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EQUIVARIANT I'-SPACES
DOMINIK OSTERMAYR
(communicated by J.P.C. Greenlees)

Abstract

The aim of this note is to provide a comprehensive treatment
of the homotopy theory of I'-G-spaces for G a finite group. We
introduce two level and stable model structures on I'-G-spaces
and exhibit Quillen adjunctions to G-symmetric spectra with
respect to a flat level and a stable flat model structure, respec-
tively. Then we give a proof that ['-G-spaces model connective
equivariant stable homotopy theory along the lines of the proof
in the non-equivariant setting given by Bousfield and Friedlan-
der. Furthermore, we study the smash product of I'-G-spaces and
show that the functor from I'-G-spaces to G-symmetric spectra
commutes with the derived smash product. Finally, we show that
there is a good notion of geometric fixed points for I'-G-spaces.

1. Introduction

In his seminal paper [16], Segal introduced I'-spaces as a tool to produce infinite
loop spaces. In fact, Segal showed that I'-spaces model connective stable homotopy
theory and later Bousfield and Friedlander proved this in the language of model
categories [2].

For G a finite group, Segal developed the machinery of I'-G-spaces in [17] and
it is known that very special I'-G-spaces give rise to equivariant infinite loop spaces
(cf. [17, 18, 19]). Santhanam also proved that I'-G-spaces with a suitable model
structure are equivalent to equivariant E..-spaces (cf. [18]).

Using the results of Shimakawa [19], we give a proof along the lines of [2] that I-G-
spaces model connective equivariant stable homotopy theory. Moreover, I'-G-spaces
possess a symmetric monoidal smash product as was shown by Lydakis [7], motivating
the question if this equivalence can be realized by a Quillen functor to a symmetric
monoidal category of G-spectra which commutes with the derived smash product.
This turns out to be true, if one uses the flat model structure on G-symmetric spectra
as constructed by Hausmann [5]. Even non-equivariantly, this might be of interest on
its own right. In addition, we define a geometric fixed point functor for I'-G-spaces
which has all desirable properties.

The structure of the paper is as follows. Sections 2 and 3 contain a brief review of
basic facts about G-equivariant homotopy theory and G-symmetric spectra. In partic-
ular, we will introduce the flat model structures. In Section 4, we briefly discuss basic
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definitions and constructions concerning I'-G-spaces and introduce two level model
structures. The projective model structure was employed by Santhanam in [18], too,
but we also show how to generalize the strict model structure of [2] to the equivariant
setting. In Section 5, we exhibit Quillen pairs between the level model structures on
I'-G-spaces and the flat level model structure on G-symmetric spectra. This requires a
characterization of flat cofibrations of G-symmetric spectra which we carry out in the
appendix. We also show that spectra obtained from I'-G-spaces are equivariantly con-
nective and, using the results of [19], we show that very special I'-G-spaces give rise to
GQ-symmetric spectra up to a level fibrant replacement. After these preparations, we
show that the homotopy categories with respect to the level model structures of very
special I'-G-spaces and those connective spectra which are level equivalent to G-
spectra are equivalent. In Section 6, we introduce stable equivalences of I'-G-spaces
and the stable model structures on I'-G-spaces corresponding to the two level model
structures. This leads to the equivalence of the homotopy categories of I'-G-spaces
and connective G-symmetric spectra with respect to the stable model structures.
Section 7 contains a discussion of the smash product of I'-G-spaces. Following the
non-equivariant results from [7], we show that it is well-behaved with respect to the
model structures and the functor from I'-G-spaces to G-symmetric spetra commutes
with the derived smash product. Finally, in Section 8, we define geometric fixed points
for I'-G-spaces with respect to a subgroup H < G. This is a lax symmetric monoidal
functor which sends suspension spectra to suspension spectra and commutes with the
derived smash product up to stable equivalence. We characterize stable equivalences
of I'-G-spaces as those maps which induce stable equivalences on all geometric fixed
points.

For convenience, we work with simplicial sets in this paper. However, we want to
point out that many results have a direct topological analogue.
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2. Recollections on equivariant homotopy theory

This section is intended to fix basic terminology about model categories and rec-
ollect facts about G-equivariant homotopy theory. If not stated otherwise, the source
of material is [10, IL.1, III.1] though we work with simplicial sets as opposed to
topological spaces. Throughout this paper, the word “space” will mean simplicial set.

2.1. Model categorical notions
We will freely use the concepts of model category theory. A reference is [3] and we
use the numbering therein when referring to the axioms MC1 up to MC5. Recall
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that a model category is proper if weak equivalences are preserved under pullbacks
along fibrations and under pushouts along cofibrations.

2.2. Model structures on G-spaces

The category of based spaces will be denoted by S,. It is closed symmetric monoidal
under the smash product with unit S°. If G is a finite group, we also have the category
of based spaces with left G-action together with (not necessarily equivariant) maps
S«q- It is enriched over GS,, the corresponding category enriched over S, with the
same objects but equivariant maps.

Several model structures on G-spaces will play a role in this paper. The following
model structure on GS, is the most important one. A morphism f: X — Y in GS,
is a G-fibration (resp. G-equivalence) if fH: XH — YH is a fibration (resp. weak
equivalence) in S, for all H < G. A map is a G-cofibration if it satisfies the left lifting
property with respect to all acyclic G-fibrations. This is the case if and only if the map
is levelwise injective. These notions of weak equivalences, fibrations and cofibrations
make the category GS, into a cofibrantly generated proper model category. In fact,

[={i: (G/H x 9A"); — (G/H x A"),| n >0, H<G)}
and
J={j: (G/H x A™); = (G/H x A" x A, |n>0, H<G}

are sets of generating cofibrations and acyclic cofibrations.

More generally, if F is a family of subgroups, by which we mean a collection of
subgroups closed under conjugation and taking subgroups, there is a model structure
relative to F. A map f: X —» Y in GS. is an F-fibration (resp. F-equivalence) if
fH: XH — YH is a fibration (resp. weak equivalence) in GS, for all H € F. This
yields a cofibrantly generated proper model structure (cf. [10, IV. Theorem 6.5]). As
set of generating cofibrations (resp. acyclic cofibrations) we only take those maps in
I (resp. J), where source and target have isotropy in F. Note that if 7 = ALL, this
reproduces the model structure introduced first and for arbitrary F the identity func-
tor is a left Quillen functor from the F-model structure to the ALL-model structure,
since every G-equivalence (resp. G-fibration) is an F-equivalence (resp. F-fibration).
We want to point out that a map A — B is a cofibration in the F-model structure
if and only if it is a cofibration in the ALL-model structure and all simplices not in
the image have isotropy in F.

If F is a family of subgroups of G, there is a mired model structure on GS.
(cf. [5, Proposition 1.22]). The weak equivalences in this model structure are the F-
equivalences and the cofibrations are the G-cofibrations. The fibrations are defined
by the appropriate lifting property and are called mized G-fibrations.

Ezxample 2.1. If the group in question is G X 3, for G an arbitrary finite group and ¥,
the symmetric group on n letters, there is a particularly important family denoted
by G,. It consists of all subgroups J < G x X,, such that JN {1} x X, = {(1,1)}.
Equivalently, those are the subgroups of the form {(h, p(h))| h € H} where H is a
subgroup of G and p: H — 3, is a homomorphism.
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2.3. Equivariant enrichments of model categories

We will now introduce the equivariant analogue of simplicial model categories.
The difference is that in the equivariant setting there are usually function G-spaces,
as opposed to simply function spaces. Let Cg be the category of G-objects in some
category enriched over S,. Then Cg is enriched over GS,, where we equip the mapping
space Map. (A, B) with the conjugation action. It follows formally that passing to G-
fixed points on mapping spaces yields a category GC enriched over S, with objects
the G-objects and spaces of equivariant maps.

Assume now in addition that GC has a model structure and Cq is tensored and
cotensored over S,g. The latter means that there are functors

Sig xCqa——=Cq, (X,C)——=X®C,

(S«q)°® x Cqg —=Cq, (X, D) —— map¢(X, D)
together with natural associativity isomorphisms and natural G-isomorphisms
MapC (X 29 C7 D) = MapS* (Xa Mapc (07 D)) = MapC (Ov mape (X7 D))

Passing to G-fixed points shows that GC is automatically tensored and cotensored
over S, though in general not over GS,.
Given two maps i: A — X and p: E — B in GC, there is a G-map

Mape (%, p«): Mape(X, E) — Map¢ (4, E) X Map, (4,8) Mape (X, B)
and we have

Definition 2.2. In the situation above, GC is called G-simplicial if for all cofibrations
i and all fibrations p the map Map.(i*, p.) is a G-fibration, which is in addition a
G-equivalence if ¢ or p is.

Example 2.3. The most elementary example is, of course, GS, itself.

Lemma 2.4. The following are equivalent:
(a) GC is G-simplicial.

(b) For all cofibrations f: A — X in GC and all G-cofibrations i : K — L in GS,
the pushout product map

i0f: K@ X Ugkoga L&A ——L® X

is a coftbration, which is in addition acyclic if f or i is.
(¢) For all fibrations p: E— B in GC and all G-cofibrationsi: K — L in GS. the map

mape (i*, p«) : mape (L, E) —— mapc (K, E) Xmap, (k,3) mapc(L, B)
18 a fibration, which is in addition acyclic if i or p is.

