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COMPLEX N -SPIN BORDISM OF SEMIFREE CIRCLE ACTIONS
AND COMPLEX ELLIPTIC GENERA

M. NAEEM AHMAD

(communicated by Donald Davis)

Abstract
We give a complete bordism analysis of rational bordism

groups of semifree circle actions on complex N -Spin manifolds.
Moreover, we introduce the notion of a complex N -Spinc,t man-
ifold and give a characterization of cobordism groups of such
manifolds which we use to compute the rational bordism groups
of free circle actions of type t on complexN -Spin manifolds. Fur-
thermore, we exploit this bordism analysis to furnish a mecha-
nism with which we investigate a description, in terms of kernels
of complex elliptic genera, of the ideal IN,t∗ , generated by bor-
dism classes of connected complex N -Spin manifolds admitting
an effective circle action of type t, in the rational complex N -
Spin cobordism ring ΩU,N∗ ⊗Q.

1. Introduction

Ochanine introduced elliptic genera in [16]. Landweber defined the classical elliptic
genus of level 2 in [13]. This genus is intimately related with string theory (see, for
instance, Witten [20, 21]). The elliptic genus possesses a striking property which is
its rigidity with respect to group actions. This was conjectured by Ochanine in [16],
and by Witten in [20], where string theory arguments were used to support it. The
rigidity of the elliptic genus was proved by Taubes in [18], Bott and Taubes in [2],
and Liu in [14].

This work involves a study of bordism groups of semifree circle actions on com-
plex N -Spin manifolds. The motivation for this study comes from a question of
Witten [19]. He was interested in the Dirac operator with coefficients in the tan-
gent bundle of a Spin manifold. He asked if the character valued index, for a circle
action on a Spin manifold, is a constant. He further suggested that the problem can
be investigated via the bordism groups of circle actions on Spin manifolds. The prob-
lem becomes simpler if attention is restricted to circle actions which are semifree.
In [16], Ochanine determined the ideal in the rational Spin cobordism ring generated
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by bordism classes of Spin manifolds admitting a semifree circle action of odd type
by finding all multiplicative genera which vanish on it.

A complex N -Spin manifold is a manifold equipped with a stable complex struc-
ture on its tangent bundle and an N -th root of the associated complex line bundle.
Hirzebruch defined bordism invariants φN for these manifolds, which take values in
modular forms of level N . He also showed in his rigidity theorem that these invariants
vanish if such a manifold comes equipped with an S1-action for which an invariant
t ∈ Z/N called the “type” is non-zero (see [8]). Here the action is not required to be
compatible with the N -Spin structure; in fact, t can be thought of as the obstruction
to a lift of the induced S1-action on the principal U(1)-bundle (determined by the sta-
ble complex structure) to its N -fold covering (determined by the N -Spin structure).

Denoting by IN,t∗ the ideal in the rational cobordism ring of complex N -Spin
manifolds generated by connected complex N -Spin manifolds equipped with an effec-
tive S1-action of type t, the above can be reformulated as IN,t∗ ⊂ kerφN for t ̸≡ 0
(mod N). Noting that a complex N -Spin structure determines a complex n-Spin

structure for n|N , it follows that IN,t∗ ⊂
∩
n|N,n∤t kerφn. In [9], Höhn showed that the

equality holds when t = 1 and based on that he conjectured that for all pairs (N, t)
with N ⩾ 2 and t ̸≡ 0 (mod N), we have

IN,t∗ =
∩
n|N,n∤t kerφn. (1.1)

In this work, we extend the investigation of this conjectural equation to higher
values of t. In Section 2, we find a condition under which the conjecture holds true.
That condition involves constructing bordism classes of complex N -Spin manifolds
satisfying a certain inclusion (see Proposition 2.4). In Section 3, we give a complete
bordism analysis of rational bordism groups of semifree circle actions on complex
N -Spin manifolds using classical geometric techniques. In Section 4, we invoke that
analysis on the exactness of the sequence (3.1) to construct bordism classes satisfying
the inclusion of Proposition 2.4 and verify that the conjectural equation (1.1) holds
true for all values of t with N ⩽ 9, except for the case (N, t) = (6, 3) which remains
unanswered. Moreover, the technique developed in this work provides a way with
which to investigate the conjectural equation for any values of N and t.

This work is part of the author’s Ph.D. thesis [1], written at Kansas State Univer-
sity in 2011. I would like to thank my thesis advisor, Professor Gerald Hoehn, for his
ideas and several useful discussions.

2. The universal complex elliptic genus

Krichever showed in [11] that if the first Chern class of a unitary manifold is
divisible by a whole number k, then the Ak-genus is rigid. (The generating series for
the genus Ak, where k = 2, 3, 4, . . ., is of the form kxex/(ekx − 1).) He proved in [12]
that the universal complex elliptic genus is rigid for S1-actions on SU -manifolds,
that is, almost complex manifolds whose first Chern class is zero. Höhn studied the
universal complex elliptic genus φell and rediscovered this result in [9]. The complex
elliptic genus φN of level N factors over φell. We will exploit this relationship to
study the ideal IN,t∗ in terms of kernels of elliptic genera. We begin by summarizing
a few definitions and results from [9] needed to present the definition of φell and set
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up notation for the subsequent development of this article. Let M be a connected U -
manifold with the principal S1-bundle K associated to its principal stable tangential
U(n)-bundle via the determinant representation Λn : U(n) → U(1) ∼= S1. A complex
N -Spin structure (or simply an N -structure) of M is a pair (E, π) consisting of a
principal S1-bundle E over M and a covering map π : E → K (of degree N) such
that the diagram

E × S1 //

π×λN

��

E

π

��

&&NN
NNN

NNN
NNN

NN

M

K × S1 // K

88ppppppppppppp

commutes, where λN : S1 → S1 is the canonical N -fold covering map given by g 7→
gN , and the horizontal maps are the natural actions of S1 on E and K. Two complex
N -Spin structures (E, π) and (E′, π′) of M are said to be equivalent if there exists
a principal S1-bundle isomorphism f : E′ → E such that π ◦ f = π′. A connected U -
manifold with an equivalence class of a complex N -Spin structure is called a complex
N -Spin manifold (or simply an N -manifold). A U -manifold admits a complex N -

Spin structure if and only if its first Chern class is divisible by N . The map ΩU,N∗ →
ΩU∗ from the complex N -Spin cobordism ring ΩU,N∗ to the U -cobordism ring ΩU∗ ,
defined by forgetting the complex N -Spin structure, becomes a ring isomorphism
after tensoring with the rationals Q. Now, let α : S1 ×M →M be a smooth action
of circle S1 on the connected complex N -Spin manifold M and for λ ∈ S1 denote the
differential of α(λ) on the tangent bundle τ(M) of M by Dα(λ); then the type of the
circle action α on the complex N -Spin manifoldM is the unique element t ∈ Z/NZ ⊂
S1 defined as follows: Let p ∈ K, and let γ : S1 → K given by λ 7→ det(Dα(λ)⊕ id)p
be a closed path. Let q be an element of E with π(q) = p. The type of the circle
action α is the element t ∈ Z/NZ such that tγ′(0) = γ′(1), where γ′ : [0, 1] → E is
the unique lifting of γ with π ◦ γ′ = γ and γ′(0) = q. The type t of a smooth circle
action on a connected complex N -Spin manifold is independent of the chosen q, but
it generally depends on the chosen complex N -Spin structure. However, if [M ] ̸= 0

in ΩU,N∗ ⊗Q, i.e., not all Chern numbers are zero, then the type of the circle action
is independent of a chosen complex N -Spin structure and it is equal to the residue
class modulo N of the sum of rotation numbers of any fixed point component. For
the ideal IN,t∗ in ΩU,N∗ ⊗Q generated by the connected complex N -Spin manifolds

with an effective circle action of type t, we have IN,t∗ = I
N,gcd(N,t)
∗ for any positive

integer N . Hence we will normally consider only those ideals IN,t∗ for which an integer
representing the class of t is a divisor of N . Let t and s be two positive integers. By
an abuse of notation we will also denote by t and s the equivalence classes of the
integers t and s in Z/NZ, respectively. If t|s, then IN,1∗ ⊂ IN,t∗ ⊂ IN,s∗ ⊂ IN,0∗ .

For n|N , a connected complex N -Spin manifold M with a circle action of type
t ̸≡ 0 (mod N) is also an n-manifold with a circle action of the type t ̸≡ 0 (mod n)
if n∤t. So, it follows by the rigidity theorem of Hirzebruch for elliptic genera of level
n (see [8, p. 58]) that [M ] ∈

∩
n|N,n∤t kerφn, where φn denotes the complex elliptic
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genus of level n. Hence the ideals IN,t∗ with t ̸≡ 0 (mod N) satisfy the inclusion IN,t∗ ⊂∩
n|N,n∤t kerφn. This inclusion will be used later in this section.
Let Λ be a graded commutative algebra with identity over the rationals Q. A com-

plex genus φ is a graded algebra homomorphism ΩU∗ ⊗Q → Λ so that φ(1) = 1 holds.
The Chern numbers of a complexN -Spin manifold specify its rational bordism class in
ΩU,N∗ ⊗Q and in ΩU∗ ⊗Q, and as noted above ΩU,N∗ ⊗Q ∼= ΩU∗ ⊗Q, so one can iden-

tify the genera of ΩU,N∗ ⊗Q and ΩU∗ ⊗Q with one another. Analogous to the genera of
ΩU∗ ⊗Q with values in an algebra over Q, one can also consider the genera of ΩU∗ ⊗ C
with values in an algebra over C. If a1, . . . , an ∈ N, then the weighted projective space
with weights a1, . . . , an ∈ N — denoted by CPa1,...,an — is defined by (Cn \ {0})/∼,
where (x1, . . . , xn) ∼ (y1, . . . , yn) if and only if there exists a λ ∈ C∗ with yi = λaixi
for all i = 1, . . . , n. Let V (not necessarily irreducible) be a projective variety in
CPa1,...,an with weighted homogeneous annihilator ideal I(V ) ⊂ C[x1, . . . , xn], where
xi has weight ai, and K(V ) denotes the graded coordinate algebra C[x1, . . . , xn]/I(V )
of V with the projection map π : C[x1, . . . , xn] → K(V ). Now with these notations
one can associate a genus to the variety V as follows: Let [X1], [X2], . . . be a basis of
ΩU∗ ⊗ C, and let a1 < a2 < · · · < an. The genus belonging to the variety V is a graded
algebra homomorphism φV : ΩU∗ ⊗ C → K(V ) defined by φV = π ◦ λa1,...,an , where
the map λa1,...,an : Ω

U
∗ ⊗ C → C[x1, . . . , xn] is given by

[Xi] 7→

{
xj if i = aj ,

0 otherwise.

