
Homology, Homotopy and Applications, vol. 18(1), 2016, pp.325–338

THE K-THEORY OF ENDOMORPHISMS OF SPACES

FILIPP LEVIKOV

(communicated by Charles A. Weibel)

Abstract
We prove a non-linear version of a theorem of Grayson which is

an analogue of the Fundamental Theorem of Algebraic K-theory
and identify the K-theory of the endomorphism category over a
space X in terms of reduced K-theory of a certain localisation of
the category of N-spaces over X. In particular, we generalise the
result of Klein and Williams describing the nil-terms of A-theory
in terms of K-theory of nilpotent endomorphisms.

1. Introduction

The fundamental theorem of algebraic K-theory of rings consists of two statements.
The Bass–Heller–Swan splitting describes the K-theory of the Laurent polynomial
extension of a ring R

Ki(R)[t, t−1] ∼= Ki(R)⊕Ki−1(R)⊕NKi(R)⊕NKi(R),

with NKi(R) given by the kernel of the projection K(R[t])→ K(R). The second
statement gives a K-theoretic interpretation of NKi(R) in terms of K-theory of the
exact category of nilpotent endomorphisms of projectives over R

NKi(R) ∼= Nili−1(R).

More generally one can consider the K-theory of the endomorphism category End(R)
of projectives overR. The investigation of the correspondingK0 goes back to Almkvist
[Alm74]. Grayson [Gra77] interpreted it as K-theory of a certain localisation of the
polynomial ring R[t]. Grayson also realised that the Nil-description and the End-
description can be given at once by introducing a parameter S consisting of a multi-
plicative set of centric monic polynomials in R[t] (containing t):

K̃i(EndS(R)) ∼= K̃i+1

(

S̃−1R[t]
)

. (1)

In [HKV+01], the authors prove a Bass–Heller–Swan decomposition for Waldhausen’s
algebraic K-theory of spaces, alias A-theory. Together with the identification of the
nil-terms in [KW08] this has every right to be called the Fundamental theorem
of algebraic K-theory of spaces. Recently, there has been interest in K-theory of
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parametrised endomorphisms [Bet05, LM12] and its connection to topological cyclic
homology [Hes96, BS05]. The preprint [BGT16] offers a more conceptual point of
view and deals with the representability question. In this paper we have a much more
modest goal of providing the A-theoretic analogue of (1). This is Theorem 2.5. In
a sequel to this paper we will bring involutions into the picture and deal with the
question of equivariance.
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2. Definitions and main theorem

2.1.
Let M• be a simplicial monoid with realisation M = |M•|. Consider the category

T(M) of based spaces with a (left) action by M and morphisms given by M -maps,
i.e., maps commuting with the M -action. Define an M -cell of dimension n to be

Dn ×M.

Given an object Z ∈ T(M) and an equivariant map α : Sn−1 ×M → Z define a cell
attachment by the pushout

Z ∪α (Dn ×M).

A map Y → Z in T(M) will be called a cofibration if Z is a retract of cell attachments
on Y . It will be called a weak equivalence if it is a weak homotopy equivalence in the
ordinary sense. Denote by C(M) the full subcategory of T(M) consisting of cofibrant
objects, i.e., made out of ∗ by successive cell attachments. There are several notions
of finiteness. An object of C(M) is called finite if it is built out of finitely many cells.
It is called homotopy finite if there exists a weak equivalence to a finite object. It
is called finitely dominated if it is a retract of a homotopy finite object. There are
inclusions of categories

Cf (M) ⊂ Chf (M) ⊂ Cfd(M) ⊂ C(M) ⊂ T(M),

where the indices read as finite, homotopy finite and finitely dominated, respectively.
At some point we will also need the corresponding category of stably finitely dominated
objects. This will be indicated by the index sfd.

The above subcategories of C(M) along with the specified classes of cofibrations
and weak equivalences form Waldhausen categories and we can apply Waldhausen’s
S-construction to the respective subcategories of weak equivalences. These will be
denoted by a prefix w. This leads to the definition of A-theory in the sense of [Wal85]
for various values of ?

