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Abstract

Persistent homology is a rapidly developing field in the study
of numerous kinds of data sets. It is a functor which assigns
to geometric objects so-called persistence bar codes, which are
finite collections of intervals. These bar codes can be used to
infer topological aspects of the geometric object. The set of
all persistence bar codes, suitably defined, is known to possess
metrics that are quite useful both theoretically and in practice.
In this paper, we explore the possibility of coordinatizing, in a
suitable sense, this same set of persistence bar codes. We derive
a set of coordinates using results about multi-symmetric func-
tions, study the property of the corresponding ring of functions,
and demonstrate in an example how they work.

1. Introduction

Persistent homology [4, 17] is a fundamental tool in the area of computational
topology. It can be used to infer topological structure in data sets (see [1, 6]), but
variations on the method can be applied to study aspects of the shape of point clouds
which are not overtly topological [7, 11]. The methodology assigns to any finite met-
ric space (such as are typically obtained in experimental data of various kinds) and
non-negative integer k a bar code, by which we will mean a finite collection of intervals
with endpoints on the real line. Note that we do not include infinite intervals, but
the intervals are allowed to have length zero. The integer k specifies a dimension of
a feature (zero-dimensional for a cluster, one-dimensional for a loop, etc.), and an
interval represents a feature which is “born” at the value of a parameter (the persis-
tence parameter) given by the left hand endpoint of the interval, and which “dies”
at the value given by the right hand endpoint. These bar codes have been demon-
strated to identify structure in spaces of image patches in [1] and [6], to distinguish
between hand-drawn letters in [11], and to help uncover unusual events in viral evo-
lution [8]. Because of the unusual structure of the invariant, i.e., as a collection of
intervals rather than numerical quantities, the method currently requires substantial
knowledge of topological methods. It would clearly be useful to assign and interpret
various numerical quantities attached to bar codes, so that these outputs could be

Received October 29, 2014, revised June 24, 2015; published on May 31, 2016.

2010 Mathematics Subject Classification: 556N99, 62-07.

Key words and phrases: persistent homology, point cloud, metric space, data analysis.
Article available at http://dx.doi.org/10.4310/HHA.2016.v18.n1.a21

Copyright (© 2016, International Press. Permission to copy for private use granted.



382 AARON ADCOCK, ERIK CARLSSON AND GUNNAR CARLSSON

used as input to standard algorithms within machine learning, cluster analysis, and
other methods. This is already being done in an ad hoc fashion in most applications
of persistent homology, and it is the purpose of this paper to identify an algebra of
such functions on the set of bar codes which is defined in a conceptually coherent

way.
The main idea is the following. A bar code with exactly n intervals can be specified
by a vector (x1,y1,Z2,Y2,...,Tn,Yn), where z; denotes the left endpoint of the i-th

interval and y; the right endpoint. However, this representation is many to one, in
that the bar code structure does not retain the ordering on the intervals. We describe
it as follows. For any set X, Sp™(X) is defined to be the orbit space of the action of the
symmetric group on n letters on the product X" given by permuting the coordinates,
and is referred to as the n-fold symmetric product of X. It is clear that the set of
bar codes with exactly n bars can be described as the subset of Sp™(R?) consisting
of points of the form {(x1,41),..., (Zn,yn)} where z; < y; for all 1 <i < n. On the
other hand, the space (R?)" is the set of real points of the algebraic variety (A2)"
[13]. It is the affine space of dimension 2n, and the symmetric group action mentioned
above is an algebraic action. It is then known (see [16]) that the orbit space inherits
the structure of an algebraic variety, and the elements of its affine coordinate ring
[13] are functions on the set of bar codes with exactly n intervals. This variety is
denoted by Sp™(A?), and its real points will be denoted by Sp™(A?)(R).

Remark. This affine coordinate ring consists of functions which are defined on all of
Sp"(R?), without taking into account the inequalities z; < y;. Real algebraic geom-
etry, as developed, for example, in [3], studies rings equipped with the additional
structure of a class of positive functions, and would presumably give additional use-
ful information, but we will deal with the functions without this additional structure.

The affine coordinate rings described above are well known algebras referred to
generically as rings of multisymmetric polynomials [12]. They can be quite compli-
cated, since it turns out that any set of algebra generators for them will satisfy
non-trivial relations or syzygies. It turns out, though, that there are inclusions of
algebraic varieties

Sp"(A?) — Sp"TH(A?), (1.1)
which produce an inverse system of affine coordinate rings
cee — Asanrl(A’z)(R) — Aspn(A‘z)(R) —

whose inverse limit we will denote, by abuse of notation, by Agpe(a2)(IR). This inverse
limit is a complicated ring, but we define a natural subring of functions, consisting
of the so-called K -finite functions, which is known to be freely generated on a set of
minimal algebra generators [12].

The analysis of the system (1.1) above is not sufficient, though. This system iden-
tifies a point ((z1,%1),.- -, (Tn,yn)) € Sp™(R?) with the point

((Ilayl)v R (In; yn)a (Ov O)) € Sanrl(Rz)'

In other words, a set S of n intervals is identified with the set of n + 1 intervals
obtained by adjoining the interval of length zero whose two endpoints are zero. How-
ever, in the parametrization of the isomorphism classes of persistence vector spaces
in [17] by bar codes, any interval of length zero is identified with the zero module.
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So, we would like to determine the ring of all algebraic functions (i.e., the elements
of Agpee(a2y(R)) which have the property that they take the same value on any bar
code as on the result of adjoining any interval of length zero to it. In this paper, we
will identify this subring, describe its structure, and describe the algebra generators
explicitly. Let ~ be the equivalence relation on Sp>(R?) generated by the relations
{[z1, 1], -+, [Ty Ynls [T, 2]} ~ {[x1,11], - - -, [Tn, Un]}, €., the relation which identifies
two sets of intervals if one can be obtained from the other by adding and deleting
intervals of length zero. The main result is as follows.

