧ DQ.

The composite of the coevaluation and evaluation maps S0 → Q ∧ DQ → S0 is
multiplication by the Euler characteristic χ(Q) = 3. Since we are working 2-locally,
we find that there is a splitting Q ∧ DQ ≃ S0 ∨ Σ−6DA(1).

Note that DA(1) is an even 2-local spectrum. A computation shows that the coho-
mology H∗(DA(1);Z/2) is a free module over the eight-dimensional algebra DA(1) ⊂
A/ASq1A generated by Sq2, Sq4; the cohomology is drawn in Figure 1. Its homology,
as a comodule over A∗, can be described as Z/2

{
1, ξ21 , ξ

4
1 , ξ

6
1

}
⊗ Z/2

{
1, ζ22

}
⊂ A∗.
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Figure 1: The cohomology of DA(1). This depicts only the action of Sq2, Sq4; there
is also a nontrivial Sq8 which is not shown

Remark 4.3. The complex is so named because its cohomology is free over the subal-
gebra of the Steenrod algebra generated by Sq2 and Sq4, which doubles the subalgebra
A(1) ⊂ A generated by Sq1, Sq2.

Since DA(1) is an even spectrum, the Atiyah–Hirzebruch spectral sequence for
MU∗(DA(1)) degenerates, and we can find a morphism DA(1) → MU which induces
an isomorphism on π0. This map is not unique, but we have specified its image in
mod two homology after composing with the projection MU → BP . To see this, we
need to first recall some notation.

Convention. We let A∗ = π∗(HZ/2 ∧HZ/2) denote the (mod 2) dual Steenrod
algebra. Then we have

A∗ = Z/2[ξ1, ξ2, . . . ], |ξi| = 2i − 1

using the standard notation (cf. [26, Ch. 6] for a textbook reference). We will let ζi
denote the Hopf conjugate of ξi.

We recall that the map BP → HZ/2 induces an injection in mod 2 homology, and
we get H∗(BP ;Z/2) = Z/2[ξ2i ] = Z/2[ζ2i ] ⊂ A∗. Compare [28, Ch. 4] for a textbook
reference. The image of H∗(DA(1);Z/2) in H∗(BP ;Z/2) is spanned by

{
ξa1 ζ

b
2

}
for

0 6 a 6 3 and 0 6 b 6 1.
Both DA(1) and MU define quasi-coherent sheaves on MFG, and thus on Mell

and even Mcub; these are denoted F(DA(1)) and F(MU). The map DA(1) → MU
defines an injection of sheaves

F(DA(1)) → F(MU).

Our goal will be to produce a map F(MU) → V, for V the eight-dimensional vec-
tor bundle constructed in the previous section, such that the composite is an iso-
morphism. We will construct the map, and check that it is an isomorphism on the
cuspidal curve over Z/2.
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4.2. Construction of a map
Let us start by describing the sheaf F(MU) on the stack MFG. This assigns to a

formal group over a ring R the ring parametrizing coordinates on this formal group,
modulo action of Gm. Namely, let M coord

FG be the moduli stack of formal groups
together with a coordinate (i.e., an isomorphism of formal schemes with the for-

mal affine line Â1), so that M coord
FG is simply the spectrum of the Lazard ring. It

parametrizes formal group laws (and no isomorphisms).
There is a Gm-action on M coord

FG , corresponding to twisting a coordinate: this
induces the usual grading of the Lazard ring. There is a morphism of stacks

q : M coord
FG /Gm → MFG.

Then F(MU) = q∗(O).
Consider next the pullback diagram

M coord
cub /Gm

q′

M coord
FG /Gm

q

Mcub MFG.

Here M coord
cub /Gm is the stack parametrizing cubic curves together with a coordinate

on the formal group, modulo Gm-action. We have:

Theorem 4.4 (Cf. [16, Cor. 8.9]). There is an equivalence of stacks

M coord
cub /Gm = Spec(Z(2)[a1, . . . , a6, e4, e5, . . . ])/Gm.

The {ai} are the choice of coefficients for a Weierstrass equation. In fact, the choice
of a coordinate modulo degree five on the formal group of a cubic curve is equivalent
to the choice of a Weierstrass equation, and the remaining ei allow one to modify the
coordinate in higher degrees.

We next construct a map g : T = Spec(Z(2)[α1, α3])/Gm → M coord
cub /Gm giving a

commutative diagram

T

p

g
M coord

cub /Gm

q′

M coord
FG /Gm

q

Mcub MFG.

We define a map g : T → M coord
cub /Gm by sending the cubic curve y2 + α1xy + α3y =

x3 to the same cubic curve with the canonical coordinate −x/y. In other words,
a1 7→ α1, a3 7→ α3, and all the other polynomial generators are mapped to zero. This
morphism is a closed immersion.

We let V be the vector bundle of the previous section: that is, V = p∗(O). Then
V is actually a bundle of finite, flat commutative algebras on Mcub. The diagram
naturally furnishes a map

q′∗(O) → q′∗(g∗(O)) ≃ p∗(O) = V,

which is a surjection of sheaves of algebras as g was a closed immersion. Therefore, we
know that q′∗(O) ≃ F(MU), and the map F(DA(1)) → F(MU) combined with the
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surjection q′∗(O) → V induces a map F(DA(1)) → V. This is a morphism of eight-
dimensional vector bundles on Mcub.

4.3. Identification of F(DA(1))
Our goal is to prove that the map F(DA(1)) → V constructed in the previous

section is an isomorphism, or equivalently, that it is a surjection. The following lemma
will be useful.