A?(∗,M) = Ω|wS•C?(M)|.

For a based connected space X, one sets M• to be its Kan loop group G• = Ω•(X). In
this case the above definition is one definition of A?(X) – of the algebraic K-theory
of X.
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2.2.
Let Y be an M -space. The stable homotopy classes of M -maps {Y, Y } = {Y, Y }M

form a group under addition which is both left and right distributive with respect to
composition of maps making {Y, Y } into a ring. The M -action on Y induces a map
from M to the (stable) endomorphisms of Y which respect this action. Passing to
path components and taking the centre Z we get a map

Zπ0(M)→ {Y, Y }M ,

which turns {Y, Y }M into an algebra over Z[Zπ0(M)]. As a consequence we can eval-
uate polynomials with coefficients in Z[Zπ0(M)] on {Y, Y }M . We want to introduce
a parameter for the study of (stable) endomorphisms of M -spaces. Consider a multi-
plicative set S consisting of monic polynomials in the polynomial ring Z[Zπ0(M)][x]
containing the multiplicative set {xn, n > 0}. Define the endomorphism category
(with respect to S) EndS? (M) = EndS? (∗,M) as follows. The objects are pairs (Y, f)
with Y an object in C?(M) and f an endomorphism of Y with the property that there
exists a polynomial h ∈ S (stably) homotopy annihilating f , i.e., such that h[f ] van-
ishes in the Z[Zπ0(M)]-algebra of stable homotopy classes of M -self-maps {Y, Y }M .
Morphisms are given by commutative squares

Y Y

Y ′ Y ′.

f

Using the forgetful functor

p: EndS? (∗,M)→ C?(M)

we can pull back the notions of cofibrations and weak equivalences to the endomor-
phism category.

Remark 2.1. The condition on f being homotopy annihilated by a polynomial in S
requires us to make sense out of addition in [Y, Y ]. For this reason we pass to homotopy
classes of stable maps. It might be easier to work with finite (resp. finitely dominated)
spectra straight away. We prefer, however, to stay in the unstable category to make
the connection of the present work to [HKV+01, HKV+02, KW08] more visible.
Since we are concerned with K-theoretic considerations and suspension induces an
equivalence on K-theory there is no difference.

Note that a polynomial h ∈ Z[Zπ0(M)] can be evaluated at an endomorphism f
(after suspension), however the result h(f) depends on choices and only the class
[h(f)] does not. We will nevertheless sometimes use the notation h(f) for any repre-
sentative.

Lemma 2.2. The category EndS? (∗,M) is a Waldhausen category.

Proof. One can proceed almost verbatim as in the proof of [KW08, Lemma 2.1].
The only surprising fact is that endomorphisms with the property of being stably
annihilated by S are closed under cobase change. Given a diagram in EndS? (M)

(B, f1)← (A, f0) ֌ (C, f2)

consider its pushout (B ∪A C, f) with f defined by f1 ∪f0 f2. For i = 0, 1, 2, there
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exist polynomials hi ∈ S stably homotopy annihilating fi. Choose a polynomial h
homotopy annihilating fi for all i, e.g., h = h0h1h2. To work with unstable homotopy
classes and to simplify notation we assume that A,B,C are already n-fold suspen-
sions, with n large enough. The cofibration sequence

B ∨ C
j
−→ B ∪A C

δ
−→ ΣA

induces an exact sequence

[ΣA,B ∪A C]
δ∗

−→ [B ∪A C,B ∪A C]
j∗

−→ [B ∨ C,B ∪A C]

and
j∗(h[f ]) = [h(f) ◦ j] = [h(f1) ∨ h(f2)] = 0

implies that there is a class γ ∈ [ΣA,B ∪A C] such that h[f ] = δ∗(γ) = γ ◦ [δ] and
consequently

h[f ]2 = γ ◦ [δ] ◦ γ ◦ [δ].