Theorem 1.1. Let B denote the quotient of Sp™(R?) by the equivalence relation ~
defined above. There is an embedding of B into the points of an affine scheme

B = Spec(Agaen),

which is compatible with the evident maps Sp™(R?) < Sp™(A?)(R), in the sense that
the diagrams

Spn (RZ)

B

Sp"(A*)(R) — B°"(R)

all commute.
B admits an action by the algebraic group G,,, which defines a natural subring

Agih C Agsen

consisting of all functions f for which all the translates of f span a finite dimensional

real subspace of Agsen. We find that the ring Af%i_?ch is described by

AL = Rlpasia > 0,b> 1],

where a and b are integers. For a bar code {[x1,11], [T2, Y2, - - -, [Tn, Yn]}, the function
Po,1 s gien by >, (yi — x;), and p1 1 is given by > (yi — xi)(yi + 4).

As used in algebraic topology, homological invariants are useful guides in under-
standing the structure of a space. This method of applying homology was extended to
point clouds in [6] and [8]. Another direction of applications, though, is in the study
of data sets whose objects themselves support geometry, such as chemical compounds
or images, where one can attach bar code signatures to the individual points in the
data set. In this case, the data set produces new, derived data sets whose entries are
bar codes. It is already known that the bar codes support several natural metrics,
including the so-called bottleneck distance, which serve as a useful organizing principle
for such databases. What we do is to produce useful coordinates on the space, and
demonstrate their utility.
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2. Barcodes

We first discuss the set of bar codes, without any algebraic variety structures. For
any set X, we let Sp™(X) denote the orbit set of the action of the symmetric group
3., on the set X™, by permuting coordinates.

Definition 2.1. Let J denote the set of all ordered pairs (x,y) of real numbers, with
x < y. For any non-negative integer n, a bar code of cardinality n is a finite multiset
of elements in J, of cardinality n. The collection of all bar codes of cardinality n is
then clearly identified with Sp™(7J).

The goal is to build a natural construction of the set of all bar codes of vary-
ing cardinality, which informally has the property that intervals of length zero are
“ignored”. This is done by considering a relative version of the standard “infinite
symmetric product” construction.

For a set X, form the infinite disjoint union

Sp(x) = [ 89"(X).
n=0

where Sp™(X) is the n-fold symmetric product of X. Of course, Sp(X) is the free
commutative monoid on X. For a subset ¥ C X, we may also form Sp(X,Y) by
forming the quotient Sp(X)/ ~y, where ~y is the equivalence relation on Sp(X)
given, for elements w, w’ € Sp(X), by w ~y w’ if and only if there are elements u, u’ €
Sp(Y) C Sp(X) so that w+ u = w’ + «'. This construction is clearly functorial for
maps of pairs of sets.

Proposition 2.2. Sp(X,Y) is isomorphic to the free monoid on the set X/Y, i.e.,
the quotient of X by the equivalence relation in which all elements of Y are equivalent
to each other, and all elements of X —Y lie in one element equivalence classes. In
other terms,

Sp(X,Y) = Sp(X/Y, %),

where x denotes the equivalence class Y. The construction Sp(—, —) is functorial for
maps of pairs of sets.

Proof. Clear. O
There are maps oy, : Sp™(X,z) — Sp" (X, z) defined by
an({x1,29,.. . xn}) = {x1, 20, ..., Ty, T}
Proposition 2.3. Sp(X,Y) is isomorphic to the colimit
SpH(X/Y) S SpP(X/Y) B SpP(X/Y) S ...
Proof. Clear. O

Definition 2.4. Let J be as above, and let A C J be the diagonal subset. Then we
define the infinite bar code set B to be the set Sp(J/A,[A]), where [A] denotes the
equivalence class of A.
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Remark. This construction is exactly the quotient of the set of all bar codes by the
equivalence relation which identifies two bar codes which differ only by the addition
or deletion of intervals of length zero.

We note that the set 6 is equipped with two group actions. Let R% denote the
group of positive real numbers under multiplication. Then R* acts onJ by r - (z,y) =
(ra,ry). This action preserves the subset A C J, and it is easy to see that a group
action with these two properties will induce an action on Sp(J/A, [A]). We also let R
denote the additive group of all real numbers. Then R also acts on J by r - (x,y) =
(x+r,y+r), and this action also preserves A and, therefore, induces an action on
9. Taken together, we obtain an action of the group R x R*, where R% acts on R
by multiplication.

3. Colimits of affine schemes

We consider first the category of affine schemes Aff, and for a given commutative
ring A the category Aff* of affine schemes over Spec(A), which we will also refer to as
A-schemes. We also have the categories Comm of commutative rings, as well as the
category Comm? of commutative algebras over a commutative ring A. Let I denote
the global section functor, which assigns to a scheme its ring of global sections, which
is inverse to Spec. We will denote T'(X) by Ax. It is well known that Aff and AfFA
are equivalent (via the functor Spec) to the categories Comm® and (Comm?)o,
respectively. It follows easily that Aff and Aff A are complete and cocomplete. In
particular, if a group G acts on an affine scheme or an A-scheme, the orbit scheme
exists and corresponds under I' to the ring of invariants of the induced group action
on the ring of global sections.