Proof. See [4, Proposition 3.11, Proposition 3.13] for a proof in the non-equivariant
case. The proof in the equivariant case is similar. O

We also have
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Lemma 2.5. Suppose GC is G-simplicial. A map f: A — B between cofibrant objects
is a weak equivalence if and only if for all fibrant objects X the induced map

Map(f*, X): Map(B, X) — Mapg(A, X)
is a G-equivalence.

Proof. See [2, Lemma 4.5] for instance. O

3. Recollections on G-symmetric spectra

From now on, G denotes a fixed finite group. In this section we give a brief account
on the approach to G-symmetric spectra as developed in [5]. We refer to the same
paper for a discussion of the relation to other models such as the equivariant sym-
metric spectra of [9].

3.1. G-symmetric spectra
If M is a finite set, we denote by S™ the M-fold smash product of the simplicial
circle S* = A'/9AL. The set {1,...,n} endowed with the trivial G-action will be
denoted by n.
Definition 3.1. A symmetric spectrum X consists of
(a) for all n > 0, a based ¥,-space X, and
(b) for all n > 0, a based structure map o,,: X, A ST — X,,11.

This is subject to the condition that for all n, m € N, the iterated structure map
o Xy ASP (X, ASHAS™ L s X, g ASM s - X,

is X, X X,,-equivariant. A morphism of symmetric spectra f: X — Y is a sequence
of based Y,-maps f,: X, — Y, such that, for all n € N, the square

W AST
X, NSt LYn A ST

X Y

Xn+1 ﬁ' Yn+1

commutes. The category of symmetric spectra will be denoted by Sp*.

Definition 3.2. A G-symmetric spectrum is a G-object in Sp*. A morphism between
G-symmetric spectra is a morphism of symmetric spectra commuting with the G-
action. The category of G-symmetric spectra will be denoted by GSp™.

Let M be a finite G-set of order m. We endow the space S with the G-action

g - (Nemr) == NiemTg-1;.

The set of bijections Bij(m, M) carries a left G-action by postcomposition and a
right >,,-action by precomposition. The value of a G-symmetric spectrum X at M
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is defined to be the G-space

X (M) := X,, As,, Bij(m, M)*,
where one identifies A fo with o.(x) A f whenever o € 3, and G acts diagonally.
The G X ¥,-space X (n) is naturally isomorphic to X, by sending [z A @] to ¢.(z).
In Appendix B below, it turns out to be more convenient to work with the values at

n, so we adopt this point of view from now on.
Given two finite G-sets M and N, there is a generalized structure map

ol X(M)AN SN ——= X(M UN).
Chosen any isomorphism ¥: n — IV, it is given by

(e A I 8) = [op (@ AT () A (FLUD)].

(The map o} does not depend on this choice.) The morphism spaces of symmetric
spectra equipped with the conjugation action give rise to an enrichment of SpZ over
GS.. as described in Section 2.3 (cf. [5, Section 2.6]).

3.2. The flat model structures
We will now give a recollection on the flat model structures constructed in [5].
They are equivariant versions of the flat model structures of Shipley [21].

3.2.1. The flat level model structure
For the definition of the latching objects we refer the reader to Appendix B. Recall the
definitions of the families G,, given in Example 2.1 and the various model structures
on G X X,-spaces introduced in Section 2.2.

A morphism f: X —» Y of G-symmetric spectra is a G-level equivalence (resp.
G-level fibration) if, for all n € N, the G x ¥,,-map f(n): X(n) — Y (n) is a G,-
equivalence (resp. mixed G x ¥, -fibration). The morphism f is a G-flat cofibration
if, for all n € N, the pushout product map

vn(f): X(n) U, (x) Ln(Y) ——=Y(n)
is a G x X, -cofibration.

Proposition 3.3 (Flat level model structure). The classes of G-flat cofibrations, G-
level fibrations and G-level equivalences define a proper G-simplicial model structure
on the category of G-symmetric spectra.

Proof. This is [5, Corollary 2.33, Proposition 2.38]. O

Remark 3.4. Cofibrant objects will be simply referred to as being G-flat in the following.

3.2.2. The stable flat model structure and 7,-isomorphisms
We will also need the stable flat model structure on G-symmetric spectra.

Definition 3.5. A G-symmetric spectrum X is G-level fibrant if, for all subgroups
H < G and all finite H-sets M, the space X (M) is Kan.
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Definition 3.6. A G-symmetric spectrum X is called a GQ-spectrum if it is G-level
fibrant and, for all subgroups H < G and all finite H-sets M and N, the adjoint of
the generalized structure map

X(M) —> Mapg, (S¥, X (M U N))
is an H-equivalence.

Definition 3.7. A map X — Y of G-symmetric spectra is a G-stable equivalence if
for all G-level fibrant GQ2-spectra Z and for some G-flat replacement X¢ — Y¢ the
induced map

[YC7Z]G s [XC’Z]G
on based G-homotopy classes of G-maps is a bijection.

A G-stable fibration is a map that satisfies the right lifting property with respect
to all G-flat cofibrations that are G-stable equivalences.

Theorem 3.8 (Stable flat model structure). The classes of G-flat cofibrations, G-
stable equivalences and G-stable fibrations define a proper G-simplicial model category
structure on the category of G-symmetric spectra. The fibrant objects are precisely the
G-level fibrant GS)-spectra.

Proof. This is [5, Theorem 4.10, Lemma 4.8]. O

An important fact is that m.-isomorphisms as defined below are G-stable equiva-
lences (cf. [5, Theorem 3.48]). To this end, let U be a complete G-set universe, that
is a countably infinite G-set with the property that any finite G-set embeds infinitely
often disjointly in it. We denote by s(f) the set of all finite G-subsets of U, partially
ordered by inclusion. For all n > 0, a G-symmetric spectrum X gives rise to a functor

s(U) — Sets, M s [|SPM| | X (M)||¢

where | — | denotes geometric realization. Here, an inclusion M C N sends a map
fr]SPUM] 5 | X (M)] to the composition

| SREN] = [SREM A SN M —— [ X (M) A SV M —— [X(N)),
where the last map is the geometric realization of the generalized structure map

af\\/’fM. For n > 0, we define

G,.U : nlIM G
“(X) = colim [|S X (M) .
T (X) ]\(/’}%;(u)“ |, | X (M)]]

In order to define the negative homotopy groups, for a G-symmetric spectrum X and
a finite G-set M, we define the shift sh™ X by

(sh™ X)(n) := X (M Un),

where the structure maps are induced by the structure maps of X (cf. [5, Defini-
tion 2.16]). Then, for n < 0, we set

7GU(X) = 75U (sh™ ™ X).

n
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Definition 3.9. A map f: X — Y of G-symmetric spectra is a m,-isomorphism if
for all subgroups H < G and all n € Z and some (hence any) complete G-set universe
U the map

RAf () — U (Y)

is an isomorphism, where X and Y are considered as H-symmetric spectra via restric-
tion and U is considered as a complete H-set universe via restriction.

Recall that the category of G-symmetric spectra is symmetric monoidal under the
smash product with unit S [5, Section 2.6]. Then we have the following result.

Proposition 3.10. Smashing with a G-flat G-symmetric spectrum preserves m,-iso-
morphisms and G-stable equivalences.

Proof. This is [5, Proposition 7.1]. O

4. TI'-G-spaces and two level model structures

In this section we introduce I'-G-spaces and the projective and strict level model
structures.

4.1. Generalities on I'-G-spaces

Definition 4.1. We define I" to be the category with objects the based finite sets
nT ={1,...,n} U{+} based at {+} together with basepoint preserving maps.

Remark 4.2. The category I is the opposite of the category considered by Segal in [16].

Definition 4.3. A T'-space is a functor I' = S, such that A(0") = x. A map of -
spaces is a natural transformation. The category of I'-spaces is denoted by I'(S.).
A T-G-space is a G-object in the category of I'-spaces. A map of I'-G-spaces is a
natural transformation of functors which commutes with the G-action. The category
of I'-G-spaces will be denoted by GI'(S,).

Given a I'-G-space A, the value A(X) at a based G-space X is defined by

AX) = |_| Mapg_ (n™, X) x A(n*) / ~,

ntel

where we divide out the equivalence relation generated by (¢* f,a) ~ (f, A(¢)(a)) for
fint = X, ¢: kT — nt and a € A(kT). This space is based at the equivalence class
of (,%).

Remark 4.4. It seems natural to define equivariant I'-spaces as equivariant functors
from the category I'¢ of finite based G-sets with based maps to the category S,
where G acts on the morphisms of the categories by conjugation. But Shimakawa
observed in [20, Theorem 1] that this gives a category equivalent to GI'(S.). The
reason is precisely that the values of an equivariant functor A: I'¢ — S, on a based
finite G-set ST can be recovered by evaluating the underlying I'-space on S7.
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If X is a based G-space and A is an object of GT'(S,), then, in level n™, X A A and
mapr s, )(X, A) are given by X A A(n*) with diagonal action and Mapg, (X, A(n™))
with conjugation action, respectively. The enrichment of T'(S,)s in G-spaces is con-
structed as follows. Suppose A and B are I'-G-spaces. Mapp 3*)(14, B) is the space
with n-simplices consisting of the (not necessarily equivariant) natural transforma-
tions (A™)* A A — B endowed with the conjugation action. Passing to fixed points
yields a space Mapp s, )(4, B)¢ with 0-simplices GT'(S.)(A, B).