Since [δ] ◦ γ ◦ [δ] = [δ] ◦ h[f ] is just [Σh(f0)] ◦ [δ] and [Σh(f0)] is trivial we conclude
that h[f ]2 is zero, i.e., that h2 stably homotopy annihilates f .

Example 2.3. 1. Let X be a based connected space and G the realisation of its
Kan loop group. Let S be the multiplicative set given by monomials xn. In
this case the (finitely dominated) End-category coincides with the Nil-category
introduced in [KW08]

EndSfd(∗, G) = Nilfd(∗, G) = Nilfd(X).

2. Assume π0(M) is commutative and let S consist of all monic polynomials in
Z[π0M ][x]. In this case the endomorphism category consists of all endomor-
phisms

EndS? (∗,M) = End?(∗,M).

This can be justified as follows. For a finite M -space Y we can consider its chain
complex of free Z[π0M ]-modules. The induced chain map f∗ possesses in every
degree k a characteristic polynomial1 hk and the Cayley–Hamilton theorem
implies that hk(fk) = 0. Thus a finite product h of the hk’s annihilates f∗.
Since h(f) induces an acyclic map of Z[π0M ]-module chain complexes it is
stably nullhomotopic through an M -homotopy. In the homotopy finite case one
can pass to the corresponding finite situation.
Assume now that Y is finitely dominated with f any endomorphism. There is
a retraction from a homotopy finite space Ȳ

Y
r

⇆
i

Ȳ

and we can consider the endomorphism f̄ = i ◦ f ◦ r : Ȳ → Ȳ . Because of the
above there exists a polynomial h with the property that h[f̄ ] = 0 in {Ȳ , Ȳ }M .
This however immediately implies that h[f ] = 0 in {Y, Y }M .

1Characteristic polynomials can be defined for endomorphisms of projective R-modules for any
commutative ring R (cf. [Bas68, p. 631] and [Alm73]).
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2.3.
Let L denote one of the monoids: the non-positive integers N−, the non-negative

integers N+ or all integers Z. Write t−1, t or t for the respective generators. An object
Y ∈ C?(M × L) will be called T -contractible if there exists a polynomial h in T such
that the telescope

hocolim(· · ·
h(t)
−−→ Y

h(t)
−−→ Y

h(t)
−−→ · · · ),

respectively,

hocolim(· · ·
h(t−1)
−−−−→ Y

h(t)−1

−−−−→ Y
h(t)−1

−−−−→ · · · )

is stably contractible in T(M). Note that in general the telescope is not in Cfd(M×L),
however, it is still a cofibrant M -space in T(M). A map f : Y → Z in C?(M × L) will
be called a T -equivalence if its homotopy fibre is T -contractible. Since this is a stable
condition, it is equivalent to the homotopy cofibre hocofib(f) being T -contractible.
Let M and S be as before. The reverse polynomial h̃ of a polynomial h ∈ S of degree n
is given by h̃(x) = h(x−1) · xn. We will denote the set of all reverse polynomials of
polynomials in S by S̃. Write RS? (M) for the following category. The underlying
category with cofibrations is given by C?(M × N+) and the weak equivalences are
given by S̃-equivalences.

Lemma 2.4. This is a Waldhausen category.

There is an exact projection functor

RS? (M)→ A?(∗,M)

mapping an object X to the quotient X/N+ under the action by t. This induces a map
on K-theory and we denote by ES? (M) = ES? A(∗,M) the corresponding homotopy
fibre. The homotopy fibre of

K(EndS? (∗,M))→ A?(∗,M)

will be denoted by K̃(EndS? (∗,M)). We aim for the following theorem:

Theorem 2.5. For ? = f, hf, fd there is a natural homotopy equivalence of spectra

K̃(EndS? (∗,M)) ≃ ΩES? A(∗,M).

Remark 2.6. We will prove the theorem for ? = fd which is sufficient. In fact, for all
values of ? the spectra K̃(EndS? (∗,M)), respectively, ES? A(∗,M) are equivalent by a
cofinality argument.