We fix the base ring A to be R throughout, unless otherwise indicated. For example,
A will denote the affine line over R, but we permit ourselves other coefficient rings
by including that ring as a subscript, so A¢ indicates the affine line over C. We
consider R-schemes with group actions by a group G. For a given R-scheme X, we
can consider the set of R-valued points of X, which we denote by X (R). They are
in bijective correspondence with the set of maximal ideals m in Ax whose residue
class fields are isomorphic to R via the structure map R — Ax — Ax/m. We note
that every element o € Ax defines an R-valued function f,: X(R) — R via the rule
that fo(z) = [a],, where [a], denotes the coset « + m,, where m, is the maximal
ideal corresponding to x. The quotient Ax /m, is identified with R via the composite
isomorphism

R — AX —)Ax/mz

The assignment

o= fa
defines a homomorphism of commutative rings
Ox: Ax — F(X(R),R),

where F'(X,Y) denotes the set of set valued functions from X to Y, where the addition
and multiplication on F'(X(R),R) are given by pointwise multiplication.
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Let F': C — Aff® be any functor, where C is a small category. Then we have the
colimit colim F', which is itself an affine R-scheme. There is a unique map of sets
—

n: col_z;m F(e)(R) — (col_z;m F)(R) (3.2)
so that for each object ¢ of C, the composite
F(c)(R) —colim F(c)(R) = (colim F(c))(R)
— —

is equal to the map of sets of real valued points induced by the map of R-schemes
F(e) —>co§m F(c).

Colimits of diagrams of affine schemes often produce schemes whose associated
rings of global sections are quite complicated, and large. In this section, we show that
additional structure on a scheme X, in the form of an action on X by the algebraic
group G,,, allows us to identify a subring of Ax which is much more manageable.

By definition, an action of an affine algebraic group G on an affine scheme X is a
map of schemes a: G x X — X satisfying the analogues of the usual compatibilities
of the action map with the multiplication map in the algebraic group. As usual, we
will denote by G,,, the multiplicative group of units. An action of an algebraic group
on an affine R-scheme gives a group action of the (ordinary, not algebraic) group
G(R) of R-valued points of G on the scheme X, and, therefore, an action of G(R)
on Ax. We will consider schemes over Spec(R), with action of the scheme G,,. Any
such scheme X, therefore, admits an action by the group R*. For any n € Z, we will
define an R-submodule Ax(n) C Ax by

Ax(n) ={a € Ax|r-a=r"a}.

Here 7 - a is the result of the action of the element r € R* under the specified action,
and ra denotes the multiplication by r using the R-module structure on Ax. Since
Ax(m)-Ax(n) C Ax(m+n), it is clear that the direct sum

AY =®Ax(n) C Ax

is a graded R-algebra. We let Ag(i" denote A% regarded as an algebra over R, with
the grading ignored. There is an evident inclusion Aé(m — Ax.

Proposition 3.1. The constructions A% and AQ" are both functorial for maps of
affine R-schemes with G, -action. Let C be a small category and F be a functor with
values in the category of R-schemes with G,,-action, and let Xr denote its colimit.
Then Ag{F 18 isomorphic to the inverse limit of the corresponding functor F°P from
the category C°P to the category of graded R-algebras.

Proof. Straightforward. O
Ezxample 3.2. Equip A™ with the G,, action defined by

e (@1, Xy ) = (ray, ., ey
and consider the directed system of affine R-schemes with G,,-action

Al 5 AZ 5 A3 s oo (3.3)
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where the inclusions A” — A1 are given by
(X1, yxn) = (1. ..., 20, 0).

Let A denote the colimit of this diagram in the category of affine R-schemes with
G,n-action. Then we have that Ay~ consists of all formal power series in the infinite
set of variables {01,09,...,0,,...} with the property that the power series in the
set {o1,...,0,} obtained by setting all the variables {o;|j > n} equal to zero is a
finite sum, i.e., a polynomial. On the other hand, AJ%. and AQZL are the graded and
ungraded rings of polynomials in the set of variables {o;|i > 1}, respectively.

Definition 3.3. Let X be any affine R-scheme. By Sp™(X), we will mean the orbit
scheme

X"/S,.

The product is computed in the category of schemes over Spec(R), so Agyn(x) is
identified with the ring of invariants (A$")®». If we fix an R-valued point * in X,
there are maps of R-schemes i,,: Sp™(X) — Sp"*1(X) defined as the composites

Sp"(X)=5Sp"(X) x Spec(R) i Spt(X) x X = Sp"tHX), (3.4)
Spec(R) Spec(R)
where the right hand map is the projection X"+1/3,, x {e} — X"*+1/%, 1. We define
Sp*¢"(X, %) to be the colimit of this system in the category of affine R-schemes.

If X is equipped with an action by the group G,,, then there is an associated action
of G, (R) on Sp"(X), defined by r - {z1,...,2,} = {ray,...,ra,}. If the point x €
X (R) is fixed by this G,,-action, then diagram defining Sp(X, x) becomes a diagram of
R-schemes with G,,,-action, and, consequently, the colimit is endowed with a G, (R)-
action. In the special case where X is A', with the usual defining action of G,,, and
with x = 0, we find that Ag,(a1 ) consists of the ring of power series in the elementary
symmetric functions o; with the property that the sums involving any finite set of
the o;’s are finite. On the other hand, Ag;(Al,O) and AgZZAl,O) are the graded and
ungraded polynomial rings in the elementary symmetric functions. Of course, this
result is isomorphic to the result of Example 3.2 above.

4. The affine scheme B

By analogy with the construction in Section 2, we now define B°¢* to be
Speh(A? /A, [A]), where Sp*" is defined in Example 3.3, A C A? is the diagonal
subscheme in A%, and where A?/A denotes the quotient in the category of affine R-
schemes. We note that the groups R* and R* act on A? via the formulae r - (z,y) =
(ra,ry) and r - (x,y) = (z + r,y + r), respectively, and that both actions preserve the
subscheme A. It follows that both groups act on B°¢", and the two actions assemble
to an action of the semidirect product R* x R*. We first examine the ring Ag2 JA-
We first set £ = x4+ y and n = & — y, where x and y are the standard coordinates on
A% s0 A? is also isomorphic to R[¢, 7).

