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THE MULTIPLICATIVE STRUCTURE ON THE GRADED SLICES
OF HERMITTAN K-THEORY AND WITT-THEORY

OLIVER RONDIGS aND PAUL ARNE OSTVAER
(communicated by Charles A. Weibel)

Abstract
We give concise formulas in terms of generators and rela-
tions for the multiplicative structures on the graded slices of
hermitian K-theory and Witt-theory.

1. Introduction

Fix a field F of characteristic char(F) # 2 and let X € Smp be a smooth scheme
of finite type over F. The Grothendieck—Witt group classifying symmetric bilinear
forms on X is represented by the hermitian K-theory spectrum KQ in the stable
motivic homotopy category SH of F' [3]. Inverting the first Hopf map n on KQ yields
the Witt-theory spectrum KT representing the Witt group of X. In [9] we computed
the slices of KQ and KT in terms of motivic cohomology spectra with integral and
mod-2 coefficients, namely

¥249MZ V \/i<% N2i+09MZ/2  q even,

) 1
\/i<% ¥2i+09MZ /2 q odd )

sq(KQ) = {
and
s(KT) = \/ 5¥+99MZ/2. (2)
i€Z
Explicit computations of hermitian K-groups in terms of motivic cohomology and a
solution of the Milnor conjecture on quadratic forms follow from (1) and (2) via the
slice spectral sequence, cf. [9].

The slice filtration introduced in [14] preserves highly structured objects such as
algebras and modules [2, 7]. In this paper we set out to refine the computations (1)
and (2) by identifying the multiplicative structures of the graded slices s,(KQ) and
s«(KT). It turns out these can be described by remarkably concise formulas using
generators and relations.

As a case in point we consider the multiplication map on the zero slices for Witt-
theory
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So (KT) A S()(KT) — S0 (KT) (3)
Via the slice computation (2) the map in (3) takes the form
\/ 2200 Mz/2 A MZ/2) — \/ £2F°MZ/2. (4)
ijEL kez

By [4] and [16] the smash product MZ/2 A MZ/2 in (4) identifies with the infinite
direct sum
MZ/2v £"'MZ/2v \/ T7™"MZ/2. (5)
(m,n)el

We refer to (10) in §3 for the precise definition of the index set I. The multiplication
map in (3) has now been recast as a map between MZ-modules, i.e., as a map between
motives [10]. When k =i+ j, the summand MZ/2 of (5) maps by the identity to
the corresponding summand of so(KT) in (3). When k£ =i+ j + 1, we note that the
summand $1°MZ/2 of (5) maps nontrivially under the multiplication map (3); in
fact, it maps via the first motivic Steenrod operation Sq', a.k.a. the Bockstein oper-
ator. All the other summands of (5) map trivially under the multiplication map (3)
because all the suspensions are of positive weight. This analysis can be bootstrapped
to give a description of the multiplicative structure of the graded slices s,(KT) of
Witt-theory in terms of generators and relations involving “twisting” with Sq' as
noted in the above.
In Theorem 3.3 we show the graded slices of hermitian K-theory are given by

5.(KQ) = MZ[n, Va~ '/(2n = 0,17 % Va). (6)

Here 1 has bidegree (1, 1) and /a has bidegree (4,2). As shown in the proof, § is the
natural connecting map from X1:°MZ/2 to ¥2°MZ. Notably, the relation 2n = 0 in
(6) is also valid in the coefficients KO, of the complex points KO of KQ, i.e., the
orthogonal K-theory spectrum. However, the relation involving the connecting map
0 cannot be detected on the level of coefficients.

In Theorem 3.6 we show the graded slices of Witt-theory are given by

s.(KT) = MZ[t!, /a™']/(2n = 2va = 0,12 25 V/a). (7)

All the slices of KT are MZ/2-modules. However, the multiplicative relation for Sq*
in (7) shows that neither s,(KT) nor so(KT) are MZ/2-algebras.

A byproduct of computational interest is a convenient description of the first order
differentials along with Leibniz rules in the corresponding slice spectral sequences. We
refer to §4 for precise formulations.