Lemma 4.5. Let E → F be a morphism of coherent sheaves on the stack Mcub (local-
ized at 2). Let x : Spec(Z/2) → Mcub classify the cuspidal cubic curve. If x∗E → x∗F
is a surjection of Z/2-vector spaces, then E → F is a surjection of coherent sheaves.

Proof. We can pull back the coherent sheaves to the flat cover Spec
(
Z(2)[a1, a2, a3,

a4, a6]
)
to obtain finitely generated graded modules E,F over Z(2)[a1, a2, a3, a4, a6]

and a map E → F such that

E ⊗Z(2)[a1,a2,a3,a4,a6] Z/2 → F ⊗Z(2)[a1,a2,a3,a4,a6] Z/2

is a surjection. However, Nakayama’s lemma, in both its graded and ungraded forms,
now implies that E → F is a surjection of modules, as desired.

Remark 4.6. We note that if F is any quasi-coherent sheaf on Mcub, then the Z/2-
vector space x∗F has a canonical grading. This was used in the proof of Lemma 4.5,
and it also can be interpreted as follows: the cuspidal curve y2 = x3 admits a Gm-
action, and consequently all the vector spaces in question acquire a canonical Gm-
action (i.e., grading).

We can now prove the main result of this section.

Proposition 4.7. The composite map F(DA(1)) → F(MU) ≃ q′∗(O) → V is an iso-
morphism of vector bundles on Mcub (in particular, on Mell).

Proof. Since both bundles are eight-dimensional, it suffices to show that the map is
a surjection. By Lemma 4.5, it suffices to show that if x : Spec(Z/2) → Mcub classifies
the cuspidal cubic, then x∗F(DA(1)) → x∗V is a surjection of vector spaces.

Now, DA(1) is an even 2-local spectrum: in particular, it has free Z(2)-homology
and the AHSS degenerates for MU∗(DA(1)). This implies that

x∗(F(DA(1))) = MU∗(DA(1))⊗MU∗
Z/2 ≃ H∗(DA(1);Z/2);

that is, we can get a description of F(DA(1)) even over the cuspidal locus in terms of
a homology theory. The same is true for x∗(F(MU)) ≃ H∗(MU ;Z/2). Note that the
grading induced (cf. Remark 4.6) on the vector spaces x∗F(DA(1)) (resp. x∗F(MU))
is simply the grading on homology.

Let us now describe the two maps

H∗(DA(1);Z/2) → H∗(MU ;Z/2), H∗(MU ;Z/2) → x∗V.

• First consider the map H∗(DA(1);Z/2) → H∗(MU ;Z/2). There is a unique
nonzero indecomposable element S in H2(MU ;Z/2) and a nonzero indecom-
posable element T in H6(MU ;Z/2) with the property that

{1, S, S2, S3, T, ST, S2T, S3T}

forms a basis of the image of H∗(DA(1);Z/2) → H∗(MU ;Z/2). Under the
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reduction mapMU → HZ/2 and the induced mapH∗(MU ;Z/2) → A∗, S maps
to ξ21 and T maps to ζ22 .

• Consider now the map H∗(MU ;Z/2) → x∗(V); observe that this is a morphism
of graded algebras. In x∗(V), one has an element s in degree 2, an element t in
degree 6, and one has a basis for the algebra given by {1, s, s2, s3, t, st, s2t, s3t}
(cf. the proof of Proposition 3.4). In fact, as we saw earlier, the algebra is
Z/2[s, t]/(s4, t2). SinceH∗(MU ;Z/2) → x∗(V) is a surjection of graded algebras,
this means that the indecomposable element S in degree 2 ofH∗(MU ;Z/2) must
map to s in x∗(V), and the indecomposable element T in degree 6 must map to
t mod decomposables.

Combining these two observations, it now follows that the composite map
x∗F(DA(1)) → x∗V is an isomorphism, as desired.

4.4. Calculation of Tmf∗(DA(1))

We now have done the work necessary to compute Tmf∗(DA(1)). As before, let
T = Spec(Z(2)[α1, α3])/Gm. Note that it is not T and Mcub which are relevant to
this computation, but rather T ×Mcub

Mell and Mell. We will use the descent spectral
sequence (4) and the determination of F(DA(1)) of the previous subsections.

Lemma 4.8. Mell ×Mcub
T ≃ P(1, 3) is the weighted projective stack: that is, the

complement of the intersection V (α1) ∩ V (α3) in Spec(Z(2)[α1, α3])/Gm.

Proof. We recall (cf. [5]) that the substack Mell ⊂ Mcub is the complement of the
closed substack of cuspidal curves cut out by the vanishing of the modular forms
c4,∆. It follows that Mell ×Mcub

T is the substack of T ≃ Spec(Z(2)[α1, α3])/Gm com-
plementary to that cut out by the vanishing of c4,∆. In other words, we need to show
that c4,∆ generate an ideal in Z(2)[α1, α3] which contains all elements of sufficiently
large degree.

We can again show this after reducing mod 2. Here we use the expressions mod 2
for c4,∆ of the cubic curve y2 + α1xy + α3y = x3 (easily extracted from [5, p. 57]);
they are given by

c4 ≡ α4
1, ∆ ≡ (α1α3)

3 + α4
3.

These together imply that c4,∆ cut out the empty subscheme of P1
Z/2 and conse-

quently generate a power of the irrelevant ideal.

Theorem 4.9. The descent spectral sequence for π∗(Tmf ∧DA(1)) collapses. The
terms in nonnegative degrees are given (additively) by Z(2)[α1, α3]: that is,
π∗τ>0(Tmf ∧DA(1)) ≃ Z(2)[α1, α3]. Here |α1| = 2, |α3| = 6.