For a I'-G-space A and an arbitrary based finite G-set ST we have a G-map

Ps+: A(S*) —= A(1+)5" = Mapg (S, A(11))

given by (Ps+(a))(s) = A(ps)(a), where p,: ST — 17 maps s to 1 and everything
else to the basepoint.

Definition 4.5. A T'-G-space A is called special if Pg+ is a G-equivalence for all
based finite G-sets ST.

Let A be special and define the fold map V: 2+ — 1% to be the map sending 1
and 2 to 1. The zigzag

AQF) x A1) B2 A2h) —= A1)
induces the structure of a commutative monoid on the set & (A(1%)) of path com-
ponents of the H-fixed points of A(17).

Definition 4.6. A special I-G-space A is called very special if, in addition, A(1%)
is grouplike. That is, ! (A(17)) with the composition law just defined is a group for
all subgroups H < G.

4.2. Level model structures
Now we introduce two level model structures on the category of I'-G-spaces.

4.2.1. The projective model structure

There is the projective model structure on GI'(S,), which was also employed in [18].
Recall the sets I and J defined in Section 2.2. A morphism of I'-G-spaces f: A — B
is called level equivalence (resp. level fibration) if f(ST) is a G-equivalence (resp.
G-fibration) for all based finite G-sets ST. A projective cofibration is a map which
satisfies the left lifting property with respect to all level fibrations which are in addi-
tion level equivalences.

We define I'T and T'J to be the sets consisting of the maps i ATg (ST, —) and j A
T'¢(ST, —), respectively, where S runs over a set of representatives of isomorphism
classes of based finite G-sets and i € I and j € J, respectively.

The proof of the following result is standard.

Theorem 4.7 (Projective model structure). The classes of level fibrations, level
equivalences and projective cofibrations define a cofibrantly generated proper G-simpli-
cial model category structure on the category of I'-G-spaces. The sets 'l and I'J can
be taken as sets of generating cofibrations and generating acyclic cofibrations, respec-
tively.



304 DOMINIK OSTERMAYR

At last, we want to mention an important lemma about the coend A(X) of A €

GI'(S,) and X € GS..

Lemma 4.8. Suppose f: A — B in GI'(S,) is a level equivalence, then, for any based
G-space X, f(X): A(X) — B(X) is a G-equivalence.

Proof. First of all, we observe that A(X) is just the diagonal of the bisimplicial
set By, m = A(X,,)m. Since taking fixed points commutes with taking the diagonal,
it suffices to show that A(X,)Z — B(X,) is an ordinary weak equivalence for all
subgroups H < G (cf. [2, Theorem B.2]). This holds true by assumption if all X,
are finite. Moreover, if ST — T7T is an injective map of based finite G-sets, then
A(STYH — A(TH)H is injective, too, hence is a cofibration upon geometric realiza-
tion. The assertion now follows, because any based G-set is the filtered colimit of
its based finite G-subsets and homotopy groups commute with filtered colimits along
cofibrations. O

4.2.2. The strict model structure

We will now introduce a model structure which reduces to the model structure due
to Bousfield and Friedlander (cf. [2]) if G is the trivial group. In order to introduce
this model structure we need

Definition 4.9. The nth skeleton of a I'-G-space A is the I'-G-space given by
(sk, A)(m™) := . colim A(kT)

t—mt, k<n
in level m*. Dually, the nth coskeleton of A is defined to be the I'-G-space given by
k, A)(m™T) := li A@G).
(oskn A)(mT) = lim _CAGT)
Remark 4.10. More conceptual definitions of these two functors appear in Appen-

dix A, where they occur naturally when maps between I'-G-spaces are constructed
inductively.

There are natural maps (sk, A) = A — (csk, A). Hence, a map f: X — Y of I'-
G-spaces induces, for all n > 0, maps

in(f): (skn—1Y)(nT) U, 1 x)(n+) X(nT) —=Y(nT)
and
pu(f): X(nT) —— (cskp—1 X)(nT) X(csk,_y vy(nt) Y (0F).

Then f is called a strict cofibration (resp. strict fibration) if, for all n > 0, the
map i, (f) (resp. pn(f)) is a G,-cofibration (resp. G,-fibration). The map f is called
a strict equivalence if it is levelwise a G,-equivalence.

Remark 4.11. Note, for any map of I'-G-spaces f: A — B, being a strict equivalence
amounts to saying that for any based finite H-set ST, f(S) is an H-equivalence.
Yet, it turns out that this is a little bit redundant. Indeed, assume the seemingly
weaker condition that f(ST) is a G-equivalence for all pointed G-sets S* and let TF
be any based finite H-set. But 7" is an H-retract of a G-set Q™ and H-equivalences
are closed under retracts, hence f(7T7") is an H-equivalence. In particular, the strict
equivalences coincide with the level equivalences defined in Section 4.2.1.
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We have

Theorem 4.12 (Strict model structure). The classes of strict equivalences, strict
fibrations and strict cofibrations define a proper G-simplicial model category structure
on the category of I'-G-spaces.

Proof. Let g;s* be the category of G x ¥,-spaces with the G,,-model structure and
let G2S, := (G x X,,)S. be the category of G x ¥,,-spaces with the ALL-model struc-
ture. Then the assumptions of Theorem A.l1 are satisfied. The model structure is
right proper by Lemma A.9 and the fact that G!S, is right proper. It is left proper
by Lemma A.6, the fact that fixed points respects pushouts along inclusions, and the
fact that the usual model structure on S, is left proper. O

4.2.3. Comparison of the projective and the strict model structure
We have the following basic result.

Proposition 4.13. The identity functor induces a Quillen equivalence
id - GF(S*)projective = GF(S*)stMct -id.

Proof. We have already seen that the weak equivalences coincide. Hence, we only
have to check that the generating cofibrations are indeed strict cofibrations. In fact,
ifi: A — B is a G-cofibration of G-spaces and ST is any based finite G-set, then all
simplices not in the image of i, (i A T'¢(S™, —)) have isotropy contained in G, since
the set (sk,_1 ['g(S™, —))(n™) consists precisely of the non-surjective maps. O

5. Unstable comparison of [-G-spaces and G-symmetric spectra

A T-G-space A gives rise to a G-symmetric spectrum A(S). We show in Section 5.1
how this construction yields Quillen pairs between the strict and projective model
structures on I'-G-spaces and the flat level model structure on G-symmetric spectra.
In Section 5.2, we show that the spectra obtained from I'-G-spaces are connective
and that very special I'-G-spaces yield GQ2-spectra upon a level fibrant replacement.
Finally, in the last subsection we compare suitable subcategories of the homotopy
categories of I'-G-spaces and G-symmetric spectra with respect to the level model
structures.

5.1. Quillen pairs between I'-G-spaces and G-symmetric spectra

Let A be a I'-G-space. The G-symmetric spectrum A(S) is given by A(S™) in
level n. Here G acts on A and ¥, acts by permuting the sphere coordinates. The struc-
ture map o, : A(S™) A ST — A(S™F1) is defined by sending a class [(v1, ..., v,),a] Aw
to the class [(v1 Aw, ..., v, Aw),al.

Conversely, given a G-symmetric spectrum, we may construct a ['-G-space denoted
®(S, X) by setting (S, X)(n) := Mapg,= (S*", X). With these definitions, we have

Proposition 5.1. The functors
(=)(S) : GT'(S,) == GSp® : (S, )

form a Quillen pair between the strict model structure on I'-G-spaces and the flat level
model structure on G-symmetric spectra.
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Proof. Tt is well-known that this is an adjunction (cf. [16, Proposition 3.3], [2,
Lemma 4.6]). We prove that ®(S, —) sends G-level fibrations (resp. acyclic G-level
fibrations) to strict fibrations (resp. acyclic strict fibrations). Note that, for any G-
symmetric spectrum X, we have

(csky,_1 @(S, X)) (n") = lim Mapg,s(S*7, X) = Mapg,s (Sgn_1,X),

nt it j<n—1
where
(SZn_Dm ={(@1,...,2) € (§™)""| ; = x; for some i # j or a; = * for some i},
as a direct computation of colimits proves. So we have to show that the map
Mapspz (an, X) —_— Mapspz (822—1’ X) xMaPspZ(Séz,py) Mapspz (an’ Y)

induced by the inclusion Sé:‘l_l — S*™ and a G-level fibration (resp. acyclic G-level
fibration) f: X — Y is a G,-fibration (resp. acyclic G,-fibration).