Our arguments take place in the stable motivic homotopy category of F', e.g., a ring
spectrum refers to a monoid in SH. Throughout the paper we employ the following
notation:

F field of characteristic char(F') # 2

Smpg smooth schemes of finite type over F'

Sm.n o Qrun sy | (m, n)-sphere, (m,n)-loop space, (m,n)-suspension

SH, sHe! motivic and effective motivic stable homotopy categories of F’
E, 1= 500 generic motivic spectrum, the motivic sphere spectrum

MZ, MZ/2 integral and mod-2 motivic cohomology

KGL, KQ, KT algebraic K-theory, hermitian K-theory, Witt-theory
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2. The slice filtration

Let 4,: $2¢:4SHT <+ SH denote the full inclusion of the localizing subcategory
generated by X2¢9-suspensions of smooth schemes, for ¢ € Z. Let r, be the right
adjoint of i, and set f, = i, o 7, as in [14, §2]. Voevodsky defined the exhaustive slice
tower

<o —> fp1(E) — f4(E) — -+ — fo(E) — f_1(E) — --- — E

in SH, where f,(E) — E is universal for maps G — E with G € »2¢:4SH . Examples
show that the slice tower generalizes the coniveau filtration in algebraic K-theory
and the filtration by the fundamental ideal in Witt-theory. The gth slice s,(E) of E
is characterized up to unique isomorphism by the distinguished triangle in SH [14,
Theorem 2.2(1)]

() — £, (E) —> 5,(E) — 59,1 (E).

It turns out the slice s,(E) is a module over the motivic ring spectrum so(1),
cf. [2, §6 (iv),(v)] and [7, Theorem 3.6.13(6)]. If F' is a perfect field, then so(1) is the
Eilenberg-MacLane spectrum MZ by the works of Levine [5, Theorem 10.5.1] and
Voevodsky [17, Theorem 6.6]. By base change this computation extends to all fields;
in fact, every field is essentially smooth over a perfect field by [4, Lemma 2.9], and [4,
Lemma 2.7(1)] verifies the hypothesis of [8, Theorem 2.12] for an essentially smooth
map.

For an axiomatic treatment of the graded slice functor

s*:@sq: SH — SH”

we refer to [2, §2.3]. Notably, if E is a ring spectrum then s,(E) is a graded ring
spectrum in SH according to [7, Theorem 3.6.13(7)]. In fact, this holds strictly on
the level of motivic symmetric spectra by [2, Theorem 5.1], which verifies [5, Conjec-
ture 11.1.1].

Setting D}, , ,, = Tpnfq(E) and E} . = 7, n54(E) gives rise to the tri-graded exact
couple:

Dl (0’ _170) Dl

‘MEM

The corresponding slice spectral sequence
E; = 7, n(E)

g,

was introduced in [14, §7]. It is analogous to the Atiyah—Hirzebruch spectral sequence
in topology in the sense that its first page is comprised of motivic cohomology groups.
Its d;-differential
ATz mpnSq(E) — mp—1,nS¢11(E)
is induced by the composite map
df: s,(E) — 28, (E) — 210, (E). (8)

In §4 we use multiplicative generators for graded slices to give explicit formulas for
the d;-differentials in the slice spectral sequences for KGL, KQ, and KT.



376 OLIVER RONDIGS axp PAUL ARNE @STVZER

3. Multiplicative structure

The formal difference between the tautological and the trivial line bundle on the
projective line P! defines the motivic Bott map 3: S*! — KGL. The composite
weak equivalence

§21 A KGL 2258 KGL A KGL —- KGL

is known as (2, 1)-periodicity of KGL [13, Theorem 6.8]. By taking complex points
of KGL this yields Bott-periodicity of the unitary K-theory spectrum KU. Its coef-
ficients KU, form a Laurent polynomial algebra over the integers on a generator
in degree two. The slices of KGL exhibit a similar property relative to the integral
motivic cohomology spectrum. More precisely, Theorem 3.1 follows from the work
of Levine [5, §6.4, 11.3] and Voevodsky [15, 17], augmented by the base change
argument to all fields using [4] and [8], cp. §2.

Theorem 3.1. The graded slices of KGL form a Laurent polynomial ring
s.(KGL) = MZ[3,57].
Here f3 is the generator of s;(KGL) = X>'MZ in bidegree (2,1).

‘We note the following result relating algebraic and hermitian K-theory via the for-
getful functor defined in [9, §3]. A commutative monoid model for hermitian K-theory
in SH was constructed by Panin-Walter in [6], building on work of Schlichting [11].