We want to compare this theorem to two results which exist in the literature.
Denote by A the group ring Z[π0M ] and let S be as before. Write EndS

A
for the exact

category of pairs (P, f) with P a f.g. projective A-module and f an endomorphism
of P such that there exists a g in S with the property g(f) = 0. Let EndSi A be the
kernel of the map on K-groups induced by projection

KiEndS

A → KiA.

Similarly let EKS
i be the cokernel of the canonical map

KiA→ Ki(S̃
−1A[x]).

In [Gra77] Grayson obtains
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Theorem 2.7. There is a natural isomorphism of groups

EndSi−1A
∼= EKS

i A.

This can now be seen as a corollary to Theorem 2.5 by applying the linearisation
functor on both sides of the homotopy equivalence.

Turn now to Example 2.3(1). In this case RSfd(X) = RSfd(∗, G) can be naturally

identified with the nil-term N+A
fd(X) (cf. 3.1) introduced in [HKV+01]. In [KW08]

Klein and Williams prove

Theorem 2.8. There is a natural homotopy equivalence of spectra

K̃(Nilfd(X)) ≃ ΩN+A
fd(X).

Theorem 2.5 should be seen as a generalisation of the latter.

Remark 2.9. The category RS? (X) might appear as an ad-hoc and unmotivated defi-
nition. However, there are two obvious reasons, which in our view provide enough
motivation. On the one hand, the K-theory of RS? (X) linearises to the K-theory of

Grayson’s localisation S̃−1
Z[π1X][t] (via the K-theory of the corresponding category

of chain complexes) and since our proof is analogous to Grayspn’s original proof, the
equivalence of 2.5 linearises to that of 2.7. On the other hand RS? (X) is defined along
the same lines as N+A

?(X) and looks like the right generalisation of it. (See also
Lemma 4.1.)

The question, however, remains in what sense RS? (X) is a localisation and we
respond to the referee’s request of placing this into the general context of locali-
sation. If we worked in the framework of higher categories in the sense of Lurie for
example, the category C?(M) would correspond to the E1-ring spectrum S[M ], mean-
ing that they give the same (possibly apart from K0) K-theory – essentially by the
approximation theorem. In this analogy our category C?(M × N+) would correspond
to the E1-ring spectrum S[M ][t] = S[M ] ∧ N+ (where we simplify notation by writing
N+ instead of (N+)+ for the non-negative integers with a disjoint base point). In the
above, we are given a multiplicative subset

S̃ ⊂ Z[Zπ0(M)][t] ⊂ Z[π0(M)][t] ⊂ π0(S[M ] ∧ N+),

consisting in particular of homogeneous elements in the centre of π∗
(

S[M ] ∧ N+

)

.

By [Lur16, 7.2.4] there exists a “localisation” (S[M ] ∧ N+)[S̃−1] and its K-theory
is equivalent to K(RS? (X)). The latter can be shown by comparing the localisation
sequence in K-theory (cf. [Bar16, 11.15] or [ABG15, 2.8]) with the one arising
in our context: the homotopy fibre of K(C?(M × N+))→ K(RS? (X)) is equivalent

(potentially up to K0) to the K-theory of S̃-nilpotent modules over S[M ] ∧ N+ – this
can be seen by using the approximation theorem again.

In other frameworks of (structured) ring spectra, e.g., of S-algebras in the sense
of [EKMM97], things seem to be less clear since M and thus S[M ] ∧ N+ will rarely
be commutative. There is no guarantee that something like (S[M ] ∧ N+)[S̃−1] exists.
However, we can make sure that the corresponding module category exists by employ-
ing derived Cohn localisation (cf. [Dwy06]). In this situation it is better interpreted
as left Bousfield localisation of the ambient model category (cf. [Hir03]).
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Abbreviate by E the S-algebra S[M ]∧N+ and consider the subset S ⊂MapS(S,E)
of maps projecting to S̃. This gives rise to a class CS of self maps of E and hence of
E-module maps. Let LCS

Mod(E) be the left Bousfield localisation of the category
Mod(E) of E-modules with respect to CS . The subcategory of homotopy finite (resp.
homotopy finitely dominated) cell objects in LCS

Mod(E) is a Waldhausen category
and its K-theory is equivalent to K(RS? (X)). This can be shown by exhibiting RS? (X)
as a Waldhausen subcategory of homotopy finite (resp. homotopy finitely dominated)
cell objects of the left Bousfield localisation of T(M × N+) with respect to a suitable
class of maps lifting S̃.