Equivalently, for all n and all based finite H-sets ST of order n + 1, the map
Mapg,s (S*9, X) — Mapg,» (Sés_l, X) X Mapg, (855 _,.Y) Mapg,s(S*9,Y)

is an H-fibration. Since H-symmetric spectra are H-simplicial, it is, therefore, suf-
ficient to show that Séi_l — S$*5 is an H-flat cofibration of H-symmetric spectra.
This is the content of Proposition B.1 in the appendix. O

Together with Proposition 4.13 this implies
Proposition 5.2. The functors
(=)(S) : GT'(S,) == GSp~ : (S, -)

form a Quillen pair between the projective model structure on I'-G-spaces and the flat
level model structure on G-symmetric spectra.

5.2. Some properties of G-spectra of the form A(S)

5.2.1. Connectivity
We want to show that all the negative homotopy groups of a spectrum arising from a
I'-G-space vanish. This is accomplished by introducing a two sided bar construction.
Recall the category I'¢ from Remark 4.4. By abuse of notation, we use the same
symbol for a choice of small skeleton in the following.

Given a I'-G-space A, we define a functor 0 A from I" to G-spaces by setting

(cA)(nt) = B(n",Tg, A) = diag(B.(n",T'g, A)),
where for a G-space X, Be(X, ', A) denotes the simplicial G-space with k-simplices

Bk(X, FG7A) = |_| A(Ssr) X Fg(sar,sf) X oo X FG(SZZUS;F) X (X)S".

SJ,...,S;EFG
There is a natural G-isomorphism B(X,T'¢, A) — (0 A)(X) (cf. [22, Proof of Theo-
rem 1.5]). Then (0 A)/(cA(0")) is a I-G-space and the nth level of the G-symmetric
spectrum (0 A)(S)/(c A(0")) is G-isomorphic to B(S™, g, A)/B(x,'g, A).
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Lemma 5.3. The map
Bk(X7 FG? A) —_— A(X)a (a7 an ey fk—17 ¢) = (¢*.fk—1* e fO*)(a’)

induces a natural level equivalence (cA)/(cA(0T)) — A of I'-G-spaces. In particular,
it induces a G-level equivalence of G-symmetric spectra

(0 A)(8)/ (0 A)(0F) —— A(S).

Proof. As in [7, Proposition 5.19], one shows that the map induces, for any based
finite G-set ST, a G-equivalence (0 A)(ST) — A(ST). The first statement follows
now, since (0 A)(0") — (cA)(ST) is a G-cofibration. The second part follows from
Lemma 4.8. O

Lemma 5.4. Let A be a I'-G-space. If X is any pointed G-space such that, for all
K < L, conn(X %) > conn(X*%) > 1 then, for all H < G, we have

conn(B(X,Tq, A" /B(x,Tq, A)) > conn(X ).
Proof. We check the connectivity of
[Be(IX|, T, | AN /Ba(zo,Tc, | AD™I.
This space is the geometric realization of the simplicial space with k-simplices

Vo (AGHIDT A Talss s A A Talsizg, sH DT A (x1)!.

sg,...,s:EFG

Now, each wedge summand is at least as connected as (|X|**)#. Writing s 2
H/Lf v - \/H/L;', we find (X*%)H = XT1 x ... x XI» which is, by our assump-
tions, firstly, at least as connected as X and, secondly, simply connected. Hence, all
simplicial levels are so. The space in question is a wedge of based G-CW-complexes
of the form |A(ST)|* A |X|T and the degeneracy maps are just inclusions of certain
wedge summands. One can now argue as in [8, Theorem 11.12]. O

Corollary 5.5. The spectrum A(S) is connective for all T-G-spaces A. That is for all
H < G, for all complete G-set universes U, and for alln < 0, we have 7Y (A(S)) = 0.

n

Proof. Fix n > 1. The (—n)th homotopy group with respect to H is computed as a
colimit over finite H-sets M of [|SM|,|A(SM"™)||Z. So we may assume |M*| > 1.
For such M, we have, for all K < H,

dim|SM |5 = |ME| < |M®| +n —1 < conn((A(SM™))F)
by Lemma 5.4 and hence [|SM], |A(S™"?)|]2 = 0 by [1, Proposition 2.5]. O

5.2.2. Very special I'-G-spaces and GQ2-spectra

We briefly recall how one obtains GQ-spectra from very special I'-G-spaces (cf. [19]).
The next lemma and proposition are simplicial analogues of [18, Lemma 7.5, Theo-
rem 7.6].

Lemma 5.6. Suppose a I'-G-space A is special. Then, for any based G-simplicial set
X, the I-G-space A(X), defined by n™ — A(nt A X) is special, too. If A is very
special, then A(X) is very special, too.
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Proof. We first show that A(X) is special again provided A is special. We need to
show that the map A(S™T A X) — Mapg_ (ST, A(X)) is a G-equivalence for any based
finite G-set ST. This morphism is the diagonal of a morphism of bisimplicial G-sets,
hence it suffices to check that, for all n >0, A(ST A X,,) - Mapg_(S*, A(X,,)) is
a G-equivalence. But both sides are G-equivalent to the weak product Mapfg* (ST A
Xn, A(17)), since A is special.

Now, assume that A is very special. We have to show that 7y(A(X)) is a group.
Equivalently, we have to show that the map A(X V X) — A(X) x A(X) induced by
retraction onto the first summand and the fold map is a G-equivalence. But again,
it suffices to show that, for all n > 0, the map A(X, vV X,,) = A(X,) x A(X,,) is a
G-equivalence. This is so because A is very special. O

Proposition 5.7. Suppose A is a very special I'-G-space. Then the G-symmetric
spectrum S(JA(S)|), where | — | and S(—) denote geometric realization and singular
complez functor, respectively, is a GQ-spectrum.

Proof. The proof is similar to the proof of [18, Theorem 7.6]. Fix a subgroup H < G.
Suppose T is any finite H-set. In view of Lemma 5.3 and Lemma 5.6, the cofiber
sequence

STAS? —— ST AAL —— 5101

induces an H-fibration sequence upon applying A(—) by [19, Lemma 1.4. P2]. This
implies that the adjoint of the geometric realization of the structure map o is an
H-equivalence. By [19, Theorem B], for any two H-sets M and N, the adjoint of the
geometric realization of the structure map o} ; is an H-equivalence, too. It follows
that in the diagram

[A(SM)] - Mapy. (8", [A(SM1)])

| |

Map'ﬂ (|SN|7 |A(SMUN)|) i> MapT*(|SNU1|’ |A(SMI_INI_I1)|)

the leftmost map is an H-equivalence, too. Finally, since S(JA(S)|) is G-level fibrant,
it is a GQ-spectrum. O

5.3. Comparison of very special I'-G-spaces and connective G()-spectra
The last thing we need before comparing suitable homotopy categories of very spe-
cial I-G-spaces and GQ-spectra is a special instance of the Wirthmiiller isomorphism.

Lemma 5.8. For any finite G-set S the inclusion

VsS——=1IsS

is a T.-isomorphism, hence a G-stable equivalence, of G-symmetric spectra.

Proof. Both spectra are connective, so it suffices to show that all non-negative homo-
topy groups of the cofiber vanish. We choose a G-set M which contains every orbit
type at least once and which admits an injective map ¢: S — M. It suffices to show



EQUIVARIANT I'-SPACES 309

that [[S* M9 AG/H || [[g 5%/ Vs S¥M||¥ =0forall H < G, g € Nand k > k.
This follows from [1, Prop. 2.5] if we can show that, for all L, eventually,

L
k|M*| + ¢ < conn (HSk'M/\/Sk'M> : (1)

S S

Now, L-equivariantly we have a decomposition S =27, L/J;" V...V L/J;} and then

L n
<H Sk-M/\/Sk~M> ~ HSk\M"i\/ \/ GkIM7i|

S S i=1 i Ji=L

There are two cases to distinguish. If J; = L for all 7, the connectivity of this space
is at least 2k|ML| -1, so that (1) holds from some ko on. Otherwise, there is at
least one i with J; # L and the connectivity is at least k - min;. j,.,|M7i| — 1. But
|M7i| > |ME| for all i such that J; # L, hence (1) holds for k large enough. O

We can now prove the equivariant analogue of [2, Theorem 5.1].

Theorem 5.9. The derived adjoint functors
Ho(GI'(S,)5tict) === Ho((GSp*>)flat level)

restrict to mutually inverse equivalences of categories when restricted to the full sub-
categories given by very special I'-G-spaces and G-symmetric spectra which are G-level
equivalent to connective GQ2-spectra, respectively.

Proof. Given a very special I'-G-space, we have seen that A(S) is G-level equivalent to
a GQ-spectrum. Suppose X is a G-symmetric spectrum X which is G-level equivalent
to a connective G{}-spectrum. Then a fibrant replacement X in the flat level model
structure is a connective GQ-spectrum, since it is G-level fibrant by [5, p. 11]. The
I-G-space associated to Xy is special by Lemma 2.5, because for any finite G-set S
the inclusion VgS — []¢ S is a G-stable equivalence by the Wirthmiiller isomorphism
and a G-flat cofibration between G-flat spectra (Proposition B.1, Proposition B.4).
It is grouplike because 3! (®(S, X)(17)) is a group and the monoid structures on
7l (®(S, X)(11)) = mf!(Xo) coincide. So the functors are well-defined.