Proof. We saw in Proposition 4.7 that if p : P(1, 3) → Mell was the eight-fold cover
as above, then F(DA(1)) ≃ p∗(O), so that by the projection formula,

F(DA(1))⊗ ωj ≃ p∗(ω
j).

Here ω refers to the usual bundle on MFG or Mell. Over P(1, 3), it arises simply
from a shift in grading, i.e., from the graded Z(2)[α1, α3]-module Z(2)[α1, α3]ι where
|ι| = −2.
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Consequently, we have the E2-term of the descent spectral sequence:

Hi(Mell,F(DA(1))⊗ ωj) = Hi(P(1, 3), ωj). (8)

The cohomology of a weighted projective stack is the same as the classical cohomology
of projective space, but the grading is modified. Namely, one has to compute the
cohomology of A2 \ {(0, 0)} = Spec(Z(2)[α1, α3]) \ V (α1, α3) and keep track of the
grading. We find that H•(A2 \ {(0, 0)} ,O) is the cohomology of the two-term (Cech)
complex:

Z(2)[α
±1
1 , α3]⊕ Z(2)[α1, α

±1
3 ] → Z(2)[α

±1
1 , α±1

3 ]

and the cohomology of P(1, 3) is the same, with the grading taken into account. In
particular, the spectral sequence (8) is concentrated in the bottom two rows, and
each row is easy to describe. We have:

H0(A2 \ {(0, 0)} ,O) = Z(2)[α1, α3],

H1(A2 \ {(0, 0)} ,O) = Z(2)

{
α−1
1 α−1

3 , α−2
1 α−1

3 , α−1
1 α−2

3 , . . .
}
.

By the gap theorem in Theorem 2.7, we have

τ>0(Tmf ∧DA(1)) ≃ tmf ∧DA(1).

In particular, we also get:

Corollary 4.10. We have an additive isomorphism tmf∗(DA(1)) ≃ Z(2)[α1, α3].

4.5. Connections with level structures
We start by reviewing the modular interpretation of the eight-fold cover. Over the

locusMcub[∆
−1] of (nonsingular) elliptic curves, the restriction of the cover T → Mcub

is the forgetful functor from the moduli stack of elliptic curves with a Γ1(3)-structure
(i.e., a choice of nonzero 3-torsion point, which here is (0, 0)) to Mcub[∆

−1]; see
[21]. More generally, over Mell, the above cover is the cover (Mell)1(3) → Mell of
generalized elliptic curves with a Γ1(3)-structure [6] (cf. [19, §2]).

The recent work of Hill–Lawson [12] interprets this cover as a morphism of derived
stacks. In particular, they construct an even periodic derived version of (Mell)1(3)
which maps to the derived version of the previously constructed Mell (away from
the prime 3). The global sections of the structure sheaf are denoted Tmf1(3) and its
connective cover is tmf1(3).

Let Otop be the sheaf of E∞-ring spectra on the étale site of Mell. Previously,
we identified the quasi-coherent sheaf on Mell obtained by taking π0(O

top ∧DA(1)),
and we showed that it identifies with the pushforward of the structure sheaf along
(Mell)1(3) → Mell. As a consequence of the Hill–Lawson work, we can upgrade this
to an identification of quasi-coherent sheaves on derived stacks.

Corollary 4.11. The following two quasi-coherent sheaves of Otop-modules (on Mell

localized at 2) are equivalent:

1. DA(1) ∧ Otop.

2. The pushforward of the structure sheaf Otop on the derived version of (Mell)1(3)
to Mell.
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Proof. Both yield quasi-coherent sheaves Q1,Q2 of Otop-modules on Mell which are
locally free, and Proposition 4.7 shows that the vector bundles on Mell given by
taking π0 are isomorphic. In order to produce an equivalence Q1 ≃ Q2, we need to
produce a global section of Q3 = Q1 ⊗Otop HomOtop(Q2,O

top). Now Q3 is a sheaf of
Otop-modules such that on π0, one obtains the vector bundle V ⊗ V∗ on Mell, and
the unit is a global section of π0Q3. This survives to a global section of Q3 because
π∗Q3 has only cohomology in H0 and H1 as it is pushed forward from (Mell)1(3),
which has cohomological dimension one. In particular, there are no obstructions to
producing the equivalence Q1 ≃ Q2.

Taking global sections and connective covers (using the gap in π∗Tmf), one obtains:

Theorem 4.12 (Hopkins–Mahowald). We have an equivalence of tmf(2)-modules
tmf(2) ∧DA(1) ≃ (tmf1(3))(2).

4.6. Analogs at odd primes
We briefly indicate the modifications in the above arguments that can be used at

an odd prime.
When localized at a prime p > 3, the moduli stack Mell can be identified with

the weighted projective stack P(4, 6): that is, any (possibly nodal) elliptic curve over
a Z[1/6]-algebra R can be (Zariski locally) written in the form y2 = x3 +Ax+B,
where A,B do not simultaneously vanish. The isomorphisms between elliptic curves
are of the form (x, y) 7→ (u2x, u3y) for u ∈ R∗. The elements A and B are, up to units
in R, the modular forms c4, c6. In particular, the descent spectral sequence for Tmf(p)
runs

Hi(P(4, 6), ωj) =⇒ π2j−iTmf(p)

and degenerates, since the cohomology is concentrated in H0 and H1. One has there-
fore

π∗Tmf = Z(p)[c4, c6]⊕ Z(p)

{
c−1
4 c−1

6 , c−2
4 c−1

6 , c−1
4 c−2

6 , . . .
}

and Tmf is complex-orientable as it is torsion-free.
Next we consider the prime 3. Here there is a three-fold cover of the moduli stack

of cubic curves. We will construct this cover, and show that it can be realized via a
three-cell complex.