The genus φV depends upon the choice of a basis sequence and the choice of a
coordinate system for CPa1,...,an . Let V andW be two projective varieties in CPa,...,an
with a fixed coordinate system. Then with a fixed basis sequence one can see that
kerφV ∪W = kerφV ∩ kerφW .

The universal complex elliptic genus is the genus belonging to the power series
which is the solution of a certain second order differential equation defined as follows:
Let S(y) = y4 + q1y

3 + q2y
2 + q3y + q4 be a standard polynomial in y with coeffi-

cients q1 to q4, and let Q(x) = 1 + a1x+ a2x
2 + · · · be a power series in x. Let h(x) :=

f ′(x)
f(x) be the logarithmic derivative of f(x) = x

Q(x) . It was shown in [9, Lemma 2.2.1]

that the second order differential equation

(h′(x))2 = S(h(x)) (2.1)

has a unique solution h(x) ∈ Q[q1, q2, q3, q4][[x]][x
−1], which in turn determines the

power series Q(x) ∈ Q[q1, q2, q3, q4][[x]]. Furthermore, if q1 to q4 are assigned weights
1 to 4, then the coefficients an of Q(x) are homogeneous polynomials of weight n in
q1 to q4. The universal complex elliptic genus

φell : Ω
U
∗ ⊗Q → Q[q1, q2, q3, q4]

is the complex elliptic genus having the characteristic power series Q(x) belonging to
the solution of the differential equation (2.1). A basis sequence [W1], [W2], [W3], [W4],
[W5], . . . of Ω

U
∗ ⊗Q was constructed in [9] on which the universal complex elliptic ge-

nus takes the values: φell([W1]) = A, φell([W2]) = B, φell([W3]) = C, φell([W4]) = D,
and φell([Wn]) = 0 for all n ⩾ 5, where the indeterminates A = 1

2q1, B = 3
2q

2
1 − 4q2,

C = 1
32q

3
1 − 1

8q1q2 +
1
4q3, and D = 3

128q
4
1 − 1

8q
2
1q2 +

1
8q1q3 +

1
8q

2
2 − 1

2q4 are provided
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with the weights 1 to 4. Conversely, if A to D are given, then one can determine q1 to
q4 as: q1 = 2A, q2 = 3

2A
2 − 1

4B, q3 = 1
2A

3 − 1
4AB + 4C, and q4 = 1

16A
4 − 1

16A
2B +

2AC + 1
64B

2 − 2D. With respect to this homogeneous change of coordinates we will
consider the universal complex elliptic genus

φell : Ω
U
∗ ⊗Q → Q[A,B,C,D]

as the complex genus with values in the graded rational algebra Q[A,B,C,D].
Let C[A,B,C,D] be the graded coordinate algebra of the twisted projective space
CP1,2,3,4. The universal complex elliptic genus can also be regarded as the genus

φell : Ω
U
∗ ⊗ C → C[A,B,C,D]

belonging to the weighted projective variety CP1,2,3,4 and a basis [W1], [W2], [W3],
[W4], [W5], [V6], . . ., where [Vn] from kerφell | ΩUn ⊗ C are the bordism classes of man-
ifolds such that the Milnor numbers sn([Vn]) ̸= 0 for all n ⩾ 6.

Let H = {z ∈ C : Im(z) > 0} be the complex upper half plane, and let τ ∈ H. Con-
sider the lattice L = 2πi(Zτ + Z) in C, and let α ∈ C/L be a non-zero N -division
point of the associated elliptic curve. There is a unique elliptic function h(x) of L
with the divisor N · (0)−N · (α) and the normalization h(x) = xN +O(xN+1) of
the Taylor expansion around the origin. The function f(x) = N

√
h(x) is well-defined

if f(x) = x+O(x2). The complex elliptic genus of level N — denoted by φN —
is the complex elliptic genus having the characteristic power series Q(x) = x

f(x) =

1 + b1x+ b2x
2 + · · · , where f(x) as above is the function belonging to the lattice

L = 2πi(Zτ + Z) and the primitive N -division point 2πi
N . The modular subgroup

Γ1(N) :=

{(
a b
c d

)
∈ SL2(Z) :

(
a b
c d

)
≡

(
1 b
0 1

)
(mod N)

}
of SL2(Z) acts on H under the action σ : SL2(Z)×H → H given by the map which

sends

((
a b
c d

)
, τ

)
to aτ+b

cτ+d . The orbit space of this action is denoted by H/Γ1(N).

The function f(x) in the definition of φN is determined by either of the following two
differential equations: The first differential equation is of order 2 and has the form(

f ′

f

)′ 2

= S

(
f ′

f

)
, (2.2)

where S(y) = y4 + q1y
3 + q2y

2 + q3y + q4 is a polynomial of degree 4, and the coef-
ficients qi are modular forms of weight i for Γ1(N). Since the power series f(x)
corresponding to φN satisfies the differential equation (2.1) with special qi, the com-
plex elliptic genus φN of level N factorizes over φell. The second differential equation
is of order 2 and has the form

1

fN
+ d2Nf

N = TN

(
f ′

f

)
, (2.3)

where TN (y) = yN + d1y
N−1 + · · ·+ dN−1y + dN is a polynomial of degree N and

di are modular forms of weights i for Γ1(N). The polynomial TN (y) is a so-called
Zolotarev-polynomial. It is characterized by the equations dN−1 = 0, and T 2

N (y) =
4d2N for y ̸= 0 with T ′

N (y) = 0, and another equation which gives a relationship
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between S(y) and TN (y) given by S(y)T ′
N (y)2 = N2y2(TN (y)2 − 4d2N ). This differ-

ential equation gives rise to two (depending on N) relations RN−1 and RN+1 which
are weighted homogeneous in the coefficients q1 to q4 of S(y). Note that the relations
RN−1 and RN+1 can also be considered weighted homogeneous in the indetermi-
nates A to D. We will denote the variety V (⟨RN−1, RN+1⟩) ⊂ CP1,2,3,4 by CN . The
mapping

Φ:
·∪
n|N,n>1

H/Γ1(n) → CP1,2,3,4,

which for each n|N , n>1 assigns to a pair (τ, n) the point (q1:q2:q3:q4), where q1
to q4 are the coefficients of the polynomial S(y) of the differential equation (2.2),
is surjective to the curve CN . The images Φ(H/Γ1(n)) form a decomposition of CN
into irreducible components. The image Φ(H/Γ1(n)) is independent of N (see [10,
Chapter 3]). We will denote the projection C[A,B,C,D] −→ C[A,B,C,D]/I(CN ) by
πN . The kernel of πN is the annihilator ideal I(CN ) of the curve CN , simply denoted
by IN , and therefore by the Hilbert Nullstellensatz the radical of ⟨RN−1, RN+1⟩. It
was shown in [9, Theorem 2.3.5] that ⟨RN−1, RN+1⟩ is a radical ideal. It has the
primary ideal decomposition

IN =
∩
n|N,n>1 Pn,

where the ideal Pn corresponds to the irreducible component Φ(H/Γ1(n)) of the curve
CN . The ideal Pn is independent of the multiples N of n. The complex elliptic genus
φN of level N becomes the composition

ΩU∗ ⊗Q φell−−−−→ Q[A,B,C,D]
πN−−−−→ Q[A,B,C,D]/PN ,

where πN denotes the projection map.

Definition 2.1. For t|N , we define the ideal PN,t as the following intersection of
ideals

PN,t =
∩
n|N,n∤t Pn.

For the first few ideals PN,t we have1

P 2,1 = ⟨C, A⟩,
P 3,1 = ⟨125B2 + 1152AC − 384D, 18A2 −B⟩,
P 4,1 = ⟨125B2C + 768AC2 − 384CD, 125AB2 + 768A2C − 384AD,

8A3 −AB + 4C⟩,
P 4,2 = ⟨2AC −D, 8A3 −AB + 4C⟩,
P 5,1 = ⟨15625B4 + 480000AB2C + 1843200A2C2 + 36864BC2 − 96000B2D

− 1474560ACD + 147456D2, 6250A2B2 − 125B3 + 32000A3C

− 640ABC + 4096C2 − 19200A2D + 384BD, 1250A4 − 250A2B + 67B2

+ 1600AC − 192D⟩.

1The computations were accomplished with the help of computer programs in Mathematica and
MAGMA.
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Definition 2.2. Let [W1], [W2], [W3], [W4], [V5], [V6], . . . be a basis sequence of ΩU∗ ⊗
C with ⟨[V5], [V6] . . .⟩ = kerφell and [W1] to [W4] having the same meaning as above in
this section. We define by ψN,t the genus belonging to the variety CN,t = V (PN,t) ⊂
CP1,2,3,4.

The definition of ψN,t is independent of the chosen basis manifolds from kerφell,
and the following situation exists in the A,B,C,D-coordinate system for CP1,2,3,4:

ΩU∗ ⊗ C

ψN,t

((PP
PPP

PPP
PPP

PPP
PPP

PPP
PPP

PPP
φell // C[A,B,C,D]

πN,t

��

K(CN,t) ∼= C[A,B,C,D]/I(CN,t),

that is,

ψN,t = πN,t ◦ φell. (2.4)

Proposition 2.3. We have kerψN,t =
∩
n|N,n∤t kerφn.

Proof. Observe that

kerψN,t = kerφCN,t =
∩
n|N,n∤t kerφCn =

∩
n|N,n∤t kerφΦ(H/Γ1(n))

.

Now [X] ∈ kerφ
Φ(H/Γ1(n))

⇔ φell([X]) ∈ I(Φ(H/Γ1(n))). The point P ∈ Φ(H/Γ1(n))

corresponding to τ ∈ H/Γ1(n) has the parametrization:

P (τ) = (A(τ):B(τ):C(τ):D(τ)).

Hence φell([X])(P (τ)) = φn([X])(τ), if φell([X]) ∈ I(Φ(H/Γ1(n))) ⇔ φn([X]) = 0.
Thus the result follows.

Now we find a condition under which the conjectural equation (1.1) is true:

Proposition 2.4. If there exist bordism classes [V1], [V2], . . . , [Vm] ∈ IN,t∗ such that

PN,t ⊂ ⟨φell[V1], φell[V2], . . . , φell[Vm]⟩,

then we have

IN,t∗ =
∩
n|N,n∤t kerφn.

Proof. Let the sequence [W5], [W6], . . . have the same meaning as above in this section,
then kerφell = ⟨[W5], [W6], . . .⟩. It was shown by Höhn in [9] that ⟨[W5], [W6], . . .⟩ ⊂
IN,1∗ ⊂ IN,t∗ for all t ̸= 0. So we get ⟨[V1], [V2], . . . [Vm], [W5], [W6], . . .⟩ ⊂ IN,t∗ . As noted
above in this section, we have the inclusion

IN,t∗ ⊂
∩
n|N,n∤t kerφn.