Suppose A is very special and X is a G-level fibrant GQ-spectrum. If A(S) — X is
a G-level equivalence, then its adjoint A — ®(S, X) is a level equivalence, since both
are very special and

A(1+) ave Xo = q)(S?X)(l—i_)

Conversely, suppose A — ®(S, X)) is a level equivalence. Firstly, A(S) — ®(S, X)(S)
is a G-level equivalence by Lemma 4.8. Secondly, the map ®(S, X)(S) - X is a
m4-isomorphism because ®(S, X)(1") = Xy. And thirdly, a m.-isomorphism of G-
spectra is a G-level equivalence. A proof of this statement in the setting of G-
orthogonal spectra can be found in [10, Section 9]. The arguments given there apply
to our situation as well, because G{2-spectra are by assumption G-level fibrant. [
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6. Stable comparison

We introduce stable model structures for the projective and the strict model
structures. A map f: A — B of I-G-spaces is a stable equivalence if f(S) is a m.-
isomorphism of G-symmetric spectra. A map between I'-G-spaces is called a stable
fibration if it satisfies the right lifting property with respect to all projective cofibra-
tions which are stable equivalences. We define a map to be a stable strict fibration if
it satisfies the right lifting property with respect to all strict cofibrations which are
in addition stable equivalences.

Remark 6.1. Tt follows from [5, Proposition 2.47, Corollary 3.49], that f is a stable
equivalence of I'-G-spaces if and only if f(S) is a G-stable equivalence of G-symmetric
spectra.

Theorem 6.2 (Stable projective model structure). The classes of projective cofibra-
tions, stable fibrations and stable equivalences define a left proper cofibrantly generated
G-simplicial model category structure on the category of I'-G-spaces. The stably fibrant
objects are precisely the very special T'-spaces X for which in addition X (ST) is Kan
for all finite based G-sets ST and all subgroups H < G.

Theorem 6.3 (Stable strict model structure). The classes of strict cofibrations, sta-
ble strict fibrations and stable equivalences define a left proper cofibrantly generated
G-simplicial model category structure on the category of I'-G-spaces. An object is
stably strictly fibrant if and only if it is strictly fibrant and very special.

Proofs of Theorems 6.2 and 6.3. The existence of the model structures, cofibrant
generation, and the characterization of the stably fibrant objects follow in both cases
along the lines of [13, Appendix A]. The model structures are left proper in view of
the adjunction of Proposition 5.1 and left properness of the flat model structure on
G-symmetric spectra. That the model structures are G-simplicial is a special case of
the pushout product axiom which we prove in Proposition 7.7 below. O

Corollary 6.4. The identity functor induces a Quillen equivalence between the stable
projective and the stable strict model structures.

Now we are in the position to prove the equivariant version of [2, Theorem 5.8].
Theorem 6.5. The derived adjoint functors
HO(GF(S*)Stable strict /stable projective) s HO((GSPE)ﬁat stable)

restrict to mutually inverse equivalences of categories when the right adjoint is re-
stricted to the full subcategory given by connective G-symmetric spectra.

Proof. Consider a strictly cofibrant I'-G-space A and a connective G-level fibrant
GQ-spectrum X . Then A — ®(S, X) is a stable equivalence if and only if A(S) — X
is a m,-isomorphism (see the proof of Theorem 5.9). This implies that unit and counit
of this adjunction are isomorphisms. O

For later usage we put the following on record.
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Lemma 6.6. Fiz a complete G-set universe U. If i: A — B is a map of I'-G-spaces
which is levelwise injective, then, for all subgroups H < G, there is a long exact
sequence

o U (A(S)) — 7 HHU(B(S)) — wPU(BJA(S)) — - - — 7l M (BJA(S)) — 0.

Proof. Indeed, being a colimit, taking the cone of a map commutes with the left
adjoint (—)(S). Moreover, the map C(i) — B/A is a level equivalence of I'-G-spaces
and so the map C(i)(S) — B/A(S) is a G-level equivalence (cf. Lemma 4.8), in par-
ticular it is a m.-isomorphism. The result thus follows from the usual long exact
sequence of homotopy groups (cf. [5, Proposition 3.8]) and the connectivity of the
spectra obtained from I'-G-spaces. O

7. The smash product of I'-G-spaces

7.1. The definition of the smash product

In [7], Lydakis defined a smash product for I'-spaces. To begin with, we choose
a smash product functor A: I' x I' — T" (for example by identifying the usual smash
product m*™ Ant with (mn)* via (i,5) — (i — 1)n + j). Given two I'-spaces F and
F’ the nth level of the smash product F' A F”' is given by

(FANF)(nt) = colimp+ p+ p+ F(KT) AF(IT).

F A F' is characterized by the property that maps of I'-spaces FFA F' — T corre-
spond bijectively to maps of I' x I-spaces F(—) A F/(—) — T(— A —). Elements in
the smash product are represented by triples [f,z A y], where f: kT AlT — nt is a
morphism in ' and z Ay € F(kT) A F(IT). We define the internal mapping object to
be the I'-space Hom(F, F')(m™) := Maprs,)(F, F'(m* A —)). Recall from [7, The-
orem 2.18] that with these definitions, the category of I'-spaces is closed symmetric
monoidal with unit (1T, —).

Consequently, the category of I'-G-spaces is a closed symmetric monoidal category
with unit (17, —) by defining the smash product of two I'-G-spaces to be the smash
product of the underlying I'-spaces endowed with the diagonal G-action and equipping
the internal mapping object with the conjugation action.

7.2. Smash product and cofibrations
We study the pushout product of two strict cofibrations (resp. projective cofibra-
tions).

Lemma 7.1. If F and F' are strictly cofibrant (resp. projectively cofibrant), then so
is FAF'.

Proof. A T'-G-space is strictly cofibrant if and only if its underlying I'-space is strictly
cofibrant in the sense of Bousfield and Friedlander [2]. So in the case of strict cofi-
brations, this follows from the non-equivariant case [7, Lemma 4.5].

In the case of projective cofibrations, this follows from the fact that Hom(F, —)
preserves level fibrations which are level equivalences if F' is projectively cofibrant
because the projective model structure is G-simplicial. O
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Proposition 7.2. If F — F', F — F' are two strict cofibrations (resp. projective
cofibrations) of I'-G-spaces, then the pushout product map

FANF' Up g FPNF ——=F' NF'
is a strict cofibration (resp. projective cofibration).

Proof. The pushout product map is injective by [7, Proposition 4.4] and has cofiber
isomorphic to F'/F A F'/F which is strictly cofibrant (resp. projectively cofibrant) by
the previous lemma. This implies the claim, since a map is a strict cofibration (resp.
projective cofibration) if and only if it is injective and its cofiber is strictly cofibrant
(resp. projectively cofibrant). For strict cofibrations this statement follows directly
from the definition. For projective cofibrations one can use an equivariant version of
[13, Lemma A3]. In the equivariant situation, the free I'-G-spaces are those of the
form \/, G Ap, T, (S;", —) as defined below. O

7.3. Smash product and level equivalences

We show that smashing with a strictly cofibrant I'-G-space preserves level equiv-
alences.

Proposition 7.3. For any I'-G-space F' and any positive integer m, there is a push-
out square of I'-G-spaces

or(m*, =) Ag,, F(m*)) —=T(m", =) Ag,, F(m™)

| |

(skyp—1 F) (sky, F),

where (L (m™, =) As,, F(m™)) is defined as the pushout

(skp—1 D(m™, =) As,, (skp—1 F)(m™) —— (skpp_1 T'(m™, —)) Ag,, F(m™)

| |

T'(m™*,—) As,, (skp—1 F)(m™) AT (m™, =) Ag,, F(m™)).

Proof. This follow from the nonequivariant case [7, Theorem 3.10], because the for-
getful functor from G-spaces to spaces detects pushouts. [

Next we prove an equivariant analogue of [7, Proposition 3.11]. Given a subgroup
H < G and a based finite H-set ST we will encounter I'-G-spaces of the form G+ Ay
'y (ST, —). Here in the quotient we identify gh A ¢ and g A ¢(h~1). The group G acts
on the left smash factor.

Proposition 7.4. For any strictly cofibrant I'-G-set F' and any n > 0 there exists a
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pushout diagram

viel G+ Am; (Skn—1 FHi,(S;_a =) — VieI G+ AH, FHi,(S—F -)

| |

(Skn,1 F) (Skn F)7

where I is a set and fori € I, H; < G is a subgroup and Si'" is based finite H;-set.

Proof. There are elements s; € F(n') and subgroups I'; = {(h,p;(h))| H; <G,
pi: H; — %, homomorphism}, such that

(F/(skn—1 F))(n+) = \/(G X 35, /T4) - 84
i€l

For each i, we have the following isomorphism of I'-G-spaces
F(n+7 _) /\En (G X En/rz)+ I G+ /\Hi FHz (S;Fv _)7 [f A (g,O')Fi] = [g A (fg)]a

where on the right Sj' denotes the set {1,...,n} equipped with the H;-action coming
from p;. So the s; give rise to a map

Vie] G* NH; FHi(SiJr’ _) - F(nJrv _) As, F(nJr)

The image of this map intersects d(I'(n™, —) Ag, F(n')) precisely in \/,.; GT An,
(sk,—1 T, (S;7,—)) and any element can be lifted either to d(T'(n*, —) Ax, F(n*))
or to \,.; Gt Ag, Ty, (S, —). It follows that we have a pushout square

i€l i)

Vier G* A, (3kn-1 T, (S, =) —= Vi G A, T (87, -)

| !

oI (n*, =) Ag, F(n")) ————— (U(n*, =) Ag, F(nT)).
Together with Proposition 7.3, this proves the result. O

Proposition 7.5. Smashing with a strictly cofibrant I'-G-space preserves level equiv-
alences.