Proposition 4.13. Let p : Spec(Z(3)[α2, α4])/Gm → Mcub classify the cubic curve
y2 = x3 + α2x

2 + α4x. Then p is a finite flat cover of rank three.

Proof. We will imitate the arguments of Proposition 3.4. Namely, to show finiteness,
we can argue as in the proof of Proposition 3.4 and reduce to showing that the
pullback Spec(Z(3)[a2, a4])×Mcub

Spec(Z/3) is the spectrum of a finite Z/3-algebra
(where Spec(Z/3) → Mcub classifies the cuspidal cubic). Using the change-of-variable
formulas, we find that this fiber product is the spectrum of

Z/3[r, s, t]/(2s, 2t, r3 − t2) = Z/3[r]/(r3),

which is clearly a finite Z/3-algebra of dimension three. We conclude that for any
R and for any map Spec(R) → Mcub, the fiber product Spec(Z(3)[a2, a4])/Gm ×Mcub

Spec(R) is a subscheme of A3
R cut out by three equations, and that it is finite over

R. As in the proof of Proposition 3.4, this implies flatness.
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In order to realize the vector bundle p∗(O) on Mell by a spectrum, we consider the
generating element α1 ∈ π3(S

0)(3) = Z/3. The cofiber of α1, which is a desuspension

of HP
2, has cohomology generated by elements x0, x4 with P1x0 = x4. Since, further-

more, α2
1 = 0 ∈ π6(S

0)(3) = 0, we conclude that there is a 3-local finite spectrum X3

such that

H•(X3;Z/3) ≃ {x0, x4, x8} , P1x0 = x4, P1x4 = x8.

To construct X3, we consider the diagram

S7

φ
α1

S3 α1
S0 Σ−4HP

2 S4 −Σα1
S1,

where the horizontal line is a cofiber sequence. Since α2
1 = 0, we find a lifting φ : S7 →

Σ−4HP
2 and let X3 be the cofiber of φ.

In the spirit of the previous sections, we prove:

Proposition 4.14. The vector bundle thatX3 defines on Mell is isomorphic to p∗(O).

Proof. We follow the outline of the earlier arguments. In fact, we start by producing
a map X3 → MU (implicitly localized at 3) which induces an isomorphism on π0,
using the degeneration of the AHSS. In homology, the map

H∗(X3;Z/3) → H∗(MU ;Z/3) ≃ Z/3[x1, x2, . . . , ], |xi| = 2i

is an embedding whose image contains an indecomposable generator in degree four,
and its square. As a result, one gets a map of vector bundles on MFG, F(X3) →
F(MU), such that when one takes the fiber over the additive formal group over
Spec(Z/3), one obtains the above map in homology.

Next, consider the cover q : Spec(L)/Gm → MFG and the pullback (cf. Theo-
rem 4.4)

q′ : Spec(Z(3)[a1, . . . , a6, {en}n>4])/Gm ≃ M coord
cub → Mcub.

As before, q′∗(O) is the sheaf on Mcub that one obtains from MU . One produces a
map q′∗(O) ։ p∗(O), by considering the closed embedding

Spec(Z(3)[α2, α4])/Gm →֒ Spec
(
Z(3)[a1, . . . , a6, {en}n>4]

)
/Gm,

which sends a2 7→ α2, a4 7→ α4, and annihilates all the other generators.

The claim is that the composite map F(X3) → F(MU) → p∗(O), is an isomor-
phism of vector bundles on Mcub, which as before can be checked by showing that
the map yields a surjection when one takes the fiber over the cuspidal cubic. To see
this, we observe that when one takes the fiber over the cuspidal cubic, one gets the
embedding H∗(X3;Z/3) → H∗(MU ;Z/3), whose image contains an indecomposable
generator in degree 4 and its square. The map from H∗(MU ;Z/3) to the fiber of
p∗(O) over the cuspidal cubic (which we have checked to be Z/3[r]/(r3)) is a map of
graded algebras and induces a surjection on indecomposables. From this, the conclu-
sion follows similarly.
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The threefold cover of Mell one obtains here is obtained from Γ1(2)-structures [31,
§7]. Using similar techniques as in Theorem 4.12 and the Hill–Lawson work [12], one
obtains from the above analysis:

Theorem 4.15. One has an equivalence of tmf(3)-modules tmf(3) ∧X3 ≃ tmf1(2)(3).

5. The remaining computations

In this section, we finish the computations. We use the 2-local complex DA(1) and
the 3-local complex F to analyze the Adams–Novikov spectral sequence for tmf. We
then identify the spectrum tmf(2) ∧DA(1) ≃ tmf1(3)(2) with a form of BP 〈2〉, and
using Hopf algebra manipulations, we are able to recover H∗(tmf;Z/2).

5.1. Calculation of Tmf∗(MU) and the stack for tmf
In this subsection, we compute the homotopy groups of Tmf ∧MU and tmf ∧MU .

This leads to the description of the Adams–Novikov spectral sequence for tmf in terms
of the moduli stack of cubic curves. Throughout, we work integrally.