Proposition 4.1. The ring Apz /A is isomorphic to the subring of R[{,n] spanned by
the monomials ™0™ for which n > 0 whenever m > 0. In other words, it consists of
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the span of the set consisting of the trivial monomial 1 and all non-trivial monomials
with positive n-exponent.

Proof. Since A%/A is described as the pushout of the diagram

A —r

|

AQ
the ring A2/ is the pullback of the diagram of rings

INI]

|

where the vertical map is the projection & — 0. The result follows. O

We consider also the n-fold powers (A2/A)". We describe the coordinate ring of
(AQ)n as R[gla cee 7£n77717 e 77771]7 where é-i =T + Yi and N = i — Yi-

Corollary 4.2. For any n >0, the ring A2 Ay is isomorphic to the subring of
R&1, .. €n, M, - -y 1n) spanned by all monomials with the property that if the expo-
nent of & is > 0, then the exponent of n; is also > 0.

Proof. Easy verification using the tensor product description of the ring associated
to the n-fold product. O

We note that the subscheme A is invariant under the G,,, (R)-action, and, therefore,
A(az/a)yn is equipped with a grading, compatible with its inclusion into the graded
ring R[&1, .- &ns My - ooy 1)

From this point on, we will denote the ring A(42/a)» by D(n), and the ring A‘E’lggm)n
by D(n).. The symmetric group action permuting the &;’s and 7),;’s among themselves
clearly preserves the subring D(n). What we need is the ring Ag,n(s2/4), which is
clearly identified with the ring of invariants D(n)*".

The symmetric group action clearly preserves the basis of monomials within D(n).
Let {fta}aca denote a set of orbit representatives of the ¥,-action on the set of
monomials defined in Corollary 4.2. Let o, denote the sum of all the elements in the
orbit of .

Proposition 4.3. We let D(n)*" denote the subring of elements of D(n) which are
invariant under the action of ¥,,. Then the elements o, form a k-basis of D(n)¥n.

Proof. This result plainly holds for any algebra over a field of characteristic zero on
which there is a G-action which preserves a basis of monomials. O
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Recall the maps i,, in diagram (3.4) of Definition 3.3. They induce homomorphisms
15 D(n+ 1) — D(n) of rings of global sections, which are given by the composites
D(n+ 1)+ — D(n + 1)>*{} 5 D(n)>=,

where the left hand map is an inclusion of rings and the right hand map is the
projection which sends any monomial containing &,41 or 7,41 to zero. These maps
also respect the G,,-action, and, therefore, give an inverse system of graded rings.

Proposition 4.4. Ag“h is isomorphic to the inverse limit of the system of graded
TiNngs

e D(n— 1P 22 Dn)Ee & D+ )T e (4.5)
Proof. Immediate from Proposition 3.1. O

Recall the notation J from Section 2. We now have the sequence of maps
B = Sp(I/A, [A]) = Sp(R?/A, [A]) = Sp(A*(R)/A(R), [A(R)])
= Sp*(A/A, [A])(R).

The left hand inclusion is the inclusion of J in R? which “forgets” the constraint x < y.
The middle arrow is induced by the evident map R?/A — (A?/A)(R). The rightmost
arrow is the map n of diagram (3.2). We denote this composite by J. It is clear
from the definitions the if we restrict the R* x RT action on Sp**"(A2/A, [A])(R) to
I'=R% x R*, J is equivariant with respect to the I'-action on 93 defined in Section 2.

We now have that pullback along J gives a homomorphism J*: Af%ifch — F(B,R).

It remains to describe the structure of Af%ifch, and to prove two simple properties
of J*.

fin

5. The structure of the ring A%Sch

We now consider the ring Agsch. This means that we must evaluate the inverse
limit of the system of graded rings (4.5) above. We denote this inverse limit by D..

We next recall some of the notation and basic facts about multisymmetric poly-
nomials, which can be found in Dalbec [12]. Let R,,, be the polynomial ring in nr
variables,

R,,=kz;;1<i<n1<j<r.

We let the symmetric group S,, act on R, , via the formula a(xij) = Tg( and let

1)js
Sn
A"ﬂ“ = Rn,r

denote the ring of S, invariants. There is an inverse system parallel to the one con-
structed above involving the rings A,, ,. We have evaluation maps

Tn,m * Rn,r — Rm,m m<n

defined by setting x; = 0 if ¢ > m. The map 7, ,, is Sy,-equivariant, when S,, C S,
is the subgroup of permutations of the first m elements of the set {1,...,m}. We
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have the composites

Sm
n,m

Sn Sm Sm
Apr =Ry = Ry — Ry = Ay,
which we denote by py, »,,. The inverse limit of the system

Pn+1,n Pn,n—1 Pn—1,n—2 P2,1
T An,r Anfl,r — T Al,r

will be denoted by A,, and referred to as the ring of r-multisymmetric functions. It
has a grading
A =EP Ak
k

induced by the grading on R, ,. There is an evident embedding ©, — As. We will
use this embedding to identify the structure of ®,.

The ring of multisymmetric functions has several interesting sets of generators.
Given an array of nonnegative integers

a1 a12 air
a1  G22 azr

. b
a1 a2 ALy

with & < n and a; = (a;1, - . ., ), we define the multisymmetric monomials by
_ ail Akr) — aij
May,..ap = Sym(ayy’ - 2py") = E Hxa(i)j €A,
0ESy 1,j

Sym applied to a monomial yields the sum of all monomials which are in the orbit of
the S,,-action.