3. The projective line

3.1.

We are going to employ the projective line category which was used throughout
the series [HKV+01, HKV+02, KW08]. In fact since we are going to follow very
closely the original proof of 2.8, we present the essential definitions.

Given an object Y in Cfd(M × N+), respectively, in Cfd(M × N−) we can asso-
ciate to it an object Y (t−1), respectively, Y (t) in Cfd(M × Z) which is given by the
mapping telescope construction, i.e., as the colimit of

· · ·
t±1

−−→ Y
t±1

−−→ Y
t±1

−−→ · · · .

Define the category Dfd(M × Z) with objects given by diagrams

Y = (Y−
a−

−−−−−→ Y
a+

←−−−−− Y+),

with Y± ∈ Cfd(M × N±), Y ∈ Cfd(M × Z) and a−, a+ cofibrations. A morphism
Y → Z in Dfd(M × Z) consists of componentwise morphisms making the obvious
diagram commute. It will be called a cofibration if all components as well as the
induced maps

Y ∪Y−(t) Z−(t)→ Z and Y ∪Y+(t−1) Z+(t−1)→ Z

are cofibrations. Define Dfd(M × N∓) to be the full subcategory of Dfd(M × Z) con-
sisting of objects satisfying the property that

a∓(t±1) : Y∓(t±1) −→ Y

is a weak equivalence. The projective line category Pfd(M) is defined as the full
subcategory of Dfd(M × Z) consisting of objects satisfying that both maps

a−(t) : Y−(t) −→ Y and a+(t−1) : Y+(t−1) −→ Y

are weak equivalences.

Remark 3.1. The K-theory of the category Dfd(G× N+) can be seen as K-theory of
the (polynomial) brave new ring Σ∞G+[t]. Thus the homotopy fibre of

K(Dfd(G× N+))→ K(Cfd(G))

is a natural candidate for the A-theoretic nil-term N+A
fd(X) with G = |Ω•X|.
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3.2. Auxiliary results
The following is the non-linear version of Quillen’s decomposition of the K-theory

of the projective line.

Proposition 3.2 ([HKV+01, 6.7]). There is a homotopy fibration sequence

K(Cfd(M))
ψ−1

−−→ K(Pfd(M))
Γ
−→ K(Cfd(M)).

To explain the maps we need some more definitions. These will also be important
for the proof of the main theorem.

Definition 3.3 (cf., e.g., [HKV+01, 5.1]). For Y = (Y−, Y, Y+) ∈ Pfd(M) define an
object Γ(Y ) in C(M) as

cY− ∪Y−
Y ∪Y+

cY+,

where cY± denote the cone Y± ∧ I. This is a functor to Csfd(M) (cf. [HKV+01,
5.2]), called the global sections functor.

Definition 3.4 (cf., e.g., [HKV+01, 5.3, 5.4]). The extension by scalars functors

Cfd(M)→ Cfd(M × N+), Cfd(M)→ Cfd(M × N−), Cfd(M)→ Cfd(M × Z)

take an M -space Y to the (M × N±)-space (N±)+ ∧ Y , respectively, the (M × Z)-
space Z+ ∧ Y .

For an integer n the twist functor

θn : Pfd(M)→ Pfd(M)

takes Y = (Y−, Y, Y+) to

Y−
tn◦a−
−−−−→ Y

a+
←−−−−− Y+

or putting θn(a−) = tn ◦ a− to

θn(Y ) = (Y−, Y, Y+, θn(a−), a+).

The functor

ψ0 : Cfd(M)→ Pfd(M)

is defined by mapping an M -space Y to its canonical sheaf given by applying the
extension by scalars functor componentwise

(N−)+ ∧ Y →֒ Z+ ∧ Y ←֓ (N+)+ ∧ Y.