Proposition 5.1. Let R = Z[a1, . . . , a6, {en}]n>4. Then Tmf∗(MU) is a module over
R. As an R-module, it is isomorphic to R⊕ C, where C∗ = (R/(c∞4 ,∆∞))∗+1 and
R/(c∞4 ,∆∞) is the cokernel of R[c−1

4 ]⊕R[∆−1] → R[(c4∆)−1].

Proof. This follows from the descent spectral sequence Hi(Mell,F(MU)⊗ ωj) =⇒
π2j−i(Tmf ∧MU). The sheaf F(MU) on Mell is obtained by pushing forward the
structure sheaf along the affine map

Spec(π∗MU)/Gm ×MFG
Mell → Mell.

The source of this morphism is identified with (Spec(R) \ V (c4,∆)) /Gm by Theo-
rem 4.4, since the locus Mell ⊂ Mcub is the complement of the closed substack defined
by c4,∆.

Let B be the scheme Spec(R) \ V (c4,∆). Consequently, we get for the E2 page of
the descent spectral sequence for Tmf∗(MU),

Ei,2j
2 = Hi(Mell,F(MU)⊗ ωj) ≃ Hi(B,O)j ,

where the subscript j denotes taking the jth piece. The scheme B is covered by two
affine opens given by the localizations at ∆ and c4. In particular, it has cohomological
dimension one, and for dimensional reasons the descent spectral sequence for Tmf ∧
MU degenerates. We can describe the cohomology of B as that of the Cech complex

R[c−1
4 ]⊕R[∆−1] → R[(c4∆)−1].

Putting this together, the result follows easily as the H0 gives R and the H1 gives
R/(c∞4 ,∆∞).

We observe that C can be identified with the ideal of Tmf∗(MU) given by elements
in positive filtration degree in the filtration from the descent spectral sequence, and
consequently C2 = 0.

We will now describe the stack corresponding to tmf, or equivalently describe the
structure of the Adams–Novikov spectral sequence for tmf. We will see that the stack
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associated to tmf (in the sense of sec. 2.2) is precisely the moduli stack Mcub of cubic
curves. This produces a spectral sequence that allows computation with tmf.

Corollary 5.2 (Cf. [29, Prop. 20.1]). One has

π∗(tmf ∧MU) = Z[a1, a2, a3, a4, a6, {en}]n>4.

Proof. We begin by computing tmf∗(MU). In fact, we know (Proposition 5.1) that
π∗(Tmf ∧MU) canonically surjects onto the ring in question with kernel an ideal
C ⊂ Tmf∗(MU) of square zero, and that there is a map tmf ∧MU → Tmf ∧MU.
The claim is that the composite

tmf∗(MU) → Tmf∗(MU) → Tmf∗(MU)/C ≃ Tmf∗(MU)/F1Tmf∗(MU) (9)

is an isomorphism, where we use the notation of Proposition 5.1 for C and where
F1 refers to the filtration from the descent spectral sequence. This will compute
tmf∗(MU), as desired. We will prove this locally at each prime p.

In order to prove this, we will use the existence of a finite even p-local spectrum
Z with the following properties:

1. Tmf ∧ Z is a complex-orientable ring spectrum.

2. tmf ∧ Z = τ>0(Tmf ∧ Z).

For p = 2, we proved this fact with Z = DA(1). For p = 3, we proved this fact with
Z = X3. For p > 5, we can take Z = S0, since Tmf and tmf are complex-orientable
ring spectra with torsion-free homotopy groups.

We will now use these three facts to prove that (9) is an isomorphism at the
arbitrary prime p. To start with, we note that tmf ∧MU is a complex-orientable
E∞-ring, so that, since Z is an even spectrum, tmf∗(MU ∧ Z) is a sum of copies of
tmf∗(MU) (possibly shifted). The analog holds for Tmf∗(MU ∧ Z). Moreover, since
the map tmf ∧ Z → Tmf ∧ Z, induces a split injection on homotopy groups, we find
that

π∗(tmf ∧ Z ∧MU) → π∗(Tmf ∧ Z ∧MU)

is a split injection of graded abelian groups in view of the (known) MU -homology of
any complex-oriented ring spectrum.

Since Z is even, we conclude that tmf∗(MU) → Tmf∗(MU) is a split injection.
It follows that both tmf∗(MU) and the cokernel of tmf∗(MU) → Tmf∗(MU) are
torsion-free abelian groups. To show that tmf∗(MU) ∩ F1Tmf∗(MU) = 0 and that
tmf∗(MU) → Tmf∗(MU)/F1Tmf∗(MU) is an isomorphism, it now suffices to work
rationally, since the kernel and the cokernel are torsion-free. This is much easier. In
fact, rationally, the descent spectral sequence for Tmf degenerates and is concentrated
in the zeroth and first row. The image of π∗tmf ⊗Q → π∗Tmf ⊗Q consists of the ele-
ments on the zeroth row: that is, π∗tmf ⊗Q → π∗Tmf ⊗Q → (π∗Tmf/F1π∗Tmf)⊗
Q is an isomorphism. It follows that this is true after tensoring tmf with any rational
spectrum.

In particular, we can describe the spectral sequence for tmf-homology.

Corollary 5.3 (Hopkins–Mahowald). The stack for tmf is identified with Mcub. In

particular, let X be a spectrum. Then X defines a quasi-coherent sheaf F̃ (X) on the
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moduli stack Mcub (if X is even, then F̃ (X) is the pullback of F(X) under Mcub →
MFG) and a spectral sequence

Hi(Mcub, F̃ (X)⊗ ωj) =⇒ tmf2j−i(X).