Hence by Proposition 2.3, we get

⟨[V1], [V2], . . . [Vm], [W5], [W6], . . .⟩ ⊂ IN,t∗ ⊂
∩
n|N,n∤t kerφn = ker(ψN,t).

Now it remains to show that ker(ψN,t) ⊂ ⟨[V1], [V2], . . . [Vm], [W5], [W6], . . .⟩. Let [V ]
be a bordism class in ker(ψN,t). Since by equation (2.4) ψN,t = πN,t ◦ φell, we have
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φell([V ]) ∈ ker(πN,t), and hence φell([V ]) ∈ PN,t, and so φell([V ]) ∈ ⟨φell[V1], φell[V2],
. . . φell[Vm]⟩, by hypothesis. Since φell is a homomorphism, there exists a [U ] ∈
⟨[V1], [V2], . . . [Vm]⟩ such that φell([V ]) = φell([U ]) which implies [V ]− [U ] ∈ ker(φell)
= ⟨[W5], [W6], . . .⟩. Hence [V ] ∈ [U ] + ⟨[W5], [W6], . . .⟩ ⊂ ⟨[V1], [V2], . . . , [Vm], [W5],
[W6], . . .⟩. This completes the proof.

In Section 4, we will verify the conjectural equation (1.1) for several cases of pairs
(N, t), by constructing bordism classes satisfying the condition of Proposition 2.4,
after we introduce certain notions and prove our main results pertaining to bordism
theory of complex N -Spin manifolds with circle actions in Section 3 required for our
work with proofs of those cases of the conjectural equation.

3. Bordism of semifree circle actions

This section is devoted to the study of smooth circle actions on complex N -Spin
manifolds from the bordism theory viewpoint. A smooth circle action on a smooth
manifold is called free if all its isotropy groups are the unit subgroup of S1 and
semifree if they are either S1 or the unit subgroup of S1. In what follows, we will
tacitly assume that a circle action on a U -manifold preserves its U -structure, and we
will denote by:

(i) ΩUn (F ) the bordism group of all closed n-dimensional U -manifolds with free
circle actions,

(ii) ΩUn (SF ) the bordism group of all closed n-dimensional U -manifolds with semifree
circle actions, and

(iii) ΩUn (SF, F ) the bordism group of all compact n-dimensional U -manifolds with
semifree circle actions which are free on the boundary.

Also, we will use notations ΩU,Nn (F ), ΩU,Nn (SF ), and ΩU,Nn (SF, F ) for similar
bordism groups of complex N -Spin manifolds with circle actions which preserve
their underlying U -structures, as well as notations ΩU,N,tn (F ), ΩU,N,tn (SF ), and
ΩU,N,tn (SF, F ) for bordism groups of complex N -Spin manifolds with such circle
actions having a fixed type t.

It was noted in [7] that the sequence

· · · // ΩUn (F )
iU // ΩUn (SF )

jU // ΩUn (SF, F )
∂U // ΩUn−1(F ) // · · ·

is exact, where the maps iU, jU, and ∂U have the usual meanings (see, for instance, [7]).
Analogously, the sequence

· · · // ΩU,Nn (F )
iN // ΩU,Nn (SF )

jN // ΩU,Nn (SF, F )
∂N // ΩU,Nn−1(F )

// · · ·

is exact, where the maps iN , jN , and ∂N have the same meanings as in the above
sequence.

Recall from Section 2 that the type of a circle action on a connected complex
N -Spin manifold is an element t of the group Z/NZ. We have the decompositions:

ΩU,Nn (F ) =
⊕

t∈Z/NZ

ΩU,N,tn (F ), ΩU,Nn (SF ) =
⊕

t∈Z/NZ

ΩU,N,tn (SF ), and
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ΩU,Nn (SF, F ) =
⊕

t∈Z/NZ

ΩU,N,tn (SF, F ),

where the groups ΩU,N,tn (F ), ΩU,N,tn (SF ), and ΩU,N,tn (SF, F ) are defined by requiring
circle actions to be of type t. Furthermore, each map in the above sequence preserves
the type t of circle actions, and so the sequence

· · · // ΩU,N,tn (F )
iN,t

// ΩU,N,tn (SF )
jN,t

// ΩU,N,tn (SF, F )
∂N,t

// ΩU,N,tn−1 (F ) // · · ·

is exact, where the maps iN,t, jN,t, and ∂N,t are the restrictions to the groups
ΩU,N,tn (F ), ΩU,N,tn (SF ), and ΩU,N,tn (SF, F ) of the maps iN , jN , and ∂N , respectively.

The above three sequences remain exact after tensoring with the rationals Q. In
particular, we will use the exactness of the sequence

· · · −−−−→ ΩU,N,tn (F )⊗Q
iN,t−−−−→ ΩU,N,tn (SF )⊗Q

jN,t−−−−→ ΩU,N,tn (SF, F )⊗Q
∂N,t−−−−→ ΩU,N,tn−1 (F )⊗Q −−−−→ · · ·

(3.1)
to construct bordism classes satisfying the condition of Proposition 2.4, where we
denote by an abuse of notation the maps iN,t ⊗Q, jN,t ⊗Q, and ∂N,t ⊗Q by iN,t, jN,t,
and ∂N,t, respectively. In the remainder of this section we will do bordism analysis to
find computable characterizations of the groups ΩU,N,tn (SF, F )⊗Q and ΩU,N,tn (F )⊗
Q needed to make calculations to construct those bordism classes. We will begin
by studying the groups ΩUn (SF, F ) and ΩU,Nn (SF, F ), and then we will rationalize
them to find a characterization of the group ΩU,Nn (SF, F )⊗Q which will lead to
a computable characterization of the group ΩU,N,tn (SF, F )⊗Q. After that we will
introduce and develop the notion of a complex N -Spinc,t structure needed to find a
computable characterization of the group ΩU,N,tn (F )⊗Q.

3.1. The group ΩUn (SF, F )
In this subsection we will study the group ΩUn (SF, F ) of bordism classes of com-

pact n-dimensional U -manifolds with semifree circle actions which are free on the
boundary.

Proposition 3.1. Let [M ] ∈ ΩUn (SF, F ) and {Fi} be the totality of connected com-
ponents of the fixed point set of the circle action on M . If Di is an equivariant closed
tubular neighborhood of Fi with respect to an equivariant Hermitian metric on M ,
then we have

[M ] =
∑
i

[Di]

in ΩUn (SF, F ).

Proof. The result follows directly from [4, 5.2] because the circle action restricted to
M \ ∪iDi is free.

LetM be a U -manifold with a semifree circle action which respects the U -structure
and is free on the boundary, and Xi a connected component of the fixed point set of
the circle action. Then Xi has a natural U -structure and the normal bundle υ(Xi) of
Xi inM becomes a complex vector bundle on which S1 acts by U -structure preserving
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isomorphisms. Moreover, there is a decomposition of the normal bundle υ(Xi) = υ+i ⊕
υ−i such that λ ∈ S1 ⊂ C∗ acts on the complex bundles υ+i and υ−i by multiplication
with λ and λ−1, respectively (see, for instance, [9]).

In what follows we will denote a generic element [M,f ] of ΩUk (BU(p)×BU(q)) by
[M,E ⊕G], where the complex bundles E and G of complex ranks p and q are the
pullbacks of the universal bundles over the classifying spaces BU(p) and BU(q) under
the first and second components of f , respectively. Consider the homomorphism

θ : ΩUn (SF, F ) →
⊕

k+2p+2q=n

ΩUk (BU(p)×BU(q))

defined by

θ[M ] =
∑
i

[Xi, υ
+
i ⊕ υ−i ],

where the summation is taken over the connected components of the fixed point set.
It is a well-defined homomorphism.

Proposition 3.2. The homomorphism

θ : ΩUn (SF, F ) →
⊕

k+2p+2q=n

ΩUk (BU(p)×BU(q))

is an isomorphism.

Proof. We will prove the result by exhibiting an inverse for θ. Define the homomor-
phism

ϕ :
⊕

k+2p+2q=n

ΩUk (BU(p)×BU(q)) → ΩUn (SF, F )

by sending an element [X,E ⊕G] of ΩUk (BU(p)×BU(q)) to [D(E ⊕G)], where E
and G are vector bundles over X of complex ranks p and q respectively, and D(E ⊕G)
is the disk bundle with respect to an equivariant metric on the vector bundle E ⊕G.
It is a well-defined homomorphism. Clearly θ ◦ ϕ = identity and by Proposition 3.1 it
follows that ϕ ◦ θ = identity. Thus θ is an isomorphism.

3.2. The group ΩU,Nn (SF, F )
This subsection is devoted to studying the group ΩU,Nn (SF, F ) of bordism classes

of semifree circle actions on compact n-dimensional complex N -Spin manifolds which
are free on the boundary. Let γp and γq be the universal complex vector bundles
(of real ranks 2p and 2q) over BU(p) and BU(q), respectively. We denote by

ΩU,Nk (BU(p)×BU(q), γp ⊕ γq) the bordism group consisting of 4-tuples (M,f, g, s)
such that f : M → BU(p) and g : M → BU(q) are continuous maps on a (k − 2p−
2q)-dimensional U -manifold M and s is a complex N -Spin structure on τ(M)⊕
f∗(γp)⊕ g∗(γq). (Here by a complex N -Spin structure we mean a complex N -Spin
structure on the stable bundle representing the U -structure.) The bordism relation

between the elements of ΩU,Nk (BU(p)×BU(q), γp ⊕ γq) is defined as follows: Two 4-
tuples (M1, f1, g1, s1) and (M2, f2, g2, s2) are said to be bordant if there is a third
4-tuple (W,f, g, s) with a (k − 2p− 2q + 1)-dimensional U -manifold W such that
∂W =M1 ∪ −M2, f |M1 = f1, f |M2 = f2, g|M1 = g1, g|M2 = g2, and the complex
N -Spin structures s1 and s2 are induced by s.
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Now we intend to show that the groups ΩU,Nn (SF, F ) are isomorphic to the groups⊕
k+2p+2q=n

ΩU,Nk (BU(p)×BU(q), γp ⊕ γq). First we need to define a homomorphism

ν : ΩU,Nn (SF, F ) →
⊕

k+2p+2q=n

ΩU,Nk (BU(p)×BU(q), γp ⊕ γq).