Proof. Consider a strictly cofibrant I'-G-space F and a level equivalence f: A —
B. The map FAA— F A B is the diagonal of the map of bisimplicial I'-G-sets
(Fu ANA)y, — (Fy A B)y,. Here the subscript denotes the simplicial degree. So we
may assume that F' is a strictly cofibrant I'-G-set. Suppose for a moment that, for
any H < G and any based H-set S, smashing with GT Ay 'y (ST, —) preserves level
equivalences. In view of Proposition 7.4 it follows inductively that (sk,, F) A f is a level
equivalence for all n > 0. Then F' A f is a level equivalence, because homotopy groups
commute with filtered colimits along G-cofibrations and the maps (sk, F) A X —
(sknt1 F) A X are strict cofibrations by Proposition 7.2.

We now prove that smashing with GT Ay Ty (ST, —) preserves level equivalences.
Let X be an arbitrary I-G-space and let T be any based finite G-set. Then we have
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an isomorphism (natural in 77)
(G+ ANy FG(S+, *) A X)(T+) —— Gt Ay X(FH(S+,T+))

given by mapping a tuple [f,[g A @] A x] consisting of f: kT AT =TT, ¢: ST — kT
and x € X(IT) to [gAX(fo(pAlT))(x)], where fo(dpANlt): 1T = Tg(ST,TT) is
the adjoint of the composition ST AT — k* AlT — T indicated. G acts from the
left by

g - lgnz]=[g'g AN XTu(ST,¢))(),

where ' (ST, ¢') denotes postcomposition of maps with the action of G on T'.
Now let K < G be a subgroup. We choose a set of representatives {g;} of (G/H)¥ =
{gH: K9 < H}. Then

(GT Au X(Cu(ST,TH)K = \/X(FH(S+7T+))KW-
i
This implies the claim. O

7.4. The functor (—)(S) and smash products

The main result of this section is Theorem 7.6 below, which states that (—)(S)
takes smash products to smash products up to m.-isomorphism at least when one of
the factors is strictly cofibrant.

The functor (—)(S): GI'(S.) — GSp* is lax symmetric monoidal. Indeed, given
two I'-G-spaces F and F’, the natural maps

F(n*) A F'(m*) — (F A F')(n* Am™)

induce a map
F(X)ANF'(Y)——= (FAF) (X AY)

natural in based G-spaces X and Y. This in turn induces a bimorphism of spectra (cf.
[14, 1.3]) from the pair (F(S), F'(S)) to (F A F')(S) which gives rise to the natural
transformation

app: F(S)ANF'(S) ——= (F A F')(S).

Moreover, sending x € S™ to [z,id;+] induces an isomorphism A: S — ['(1F, —)(S).
Now several coherence diagrams have to be checked, which we skip (cf. [11, Proposi-
tion 3.3 and p. 442]).

Theorem 7.6. The map axy is a m,-isomorphism, in particular a G-stable equiva-
lence, if X orY is strictly cofibrant.

Proof. In view of Propositions 3.10 and 7.5 and Lemma 4.8 we may assume that
X and Y are projectively cofibrant. If we fix Y, then the class of I'-G-spaces X
for which the assembly map is a m,-isomorphism is closed under pushouts along
generating projective cofibrations, filtered colimits along projective cofibrations and
retracts. This reduces to consider X = I'¢(S;", —) for some based finite G-set S;" and
applying the same reasoning again reduces to Y = I'¢(S5, —) for some based finite
G-set Sy . In this case we have to show that

§xS1 A §%S2 Sx(SleQ)
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induced by the bimorphism
(Sn)><51 A (Sm)XSQ . (Snum)><(S1><Sz)7 ((ffz), (yj)) = (25 A yj)

is a m,-isomorphism. Precomposition with the m,-isomorphism (Proposition 3.10,
Proposition B.4 and Lemma 5.8) SV51 A SVS2 — §%51 A §VS2 5 §%51 A §X52 g a 7,-
isomorphism by Lemma 5.8. Hence the map is a m,-isomorphism as well. O

Proposition 7.7.

(a) Smashing with a strictly cofibrant T'-G-space preserves stable equivalences.

(b) (Pushout product aziom) If F — F', F — F' are two strict cofibrations (resp.
projective cofibrations) of I'-G-spaces, then the pushout product map

FANF'Up g FPNF ——=F' NF'

is a strict cofibration (resp. projective cofibration). If in addition one of the
former maps is a stable equivalence, then so is the pushout product.

(¢) (Monoid Aziom) Let I denote the smallest class of maps of T'-G-spaces which
contains the maps of the form ANZ — BN Z, where A — B is a stable equiv-
alence and a projective cofibration (resp. strict cofibration) and which is closed
under cobase change and transfinite composition. Then every map in I is a
stable equivalence.

Proof. The first part follows from Theorem 7.6 and Proposition 3.10. The second
part follows from Proposition 7.2, Lemma 6.6 and the first part. It remains to prove
the third part. This is in analogy with [13, Lemma 1.7]. O

Remark 7.8. Define a (commutative) I'-G-ring to be a (commutative) monoid in the
symmetric monoidal category GI'(S.). A left R-module is a I-G-space M together
with a map R A M — M satisfying associativity and unit conditions. Defining weak
equivalences (resp. fibrations) to be stable equivalences (resp. stable fibrations or
stable strict fibrations) and cofibrations by the adequate lifting property, it follows
essentially from the previous proposition (cf. [13, Theorem 2.2]) that, for any I-G-ring
R, the category of left R-modules becomes a cofibrantly generated closed G-simplicial
model category.

Suppose k is a commutative I'-G-ring. The category of left k-modules is a sym-
metric monoidal category with respect to the smash product A Ay, B which is the
coequalizer of the two actions A A kA B = A A B given by multiplication.

A k-algebra is then a monoid in k-modules and the category of k-algebras is a closed
G-simplicial model category when defining a map to be a weak equivalence (resp.
fibration) if the underlying map of k-modules has this property (cf. [13, Theorem 2.5]).

8. Geometric fixed points of ['-G-spaces
In this section we construct a geometric fixed points functor
dY: GI(S,) —=T(S,).

Given a I'-G-space A, ®“A is defined to be the I'-space given by (®“A)(k*) =
A((KT)NS)E, This is in fact a lax symmetric monoidal functor. The transformation
(®CX) A (@FY) — @Y (X AY) is induced by the map
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X((E))EAY((IF)D)E —= (X AY)((RIF) D), (2 Ay) = [id,z Ay
and the map I'(1T, —) — ®CT(1F, —) is defined to be the isomorphism
D(LF, k) 2 DA*, ((KF)N9)C) 20t ()9)C.

The functor ®%(—) enjoys several good properties, which we collect in the next
two propositions.

Proposition 8.1. A map f: A — B of I'-G-spaces is a stable equivalence if and only
if, for all H < G, the map ®H(f): @A — ®H B is a stable equivalence.

Proof. Given a I'-G-space the G-symmetric spectrum (of spaces) |A(S)| is the under-
lying G-symmetric spectrum of a G-orthogonal spectrum |A|(S) (by abuse of nota-
tion, we denote the topological sphere spectrum by S, too). Moreover, |(®H A)(S)|
is naturally isomorphic to the geometric fixed point spectrum ®(|A|(S)) of the G-
orthogonal spectrum |A|(S) [15]. This follows from the fact that |(S™)"#| is isomor-
phic to the one point compactification S™# of n copies of the regular representation
pm of H. Now, a morphism f: A — B of I'-G-spaces is a G-stable equivalence if and
only if A(S) — B(S) is a m.-isomorphism of G-symmetric spectra by definition. This
is the case if and only if |A|(S) — |B|(S) is a m.-isomorphism of G-orthogonal spec-
tra [5, Remark 3.5]. Equivalently, ® (|A|(S)) — ®¥(|B|(S)) is a m.-isomorphism of
orthogonal spectra for all subgroups H < G [15, Theorem 7.12]. And this is the case
if and only if ®T A — & B is a stable equivalence of I'-spaces for all H < G. O

Proposition 8.2.
(a) For any based finite G-set ST, the map

STAT(AT, =) —=Ta(5%,-), sAd (dops)

induces a stable equivalence (ST)% AT (11, ) ~ &% (T ¢ (ST, -)).
(b) (®€A). A (®9B) — ®“(A A B) is a stable equivalence whenever A or B is

strictly cofibrant. Here, X. denotes a cofibrant replacement in the stable strict
model structure.