In [29], Rezk uses instead the Thom spectrumX(4) and reproduces the Weierstrass
Hopf algebroid (cf. [29, Prop. 12.4 and Th. 14.5]).

Proof. This analysis shows that the morphism tmf∗(MU) → Tmf∗(MU) →
Tmf∗(MU)/C is an isomorphism, where C is the ideal consisting of those elements of
filtration 1 in the (degenerate) descent spectral sequence for Tmf ∧MU . The same is
therefore true when MU is replaced by any wedge of suspensions of MU , for instance
any smash power of MU . We find that, for any s > 0, tmf∗(MU∧s) can be described
as global sections of the structure sheaf on the stack

M coord
ell

×M
ell

· · · ×M
ell

M coord
ell

(with s factors): that is, the contributions of H1 terms in the Tmf-homology can be
ignored. The ring of global sections over this stack is the same as the ring of global
sections over the larger stack

M coord
cub ×Mcub

· · · ×Mcub
M coord

cub ,

which differs by a substack of codimension 2. We find that the Hopf algebroid

tmf∗(MU)→→ tmf∗(MU ∧MU)
→
→
→

. . .

precisely writes down the presentation of Mcub via the flat cover M coord
cub → Mcub.

The stack Mcub can be presented by the Weierstrass Hopf algebroid. We remark
that this spectral sequence is the Adams–Novikov spectral sequence for tmf ∧X. In
[4], it is used to calculate π∗tmf.

5.2. tmf ∧DA(1)
We will now identify the ring spectrum tmf1(3) with a form of BP 〈2〉.
We begin with some generalities. Implicitly, we work at a prime p. Given an E∞-

ring spectrum R and an element r ∈ πk(R), we write R/r for the cofiber of r : ΣkR →
R. Given a sequence of elements r1, r2, . . . ,∈ π∗(R), we let R/(r1, r2, . . . ) denote the
colimit over n of the finite smash products R/r1 ∧R · · · ∧R R/rn. When π∗(R) is
concentrated in even degrees and the ri’s are nonzerodivisors in π∗(R), it is known
that these can always be given A∞-algebra structures in R-modules (cf. [2, Sec. 3]).

Definition 5.4. A MU -module spectrum M is said to be a form of BP 〈n〉 (at the
prime p) if there exist elements xi ∈ π2iMU for i ∈ Z>0 \

{
p− 1, p2 − 1, . . . , pn − 1

}

such that one has an equivalence of MU -modules

MU(p)/({xi}) ≃ M

and such that xi generates π2i(MU) modulo decomposables. We will frequently abuse
notation and write BP 〈n〉 for any form of BP 〈n〉.

In general, it does not seem easy to tell whether an MU -module spectrum is a
form of BP 〈n〉 simply from looking at its homotopy groups as a module over MU∗ =
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π∗(MU). However, the following examples will be useful in the future. We note also
that recent work of Angeltveit–Lind [3] has shown that the spectrum obtained by
p-completing BP 〈n〉 is determined by its mod p cohomology.

Example 5.5. Suppose M is an MU -module spectrum with

M∗ ≃ BP∗/(vn+1, vn+2, . . . , ) ≃ Z(p)[v1, v2, . . . , vn].

Suppose M admits the structure of an MU -ring spectrum, i.e., the structure of a
possibly nonassociative algebra object in the homotopy category of MU -modules,
inducing the natural ring structure on M∗. Then M is a form of BP 〈n〉.

In fact, consider the map MU∗ → M∗ induced by the unit MU → M , and choose
indecomposable generators yi in π2i(MU) (for each i 6= p− 1, p2 − 1, . . . , pn − 1) for
the kernel. The unit map MU → M extends over MU/yi → M , and we can take the
smash product of all of these together and localize at p to get a map MU(p)/({yi}) ≃
BP 〈n〉 → M , which is an isomorphism on homotopy groups.

Observe that tmf ∧MU is an E∞-ring spectrum, so that we can make various
quotients in the category of tmf ∧MU -modules. Consider in particular (tmf(2) ∧
MU)/(a2, a4, a6, {en}). The next lemma will enable us to analyze it.

Lemma 5.6. The homotopy groups of the MU -ring spectrum tmf(2) ∧MU/(a2, a4,
a6, {en}) are given by Z(2)[a1, a3], and it is a form of BP 〈2〉.

Let I denote the ideal (a2, a4, a6, {en}) ⊂ R; we will (by abuse of notation) write
(tmf(2) ∧MU)/I for the quotient (tmf(2) ∧MU)/(a2, a4, a6, {en}).

Proof. It suffices to describe the Hurewicz map MU∗ → M∗, in view of Example 5.5.
By [2, Cor. 3.2], M is an A∞-algebra in MU -modules.

Given an elliptic spectrum E associated to an elliptic curve over Spec(R), the
map MU∗ → E∗(MU) yields the map Spec(E∗(MU)) → Spec(MU∗) from the ring
classifying coordinates on the formal group to the ring classifying formal group laws.
In particular, the map

MU∗ → tmf∗(MU) ≃ Tmf∗(MU)/F1Tmf∗(MU)

classifies the formal group law constructed by choosing the coordinate −y/x+∑
n>4 en(−y/x)n+1 on the formal group of y2 + a1xy + a3y = x3 + a2x

2 + a4x+ a6.
The compositeMU∗ → (Tmf∗(MU)/F1Tmf∗(MU))/I classifies the formal group law
associated to the coordinate −y/x on y2 + a1xy + a3y = x3.