Let [M,α] be an element of ΩU,Nn (SF, F ) with the given complex N -Spin structure on
M denoted by s andXk−2p−2q the union of the (k − 2p− 2q)-dimensional components
of the fixed point set of the circle action α. Also, denote by υp,q the normal bundle of
Xk−2p−2q in M . The complex N -Spin structure s on M induces a complex N -Spin
structure sp,q on τ(X

k−2p−2q)⊕ υp,q because τ(M)|Xk−2p−2q ∼= τ(Xk−2p−2q)⊕ υp,q.
Now define

ν : ΩU,Nn (SF, F ) →
⊕

k+2p+2q=n

ΩU,Nk (BU(p)×BU(q), γp ⊕ γq)

by

ν([M,α]) =
⊕

k+2p+2q=n

[Xk−2p−2q, fp,q, gp,q, sp,q],

where fp,q and gp,q are the classifying maps of υ+p,q and υ−p,q, respectively. It is a
routine matter to see that ν is a well-defined homomorphism.

Proposition 3.3. The homomorphism

ν : ΩU,Nn (SF, F ) →
⊕

k+2p+2q=n

ΩU,Nk (BU(p)×BU(q), γp ⊕ γq)

is an isomorphism.

Proof. We will prove the result by showing that the homomorphism ν has an inverse.
Let [M,f, g, s] ∈ ΩU,Nk (BU(p)×BU(q), γp ⊕ γq) and set E := f∗(γp), G := g∗(γq),

then f and g give rise to the maps f̂ : D(E) → D(γp) and ĝ : D(G) → D(γq) between
the disk bundles which may be assumed transverse regular to the zero sections BU(p)
and BU(q) of γp and γq, respectively. So one gets υ(M,E) = f∗(υ(BU(p), γp)) =
f∗(γp) = E and υ(M,G) = g∗(υ(BU(q), γq)) = g∗(γq) = G, where υ denotes normal
bundle. If π : E ⊕G→M denotes the projection, then by using the identity τ(E ⊕
G) = π∗(τ(M)⊕ E ⊕G) we have that the complex N -Spin structure s induces a
complex N -Spin structure π∗(s) on τ(E ⊕G) which restricts to a complex N -Spin
structure on the disk bundle D(E ⊕G). If we denote by β the complex multiplication
on the bundle E and complex multiplication after inverse on G, then the assignment
[M,f, g, s] → [D(E ⊕G), β] gives an inverse of ν.

From now on we will denote a generic element [M,f, g, s] of ΩU,Nk (BU(p)×BU(q),
γp ⊕ γq) simply by [M,h, s], where h is the map (f, g) : M → BU(p)×BU(q). The
bordism group ΩUk (BU(p)×BU(q), γp ⊕ γq) can be defined similar to the bordism

group ΩU,Nk (BU(p)×BU(q), γp ⊕ γq) by considering only a U -structure in place of a
complex N -Spin structure, and the following result can be proved along the lines of
Proposition 3.3.
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Proposition 3.4. The homomorphism

ν′ : ΩUn (SF, F ) →
⊕

k+2p+2q=n

ΩUk (BU(p)×BU(q), γp ⊕ γq)

is an isomorphism, where ν′ has similar meaning as ν.

Next, we want to show that the bordism group ΩU,Nk (BU(p)×BU(q), γp ⊕ γq) is

isomorphic to the complex N -Spin bordism group ΩU,Nk (D(γp ⊕ γq), S(γp ⊕ γq)) of
pair (D(γp ⊕ γq), S(γp ⊕ γq)), where D(γp ⊕ γq) and S(γp ⊕ γq) denote the disk and
sphere bundles of γp ⊕ γq, respectively. Define

ρ : ΩU,Nk (BU(p)×BU(q), γp ⊕ γq) → ΩU,Nk (D(γp ⊕ γq), S(γp ⊕ γq))

by

ρ[M,h, s] = [D(h∗(γp ⊕ γq)), ĥ|D(h∗(γp ⊕ γq)), π
∗(s)|D(h∗(γp ⊕ γq))],

where ĥ is the map from h∗(γp ⊕ γq) to γp ⊕ γq induced by h. Since τ(h∗(γp ⊕ γq)) =
π∗(τ(M)⊕ h∗(γp ⊕ γq)), where π : h

∗(γp ⊕ γq) →M is the projection, the complex
N -Spin structure s induces a complex N -Spin structure π∗(s) on h∗(γp ⊕ γq). It is
clear that ρ is a well-defined homomorphism.

Proposition 3.5. The homomorphism

ρ : ΩU,Nk (BU(p)×BU(q), γp ⊕ γq) → ΩU,Nk (D(γp ⊕ γq), S(γp ⊕ γq))

is an isomorphism.

Proof. We will prove the result by exhibiting an inverse for ρ. A generic element of
ΩU,Nk (D(γp ⊕ γq), S(γp ⊕ γq)) is represented by a bordism class [W,H, s], where W is
a k-dimensional compact complex N -Spin manifold with the given complex N -Spin
structure s andH is a continuous map (W,∂W ) → (D(γp ⊕ γq), S(γp ⊕ γq)). One may
choose H so that it is transverse regular to the zero section BU(p)×BU(q) of γp ⊕
γq. PutM := H−1(BU(p)×BU(q)) and h := H|M . Since υ(M,W ) = h∗(υ(BU(p)×
BU(q), γp ⊕ γq)) = h∗(γp ⊕ γq) and τ(W )|M = τ(M)⊕ υ(M,W ), therefore τ(W )|M
= τ(M)⊕ h∗(γp ⊕ γq). It follows that the restriction of s induces a complex N -Spin
structure ŝ on τ(M)⊕ h∗(γp ⊕ γq). Now define

δ : ΩU,Nk (D(γp ⊕ γq), S(γp ⊕ γq)) → ΩU,Nk (BU(p)×BU(q), γp ⊕ γq)

by

δ[W,H, s] = [M,h, ŝ].

Clearly δ is a homomorphism and δ ◦ ρ = identity. We need to prove that ρ ◦ δ =
identity. Observe first that

ρ ◦ δ[W,H, s] = ρ[M,h, ŝ]

= [D(h∗(γp ⊕ γq)), ĥ|D(h∗(γp ⊕ γq)), π
∗(ŝ)|D(h∗(γp ⊕ γq))].

Now we must show that (D(h∗(γp ⊕ γq)), ĥ|D(h∗(γp ⊕ γq)), π
∗(ŝ)|D(h∗(γp ⊕ γq)))

and (W,H, s) represent the same bordism class in ΩU,Nk (D(γp ⊕ γq), S(γp ⊕ γq)) by
constructing a bordism between them. The unit interval I = [0, 1] has a natural com-
plex N -Spin structure corresponding to a stable U -structure (see, for instance, [9]).
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We identify D(h∗(γp ⊕ γq)) with a tubular neighborhood of M in W . Then, after
smoothing a corner at W × 1 and introducing a corner at S(h∗(γp ⊕ γq))× 1, one
can interpret (W × I, h, s) as a bordism between (W,H, s) and (D(h∗(γp ⊕ γq)),

H|D(h∗(γp ⊕ γq)), s|D(h∗(γp ⊕ γq))). The maps ĥ and

H : (D(h∗(γp ⊕ γq)), S(h
∗(γp⊕γq))) → (D(γp ⊕ γq), S(γp ⊕ γq))

are homotopic, so ρ ◦ δ[W,H, s] = [W,H, s] and this finishes the proof.

The following result can be proved along the lines of Proposition 3.5.

Proposition 3.6. The homomorphism

ρ′ : ΩUk (BU(p)×BU(q), γp ⊕ γq) → ΩUk (D(γp ⊕ γq), S(γp ⊕ γq))

is an isomorphism, where ρ′ has similar meaning as ρ.

We conclude this subsection by combining Proposition 3.3 with Proposition 3.5
and Proposition 3.4 with Proposition 3.6 into the following two results.

Proposition 3.7. We have an isomorphism:

ρ ◦ ν : ΩU,Nn (SF, F ) →
⊕

k+2p+2q=n

ΩU,Nk (D(γp ⊕ γq), S(γp ⊕ γq)).

Proposition 3.8. We have an isomorphism:

ρ′ ◦ ν′ : ΩUn (SF, F ) →
⊕

k+2p+2q=n

ΩUk (D(γp ⊕ γq), S(γp ⊕ γq)).

Since a complexN -Spin bordism in the groups ΩU,Nn (SF, F ), ΩU,Nk (BU(p)×BU(q),

γp ⊕ γq), and ΩU,Nk (D(γp ⊕ γq), S(γp ⊕ γq)) is also a U -bordism in the groups ΩUn (SF,

F ), ΩU,Nk (BU(p)×BU(q), γp ⊕ γq), and ΩUk (D(γp ⊕ γq), S(γp ⊕ γq)), respectively,
therefore the forgetful homomorphisms

ΩU,Nn (SF, F ) → ΩUn (SF, F ),

ΩU,Nk (BU(p)×BU(q), γp ⊕ γq) → ΩUk (BU(p)×BU(q), γp ⊕ γq),

and

ΩU,Nk (D(γp ⊕ γq), S(γp ⊕ γq)) → ΩUk (D(γp ⊕ γq), S(γp ⊕ γq))

are well-defined.

Proposition 3.9. The diagrams

ΩU,Nn (SF, F )
ν−−−−→

⊕
k+2p+2q=n

ΩU,Nk (BU(p)×BU(q), γp ⊕ γq)y y
ΩUn (SF, F )

ν′

−−−−→
⊕

k+2p+2q=n

ΩUk (BU(p)×BU(q), γp ⊕ γq)
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and⊕
k+2p+2q=n

ΩU,Nk (BU(p)×BU(q), γp ⊕ γq)
ρ

//

��

⊕
k+2p+2q=n

ΩU,Nk (D(γp ⊕ γq), S(γp ⊕ γq))

��⊕
k+2p+2q=n

ΩUk (BU(p)×BU(q), γp ⊕ γq)
ρ′

//
⊕

k+2p+2q=n

ΩUk (D(γp ⊕ γq), S(γp ⊕ γq))

are commutative, where vertical arrows are the forgetful homomorphisms.

Proof. Note that ν′ and ρ′ have the definitions similar to ν and ρ, respectively, and
the vertical arrows are forgetful homomorphisms. Therefore, the result follows by
using the definitions of maps involved in the diagram.

3.3. The group ΩU,N,tn (SF, F )⊗Q
In this subsection we will tensor bordism groups considered in the previous two

subsections with the rationals Q. It will give us more traction on those groups and will
help by using the results of those sections to compute the group ΩU,Nn (SF, F )⊗Q,
and then the group ΩU,N,tn (SF, F )⊗Q which appears in the exact sequence (3.1).

It is a routine matter to check that ΩU,NK ( · ) is a generalized homology theory (see,
for instance, [3, p. 9]). Hence it becomes trivial when tensored with the rationals

(see, for instance, [6]). Since the forgetful map ΩU,N∗ → ΩU∗ is a rational isomorphism
(see [9]), therefore, we have the following result:

Proposition 3.10. Let (X,A) be a finite CW -pair. The forgetful homomorphism

ΩU,Nn (X,A)⊗Q → ΩUn (X,A)⊗Q

is an isomorphism.