Proof. Part (a) follows from the Wirthmiiller isomorphism Lemma 5.8 and the previ-
ous proposition. This implies that (b) holds for A = T'¢(S]", —) and B = 'g(Sy, —). If
we fix this B, then the class of T'-G-space for which (b) holds is closed under pushouts
along generating projective cofibrations (®%(—) takes pushouts along cofibrations to
pushouts), filtered colimits along projective cofibrations (since ®&(—) commutes with
such colimits) and retracts. Thus A may be an arbitrary projectively cofibrant I'-G-
space and the same argument shows that B can be an arbitrary projectively cofibrant
I'-G-space. This finishes the proof in view of Proposition 7.5. O

Appendix A. The strict model structure for ['-G-spaces

The aim of this section is to prove Theorem A.1 below. We start by observing that
we have the following adjunction for a based right X,,- and left ¥;-space A:

ANs, —: (G xX,)S8. == (G x %;)S, : Mapg_(A, —)*".
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Here, G x X, acts on Mapg (A, —)* by ((0,9) - f)(a) := gf(ac). For the pointed sets
nt and m™, Inj, (n*,m") (resp. Surj,(n™,m")) denotes the set of based injective
(resp. surjective) maps n™ — m* endowed with the trivial G-action. We make the
following assumptions.

Assumptions. (a) There are structures of model categories on G x ¥,,-spaces denoted
by G:S. and G28., respectively, such that the first one is G x X,,-simplicial.

(b) The class of Q%—equivalences is included in the class of g}L—equivalences for all
n > 0.
(¢) The adjoint pairs
Inj, (IT,n )" As, — : /S, == G2S, : Mapg_(Inj, (I, nT)T, —)>n,
Surj, (nt, 1Mt As, —: G2S, == G]'S, : Mapg_(Surj,(n*,IT)", —)=
are Quillen adjunctions.

Let I'¢,, denote the full subcategory of I with objects the sets [T, I < n. As in [2],
the truncation functor T),: GI'(S,) = I'<,(GS.) has both a left and a right adjoint
denoted by sk, and csk,, respectively. By abuse of notation, we will usually write
sk, (resp. csky,) for the composition sk, oT}, (resp. csky, oT},), too.

Consider a map f: X — Y between I'-G-spaces. Then f is a strict cofibration if,
for all n > 0, the map

in(f): (Skn-1Y)(n%) Uk, _, xy(n+y X(nF) —=Y(n™)
is a Gl-cofibration. Dually, f is a strict fibration if, for all n > 0, the map
pn(f) : X(n+) - (CSkn—l X)(n+) X(cskp_1 Y)(nt) Y(’I’L+)

is a Gl-fibration. Finally, f is a strict weak equivalence if it is levelwise a G}-equiva-
lence.
We prove

Theorem A.1. Under these assumptions, the strict notions of weak equivalences, fibr-
ations and cofibrations make the category GT'(S,) into a G-simplicial model category.

Example A.2. e Suppose G is the trivial group. We may take G.S. to be the model
structure on X,-spaces where weak equivalences and fibrations are defined by
the forgetful functor to spaces and G2 to be the usual model structure on %,,-
spaces where weak equivalences and fibrations are detected on all fixed points.
This recovers the model structure by Bousfield and Friedlander (cf. [2]).

e More generally, taking G1S, (resp. G2S,) to be the model structure with respect
to the family of subgroups of G x ¥,, that intersect {1} x X,, trivially (resp. the
family of all subgroups of G x ¥,,) yields the model structure applied throughout
this paper.

Before proving the theorem, we need a few preparations.

Proposition A.3. Suppose B, X € I'<,,(GS.) and up_1: T,—1B — T,,_1X is a map
in P<pn_1(GSy). A map u™: B(nt) = X(nt) in GS. determines a prolongation of
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Un—1 to u: B — X in T, (GSy) if and only if u™ is G x X, -equivariant and fills in
the following commutative diagram in G X X,S,:

(skp,—1 B)(nt) —— B(nt) —— (csk,—1 B)(n™)
(skp_1 X)(nt) ——= X (n") —— (csk,_1 X)(n™).
Proof. See Proposition 3.4 from [2]. O

Proposition A.4. Consider a diagram
A——s X
I @)
B——Y
in < (GSy) and a map T,,_1B — T,,_1X which makes the diagram
T, JA——>T, 1 X
L
T, 1B——1T,_1Y

commute. Then, the diagram (2) has a lift B — X if there is a lift in the diagram of
G x X,-spaces

(skn—1 B)(n") Uk, _, ynt) A(n™) X(n")
B(n+) (CSkn—l X)(nJr) X (cskp_1Y)(nt) Y(TL+)
Proof. This is a direct consequence of the preceding proposition. O

Proposition A.5. For any I'-G-space X and any positive integers m, n > 0, there
is a pushout square of G X ¥,,-spaces

Inj, (I, n )" Ag, (ski—1 X)(IF) —— (ski—1 X)(n")

| e

Inj, (I*,n )+ Ag, X (IF) —— (sk; X)(n™).

Here the top and bottom horizontal maps are given by pushing forward along an
element of Inj,(IT,n™), where one uses the canonical isomorphism (sk; X)(It) —
X(I*) for the lower one, and the left and right vertical maps are induced by the
canonical maps (sk;—1 X)(IT) — X(IT) and (sk;—1 X)(nT) — (sk; X)(n™).

Proof. The diagram is a commutative diagram of G x X, -spaces and its underlying
diagram of spaces is isomorphic to
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()" A (skiy X) (i) — (ski_y X)(n*)
(D) AX(H) —— sk X)(n"),

where (TZL) denotes the set of order-preserving injections of the set {1,...,{} into
the set {1,...,n} both endowed with the natural ordering. Lydakis shows (cf. [7,
Proposition 3.8]) that for any I'-space X and any positive integers m, n > 0 this is a
pushout diagram, hence (3) is a pushout diagram in G' x X,,-spaces. O
Lemma A.6. [2, Lemma 3.7] Let n be a non-negative integer and fir N < n. Con-
sider a map f: A — B in GT(S.). If the maps i, (f) are G}, -cofibrations (resp. acyclic
GL -cofibrations) for all m < N, then the maps (sk; A)(nT) — (sk; B)(n™) are G2-
cofibrations (resp. acyclic G -cofibrations) for all | < N.

Proof. The case [ = 0 is trivial. Assume inductively that the assertion holds true for
all | —1 < N — 1. By the first part of assumption (c), Inj, (I*,n")* As, 4;(f) is a G2-
cofibration (resp. acyclic G2-cofibration). In view of Proposition A.5, the inductive
step can now be finished by applying Reedy’s patching lemma (cf. [2, 3.8]) to the
diagram

Inj, (I, n ) Ag, A(IT) <—— Inj, (1T, n") T Ag, (ski—1 A)(IT) —— (sk;—1 A)(nT)

l i i

Inj, (IT,n")" Ay, B(IT) =<—— Inj, (IT,n )" A, (skj—1 B)(IT) —— (sk;—1 B)(n™).
O
Lemma A.7. If f: A — B is an acyclic strict cofibration, then the maps
Zn(f) A(nJr) Usk,_4 A(nt) (Sknfl B)(nJr) I B(nJr)
are in fact acyclic G} -cofibrations.

Proof. The case n = 0 is trivial. Assume inductively that i,,(f) is an acyclic G} -
cofibration for all m < n — 1. We show that i,(f) is a Gl-equivalence. To this end
it suffices to show that (sk,_1 A)(n") — (sk,_1 B)(n*) is an acyclic G2-cofibration,
because this implies that A(n*) — A(n™) Ug, | a(m+) (skn—1 B)(n™) is an acyclic
G2-cofibration and, since G2-equivalences are in particular G}-equivalences by assump-
tion (b), the assertion follows then from two out of three for weak equivalences. But
the map in question is an acyclic G2-cofibration by Lemma A.6 applied to the case
N=n-1. O

There are dual results for fibrations.

Proposition A.8. For any I'-G-space X and any positive integers m, n > 0, there
is a pullback square of G x X, -spaces

(csk; X)(nt) Mapg_(Surj, (n™, 1), X (11))>

| |

(cski—1 X)(nT) — Mapg_(Surj, (n',17)", (esk;_1 X)(IF))>.
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Here the top and bottom horizontal maps are given by pushing forward along an ele-
ment of Surj,(IT,n"), where one uses the canonical identification (csk; X)(I1) —
X (") for the top map, and the left and right vertical maps are induced by the canon-
ical maps X (1) — (csk;—1 X)(IT) and (csk; X)(n) — (csk;—1 X)(n™), respectively.

Proof. The proof is analogous to the proof of [7, Proposition 3.8]. O

Lemma A.9. [2, Lemma 3.7] Consider a map of I'-G-spaces f: A — B such that
the maps py, (f) are Gl -fibrations (resp. acyclic G}, -fibrations) for all m < N, where
N < n is fived. Then the maps (csk; A)(nt) — (csk; B)(nt) are GL-fibrations (resp.
acyclic G -fibrations) for all 1 < N.

Proof. The case [ = 0 is trivial. Assume inductively that the assertion holds true for
[ —1< N — 1. It suffices to know that Mapg_(Surj, (n™, )", p;)*" is a G}-fibration
(resp. acyclic Gl-fibration) by Reedy’s patching lemma. This follows from the second
part of assumption (c). O

Lemma A.10. If f: A — B is an acyclic strict fibration, then the maps
Pa(f): A(n*) —— (cskyp—1 A)(nT) X(esk,,_y B)(nt+) B(nT)
are in fact acyclic G} -fibrations.