They form a vector space basis of A,, ., for any n. It is known that A,, , is generated
as an algebra by the symmetrizations of monomials involving only {z11, 12, ..., 21, }.
They are given by the formulae

= P al DRI aT
Pa = Ma = E Ti1 Lip
7

and are called the multisymmetric power sums. While there are relations among
the power sums in finitely many variables, they freely generate the inverse limit A,
making it a polynomial algebra. See [12] for details.

Our interest is in the case r = 2. Let us set

§i = Ti1, M = Taz,
and as before
Bn = Rn,Q = k[flﬂ?h s ;fnﬂ?n]-

The subalgebra ©, C As now has the following characterization.

Theorem 5.1. As a subalgebra of As, D, is freely generated by the set A of elements
of the form pgp where b > 1.
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Proof. We first consider the subalgebra k[A] C ©, generated by A. Because A is a
subset of the free generating set of As, it is clear that the composite

E[A] = D, — Ao

is injective and isomorphic onto a polynomial subalgebra, and, therefore, that k[A] is
itself a polynomial subalgebra of ©,. In order to prove that k[A] = D,, we only need
to count dimensions, and we formulate the counting in terms of the Hilbert series.
Recall that for a graded k-vector space V,, we have the Hilbert series

P(V.) =) dimy(V)t'.

The Hilbert series for a polynomial algebra on a single generator x of grading i
is (1 —t*)~1. Moreover, if we are given two graded vector spaces V, and W, then
PV, ® W,) = P(V,)P(W,). Since there are n monomials of degree n in A, we find
that the Hilbert series for k[A] is

P(kA]) = [ -

If we can show that the Hilbert series for ., is equal to this series, the proof will be
complete.

In Proposition 4.3, we found that a k-basis for ©, may be identified with a set
of orbit representatives of the S),-action on the set of all monomials which have the
property that if the exponent of &; is non-zero, then so is the exponent of n;. Such a
set of representatives is given by the set of monomials of the form

al bl ap bl

1M Mt e N ai b)) = o (@i, bigt),
where [ < n, and ¢: NT — N x N is the bijection

(‘Pla‘PQa .- ) = ((1’0)7 (17 1)’ (2’0)7 (1’2)a (27 1)’ (3a0>7 (1’3)7 .- )

onto the set of possible nonzero exponents. The dimension of the k-graded component
of BS» is just the number of these monomials of degree k. Let us say that (a,b) <
(c,d) when ¢~ Y(a,b) < ¢~1(e,d), and let f(a,b, k) denote the number of sequences
(a1,b1,...,a,b;) such that

(a,b) > (alabl) > e 2 (alabl)a (aiabi) € N+ x N

and
l

Z(ai + bz) = k,

=1

with no restrictions on [. It is easy to check that it satisfies the recursion relation

flab, k)= > fledk—c—d).

(¢,d)<(a,b)

This corresponds to a rule for the generating function f,;(t) = >, f(a,b, k)t*,
fapW) =14 >t fa) =1+ Dt fea(t) + 17 fan(t).

(e,d)<(a,b) (¢,d)<(a,b)
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Solving for f, ;(t) gives
(1=t fap) =1+ D feal) = fow (D),
(e,d)<(a,b)

where (a’,b") is the element immediately below (a,b) under . It is readily verified
that the formula

gas(t) = (L —tt0)= I -
1<k<atb—1
satisfies the same recursion relation, and, therefore, that f, ,(t) = gq.5(t). Taking lim-
its

lim P(B5") = lim Zf a, b k)t = [J(1-#)*

n— 00 (a b)*)OO
k>1

gives the result. O

fin

6. Two properties of the ring of functions Ay,

Proposition 6.1. The map J*: Agih — F(B,R) defined in Section 4 is injective.

Proof. There is a commutative diagram of rings

fin J*
A%ech

F(B,R)

in g n
Aép(AQﬂ)) — F(Sp (R2)aR)

induced by the map of schemes Sp(A2, ) — B" and corresponding sets of real
points. We claim that the homomorphisms f and g are injective, which will give the
result. The map f factors as

fin fin fin
A Wsch _>AS p(A2,0) ASp(A2 0)"

The map f’ is injective because the map of inverse systems defining it is given by
the inclusions D(n), — A% o (R2)- Lhat the maps f" and g are injective follows from
the observation in [12] that the inverse limit defining ®, stabilizes in each graded
dimension. O

Proposition 6.2. The ring of functions J*(AJ;;:LL,L) C F(B,R) separates points.

Proof. We first remark that for any real variety V (i.e., the scheme attached to a
reduced Noetherian R-algebra), the affine coordinate ring A(V') does separate points.
The corresponding fact for varieties over C is an immediate consequence of the Null-
stellensatz, so if we have two distinct real points  and y of V, there is an element
feAV)c=A(V) % C with the property that f(z) =1 and f(y) = 0. Complex con-

jugation acts on A(V)¢ with A(V) as its fixed point subring, and we may consider the
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function g = ff € A(V). From its definition it is clear that g(z) =1 and g(y) = 0,
since x and y are real points, which gives this result.