Theorem 3.2. The hermitian K -theory spectrum KQ is a commutative ring spec-
trum and the forgetful functor induces a map of motivic ring spectra KQ — KGL.

The hermitian K-theory spectrum is (8,4)-periodic by construction [3] via a map

a: $%% — KQ inducing a weak equivalence

584 A KQ 252 KQ A KQ - KQ.

As in topology, see e.g., [1, §1.1], the composition of the forgetful map KQ — KGL
with « is 3% (The referee kindly pointed out that this follows by comparing the
projective line bundle formula for GWél] (P!) with the class [0] — [O(—1)] € Ko(P!),
see [11, §9.4].) Tt follows that the graded slice s, (KQ) contains a Laurent polynomial
algebra generated by «. In fact, the computation of the slices of KQ provides a
summand ©*2MZ of s,(KQ) which maps by the identity to so(KGL) = X*2MZ (see
[9, Corollary 4.15]). Hence s, (KQ) contains a Laurent polynomial algebra generated
by an element /a of bidegree (4,2) with the property that \/a - v/a = a. The proof
of [9, Corollary 4.13] shows the Hopf map n generates the top dimensional summand
$LIMZ/2 of s1(KQ). By abuse of notation we shall not distinguish notationally
between 77 and the corresponding generator of the slice summand.

We claim there is a relation between 7 and /a: Since the forgetful map KQ —
KGL induces the connecting map s; (KQ) — s1(KGL) on the top summand, i.e.,
§: YHIMZ/2 — ¥21MZ, the multiplication s;(KQ) A s;(KQ) — so(KQ) maps
nontrivially to the summand ¥*2MZ. This follows from the commutative diagram:
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s (KQ) A s (KQ) — - s,(KQ)

| |

s1(KGL) A s (KGL) - s,(KGL)

To describe the multiplicative structure, we note that every summand of s,(KQ)
is generated by a product of the form y/a"'n", where m € Z and n € N, with ¢ =
2m + n. Such a product generates a copy of MZ precisely if n =0, and a copy of
MZ/2 precisely if n > 0. It remains to describe the multiplicative structure on the

smash powers .
Va '™t Ayanl
Under the multiplication on slices it maps to the smash power

Vot
and if n, g are positive it also maps via the unique nontrivial map to the summand
in degree 4m + 4p + n + q + 2 generated by
\/am+l7+1nn+q72'

This map can be described explicitly using the smash product decomposition of right
MZ /2-modules

MZ/2 AMZ/2 ——~ MZ/2V S1MZ/2 v \/ YHIMZ/2, (10)

(i,4)el

from [4, Theorem 1.1(3)], [16], where I C N x N consists of pairs (4,j) of integers

with ¢ > 25 > 0. In terms of the weak equivalence (10) the unit and multiplication
maps are given by:
(id,0,...): MZ/2=MZ/2N1 - MZ/2 N\MZ/2,
(id,Sq",0,...): MZ/2 =1 AMZ/2 — MZ/2 AMZ/2,
(id,0,...): MZ/2 A\MZ/2 — MZ/2.
For bidegree reasons, a map from MZ/2 A MZ/2 to either X2°MZ or ¥2MZ/2
can be nontrivial only on the summand $1'°MZ/2 in (10), and the nontrivial one
is the connecting map & or Sq' = prod, respectively. By (9) the slice multiplication

map g induces the nontrivial map on the summand %32MZ of s1(KQ) A 51(KQ) to
the summand X*2MZ of s,(KQ). We write §: n?> — y/a for this relation.

Theorem 3.3. The graded slices of KQ are given by

~ +1 5
s:(KQ) = MZ[n,v/a™ /(21 =0,7* = Va).
Here 1 has bidegree (1,1) and \/a has bidegree (4,2).
Recall that 7: S''! — 1 denotes the Hopf map induced by the canonical map
A% < {0} — P!. Every motivic spectrum E is a module over 1, so there is a naturally
induced map 7: ¥M'E — E. The Witt-theory spectrum KT = KQ[n~!] is defined

by inverting 1 in hermitian K-theory. From Theorem 3.2 we can infer the following
result.