Lemma 3.11. The forgetful homomorphism ΩU,Nn (SF, F )⊗Q → ΩUn (SF, F )⊗Q is
an isomorphism.

Proof. The diagrams in Proposition 3.9 remain commutative after tensoring with the
rationals Q. Putting them together after tensoring with Q, we get the commutative
diagram

ΩU,Nn (SF, F )⊗Q −−−−→
⊕

k+2p+2q=nΩ
U,N
k (D(γp ⊕ γq), S(γp ⊕ γq))⊗Qy y

ΩUn (SF, F )⊗Q −−−−→
⊕

k+2p+2q=nΩ
U
k (D(γp ⊕ γq), S(γp ⊕ γq))⊗Q,

where vertical arrows are the forgetful homomorphisms and horizontal arrows are the
composites of the isomorphisms from Proposition 3.9, tensored with the rationals Q.
Since the right hand vertical arrow is an isomorphism by Proposition 3.10, it follows
that the left hand vertical arrow is also an isomorphism.

Now the following result gives a way to compute the group ΩU,Nn (SF, F )⊗Q.
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Lemma 3.12. We have an isomorphism

ϑ⊗Q : ΩU,Nn (SF, F )⊗Q →
⊕

k+2p+2q=n

ΩUk (BU(p)×BU(q))⊗Q,

with ϑ given by

ϑ[M ] =
∑
i

[Xi, υ
+
i ⊕ υ−i ],

where the summation is taken over the connected components of the fixed point set,
and υ+i , υ

−
i have the same meanings as in Proposition 3.2.

Proof. The result follows from Lemma 3.11 and Proposition 3.2.

Note that we have the decompositions

ΩU,Nn (SF, F )⊗Q =
⊕

t∈Z/NZ

ΩU,N,tn (SF, F )⊗Q

and ⊕
k+2p+2q=n

ΩUk (BU(p)×BU(q))⊗Q =
⊕

k+2p+2q=n
p−q≡t (mod N)

ΩUk (BU(p)×BU(q))⊗Q.

The type of an S1-action on a complex N -Spin manifold is the sum of rotation
numbers of a fixed point component modulo N . Hence the summands involving t in
above two decompositions correspond to each other under the isomorphism of groups
in Lemma 3.12. Thus we have:

Theorem 3.13. The homomorphism

ΩU,N,tn (SF, F )⊗Q →
⊕

k+2p+2q=n
p−q≡t (mod N)

ΩUk (BU(p)×BU(q))⊗Q

given by

[M ] 7→
∑
i

[Xi, υ
+
i ⊕ υ−i ]

is an isomorphism.

3.4. Complex N-Spinc,t structures
Let N and t be two positive integers such that t|N . In this subsection we intro-

duce the notion of a complex N -Spinc,t structure which is needed to characterize
the rational complex N -Spin bordism group having a free circle action of type t. In
what follows we will use the identifications U(1) ∼= S1 ∼= R/Z and Û(1) ∼= R/NZ ∼= S1

without further mention. At times we will also use S1 and U(1) separately when it is
needed to distinguish between the actions on manifolds and bundles, respectively.

Let (ZN , ·) denote the group of N -th roots of unity generated by e
2πi
N . It is iso-

morphic to the group (ZN ,+) of residue classes of integers mod N . So we note for a
later use that one can identify the cohomology groups Hn(X;ZN ) and Hn(X;ZN ) for
any space X and any nonnegative integer n. Let λN : Û(1) → U(1) given by λ 7→ λN

be the N -fold covering of U(1). Note that ZN = kerλN . We denote by i : ZN → Û(1)
the inclusion.
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Definition 3.14. Let N and t be positive integers such that t|N , and let µN/t : Ŝ
1 →

S1 given by ζ 7→ ζN/t be the N/t-fold covering of S1. Let ZN act on Û(1)× Ŝ1 by
sending (λ, g, ζ) to (λg, λ−tζ), where λ ∈ ZN , g ∈ Û(1), and ζ ∈ Ŝ1. We define UN,c,t

as the group Û(1) ×
ZN

Ŝ1.

We will represent a generic element of UN,c,t by [g, ζ], where g ∈ Û(1), and ζ ∈ Ŝ1.

Notice that ZN/t can be considered as a subgroup of UN,c,t generated by [e
2πi
N , 1] =

[(e
2πi
N )−1e

2πi
N , ((e

2πi
N )−1)−t1] = [1, e

2πti
N ]. Let µ : UN,c,t → U(1)× S1 be induced by

the map λN × µN/t : Û(1)× Ŝ1 → U(1)× S1. Then we have a short exact sequence:

0 −−−−→ ZN/t −−−−→ UN,c,t
µ−−−−→ U(1)× S1 −−−−→ 1. (3.2)

Definition 3.15. Let ∆ be a principal U(1)-bundle over a finite connected CW -
complex B. A complex N -Spinc,t structure (or simply anN c,t-structure) on ∆ consists
of

1. a principal UN,c,t-bundle η over B,

2. a principal U(1)-bundle Λ over B, and

3. a bundle map f : E(η) → E(∆)× E(Λ) such that f(xg) = f(x)µ(g), where x ∈
E(η), and g ∈ UN,c,t.

Let ξ be a principal U(n)-bundle over a finite connected CW -complex B and
∆ be the associated principal bundle belonging to the determinant representation
U(n) → U(1). A complex N -Spinc,t structure (or simply an N c,t-structure) on ξ is a
complex N -Spinc,t structure on ∆. The notion of a complex N -Spinc,t structure is a
generalization of the notion of a Spinc structure, and a complex N -Spinc,t structure
becomes a complex Spinc structure ifN = 2 and t = 1. We will see that every principal
U(n)-bundle over a finite CW -complex admits a complex N -Spinc,1 structure. The
coefficient sequence (3.2) determines the exact sequence:

H1(B;UN,c,t)
µ∗−−−−→ H1(B;U(1))⊕H1(B;S1)

ĉN/t−−−−→ H2(B;ZN/t). (3.3)

The map ĉN/t sends a pair (∆,Λ) to the cohomology class ρN/t(c1(∆))− tρN/t(c1(Λ)),
where ρN/t : H

2(B;Z) → H2(B;ZN/t) is the mod N/t reduction. It follows by the
exactness of sequence (3.3) that the bundle ξ (equivalently ∆) can be given a complex
N -Spinc,t structure if and only if there exists a cohomology class u in H2(B;Z) such
that ρN/t(c1(∆)) = tρN/t(u). Since the first Chern class c1(ξ) of ξ is the same as the
first Chern class c1(∆) of the determinant line bundle ∆, one can take u = c1(ξ) to
see that the principal U(n)-bundle ξ admits a complex N -Spinc,1 structure.

Proposition 3.16. Let E1 and E2 be two complex vector bundles over a finite CW -
complex B. Then a choice of complex N -Spinc,t structures on two of the three bundles
E1, E2, E1 ⊕ E2 uniquely determines a complex N -Spinc,t structure on the third one.

Proof. The bundles E1 and E2 can be provided with Hermitian metrics to look
at the associated principal U(n)-bundles. Let u1, u2 ∈ H2(B;Z) be two cohomol-
ogy classes such that ρN/t(c1(E1)) = tρN/t(u1) and ρN/t(c1(E2)) = tρN/t(u2). Since
c1(E1 ⊕ E2) = c1(E1)+ c2(E2), therefore, ρN/t(c1(E1 ⊕ E2))= ρN/t(c1(E1)+ c2(E2))
= ρN/t(c1(E1)) + ρN/t(c2(E2)), and so ρN/t(c1(E1 ⊕ E2)) = tρN/t(u1) + tρN/t(u2) =
tρN/t(u1 + u2) with u1 + u2 ∈ H2(B;Z). Hence a choice of complex N -Spinc,t struc-
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tures on E1 and E2 uniquely determines a complex N -Spinc,t structure on E1 ⊕
E2. Similarly, the equations ρN/t(c1(E1)) = ρN/t(c1(E1 ⊕ E2))− ρN/t(c1(E2)) and
ρN/t(c1(E2)) = ρN/t(c1(E1 ⊕ E2))− ρN/t(c1(E1)) can be used to prove the other two
cases.

3.5. The group ΩU,N
c,t

n

We define a complex N -Spinc,t manifold (or simply an N c,t-manifold) as a U -
manifold together with a complex N -Spinc,t structure on the principal U(n)-bundle
belonging to its stable tangent bundle representing its U -structure. We will denote
the cobordism group of n-dimensional connected closed complex N -Spinc,t manifolds
by ΩU,N

c,t

n .
Let ψ : B → BU(n) be a classifying map of a U(n)-bundle ξ and consider the

map c̄1 − tc̄1 : BS
1 ×K(Z, 2) → K(ZN/t, 2), where c̄1 is the first Chern class reduc-

tion mod N/t. Let ϕN/t be the pullback, with the map c̄1 − tc̄1, of the fibra-
tion pN/t : PK(ZN/t, 2) → K(ZN/t, 2) having the fiber homotopy type ΩK(ZN/t, 2) ∼=
K(ZN/t, 1). Further pulling back the fibration ϕN/t with det×id to BU(n)×K(Z, 2)
gives the fibration (ϕ̂N/t)n : B̂U(n) → BU(n)×K(Z, 2):

B̂U(n)

f

����
��
��
��
��
��
��
��
��
��
��
��
��
��

(ϕ̂N/t)n

��

// B̂S1

ϕN/t

��

// PK(ZN/t, 2)

pN/t

��

BU(n)×K(Z, 2)

(πn)1
uukkkk

kkkk
kkkk

kkkk

det×id
// BS1 ×K(Z, 2)

c̄1−tc̄1 // K(ZN/t, 2)

B

ψ̂

::u
u

u
u

u
u

u
u

u
u

u
u

u
u

u
u

u
u ψ

// BU(n).

An equivalence class of a complex N -Spinc,t structure on ξ corresponds to a fiber
homotopy class of a lifting ψ̂ of ψ regarded as fibration, where f = (πn)1 ◦ (ϕ̂N/t)n
and (πn)1 : BU(n)×K(Z, 2) → BU(n) is the projection to the first component. The

fibrations (ϕ̂N/t)n : B̂U(n) → BU(n)×K(Z, 2) induce the fibration ϕ̂N/t : B̂U → BU
over the stable classifying space:

B̂U(n)
kn−−−−−→ B̂U(n+ 1) −−−−−→ B̂U −−−−−→ B̂S1y(ϕ̂N/t)n

y(ϕ̂N/t)n+1

yϕ̂N/t

yϕN/t

BU(n)×K(Z, 2) in×id−−−−−→ BU(n+ 1)×K(Z, 2) −−−−−→ BU ×K(Z, 2) det×id−−−−−→ BS1 ×K(Z, 2).