Proof. The case n =0 is trivial. Assume inductively that p,,(f) are acyclic G} -
fibrations for m < n — 1. We show that p,(f) is an acyclic G:-fibration. By the previ-
ous lemma in the case N = n — 1, we have that (csk,_1 A)(n") — (csk,—1 B)(nt) is
an acyclic G}-fibration. Hence (cskn—1 A)(n") X sk, By(n+) B(nT) = B(n') is an
acyclic Gl-fibration as well. O

Proof of Theorem A.1. MC 1, MC 2 and MC 3 are clear. MC 4 follows immedi-
ately from Lemma A.7, Lemma A.10 and Proposition A.4. So we only have to show
MC 5, the existence of factorizations. Given a map f: A — B in GI'(S,), assume
inductively that it has already been factored up to level n — 1 as an acyclic strict cofi-
bration followed by a strict fibration (resp. strict cofibration followed by an acyclic
strict fibration) T;,_1A — C<,—1 — T,,—1B. Then, as in [2], we obtain a diagram

(skp_1 A)(nT) ——— A(nt) ——— (csk,_1 A)(n™)

| | |

(skn—1 C<n—1)(n™) K (eskn—1 C<n1)(n™) (5)

| | |

(skn—1 B)(n") —— B(n") — (cskn_1 B)(n"),

where K comes from a factorization
(skn—1Cc<n—1)(n") Uk, _, ay(nt) A(nT) — K — (cskp—1 O<n1) () X (esk,_, B)(nt) B(nT)

of the canonical map into an acyclic cofibration followed by a fibration (resp. cofi-
bration followed by an acyclic fibration) in G!S.. The G x ¥,-space K gives rise
to an object Cgp € I'c,,(GSy) with Cg, (k) = Cgpmq (k™) for all kK <n—1 and
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C<n(n™) = K, such that the canonical factorization
(skp—1 C<pn)(nt) ——= K —— (csk,,—1 Ccp)(n™)

equals the factorization in (5).

In any case, this produces a factorization A — C' — B as a strict cofibration fol-
lowed by a strict fibration. Assume that K was always obtained by a factorization as
an acyclic cofibration followed by a fibration. We show that A — C' is acyclic. But
this follows from Lemma A.6 for [ = n. In the other case, K was always obtained by
a factorization as cofibration followed by an acyclic fibration. Then C' — B is acyclic
by Lemma A.9 in the case [ = n.

Finally, this model structure is G-simplicial since, for all n > 0, i,,(jOf) is isomor-
phic to j0i, (f) for any strict cofibration f and any G-cofibration j of G-spaces. [

Appendix B. A characterization of flat cofibrations
The aim of this section is to prove

Proposition B.1. For any G-flat G-symmetric spectrum X and any finite G-set S
of cardinality n, the spectrum X *° is G-flat and the inclusion

XIS, e XS
=

is a G-flat cofibration of G-symmetric spectra. Here Xé;il is the subspectrum which
1s levelwise given by those tuples in the product such that either two entries coincide
or one of them equals the basepoint. In particular, the G-symmetric spectrum S*° is

G-flat and the inclusion
SXS

xS
<n—1 S

is a G-flat cofibration of G-symmetric spectra.

A G x ¥,-map is a G X X,-cofibration if and only if its underlying map is a cofi-
bration. Therefore, a map of G-symmetric spectra is a G-flat cofibration if and only
if its underlying morphism of symmetric spectra is a flat cofibration and hence it
suffices to prove the above proposition for G the trivial group.

B.1. Latching objects of symmetric spectra

Let k denote the set {1,...,k}. Those are the objects of the category Z, where
morphisms are injective maps of sets. The category Z has a symmetric monoidal
structure Ll given by concatenation m LIn = m + n with unit the empty set 0. Let
(U} n) be the category with objects consisting of tuples (k,k’,«: kUk’ — n) with
a injective. A morphism (k,k’,a: kUk" - n) — (LY, 8: 1Ul' = n) is a tuple of
morphisms (y: k = 1,7": k’ = 1) in Z such that So (yUv') = a.

Given two symmetric spectra E and F, their smash product is given in level n by

colimy, . K k’—sn E(k) AN F(kl) A ST,

where the colimit is taken over the category (Ll | n) and we use « as a shorthand for
the image of a. A map (y,7’) in this category induces the map

EK)AFK)AS* 2 EK)ASTIAFK)AS =" A 5 EQ)AF() A S™F,
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where one uses vy and 7 to identify n — « with (n — 8) U (1 — ) U (' —4’) in the first
isomorphism and the second map uses the isomorphisms E (k) = E(y), F(k') = F(v/)
given by v and +' and the generalized structure maps.

Define S to be the truncated sphere spectrum, i.e., S = * and S,, = S™ if n > 1.
The structure maps are the evident maps. The nth latching object of a symmetric

spectrum X is now defined to be the nth level of the smash product of X with S,
Lo(X)=(XAS),.
More generally for a morphism f: X — Y of symmetric spectra we set

Ln(f) = X(0) UL, (x) Ln(Y).

The generalized structure maps induce v, (X): L,(X) — X (n) and v,,(f): L,(f) —
Y (n), which are the maps that appear in the definition of the (G-)flat model structure.

For our purpose, it is convenient to use a slightly different model for the latch-
ing morphisms. To this end, we define P(n) to be the poset of subsets of n. Given
a symmetric spectrum X and a morphism f: X — Y we get two functors L, (X)
and L, (f) from P(n) to S.. On objects, these are given by U ~ X(U) A S*~Y and
U+ X(n) Ux@yrsn-v Y(U) A Sn=U respectively. For an inclusion ¢: U C V we let
L, (X)(¢) be the composite

X(VIANS V2 X(V)ASU-VASU = X(U)A S Y,

where the second map is given by the generalized structure map gg—v smashed with
the identity on S®*~Y and similarly for L, (f). The generalized structure maps induce
Un(X): colimycn Ly (X) — X(n) and 7,(f): colimycn L, (f) — Y(n) and we have

Lemma B.2. The spaces L,(X) and colimycn L, (X) are naturally isomorphic as
Y, -spaces over X (n). Similarly, the spaces Ly (f) and colimycn Ly (f) are naturally
isomorphic as ¥,,-spaces over Y (n).

Proof. Indeed, we define a X,,-map
L,(X)— cglégl L, (X)

by mapping the pair (o: kUK —n, zAyAz € X(k)ASK AS™ %) to (a(k),
[z, o] A (i)« (y) A 2)) € X(a(k)) A SP~?lk. By abuse of notation, we secretly
identified X (k) with X via the isomorphism [z A f] — fi(z). The inverse is then
given by (U,[z,a] Ay) — (a: k = U Cn,z Ay). The second part follows since col-
imits commute with each other. O

B.2. A characterization of flat cofibrations
In order to give a characterization of flat cofibrations, we need the following lemma.

Lemma B.3. Given a functor C: P(n) — S, the induced map colimycy C(V) —
C(U) is a cofibration for all U C n if and only if
(a) for all inclusions V.C U C n, the map C(V) — C(U) is a cofibration and
(b) for allU,V C n, the intersection of the images of C(U) and C(V) in C(UUYV)
equals the image of C(UNYV).

Proof. This appears in the proof of [12, Proposition 3.11]. O
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We can now prove

Proposition B.4. A map f: X — Y of symmetric spectra is a flat cofibration if and
only if
(a) forallk, 1> 0 the map X(kU1) Uxgorsr Y (k) AS" = Y (kU1) is a cofibration
and
(b) for all integers k, I, m > 0, we have that

X(kUlUm) Uxypgeom Y (1) ASK™ — X (kU1UmM) Uy qumyase Y (1L m) A S¥

| l

X(kulum)Uxauas= Y(kUI) AS™ Y(kUluUm)

s a pullback.

In particular, if Y is a flat symmetric spectrum and X CY is a subspectrum, then
the inclusion X — 'Y is a flat cofibration if and only if for all k, I > 0 the intersection
of the images of X (k1) and Y (k) A S' in Y (kU1) equals the image of X (k) A S'.
Proof. In view of Lemma B.2, a map of symmetric spectra f: X — Y is flat if and
only if for all n > 0 and all subsets U C n the maps colimycy X (U) Ux v yrsv-v
Y(V)ASY=V — Y(U) are cofibrations. By Lemma B.3, this is equivalent to condi-
tions (a) and (b). O

We can now give a proof of the result we are after.

Proof of Proposition B.1. Suppose X is a flat symmetric spectrum. We prove first
that X *¥ is flat, provided that X is flat. Condition (a) in Proposition B.4 requires
the map X (n)*N A S¥ — X(nUk)*Y to be a cofibration. But this map factors as
the composition of two cofibrations

X(n)*N A Sk = (X (n) ASK)*N — X(nuk)*N.

Condition (b) requires
XA)*N ASkIm o X (1um) N A Sk

l |

X(kul)*NAsm — - X(kulUm)*N

to be a pullback, which is readily checked. It follows now from the second part of
Proposition B.4 that X;f\,\ll — X*N is a flat cofibration. O
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