We next note that there is a map e: B* — Sp(Al,0) defined by the induced map
of the map of pairs (A%, A) — (A!,0) given by (z,y) — y — 2. We next claim that
the ring of functions Aglngl,o) separates points in Sp(R,0). Since points in Sp(R,0)
can be viewed as the quotient of the collection of finite submultisets of R by the
equivalence relation generated by the relation {x1,...,2,} ~ {z1,...,2,,0}, if we
are given two distinct elements z,y € Sp(R, 0), we may assume that they lie within
Sp™(R) for some n, and then obviously are distinct. Consequently, from the remarks
above, there is an element f in Agpn41) which separates x and y. The restriction
map Agzz AL0) Agpn(ar is surjective in this case, from which it readily follows that

fin
ASp(Al,O) .
which are not separated by the ring of functions Agfch must have the same values
under e. Since 9B can be described as the quotient of the collection of multisets in J

by the equivalence relation generated by the relation

separates points as stated above. It now follows that any two points in B

{[xlvyl]v [:CQa yQ]a R [:L'na yn]} ~ {[xlvyl]v [:CQa yQ]a R [wna yn]a [l',ﬂf}}
that any two points which are not separated by Aglh must be represented by fam-
ilies of intervals of the same cardinality, and without any intervals of length 0. Con-
sequently, they can be represented as two real points & and 7 in the scheme Sp™(A2)
which lie in the complement of the union of the images of all the hyperplanes z; = v;.
There is, therefore, a function f € Agpn(a2) Which separates § and 7. Let ¢ denote
the product of all the linear terms ;. Then 6 is another element of Sp™(A?) which
does not vanish on either £ or 7. Therefore, the function 6 - f also separates ¢ and
7, and because it vanishes on the entire union of the hyperplanes defined by y; — z;,
it lies in the ring D(n).. Since by Proposition 3.1 Aglh is the inverse limit of the
inverse system of the graded rings D(n)., and the maps in the inverse system are
all surjections, there is an element of Agih which restricts to 8 - f, and, therefore,
separates ¢ and 7). O

Remark. The import of these two results is that they assert that our functions pro-
vide a family of coordinates that faithfully represent the space of barcodes, without
redundancy. This is an important philosophical point, and we believe that it will be
useful in applications as well.

7. Machine learning on 8 with examples

7.1. Digits example

To illustrate the classification potential of this technique, we apply it to the MNIST
database [15], of handwritten digits. We emphasize that the aim is not to outperform
existing machine learning algorithms for digit classification, but to present an example
that demonstrates one way of combining this technique with existing machine learning
techniques. While it is clear that pure topological classification cannot distinguish
between the digits (there are three numbers that do not have any loops, three that
always have loops, one that has two loops and three that have style-dependent loops),
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we can use the power of persistent homology to sift out more information. We begin
by showing the full analysis of a few digits and then give the empirical results of
applying this technique to a subset of the MNIST database.

7.1.1. Topological methods

We begin by describing a particular graph construction given a digital image. We treat
the pixels as vertices and add edges between adjacent pixels (including diagonals).
We can now define a filtration on the vertices of the graph corresponding to the
image pixels. A natural filtration could be constructed using the pixel intensities of
the original image (see Figure 6, Section 7.2). Another filtration, used in [11], can
be constructed by thresholding, to produce a binary image, and adding 1-pixels as
we sweep across the image. This adds spatial information into what would otherwise
be a purely topological measurement. Since the orientation of the digit matters (a 6
is the same as a 9 given a 180 degree rotation), we choose the latter approach and
sweep across the rows and columns of each digit.

By taking into account spatial information, we get a rough view of the location
of various topological features. For example, though a ‘9’ and ‘6’ both have one
connected component and a single loop, the loop will appear at different locations
in the top—down filtration for the ‘9’ and ‘6’. The digits and one of the resulting bar
codes are shown in Figures 1 and 2. Using all four sweeps, and both the Betti 0 and
Betti 1 bar codes, reveals additional differences between each of the digits. Here 4,44
denotes the maximum y-value occurring in the various barcodes constructed across
all the images.

e 05 o 555 T 88 N 275 N i B 75 A

Digit 7 Right Sweep: Dimension 0

| |
Digit 4 Right Sweep: Dimension 0

Figure 1: No loop digits with Betti 0 bar code, sweep to right

7.1.2. Feature selection

We can use the techniques described in this paper to coordinatize the bar code space
9. In machine learning terminology, these coordinates are called features. This allows
us to characterize the bar codes generated by each data point as a compact feature
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Digit 2 Up Sweep: Dimension 1

Digit 6 Up Sweep: Dimension 1
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Digit 9 Up Sweep: Dimension 1

ANDRD

Figure 2: Loop digits with Betti 1 bar code, sweep to top

vector. This also gives us great flexibility in selecting features that work well with our
data. We can then apply a standard machine learning algorithm, such as a support
vector machine (SVM), to classify the data.

We selected a set of four features from the invariants discussed in this paper.
Intuitively, the exponents in each polynomial will give the relative value of small bars
or endpoints compared to large bars or endpoints. For example, if comparing two bars
of length g and b, the first bar will have more weight in an invariant linear polynomial
than in an invariant quadratic polynomial. Indeed,

b\?  »?
(@-%

We selected four features:
> wilys — @),
i
Z(ymaw - yz)(yz - xi)a
Z m?(yz - xi)47
Z(ymaa: - yz)Q(yz - xi)4a

i

which when applied to the four sweeps, each with a 0-dimensional and 1-dimensional
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bar code, gives a feature vector of total size 32 which we then arranged into a feature
matrix. Intuitively speaking, the first two features take all of the bars, lengths and
endpoints, into account. The second two features heavily favor the arrangement of
longer bars. A visualization of a matrix of 10,000 digits using classical multidimen-
sional scaling (MDS) is shown in Figure 3 and the spectrum of the matrix is shown
in Figure 4.

(b) A 3D view of the data

Figure 3: Visualization of data using topological features
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Figure 4: Normalized spectrum of topological feature matrix

As is typical when using a SVM, we scaled each coordinate such that the values
were between 0 and 1. The SVM was implemented using software provided by [9].

7.1.3. Classification results
We applied these methods on a subset of 1000 digits from the MNIST database
to tune parameters of the algorithm and test various kernels. For the radial basis
function e~7lu—vl* (RBF, also known as the Gaussian kernel), we used v = 8. For
the polynomial kernel (y(u *v)+ a)?, we used d = 3 with v = 2 and a = 2. In both
functions, u and v represent the calculated feature vectors. After this, we progressively
increased the size of the subset to 10,000 handwritten digits.