If one setsB2n := B2n+1 := B̂U(n), then one gets the following commutative diagram:

· · · −−−−−→ B2n
g2n:=id−−−−−→ B2n+1

g2n+1:=kn−−−−−−−→ B2n+2 −−−−−→ · · ·yf2n yf2n+1

yf2n+2

· · · −−−−−→ BO(2n)
j2n−−−−−→ BO(2n+ 1)

j2n+1−−−−−→ BO(2n+ 2) −−−−−→ · · · .

Here jk : BO(k) → BO(k + 1) is the natural map which belongs to the addition of
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a trivial real line bundle, and fk is the fibration defined by f2n := hn ◦ (ϕ̂N/t)n,
f2n+1 := j2n ◦ f2n, where hn = qn ◦ (πn)1 and qn : BU(n) → BO(2n) is the natural
map belonging to “forgetting” the complex structure.

Theorem 3.17. The cobordism theory Ωn(B, f), belonging to the above family of

fibrations fk : Bk → BO(k), corresponds to the cobordism group ΩU,N
c,t

n .

Proof. A complex N -Spinc,t manifold M with a given complex N -Spinc,t structure
corresponds to a unique stable equivalence class of the homotopy classes of the liftings
fl : Bl → BO(l) to the classifying maps of the normal bundle of M .

A complex N -Spinc,t structure on the stable tangent bundle induces a complex
N -Spinc,t-structure on the normal bundle: Embed M differentiably in R2s, s large,
then (τ(M)⊕ ϵkR)⊕ ν ∼= ϵ2sR . Provide the tangent bundle ϵ2sR of R2s with the canonical
U - and complex N -Spinc,t structures and restrict them to M . The normal bundle ν
can be provided with a U -structure (see [5, p. 21]) and by Proposition 3.16 one gets
the complex N -Spinc,t structure. The relationship between U -structures and liftings
is clear, we have discussed the relationship between complex N -Spinc,t structures and
liftings previously.

The set of equivalence classes Ωn(B, f) corresponds to the set of equivalence classes

ΩU,N
c,t

n .

Let M be a complex N -Spinc,t manifold. Let f : M → CP∞ denote the classifying
map of the principal U(1)-bundle over M which exists due to the second axiom

of definition of complex N -Spinc,t structure. We call the map ΩU,N
c,t

n → ΩUn (CP
∞)

which sends [M ] to [M,f ] the forgetful homomorphism.

Theorem 3.18. For t|N , the forgetful homomorphism

ΩU,N
c,t

n → ΩUn (CP
∞)

is an isomorphism after tensoring with the rationals Q.

Proof. Let TB̂Uk denote the Thom space of the pullback of universal vector bundle γk
over BO(k) to B̂U([k2 ]) with fk = (jk−1) ◦ h[ k2 ] ◦ (ϕ̂N/t)[ k2 ] : B̂U([k2 ]) → BO(k). Then

by Theorem 3.17 and the generalized Pontrjagin–Thom Theorem (see [17, p. 18]) one
gets:

ΩU,N
c,t

n
∼= lim
k→∞

πn+k(TB̂Uk,∞).

Since the Thom space TB̂Uk is (k − 1)-connected, therefore, by results of Serre
(cf. [15, p. 207]), after tensoring with the rationals Q, the Hurewicz homomor-

phism πn+k(TB̂Uk,∞)⊗Q → Hn+k(TB̂Uk,∞,Z)⊗Q is an isomorphism for n+
k < 2k − 1, and hence for k > n+ 1. Because the map fk is induced by a complex
vector bundle, the bundle f∗k (γk) is oriented, and so we have by Thom isomor-

phism that Hn+k(TB̂Uk,∞,Z) ∼= Hn(B̂U([k2 ]),Z). Also, we get Hn(B̂U([k2 ]),Q) ∼=
Hn(BU([k2 ]×K(Z, 2)),Q) by applying the Leray spectral sequence to the fibration
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(ϕ̂N/t)[ k2 ]
: B̂U([k2 ]) → BU([k2 ])×K(Z, 2)

with the fiber K(ZN/t, 1) and H∗(K(ZN/t, 1),Q) ∼= Q. Consequently, we have for
k > n+ 1 that

πn+k(TB̂Uk,∞)⊗Q ∼= Hn+k(TB̂Uk,∞,Z)⊗Q
∼= Hn(B̂U([k2 ]),Q)

∼= Hn(BU [k2 ]×K(Z, 2),Q)

∼=
⊕
i+j=n

(Hi(BU [k2 ],Q)⊗Hj(CP∞,Q)).

The last isomorphism is by the Künneth theorem.
Since one has

ΩUn (CP
∞)⊗Q ∼=

⊕
i+j=n

(ΩUi ⊗Q)⊗Hj(CP∞,Q),

and also ΩUi
∼= lim
k→∞

πi+k(TBUk,∞), therefore, by using the previous arguments and

applying the Serre theorem and the Thom isomorphism we get πi+k(TBUk,∞)⊗Q ∼=
Hi+k(TBUk,∞,Z)⊗Q ∼= Hi(BU [k2 ],Q), for k > i+ 1. More precisely, now we have
that the forgetful homomorphism is also a rational isomorphism.

3.6. The group ΩU,N,tn (F )⊗Q
This subsection is devoted to finding a computable characterization of the rational

bordism group ΩU,N,tn (F )⊗Q of n-dimensional closed complexN -Spin manifolds with
free circle actions of type t for t|N , which appears in the exact sequence (3.1).

Proposition 3.19. Let M be a complex N -Spin manifold with a free circle action
α, and let t ̸= 0 be such that t|N . Then the circle action α has type t if and only if
the orbit space M/S1 can be given a complex N -Spinc,t structure with the principal
U(1)-bundle π : M →M/S1 and principal UN,c,t-bundle given by the composition
E →M →M/S1, where E →M is the Û(1)-bundle over M determined by the given
complex N -Spin structure on M .

Proof. Let the complex N -Spin structure on M be given by the following commuta-
tive diagram:

E

p

��
22

22
22

22
22

22
2

f
// K

����
��
��
��
��
��
�

M,

where K is the U(1)-bundle associated to the stable tangent bundle representing the
U -structure on M , E is a Û(1)-bundle, and f is the N -covering map.

Suppose that the circle action α has type t. Then the connected N/t-covering Ŝ1 of
S1 acts freely on E and commutes with the right Û(1)-action on E, and is compatible
with f : E → K. Define an action α̂ of Û(1)× Ŝ1 on E by sending (x, (g, λ)) to λ−1xg,
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where x ∈ E, g ∈ Û(1), and λ ∈ Ŝ1. This is a free action of Û(1)× Ŝ1 on E and it
induces a free action of UN,c,t on E. Moreover, the composition π ◦ p : E →M →
M/S1 is a UN,c,t-bundle over M/S1.

Now define a map µ : E → K/S1 ×M as µ(x) = (π̄(f(x)), p(x)), where π̄ : K →
K/S1 is the orbit projection. The map µ is equivariant, and we have the following
commutative diagram:

E

��
55

55
55

55
55

55
55

µ
// K/S1 ×M

����
��
��
��
��
��
��
��

M/S1.

So we have a complex N -Spinc,t structure on K/S1 and hence on M/S1.
Conversely assume that a complex N -Spinc,t structure on M/S1 induced by the

complex N -Spin structure on M is given by the following diagram:

E

π◦p

��
55

55
55

55
55

55
55

µ
// K/S1 ×M

����
��
��
��
��
��
��
��

M/S1,

where µ sends an element x of E to the element (π̄(f(x)), p(x)) of K/S1 ×M . Let
us consider the following commutative pullback diagram:

E

p

��
55

55
55

55
55

55
55

55
5

π̄◦f

**UUU
UUUU

UUUU
UUUU

UUUU
UU

π∗(K/S1)

��

// K/S1

��

M
π

// M/S1.

Define a map ν : E → π∗(K/S1) by ν(x) = (π̄(f(x)), p(x)), for x ∈ E. Because the
map µ : E → K/S1 ×M is an N -covering, therefore, the diagram

E

p

��
11
11
11
11
11
11
1

ν // π∗(K/S1)

����
��
��
��
��
��
��

M

defines a complex N -Spin structure on M which, under the identification K ∼=
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π∗(K/S1), coincides with the given complex N -Spin structure on M . We need to
show that the circle action α is of type t. Let x ∈ E and the map

αν(x) : R → π∗(K/S1)

induced by α be given by

αν(x)(s) = (π̄(f(x)), α(e2πis, p(x))).

Also, define

α̂ν(x) : R → E

by

α̂ν(x)(s) = x.[1, e
2πtis

N ],

where [1, e
2πtis

N ] ∈ UN,c,t. We see that α̂ν(x)(0) = x, and ν(α̂ν(x)(s)) = ν(x.[1, e
2πtis

N ])

= µ(x.[1, e
2πtis

N ]) = (π̄(f(x)), α(e2πis, p(x))) = αν(x)(s). Therefore, α̂ν(x) is a lifting of

αν(x), and α̂ν(x)(1) = x.[1, e
2πit
N ]. Thus the circle action α is of type t.

The above proposition can be translated in terms of bordism language as follows.

Lemma 3.20. For t ̸= 0 and t|N , we have an isomorphism

ΩU,N,tn (F ) → ΩN
c,t

n−1

given by

[M ] 7→ [M/S1].

A direct consequence of Theorem 3.18 and Lemma 3.20 is:

Theorem 3.21. If t ̸= 0 and t|N , then the homomorphism

ΩU,N,tn (F ) → ΩUn−1(CP
∞)

given by

[M ] 7→ [M/S1, f ]

is an isomorphism after tensoring with the rationals Q, where f is the classifying map
of S1-bundle M →M/S1.

4. Applications

In this section we will discuss a few applications of the theory developed in the
previous section to explore the ideal IN,t∗ in the rational bordism ring ΩU,N∗ ⊗Q
generated by bordism classes of complex N -Spin manifolds admitting an effective
circle action of type t. We will find a condition to determine the ideal IN,t∗ and make
computations to show that the condition holds true for several values of N and t,
and thereby verify the conjectural equation (1.1) for those values of N and t. More
precisely, we will see that the conjectural equation holds true for all values of t with
N ⩽ 9, except for case (N, t) = (6, 3) which remains undetermined.
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4.1. Exact sequence
In this subsection we will set up a general framework for computations to explore

the ideal IN,t∗ by exploiting characterizations, obtained in the previous section, of the
bordism groups in the exact sequence (3.1).