For an integer n the functor

ψn : Cfd(M)→ Pfd(M)

takes Y to its canonical sheaf twisted by n θn ◦ ψ0(Y ).

4. The proof

4.1.
Consider the category Dfd(M × N+) of 2.1. Following [HKV+01], we make it into

a Waldhausen category by declaring a map (f−, f, f+) a weak equivalence if and only if
f+ is. As before denote the class of weak equivalences by h. We want also to introduce
a coarser notion of weak equivalences hS given by those triples (f−, f, f+) for which
f+ is an S̃-equivalence. Denote the corresponding class of weak equivalences by hS .
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Lemma 4.1. There is a natural (weak) homotopy equivalence

K(hSDfd(M × N+))
≃
−→ K(RS(M)).

Proof. The categories Cfd(M × N+) and Dfd(M × N+) are equipped with two no-
tions of weak equivalences respectively. Applying Waldhausen’s fibrations theorem,
we can consider the following diagram of homotopy fibrations of S-constructions:

|hS•Dfd(M × N+)hS | |hS•Dfd(M × N+)| |hSS•Dfd(M × N+)|

|hS•Cfd(M × N+)hS | |hS•Cfd(M × N+)| |hSS•R
S(M)|

induced by the exact forgetful functor F : Dfd(M × N+)→ Cfd(M × N+), mapping
(Y−, Y, Y+) to Y+. By [HKV+01, 4.5] the middle vertical arrow is a homotopy equiv-
alence. Being induced by the restriction of F the left vertical map can in the same
way be shown to be a homotopy equivalence. This proves the lemma.

4.2.
The proof of the main theorem will be built on the following

Proposition 4.2. There is a homotopy fibration sequence

K(EndSfd(M))→ K(Pfd(M))
λ
−→ K(RSfd(M)).

Proof. Define a coarser class of weak equivalences on Pfd(M) by calling f : Y → Z a
weak equivalence if and only if f+ : Y+ → Z+ is a weak equivalence in RSfd(M), i.e., if

f+ is an S̃-equivalence. The corresponding Waldhausen category will be denoted by

hS̃
N+

Pfd(M). Applying Waldhausen’s fibrations theorem gives a homotopy fibration
sequence

K(P
hS̃

N+

fd (M))→ K(Pfd(M))→ K(hS̃
N+

Pfd(M)).

We want to identify the third term with K(RSfd(M)). By the preceding lemma, it is
sufficient to show that the exact functor

F : hS̃
N+

Pfd(M)→ hSDfd(M × N+)

induced by inclusion, satisfies the approximation properties. Only the second prop-

erty is of interest. Let Ȳ be in hS̃
N+

Pfd(M), Z̄ in hSDfd(M × N+) and f̄ : Ȳ → Z̄ a

morphism in hSDfd(M × N+). Consider the diagram

Y− Y Y+

Z Z Z+

a−

f◦a− f f+

=

and replace the vertical arrows by cofibrations

Y− Y Y+

cyl(f) cyl(f) cyl(f+).

a−

=
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Now put Ȳ ′ = (cyl(f), cyl(f), cyl(f+)), Z̄ ′ = (Z,Z,Z+) and g : Ȳ → Ȳ ′. The map

g is a cofibration in hS̃
N+

Pfd(M) and the square

F (Ȳ ) Z̄

F (Ȳ ′) Z̄ ′

F (g) ≃hS

≃hS

provides a factorisation of f̄ up to weak equivalence. To apply Waldhausen’s approx-
imation theorem, this has to be made into a strict factorisation (Z̄ ′ = Z̄). However,
since both Waldhausen categories involved are saturated and satisfy the cylinder
axiom, we may apply the weaker version of the approximation theorem by Cisinski
(cf. [Cis10, Prop. 2.14]) to deduce that

K(F ) : K(hS̃
N+

Pfd(M))→ K(hSDfd(M × N+))

is a homotopy equivalence.