The classification accuracy was measured by partitioning the data set into one
hundred subsets and using cross-validation successively on each subset. The results
are shown in Table 1.

Table 1: Classification accuracy of two SVM kernels

SVM 1000 Digits | 5000 Digits | 10000 Digits
Gaussian 87.70% 91.54% 92.04%
Polynomial 88.00% 91.62% 92.10%

With the polynomial kernel, an error of 7.9% is seen. As mentioned above, the



398 AARON ADCOCK, ERIK CARLSSON AND GUNNAR CARLSSON

purpose of this test is not to outperform existing classification algorithms but to
demonstrate one application of the topological features. In line with this, we examined
some of the digits that the algorithm failed on. Figure 5 shows a few of the typical
problem digits.

5739

a) Stylistic problems

@t?ﬁ”fﬂ

b) Spurious topological changes

Figure 5: Common misclassifications

The most common confusion is between a ‘5’ and a ‘2’ written with no loop.
Other confusions often occur between the shown style of ‘7’ and slanted ‘3’s and
between a certain style of ‘4’ and a ‘9’. These confusions are not unexpected since
these numbers are topologically the same. The extra spatial information added by the
directional sweeps is sensitive to variations in the slant or style of handwriting and a
visual inspection of these digits suggests why the algorithm has difficulty classifying
these particular examples. Other common confusions occur when topological changes
occurred to the digit, specifically when the writer adds or removes a loop.

7.2. Hepatic lesion classification

In this example, we apply topological features to classifying hepatic lesions. The
dataset consists of computed tomography (CT) scans of 132 hepatic lesions that
are outlined and annotated by radiologists. There are nine diagnoses represented
in the data: cysts (45 lesions), metastases (45 lesions), hemangiomas (18 lesions),
hepatocellular carcinomas (HCC, 11 lesions), focal nodules (5 lesions), abscesses (3
lesions), neuroendocrine neoplasms (NeN, 3 lesions), a single laceration and a single
fat deposit. Additionally, there are no controls for the size of the lesion and the lesions
vary from under 100 pixels to 10,000 pixels. Because of the unbalanced nature of the
data, we focus on the subset of cysts, metastases, and hemangiomas.

Classification results using the bar code metric (matching metric) were first pre-
sented in [2], and we follow the same methods for processing and generating bar
codes from the data. We will briefly describe the methods here. For a more detailed
account, please read [2].

7.2.1. Topological methods
As mentioned above, a natural filtration for an image is to filter by the pixel intensity.
An example of this filtration is given in Figure 6. The variation in pixel intensity allows
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us to use a one-dimensional filtration on the pixel intensity, but as the results will
show, the classification is improved when geometric information is added into the
filtrations.

As there is no rotational orientation of the lesions, we cannot add in geometric
information using the sweeps described in the previous section. Instead, we use the
lesion border provided by the radiologist and assign each pixel its distance from the
border. Then, by using two-dimensional homology, we achieve improved results, espe-
cially in the case of the hemangiomas which are characterized by large dense regions
on the outer part of the lesion. Because two-dimensional filtrations are computation-
ally intensive, we approximate the two-dimensional filtration with one-dimensional
bar code ‘slices’ along the border filtration axis. We use 7 slices per lesion and both
the Betti 0 and Betti 1 bar codes.

Note that we can look at each filtration from each direction and catch different
features. The intensity filtration can add high intensity pixels first or low intensity
pixels first. The boundary filtration can begin with pixels near the boundary first
or pixels far from the boundary first. This yields 56 one-dimensional bar codes per
lesion.

1
1/1[2]1 ]2
11231211 2132 3
1/213]1]2]1 23 |e 2]¢ 3
11231211 2132 3 3
112(2]1 22 .
101

(a) Simple image with filtered complex
L L L EERENNEEE

!
L 0155 ngl 0485 ‘JLZ 0775 [~L3 1.085 lEA 1395 lLS 1705 ‘\“ 2015 2\17 2325 ZLE 2435 ZL«J 2845 31|

Betti #: Dimension 0

(b) Bo bar code for above image
1

[ |
b L T O N R

Betti #: Dimension 1

(¢c) B1 bar code for above image

Figure 6: Constructing an increasing 1D-filtration on an image [2]

7.2.2. Feature selection

We use a slightly different set of four features as compared to the digits example.
These features are shown below. The two sets of features that focus on long bars and
features which take into account shorter bars is used here. In this application, this
is analogous to filtering the bar code to remove the large number of smaller bars.
Because of the variations in lesion size, we look at the average over each bar to try
and eliminate the effects of large variations in lesion size:

n

sz(yz - iﬂz)/%
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n

Z(ymaz - yz)(yl - xl)/,’%

3
n
Y @iy — ) /n,
i
n
Z(ymaz - yz)z(yz - x1)4/n .
i
Here 9,4, denotes the largest y-value occurring in the entire data set. As mentioned
above, we have 56 bar codes per lesion. With four features, this yields a feature vector
of 224 features for each lesion.

7.2.3. Classification results

We apply the SVM using only the Gaussian kernel and use an exponential param-
eter sweep to find optimal values of v for each method. We use LOOCV (leave one
out cross-validation) to calculate the classification accuracies. The results are shown
below. Table 2 gives the results for 1D and 2D filtrations for several different datasets
while Table 3 shows how well the algorithm performs on different lesion types for the
different filtrations. Table 4 demonstrates the effect of size on classification.