Composing the isomorphisms obtained from Theorem 3.13 and Theorem 3.21 suit-
ably with the maps iN,t, jN,t, and ∂N,t of the exact sequence (3.1) we get maps īN,t,
j̄N,t, and ∂̄N,t, respectively, which we will denote with an abuse of notation simply
by iN,t, jN,t and ∂N,t, respectively. Thus we have:

Lemma 4.1. The sequence

· · · −−−−→ ΩUn−1(CP
∞)⊗Q

iN,t−−−−→ ΩU,N,tn (SF )⊗Q
jN,t−−−−→

⊕
k+2p+2q=n

p−q≡t (mod N)

ΩUk (BU(p)×BU(q))⊗Q
∂N,t−−−−→ ΩUn−2(CP

∞)⊗Q −−−−→ · · ·

is exact.

Now we recall from [9], a few details about the complex twisted projective bundles
needed for the subsequent development of this article. Let E and G be two complex
vector bundles of rank p and q over a U -manifold B, respectively. The U -structure on
B and the complex structure on E ⊕G provide a U -structure σ∗(E ⊕G)⊕ σ∗τ(B)

on E ⊕G
σ // B and — after a choice of Hermitian metric — on the disk bundle

D(E ⊕G), and the sphere bundle S(E ⊕G) = ∂D(E ⊕G). Consider on E ⊕G the
S1-action α : S1 × E ⊕G→ E ⊕G given by α(λ, (p, ep, gp)) = (p, λep, λ

−1gp). This
S1-action restricted to S(E ⊕G) is free and respects the U -structure. The quotient
S(E ⊕G)/α as a differentiable manifold is the complex projective bundle CP(E ⊕
G), where G is the complex bundle conjugate to G. The twisted projective bundle

C̃P(E ⊕G) of two complex vector bundles E and G over a U -manifold B is defined

as the bundle CP(E ⊕G) with the stably almost complex structure τ(C̃P(E ⊕G)) :=
(S∗ ⊗ π∗E ⊕ S∗ ⊗ π∗G⊕ π∗τ(B)), where S∗ is the dual bundle of the tautological
line bundle S, and π : CP(E ⊕G) → B is the projection map. The orientation of

C̃P(E ⊕G) induced by this “twisted” stably almost complex structure is (−1)q times

the usual orientation of CP(E ⊕G). The cohomology of C̃P(E ⊕G) is the cohomology
of CP(E ⊕G):

H∗(C̃P(E ⊕G)) ≃ H∗(B)[t]/⟨tp+q + c1(E ⊕G)tp+q−1 + · · ·+ cp+q(E ⊕G)⟩, (4.1)

where ci stands for the i-th Chern class, and t = c1(S
∗) denotes the first Chern

class of the dual bundle of the tautological line bundle S. The S1-bundle S(E ⊕G)

over C̃P(E ⊕G) under the given action α has the first Chern class −t. If h is

the S1-principal bundle classifying map, then [C̃P(E ⊕G), h] defines an element in
ΩU∗ (CP

∞). The bordism group ΩU∗ (CP
∞) as a ΩU∗ -module is isomorphic to the bor-

dism group ΩU∗+1(F ) of U -manifolds with free circle actions. The stably almost com-

plex structure on C̃P(E ⊕G) was chosen such that [C̃P(E ⊕G), h] under the above
isomorphism of S1-manifolds is equivalent to [S(E ⊕G), α].

Let υ+i and υ−i have the same meanings as in remarks preceding Proposition 3.2.

Define kU : ΩUn (SF, F ) → ΩUn (SF ) by [M ] 7→
∑
i

[C̃P((υ+i ⊕ ϵ1C)⊕ υ−i )], where ϵ
1
C is
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the trivial complex line bundle. If jU is the inclusion map ΩUn (SF ) → ΩUn (SF, F ),
then kU ◦ jU = id (see, for instance, [7]). Now, in particular, if [M ] ∈ ΩUn (SF ), then
[M ] = kU ◦ jU [M ] = kU (jU [M ]) = kU [M ], therefore, the equation

[M ] =
∑
i

[C̃P((υ+i ⊕ ϵ1C)⊕ υ−i )] (4.2)

holds in ΩUn (SF ).
Let

εN,t :
⊕

k+2p+2q=n
p−q≡t (mod N)

ΩUk (BU(p)×BU(q))⊗Q → ΩUn ⊗Q

be the linear map defined by sending [X,E ⊕G] to [C̃P((E ⊕ ϵ1C)⊕G)].

Lemma 4.2. If there exist bordism classes [U1], [U2], . . . , [Um] ∈ Im(εN,t|ker(∂N,t))
such that

PN,t ⊂ ⟨φell[U1], φell[U2], . . . , φell[Um]⟩,

then we have

IN,t∗ =
∩
n|N,n∤t kerφn.

Proof. Let [U ′
i ] ∈ ker(∂N,t) be such that εN,t([U

′
i ]) = [Ui]. By the exactness of se-

quence in Lemma 4.1, there exists a [Vi] ∈ ΩU,N,tn (SF )⊗Q such that jN,t([Vi]) =
[U ′
i ]. By equation (4.2), the Chern numbers of [Vi] and [Ui] are the same, and hence

φell[Vi] = φell[Ui]. So there exist bordism classes [V1], [V2], . . . , [Vm] ∈ IN,t∗ such that
PN,t ⊂ ⟨φell[V1], φell[V2], . . . , φell[Vm]⟩. The result follows by Proposition 2.4.

4.2. The ideals IN,t∗
In this subsection we study the ideal IN,t∗ in the ring ΩN,t ⊗Q generated by bor-

dism classes of complex N -Spin manifolds with an effective circle action of type t.
More precisely, we verify the conjectural equation (1.1) for several values of N and
t by constructing bordism classes of manifolds satisfying the sufficient condition of
Lemma 4.2. We begin the caseN = 4 and t = 2 with an explicit proof including details
of its various important steps to present the general technique which will work for
higher values of N and t, as well.

Theorem 4.3. Let φ4 denote the elliptic genus of level 4. Then we have

I4,2∗ = ker(φ4).

Proof. Consider the linear map

∂4,2 :
⊕

k+p+q=4
p−q≡2 (mod 4)

ΩU2k(BU(p)×BU(q))⊗Q → ΩU6 (CP
∞)⊗Q.

We intend to compute its kernel. Let Ei and Gi be complex vector bundles over U -
manifold Bi, 1 ⩽ i ⩽ 4, where B1 and B2 are zero dimensional U -manifolds with the
number of elements r and s respectively, and B3 and B4 are 2-dimensional manifolds.
If the bundles E1, E2, E3, E4 are of 3, 1, 2, 0 complex ranks, and G1, G2, G3, G4
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are of 1, 3, 0, 2 complex ranks, then [E1 ⊕G1, B1] + [E2 ⊕G2, B2] + [E3 ⊕G3, B3] +

[E4 ⊕G4, B4] is a well-defined element of
⊕

k+p+q=4
p−q≡2 (mod 4)

ΩU2k(BU(p)×BU(q)) and its

rational image under ∂4,2 is given by

[C̃P(E1 ⊕G1), h1] + [C̃P(E2 ⊕G2), h2] + [C̃P(E3 ⊕G3), h3] + [C̃P(E4 ⊕G4), h4].
(4.3)

Consider the total Chern classes c(B3) = 1 + a1(B3) + a2(B3), c(B4) = 1 + b1(B4) +
b2(B4), c(E3) = 1 + e1(E3) + e2(E3), c(G4) = 1 + g1(G4) + g2(G4). An element
[M,h]⊗ 1 of ΩU6 (CP

∞)⊗Q is zero if all of its generalized Chern numbers c3, c2c1,
c31, c2d, c

2
1d, c1d

2, and d3 are zero, where d = h∗(g) in H2(M,Z) is the pullback of the
generator of H∗(CP∞,Z) ∼= Z[g]. By using the equation (4.1), the generalized Chern
numbers of the expression in (4.3) are given by

c3 = 2r − 2s+ 2a2 − 2b2,

c2c1 = 2a21 + 2a2 − 2b21 − 2b2,

c31 = −8r + 8s+ 6a21 + 2e21 − 8e2 − 6b21 − 2g21 + 8g2,

c2d = −a2 + a1e1 − b2 + b1g1,

c21d = 4r + 4s− a21 − e21 + 4e2 + 2a1e1 − b21 − g21 + 4g2 + 2b1g1,

c1d
2 = −2r + 2s+ e21 − 2e2 − a1e1 − g21 + 2g2 + b1g1,

d3 = r + s− e21 + e2 − g21 + g2.

Each solution of the system, obtained from the above system by putting left sides of
equations equal to zero, determines an element of the kernel of ∂4,2. The solution set of
the system is spanned by (−5,−3,−14, 2,−10,−2, 0,−12, 0, 0, 0, 2), (−1,−1, 0, 0, 0, 1,
0, 0, 0, 0, 1, 0), (1, 1, 3, 0, 1, 0, 0, 3, 0, 1, 0, 0), (7, 3, 20,−2, 12, 2, 0, 16, 2, 0, 0, 0), (−1, 0,
−1, 1,−1, 0, 1, 0, 0, 0, 0, 0) with respect to the coordinates (r, s, a21, a2, e

2
1, e2, a1e1, b

2
1,

b2, g
2
1 , g2, b1g1).

Consider the linear map

ε4,2 :
⊕

k+p+q=4
p−q≡2 (mod 4)

ΩU2k(BU(p)×BU(q))⊗Q → ΩU8 ⊗Q.

We intend to compute Im(ε4,2 |ker(∂4,2)). Let Ei, Gi, 1 ⩽ i ⩽ 4 be as above, then the

Chern numbers of the bordism class [C̃P((E1 ⊕ ϵ1C)⊕G1)] + [C̃P((E2 ⊕ ϵ1C)⊕G2)] +

[C̃P((E3 ⊕ ϵ1C)⊕G3)] + [C̃P((E4 ⊕ ϵ1C)⊕G4)] are given by

c4 = 3r − s+ 3a2 − b2,

c3c1 = 6r + 2s+ 3a21 + 9a2 − b21 + b2,

c22 = −4r − 4s+ 9a21 + 6a2 + e21 − 3e2 + b21 − 2b2 + g21 − 3g2,

c2c
2
1 = −18r + 2s+ 21a21 + 9a2 + 6e21 − 18e2 + b21 + b2 + 2b1g1,

c41 = −81r − s+ 54a21 + 27e21 − 81e2 + 6b21 + 3g21 − g2 + 8b1g1.