Lemma 4.3. Let Y be in P
hS̃

N+

fd (M). The structure map a+ is a stable homotopy
equivalence, i.e., there exists an N such that

ΣNa+ : ΣNY+
≃
−→ ΣNY

is a homotopy equivalence.

Proof. Let g̃ be any polynomial with leading coefficient 1. The induced endomorphism
g̃(t) is mapped to the identity under the quotient map

{Y+, Y+} → {Y+/tY+, Y+/tY+}.

Since Y+ is stably annihilated by such a polynomial, the quotient Y+/tY+ is stably
contractible. Using the cofibration sequence

tY+ ֌ Y+ ։ Y/tY+

we conclude that
tY+ → Y+

is a stable equivalence which implies that the action by t is stably homotopy invertible.
This implies that Y+ is already stably homotopy equivalent to its telescope.

Lemma 4.4. There is a natural homotopy equivalence of spectra

K(EndSfd(M)) ≃ K(P
hS̃

N+ (M)).

Proof. Let (Y, f) be an object in EndSfd(M) and consider the characteristic sequence
of [KW08, p. 3029], i.e., the homotopy coequaliser

(N−)+ ∧ Y ⇒ (N−)+ ∧ Y → Yf ,

with the top arrow given by the shift endomorphism and the bottom one by id ∧ f .
The “cofibre” Yf lies in Cfd(M × N−) with t−1 acting via f . Furthermore, since
essentially per construction it is S-contractible there exists a g stably homotopy
annihilating t−1. We observe that the action by t−1 on the telescope Yf (t) is also
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stably homotopy annihilated by g. On the telescope, however, the action is invertible
and because of the relation

g(t−1) = g̃(t) · tn

g̃ stably homotopy annihilates the t-action on Yf (t). Hence, we may view Yf (t) with
the action by t as an object in RSfd(M). Using the preceding lemma one can now
check that the correspondence

(Y, f) 7→ (Yf , Yf (t), Yf (t))

defines an exact functor Φ: EndSfd(M)→ P
hS̃

N+ (M).
Conversely consider now

Y = (Y−, Y, Y+) ∈ P
hS̃

N+ (M).

Since Y+ is S̃-contractible there is a g̃ such that

hocolim(· · ·
g̃(t)
−−→ Y+

g̃(t)
−−→ Y+

g̃(t)
−−→ · · · )

is contractible and thus also

hocolim(· · ·
g̃(t)
−−→ Y

g̃(t)
−−→ Y

g̃(t)
−−→ · · · )

since Y ≃ Y+(t−1) and g̃(t) lifts to a map of diagrams. As before we may then conclude
that the reverse polynomial g of g̃ stably homotopy annihilates the t−1-action on
Y−(t) ≃ Y (t) ∼= Y , where g(x−1) = g̃(x)xn, i.e., that

hocolim(· · ·
g(t−1)
−−−−→ Y−(t)

g(t−1)
−−−−→ Y−(t)

g(t−1)
−−−−→ · · · ) ≃ ∗.

Since g(x−1) is not divisible by x−1, the latter is equivalent to

hocolim(· · ·
t−1g(t−1)
−−−−−−→ Y−

t−1g(t−1)
−−−−−−→ Y−

t−1g(t−1)
−−−−−−→ · · · )

and its contractibility implies that there exists a k > 0 such that

t−kgk(t−1) : Y− → Y−

is M -nullhomotopic.
Putting this together shows that g′(t−1) := t−kgk(t−1) vanishes in {Y−, Y−} and

(Y−, t
−1) is an object of EndS(M) without any finiteness conditions. We claim that

(Y−, t
−1) is in fact stably finitely dominated which is sufficient for the purposes of

K-theory. Consider the homotopy pullback of the following diagram taken in the
category C(M)

Y+

Y− Y,

a+

a−

which we denote by D. Since we are working stably ΣD is homotopy equivalent
(in C(M)) to the homotopy cofibre of Y− ∨ Y+ → Y which in turn is equivalent to

the global sections Γ(Y ) of Y = (Y−
a−
−−→ Y

a+
←−− Y+) (cf. [HKV+01, 5.1]). Since Y is

finitely dominated and Γ maps finitely dominated objects to stably finitely dominated
ones we conclude that D is stably finitely dominated. By 4.3, a+ is a stable equivalence
and the homotopy pullback square
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D Y+