Here we use the formulas given in [30, Ex. 4.5, Ch. 4]. The expansion of the power
series [2](z) for the formal group law associated to a Weierstrass equation is

[2](z) = 2z − a1z
2 − 2a2z

3 + (a1a2 − 7a3)z
4 + . . . ,

where in our case a2 = 0 and 7 is invertible. In particular, if we take v1, v2 to be
indecomposable elements of MU in degrees 2 and 6 (e.g., the coefficients of z2, z4 in
[2](z)), and take our equation to be y2 + a1xy + a3y = x3, then v1 maps to a unit
times a1, and v2 maps to a unit times a3. It follows that there exist indecomposable
generators in πi(MU) for i 6= 2, 6 which generate the kernel of the surjective map
π∗(MU) → Z(2)[a1, a3]. This proves the result.
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Corollary 5.7. The map of tmf-modules tmf ∧DA(1) → (tmf ∧MU)/I is an equiv-
alence.

Proof. This follows from Proposition 4.7 and from the construction of the vector
bundle V used there. Note that π∗(tmf ∧DA(1)) is isomorphic to the quotient of
π∗(Tmf ∧DA(1)) by the elements in filtration 1.

Combining Lemma 5.6 and Corollary 5.7, we find:

Theorem 5.8 (Hopkins–Mahowald [14]).

tmf(2) ∧DA(1) ≃ tmf1(3)(2) ≃ τ>0(Tmf(2) ∧DA(1))

is a form of BP 〈2〉.

5.3. The mod 2 homology of tmf
In the previous subsection, we established the 2-local equivalence tmf ∧DA(1) ≃

BP 〈2〉. Using Hopf algebra manipulations and the homology of BP 〈2〉, we can now
calculate the homology of tmf.

We begin by recalling the homology of BP 〈n〉. The result is classical and follows
from the spectral sequence

Torπ∗MU (π∗BP 〈n〉 ;H∗(MU ;Z/2)) =⇒ H∗(BP 〈n〉 ;Z/2);

see also [19, Th. 4.4].

Proposition 5.9. The map BP 〈n− 1〉 → HZ/2 induces an injection on homology,
with image Z/2[ζ21 , ζ

2
2 , . . . , ζ

2
n, ζn+1, ζn+2, . . . ] ⊂ A∗.

We will identify the subalgebra of H∗(BP 〈2〉 ;Z/2) given by the homology of tmf.
First, we need a few lemmas. Let k be a field. As usual, a nonnegatively graded k-
algebra R is called connected if k → R0 is an isomorphism, and a graded R-module
M is called connective if it is zero in negative degrees. Given R, we let R =

⊕
i>0 Ri.

We recall the following:

Lemma 5.10 (Nakayama’s lemma). Let R be a graded, connected k-algebra with aug-
mentation ideal R. If M is a connective R-module which is flat, then it is free (in
particular, if in addition M 6= 0, then M is faithfully flat).

Lemma 5.11. Let B be a commutative, graded connected Hopf algebra over a field
k and let A ⊂ B be a graded comodule subalgebra. Then we can write the inclusion
A ⊂ B as a filtered colimit of inclusions Aj ⊂ Bj , j ∈ J, where Bj ⊂ B is a finitely
generated commutative graded, connected Hopf subalgebra, and Aj ⊂ Bj are finitely
generated subalgebras which are also comodules for Bj.

By “commutative graded,” we do not mean “graded-commutative.” The lemma is
false without the graded and connected hypotheses: for instance, consider the ring
of functions on the multiplicative group, k[t, t−1] (a Hopf algebra with ∆(t) = t⊗ t),
and the comodule subalgebra k[t]. Geometrically, this corresponds to the Gm-variety
A1: the natural inclusion map Gm → A1 (of Gm-varieties) is not faithfully flat. We
remark that the existence of such structure theorems for comodule algebras in the
graded, connected case goes back to [25].
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Proof. First, observe that B is a filtered colimit of finitely generated graded Hopf
subalgebras [23, Lemma 21.1.2]. Observe also that A, as a B-comodule, is a fil-
tered colimit of finite-dimensional graded B-comodules. Given a finite-dimensional
B-comodule M ⊂ A, it is, as a result, a B̃-comodule for B̃ a large enough finitely
generated (graded) subHopf algebra of B. Now, consider the pairs (Ã, B̃) for Ã the

subalgebra of A generated by M . Then Ã is a finitely generated algebra and a B̃-
comodule. Clearly, given any finite collection of elements of A and any finite collection
of elements of B, we can find a pair (Ã, B̃) containing all of them.

Proposition 5.12. Let B be a commutative graded, connected Hopf algebra over a
field k, and let A ⊂ A′ ⊂ B be comodule subalgebras. Suppose B is a domain. Then
A′ is graded free over A.

Proof. We will show that B is faithfully flat over A. This also implies that B is
faithfully flat over A′, and combining these observations shows that A′ is faithfully
flat over A. Lemma 5.10 will then imply that A′ is a free A-module. In other words,
we may assume A′ = B.

In the notation of Lemma 5.11, we will prove that each of the inclusions Aj ⊂ Bj is
faithfully flat, which will suffice; in fact we only need to check flatness by Lemma 5.10
again. Thus, we may assume A and B are finitely generated. By making a base
change, we may also assume that k is algebraically closed. Then SpecB is an affine
group scheme G, of finite type over k, and X = SpecA is a scheme acted on by G.
There is a map of G-schemes p : G → X which is dominant (since A ⊂ B). Since X
is an integral scheme, generic flatness (see, e.g., [8, Theorem 14.4]) implies that there
exists a nonempty open subset U ⊂ X such that p−1(U) → U → X is flat. Thus for
any g ∈ G(k), we have that gp−1(U) → X is flat, and since G is the union of the
gp−1(U) for g ∈ G(k), we find that G → X is flat.