One obtains that the image Im(ε4,2 |ker(∂4,2)) is spanned by [U1] = (1, 4,−1, 0, 0) and
[U2] = (0, 3, 13, 28, 64), where the coordinates are the Chern numbers (c4, c3c1, c

2
2,

c2c
2
1, c

4
1). The polynomials of degrees three and four associated to the multiplicative
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sequence of the genus φell are given by:

K3 = 1
25·3 (48Cc3 + (2AB − 48C)c2c1 + (2A3 −AB + 16C)c31) and

K4 = 1
29·32·5 ((−8B2 + 4608D)c4 + (5760AC + 8B2 − 4608D)c3c1

+ (24B2 − 2304D)c22 + (120A2B − 5760AC − 28B2 + 4608D)c21c2

+ (60A4 − 60A2B + 1920AC + 7B2 − 1152D)c41)

(see, for instance, [9]). It follows that φell([CP3]) = (2C)/3− (AB)/6 + (4A3)/3 and
φell([U1]) = AC −D/2. Since P 4,2 = ⟨2AC −D, 8A3 −AB + 4C⟩ by remarks preced-
ing Definition 2.2, we see that P 4,2 ⊂ ⟨φell([U1]), φell([CP3])⟩. Lemma 4.2 finishes the
proof.

We will see that the conjectural equation (1.1) also holds true for a few higher
values of N . We can give proofs for those cases of higher values of N along lines
of the above proof. However, to simplify their presentation we will use the idea of

Hilbert–Poincaré series of a graded ideal of C[A,B,C,D]. Let J =
⊕
n∈N

Jn be a graded

ideal in C[A,B,C,D], where each Jn containing elements of degree n has the finite
dimension, say, an. The Hilbert–Poincaré series of J in indeterminate s is given by∑
n∈N

ans
n. We make an observation here which will be useful in formulating a simple

proof of the conjecture for a few higher values of N : Let J ′ ⊂ J be an inclusion of
graded ideals in C[A,B,C,D], and let J be generated by a finite number of elements
with the highest degree of its generators equal to n0. If a

′
n = an for all n ⩽ n0, then

we have J ′ = J .
From now on we will be more specific about notations of maps εN,t and ∂N,t,

and will denote them by ε
(n)
N,t and ∂

(n)
N,t, respectively, when their domains of defini-

tion have degree n. We will denote the image φell(Im(ε
(n)
N,t|ker(∂(n)

N,t)
)) of the universal

elliptic genus by P ′N,t

n . Let P ′N,t

=
⊕
n∈N

P ′N,t

n and PN,t =
⊕
n∈N

PN,tn be graded ideals

of C[A,B,C,D] with dimensions of P ′N,t

n and PN,tn denoted by d′n and dn, respec-

tively. We remark that P ′N,t ⊂ PN,t. In fact, a generic element of P ′N,t

has the form
φell[U ], where [U ] ∈ Im(εN,t|ker(∂N,t)). As in the context of the proof of Lemma 4.2,

there exists [V ] ∈ IN,t∗ such that φell[U ] = φell[V ]. Since IN,t∗ ⊂
∩
n|N,n∤t kerφn (see

Section 2), we have [V ] ∈
∩
n|N,n∤t kerφn, and so it follows by Proposition 2.3 that

[V ] ∈ kerψN,t. By equation (2.4), we get [V ] ∈ ker(πN,t ◦ φell). Hence πN,t(φell[V ])
is the zero element and so φell[V ] ∈ kerπN,t = PN,t. Hence φell[U ] ∈ PN,t, and as it

was a generic element of I ′N,t, we have the inclusion P ′N,t ⊂ PN,t. This remark and
the above observation will be used in proving the following result which will give a
general framework to present a simplified proof of the conjecture for several values of
N and t.

Proposition 4.4. Let n0 be the highest degree of generators of PN,t. If dn = d′n for
n ⩽ n0. Then

IN,t∗ =
∩
n|N,n∤t kerφn.
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Proof. Since P ′N,t ⊂ PN,t, therefore, hypothesis of the proposition together with the

above observation imply that P ′N,t

= PN,t. It follows from this equation and the

definition of P ′N,t

that the sufficient condition of Lemma 4.2 pertaining to the exis-
tence of bordism classes and inclusion is satisfied with equality. This completes the
proof.

Theorem 4.5. The dimensions dn and d′n of PN,tn and P ′N,t

n , respectively, up to the
degree n = 12, for several values of N and t are given in Table 1.2

Table 1: Dimensions dn and d′n of PN,tn and P ′N,t

n , respectively
(N, t)/n 1 2 3 4 5 6 7 8 9 10 11 12

(4, 2) 1 2 3 5 7 10 13 17 21 27
(6, 2) 1 1 3 5 7 10 14 18
(6, 3) 1 2 4 6 (5) 9 12 (11) 16 21 (19)
(8, 2) 1 1 3 4 7 10
(8, 4) 1 2 4 6 9 13
(9, 3) 1 1 3 4 8
(10, 2) 1 1 3 4
(10, 5) 1 2 4 6

The dimensions d′n are made bold and given in Table 1 only when they differ from
the dimensions dn. The entries in the table containing zeros are kept empty. Now we
will use the highest degree of generators of PN,t to obtain the following result. In
most cases we can verify that PN,t is generated by three elements whose degrees can
be determined. But we will not need to use this fact in the proof, however, we will
discuss it later for extra information.

Theorem 4.6. For (N, t) = (6, 2), (8, 2), (8, 4), and (9, 3), we have

IN,t∗ =
∩
n|N,n∤t kerφn.

Proof. The highest degrees of generators of P 6,2, P 8,2, P 8,4, and P 9,3 are 8, 12, 9,
and 12, respectively.3 The result follows from Proposition 4.4 and Theorem 4.5.

Our technique does not work for higher values of N because computer runs out of

memory while running Mathematica program to compute dimensions d′n of P ′N,t

n for
higher degrees n. For instance, the highest degree of generators of P 10,2 is 16 and this
degree is too big for theMathematica program to compute d′16 for (N, t) = (10, 2). The
technique developed in our work does not generate enough bordism classes in case of
(N, t) = (6, 3) to verify the sufficient condition of Lemma 4.2. It is our conjecture that
the technique gives enough bordism classes except when (N, t) = (4k + 2, k + 1) for
k ⩾ 1, however, Mathematica program does not work in computations of dimensions

d′n of P ′N,t

n for some degrees n needed for higher values of N . Our technique works if

2The computations were accomplished with the help of computer programs in Mathematica and
MAGMA.
3The computations were accomplished with the help of computer programs in Mathematica and
MAGMA.
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t = 1 or t does not divide N , and Mathematica computations can be made to verify
the conjecture for values of N up to 9, as well. However, we combine Theorem 4.3,
Theorem 4.6, and a result of [9] concerning a verification of the conjectural equation
(1.1) in the case t = 1 to state the following result.

Theorem 4.7. Let t be a divisor of N such that t ̸= N and 2 ⩽ N ⩽ 9, except for
(N, t) = (6, 3). We have

IN,t∗ =
∩
n|N,n∤t kerφn.

Let TN,t(s) denote the product of the polynomial (1− s)(1− s2)(1− s3)(1− s4)
and the Hilbert–Poincaré series of the quotient algebra C[A,B,C,D]/PN,t in the
indeterminate s. We conjecture that in most cases the ideal PN,t is generated at
most by three elements. More precisely, we have:

Conjecture 4.8. Let t be a divisor of N ⩾ 2 and (N, t) ̸= (4k + 2, k + 1), k ⩾ 1.
Then

(i) TN,t(s) is a polynomial of degree 2N − t+ 1 given by the equation

TN,t(s) = 1− sN−1 − sN+1 − s2N−2t + s2N−t−1 + s2N−t+1, (4.4)

(ii) a minimal generating set of PN,t has a generator in degree n precisely when the
polynomial TN,t(s) contains a term sn with the coefficient −1.

Observe that a cancellation occurs in equation (4.4) when t = 1 or (N, t) = (4, 2),
and in these cases PN,t can be generated by two elements. We have verified the above
conjecture up to N = 18 with the help of computations.3

Notice that our technique seems to break down in verifying the conjectural equation
(1.1) when (N, t) = (4k + 2, k + 1), k ⩾ 1 (cf. (N, t) = (6, 3) in Table 1). These values
of N and t are consistent with two facts, namely, the values of N and t for which
TN,t(s) does not satisfy the equation (4.4) and d′n is smaller than dn. For (N, t) =
(4k + 2, k + 1), 1 ⩽ k ⩽ 4, we have

T6,3(s) = 1− s5 − s6 − s7 + s9 + s10 + s11 − s12,

T10,5(s) = 1− s9 − s10 − s11 + s14 + s17 + s19 − s20,

T14,7(s) = 1− s13 − s14 − s15 + s20 + s22 − s24 + s25 + s27 − s28,

T18,9(s) = 1− s17 − s18 − s19 − s21 − s23 + 2s25 + 2s26 + 2s27 − s28 − s30.

Let bn and b′n denote the coefficients of Hilbert–Poincaré series of ideals∩
n|N,n∤t kerφn and Im(εN,t|ker(∂N,t))=

⊕
n∈N

Im(ε
(n)
N,t|ker(∂(n)

N,t)
) in ΩU,N∗ ⊗Q, respectively.

Theorem 4.9. The coefficients bn and b′n up to degree 12 for several values of N and
t are given in Table 2.4

The coefficients b′n are given and made bold in the table only when they differ from
the coefficients bn. The entries in the table containing zeros are kept empty. Table 2
suggests the following conjecture:

4The computations were accomplished with the help of computer programs in Mathematica and
MAGMA.
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Table 2: Values of bn and b′n
(N, t)/n 1 2 3 4 5 6 7 8 9 10 11 12

(2, 1) 1 1 3 3 7 9 15 19 30 39 56 73
(3, 1) 1 1 3 5 8 12 19 26 38 52 72
(4, 1) 1 1 4 6 11 15 25 34 50 67
(4, 2) 1 2 4 7 11 17 25 36 50 70
(5, 1) 1 2 5 8 14 21 32 45 65
(6, 1) 2 3 7 11 19 28 43 59
(6, 2) 2 3 7 12 19 29 43 61
(6, 3) 2 4 8 13 (12) 21 31 (30) 45 64 (62)
(7, 1) 1 3 5 10 16 26 38 57
(8, 1) 1 2 5 8 15 23 36 52
(8, 2) 1 2 5 8 15 23 36 53
(8, 4) 1 (0) 2 (1) 5 (4) 9 (8) 16 (15) 25 (24) 38 (37) 56 (55)
(9, 1) 1 2 4 8 13 22 33 50
(9, 3) 1 2 8 4 13 22 33 51
(10, 1) 1 2 4 7 13 20 32 47
(10, 2) 1 2 4 7 13 20 32 47
(10, 5) 1 (0) 2 (0) 4 (0) 7 (2) 13 (8) 21 (16) 33 (28) 49 (44)

Conjecture 4.10. Let 2 ⩽ N ⩽ 9, t|N , and (N, t) ̸= (6, 3), (8, 4), (10, 5). Then the

ideal IN,t∗ is generated by bordism classes of complex N -Spin manifolds admitting a
semifree circle action of type t.

Ochanine [16] proved such a result for Spin manifolds admitting a semifree circle
action of odd type whose complex case version corresponds to (N, t) = (2, 1) in the
above conjecture.
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