Corollary 3.4. The Witt-theory spectrum KT = KQ[n~!] is a KQ-algebra.
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Let u: KQ — KT be the canonical map. We cite from [9, Proposition 4.29] the
next result.

Proposition 3.5. Restricting the map saq(u): s2q(KQ) — s24(KT) to the summand
Y49.29MZ yields the projection map L4492 MZ — $4929MZ /2 composed with the
inclusion into sqq(KT). Restricting the same map to a suspension of MZ/2 yields
the inclusion into soq(KT). On slices of odd degree, the map sag41(u): s2q4+1(KQ) —
soq+1(KT) is the inclusion.

We note there is an induced (1, 1)-periodicity isomorphism
n: MKT = KT.
It follows that s,(KT) = X%95¢(KT), cf. [9, Example 2.3]. The multiplicative struc-

ture on the graded slices of Witt-theory follows immediately.

Theorem 3.6. The graded slices of KT are given by

s.(KT) = MZ[p*!, Vo™ ']/(2n = 2va = 0.0* 2% Va).
Here 1 has bidegree (1,1) and \/a has bidegree (4,2).

Remark 3.7. The slices of KT are MZ/2-modules. However, the multiplicative rela-
tion involving the Steenrod square Sq' shows that neither s,(KT) nor so(KT) are
MZ/2-algebras.

The multiplicative structure on s,(KT) in Theorem 3.6 shows that for X € Smp,
the maps [X 4, s, (KT)] form a graded ring with respect to the multiplication * given by

(am,ra bn,s) — (a : b)m+n,r+s + (Sqla : Sqlb)m+n+1,r+s—2-

Here we write a - b for multiplication of motivic cohomology classes, and ¢;; for a
generic element in the image of the map

(X, SHH2IMZ /2] — (X, 59144(KT))

induced by the inclusion of the summand generated by \/EZUt.

4. Slice differentials

The multiplicative structure on the slices of KQ and KT allows for very concise
and convenient descriptions of the first differentials (8) in the corresponding slice
spectral sequences. This follows from and improves on our work in [9, §5]. To begin,
recall from [9, Lemma 5.1] that the first differential for KGL/2 is given by

4B = Qupm (1)

Here Q; = Sq®Sq"' + Sq'Sq? is the first Milnor operation.
A formula for the first differential of KQ follows from (11) as in [9, Theorem 5.5].
In terms of generators for the slices we have:
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A (vay") =

TV T 4 (Sq” + pSqt) Va4 Sq%Sqt ya Tyl m = 1(2),m > 1,
Sa>va "t + Sq°Sqtya m=0(2),n>1,
Va4 (5% + pSat)va ' n? + 659°Sqt a m=1(2),n=1,
Sqa*va™n? + 659°Sqt va" ! m=0(2),n=1,
Tpry/a” y? +Sq% pry/a™y m=1(2),n =0,
Sq? /"yt m=0(2),n=0.

(12)

The classes 7 € h%! = iy (F) and p € k! 22 FX /2 are represented by —1 € F'; here
hP-? is shorthand for the mod-2 motivic cohomology group of F' in degree p and
weight ¢ [12, §3].
In the case of KT, (12) implies along the lines of [9, Theorem 5.3] the formula:
diT (Vo n") =
T/ Tl 4 (Sq® + pSat )/ ! + SqPSqt /T
Sq?va" "t + SqPSqt v/
(13)
For X € Smp a straightforward calculation using the Cartan formulas in [4, The-
orem 5.1(2)], [16, Theorem 10.2] for Sq* and Sq” shows the first differential satisfies
the Leibniz rule

AT (A % b)) = AT (Amr) * Dps + U K AT (b, s).

Here the multiplication x on [X, s.(KT)] is defined in §3.
However, the first differential for KT does not satisfy the Leibniz rule with respect
to the Laurent polynomial ring multiplication

(s bs) = (@ D)mtn rts-
An easy counterexample is given by X = Spec(F') and a = b = 79 1. The motivic coho-
mology class
d¥T (101 - 01) = Sq%(105) = (79°)0.3
is nonzero if F has a real embedding, while d¥T (7 1) = 0. On the other hand, we
have

d¥T (ro.1 % T0,1) = dY¥ T (150 + p1 o) = Sa%(152) + (T97)o,3 = Op 3.
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