Using the above technical tools, we can now deduce our main result.

Theorem 5.13 (Hopkins–Mahowald [14]). The map tmf → HZ/2 induces an injec-
tion on mod 2 homology, and we have an identification

H∗(tmf;Z/2) = Z/2[ζ81 , ζ
4
2 , ζ

2
3 , ζ4, ζ5, . . . ] ⊂ A∗.

Proof. In fact, we know that

H∗(BP 〈2〉 ;Z/2) ≃ Z/2[ζ21 , ζ
2
2 , ζ

2
3 , ζ4, ζ5, . . . ],

by Proposition 5.9; the map comes from the truncation BP 〈2〉 → HZ(2) → HZ/2
which embeds H∗(BP 〈2〉 ;Z/2) as a subcomodule of A∗. We also know that
H∗(tmf;Z/2) is a comodule algebra, and the factorization

tmf → tmf ∧DA(1) ≃ BP 〈2〉 → HZ/2

shows that it is a subcomodule algebra of H∗(BP 〈2〉 ;Z/2) ⊂ A∗. Moreover, the
Künneth formula shows that the graded dimension of H∗(tmf;Z/2) is that of
Z/2[ζ81 , ζ

4
2 , ζ

2
3 , ζ4, . . . ].

We will show that if C is any subcomodule algebra of H∗(BP 〈2〉 ;Z/2) with the
same graded dimension as Z/2[ζ81 , ζ

4
2 , ζ

2
3 , ζ4, . . . ], then C is in fact Z/2[ζ81 , ζ

4
2 , ζ

2
3 , ζ4, . . . ]

(which is easily checked to be a valid subcomodule algebra). Here we will show that
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any two C, C′ satisfying that condition are equal. In fact, if C, C′ satisfy the condition,
then Proposition 5.12 shows that H∗(BP 〈2〉 ;Z/2) is free (necessarily of rank eight)
over each of C, C′. Consider the subcomodule algebra C′′ ⊂ H∗(BP 〈2〉 ;Z/2) generated
by C, C′. It also has the property thatH∗(BP ;Z/2) is free over C′′, by Proposition 5.12
again. By counting the rank, we will arrive at a contradiction. We need first:

Lemma 5.14. The only elements of C′′ in degrees < 12 are 1 and ξ81 = ζ81 .

Proof. In fact, we know that dim C8 = dim C′
8 = 1, and since this is the smallest

dimension of a nonzero element in each of C, C′, the generating element must be
primitive. The primitive elements in the dual Steenrod algebra A∗, considered as a
comodule over itself, are 1 and {ξ2

n

1 }n>0, though, so C8 = C′
8 is generated by ξ81 . There

are no other elements in degrees < 12 in C or C′.

We claim that the eight elements 1, ξ21 , ξ
4
1 , ξ

6
1 , ζ

2
2 , ξ

2
1ζ

2
2 , ξ

4
1ζ

2
2 , ξ

6
1ζ

2
2 ∈H∗(BP 〈2〉 ;Z/2)

are linearly independent in H∗(BP 〈2〉 ;Z/2)⊗C′′ Z/2 (i.e., could be taken as a subset
of generators over C′′). This is a consequence of the fact that the only elements in C′′

of degree less than 12 are 1, ξ81 . Moreover, in degree 12, we observe that ξ61ζ
2
2 /∈ C′′

as it is not primitive modulo ξ81 . Consequently, the rank of H∗(BP 〈2〉 ;Z/2) as a
C′′-module must be at least eight. This means that the graded dimension of C′′ must
be equal to that of C, so C = C′ = C′′.

The dual assertion describes the cohomology via

H∗(tmf;Z/2) ≃ A⊗A(2) Z/2,

where A(2) ⊂ A is the subalgebra of the Steenrod algebra A generated by Sq1, Sq2,
Sq4. In fact, H∗(tmf;Z/2) is cyclic over A since H∗(tmf;Z/2) ⊂ A∗. Dimensional
restrictions force Sq1, Sq2, and Sq4 to annihilate the generator in degree zero, and
this produces a surjection

A⊗A(2) Z/2 ։ H∗(tmf;Z/2).

Since A(2) ⊂ A is a Hopf subalgebra, A is free over A(2) by the results of [25], and
we find that the graded dimensions of A⊗A(2) Z/2 and H∗(tmf;Z/2) match. This
proves the asserted description of the cohomology.

By the change-of-rings theorem Exts,t
A
(A⊗A(2) Z/2,Z/2) ≃ Exts,t

A(2)(Z/2,Z/2), we

now conclude:

Corollary 5.15. The (mod 2) Adams spectral sequence for tmf runs

Exts,t
A(2)(Z/2,Z/2) =⇒ πt−stmf ⊗ Z2.

The Adams spectral sequence for tmf is displayed in [7, Ch. 13]. We remark that
(as is well-known) it is not possible to continue this process, and realize modules of

the form A⊗A(n) Z/2 for n > 3, where A(n) ⊂ A is generated by {Sq1, . . . , Sq2
n

},
because of the solution to the Hopf invariant one problem.

This method of computing the homology (and Adams–Novikov spectral sequence)
of tmf is dependent on a key piece of prior computational knowledge about Tmf:
namely, the gap theorem in the homotopy groups π∗Tmf. It would be interesting if
one could give a theoretical explanation of the gap theorem.
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