Table 2: SVM classification accuracies for 1D and 2D filtrations

Filtration Full HcHeCM | HeCM CM
1D (Intensity) | 53.03% | 59.66% | 65.74% | 75.56%
2D 67.42% | T74.79 % | 81.48% | 86.67%

Table 3: HeCM % classification accuracy by lesion type

Filtration | % of HeCM | % of Heman. | % of Cysts | % of Metas.
1D 65.74% 33.33% 75.56% 68.89%
2D 81.48% 61.11% 86.67% 84.44%

Table 4: Classification by lesion size of HeCM

Lesion Size by Area | % Accu. | # of Heman. | # of Cysts | # of Metas.
All 81.48% 18 45 45
<10000 px 82.52% 18 42 43
<5000 px 84.78% 16 39 37
<2500 px 86.25% 14 32 34
<1250 px 88.514% 8 28 23

Using [2], we see that the topological features are comparable with using the
matching metric to generate features. The results from the HeCM dataset for the
two methods are shown below. They reflect the correct classification of a single lesion
using the topological features, making the two methods virtually the same for this
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subset of the data. Comparing with the other results in [2] shows that the two results
are very close in most categories, with each slightly outperforming the other in certain
subsets of the data.

Table 5: Classification methods

Filtration | bar code Features | Matching Metric
1D 65.74% 63.80%
2D 81.48% 80.56%

7.3. Discussion

These two examples demonstrate the classifying power of topological features when
applied to real world datasets. This was done using off-the-shelf machine learning
algorithms showing that these features can easily be combined with more traditional
classification methods adding a set of additional classification features to the machine
learning toolbox.

These examples also show the power of combining topology with geometry. In
both datasets, this is an integral part of the classification procedure. The results in
the hepatic lesion dataset provide an especially good example of the potential gains
that can be achieved by combining both fields.

In summary, using algebraic geometry and invariant theory, we have identified a
family of coordinates on the space of finite metric spaces, or sampled shapes. These
coordinates can serve as a method for organizing the collection of all bar codes,
and, therefore, any database whose members produce bar codes. Of course, we can
also use various metrics on bar code space, such as the bottleneck or Wasserstein
distances. It would be extremely interesting to analyze the relationship between these
distances on bar code spaces with various more algebraic notions of distance on the
bar code coordinates. It would also be very interesting to define and analyze analogous
coordinates on spaces of multidimensional persistence modules, where they might give
information which is currently not accessible due to the complexity of the algebraic
descriptions of multidimensional persistence modules.

References

[1] H. Adams and G. Carlsson, On the non-linear statistics of range image patches,
SIAM J. Imaging Sci. 2 (1) (2009), 110-117.

[2] A. Adcock, D. Rubin, and G. Carlsson, Classification of hepatic lesions using
the matching metric, Computer Vision and Image Understanding 121 (2014),
36-42.

[38] G. Brumfiel, Partially Ordered Rings and Semi-Algebraic Geometry, London
Math. Soc. Lecture Note Ser., 37. Cambridge University Press, Cambridge,
New York, 1979.

[4] G. Carlsson, Topology and data, Bull. Amer. Math. Soc. (N.S.) 46 (2) (2009),
255-308.



402 AARON ADCOCK, ERIK CARLSSON AND GUNNAR CARLSSON

[5] G. Carlsson, Topological pattern recognition for point cloud data, Acta Numer.
23 (2014), 289-368.

[6] G. Carlsson, T. Ishkhanov, V. de Silva, and A. Zomorodian, On the local behav-
ior of spaces of natural images, Int. J. Comput. Vision 76 (1) (2008), 1-12.

[7] G. Carlsson, A. Zomorodian, A. Collins, and L. Guibas, Persistence bar codes
for shapes, Int. J. Shape Model. 11 (2005), 149-187.

[8] J. Chan, G. Carlsson, and R. Rabadan, Topology of viral evolution, Proc. Nat.
Acad. Sci. 110 (46) (2013), 18566-18571; published ahead of print October 29,
2013, doi:10.1073/pnas.1313480110.

[9] Chih-Chung Chang and Chih-Jen Lin, LIBSVM: a library for support vector
machines, ACM Trans. Intell. Syst. Technol. 2 (27) (2011), 1-27. Software
available at http://www.csie.ntu.edu.tw/~cjlin/libsvm.

[10] F. Chazal, D. Cohen-Steiner, L. Guibas, F. Mémoli, and S. Oudot, Gromov-
Hausdorff stable signatures for shape using persistence, Comput. Graph. Forum
28 (5) (2009), 1393-1403.

[11] A. Collins, A. Zomorodian, G. Carlsson, and L. Guibas, A bar code shape
descriptor for curve point cloud data, Comput. Graph. 28 (2004), 881-894.

[12] J. Dalbec, Multisymmetric functions, Beitrige Algebra Geom. 40 (1) (1999),
27-51.

[13] W. Fulton and R. Weiss, Algebraic Curves: An Introduction to Algebraic Geom-
etry. Addison—Wesley, 1989.

[14] J. Jantzen, Representations of Algebraic Groups, Second edition, Math. Surveys
Monogr., 107. American Mathematical Society, Providence, RI, 2003.

[15] Y. LeCun and C. Cortes, The MNIST database, Courant Institute NYU,
Accessed 16 July 2012, http://yann.lecun.com/exdb/mnist /.

[16] D.Mumford, J. Fogarty, and F. Kirwan, Geometric Invariant Theory. Springer
Verlag, 2002.

[17] A. Zomorodian and G. Carlsson, Computing persistent homology, Discrete
Comput. Geom. 33 (2) (2005), 247-274.

Aaron Adcock aadcock@fb.com
Facebook, 8th Floor, 770 Broadway, New York, NY 10003, USA

Erik Carlsson erikcarlssonl7@gmail.com

Center of Mathematical Sciences and Applications, Harvard University, Cambridge,
MA 02138, USA

Gunnar Carlsson gunnar@math.stanford.edu

Department of Mathematics, Stanford University, Stanford, CA 94305, USA