Y− Y

≃ a+≃

a−

shows the claim.
The assignment

(Y−, Y, Y+) 7→ (Y−, t
−1)

defines an exact functor Ψ: P
hS̃

N+ (M)→ EndSsfd(M). The composition Ψ ◦ Φ sends
(Y, f) to (Yf , f). Since by [KW08, 4.1] Yf is homology equivalent to Y we have
Ψ ◦ Φ ≃ id. Because of 4.3 the composition Φ ◦Ψ is also equivalent to id.

4.3.
Proof of 2.5. According to Prop. 3.2 we have a fibration

K(Cfd(M))
ψ−1

−−−→ K(Pfd(M))
Γ
−−−→ K(Cfd(M)).

Combining this with the sequence provided by 4.2 we look at the diagram

ΩK(RSfd(M))

K̃(EndSfd(M)) K(EndSfd(M)) K(Cfd(M))

K(Cfd(M)) K(Pfd(M)) K(Cfd(M)).

Φ

p

ψ−1 Γ

We would like to complete the left hand square to a pullback square. For this we
claim that the dashed map is the inclusion of the fibre, i.e., that

K̃(EndSfd(M)) −−−→ K(EndSfd(M))
Γ◦Φ
−−−→ K(Cfd(M))

is a homotopy fibration sequence. The projection functor p: EndSfd(M)→ Cfd(M)
has a natural splitting functor j given by sending Y to (Y, ∗). We are going to show
that j also provides a (stable) splitting for Γ ◦ Φ which will imply the claim.

The space Y is mapped by Φ ◦ j to the triple

(Y∗, Y∗(t), Y∗(t)),

where as in the proof of 4.4 Y∗ is given by the homotopy coequalizer sequence

(N−)+ ∧ Y ⇒ (N−)+ ∧ Y → Y∗

of the shift action and the summandwise trivial map ∗. This is mapped via Γ to

cY∗ ∪Y∗
Y∗(t) ∪Y∗(t) cY∗(t),

which contracts to one copy of ΣY∗. In the standard model for the coequaliser given
by the double mapping cylinder, each cylinder summand on Y can be collapsed to
the image of ∗(Y ) = ∗. This provides a natural homotopy equivalence from Y∗ to Y
and thus from ΣY∗ to ΣY . Since suspension induces an equivalence on K-theory this
shows Γ ◦ Φ ◦ j ≃ id.

Thus by the claim we end up with a commutative diagram of fibration sequences
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K̃(EndSfd(M)) K(EndSfd(M)) K(Cfd(M))

K(Cfd(M)) K(Pfd(M)) K(Cfd(M))

Φ

Γ◦Φ

id

ψ−1 Γ

and consequently with a homotopy (co)cartesian square

K̃(EndSfd(M)) K(EndSfd(M))

K(Cfd(M)) K(Pfd(M)),

Φ

ψ−1

which provides a fibration

K̃(EndSfd(M)) −−−→ K(Cfd(M))
λ◦ψ−1

−−−−→ K(RSfd(M)),

with λ the localisation of 4.2

λ : K(Pfd(M)) →֒ K(hS̃
N+

Pfd(M))
≃
−−→ K(RSfd(M)).

The projection functor p: RSfd(M)→ Cfd(M) maps an M × N-space to its N-orbit

and can be identified with the augmentation functor ε of [HKV+01, 7.1]. Apply-
ing [HKV+01, 7.2] shows that p provides a splitting for λ ◦ ψ−1. Consequently, the
above fibration can be extended to the right

K̃(EndSfd(M)) −−−→ K(Cfd(M))
λ◦ψ−1

−−−−→ K(RSfd(M)) −−−→ ESfd(M),

with ESfd(M) = K̃(RSfd(M)). This finishes the proof.
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