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HOMOTOPY PROPERTIES OF SOME REAL ALGEBRAIC MAPS

MACIEJ ZIELIŃSKI

(communicated by Claude Cibils)

Abstract
We generalize an old result concerning homotopy groups of reg-

ular maps between a compact real algebraic variety and a Grass-
mann variety to a recently introduced class of stratified-regular
maps. More precisely, we show that the embedding of the space
of stratified-regular maps into the space of continuous (in the
Euclidean topology) maps induces an isomorphism in all homotopy
groups other then zeroth and a monomorphism in the latter case.

1. Introduction

The aim of this paper is to generalize the main result of paper [3] to a recently
introduced class of stratified-regular maps between real algebraic varieties, which is
wider than the class of regular maps. This new class of maps has been studied in
[4,6,9], related results can also be found in [5,7,8].

Throughout the paper by a real algebraic variety we will understand a ringed
space isomorphic to an algebraic subset of Rn endowed with the Zariski topology and
the sheaf of (real-valued) regular functions. Such a variety also carries the standard
Euclidean topology inherited from Rn and unless explicitly stated otherwise this is
the topology any topological notion we use refers to. A morphism of real algebraic
varieties will be called a regular map. If X, Y are real algebraic varieties then we will
denote the space of all such maps by R(X,Y ).

We will denote by F any of the fields R and C or the algebra H. All H-vector spaces
are left vector spaces. If convenient we will treat Ck and Hk as real vector spaces.
Then the Grassmannian Gp(Fn) of p-dimensional F-vector subspaces of Fn can be
regarded as a real algebraic variety, see [1, Theorem 3.4.4].

We shall now recall the definition of stratified-regular maps given in [9]. Through-
out the rest of this section X and Y will denote real algebraic varieties. By a strat-
ification of X we will understand a finite collection X of pairwise disjoint Zariski
locally closed subvarieties the union of which is X. Each element of X will be called
a stratum.

Definition 1.1. Let X be a stratification of X. We will say that a map f : X → Y is
X -regular if f is continuous and its restriction to each stratum of X is a regular map.
We will say that f is stratified-regular if it is S-regular for some stratification S of X.
We will denote the space of all stratified-regular maps between X and Y by R0(X,Y ).
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Obviously a regular map is the same as an {X}-regular map. We have inclusions
R(X,Y ) ↪→ R0(X,Y ) ↪→ C(X,Y ), where C(X,Y ) is the space of continuous maps. In
particular we can consider R(X,Y ) and R0(X,Y ) as topological subspaces of C(X,Y )
equipped with the compact-open topology. The main result of paper [3] states that
for compact X and any f ∈ R(X,Gp(Fn)) the induced map πk(R(X,Gp(Fn)), f) →
πk(C(X,Gp(Fn)), f) is an isomorphism of groups for k > 0 and is injective for k = 0.
Our aim is to get an analogous result for the space R0(X,Gp(Fn)).

Theorem 1.2. Let X be a compact real algebraic variety and let

i : R0(X,Gp(Fn)) ↪→ C(X,Gp(Fn))

be the inclusion map. Then for any f ∈ R0(X,Gp(Fn)) the induced map

i∗ : πk(R0(X,Gp(Fn)), f) → πk(C(X,Gp(Fn)), f)

is injective for k = 0 and a group isomorphism for k ⩾ 1.

There are two main ingredients of the proof. The first is the correspondence
between homotopy classes of maps into the Grassmannians and vector bundles. The
second is the fact that stratified-algebraic sections of stratified-algebraic bundles,
which we will define following [9] in Section 2, have good approximation properties.

We shall now give some examples where the map i∗ : π0(R0(X,Gp(Fn)), f) →
π0(C(X,Gp(Fn)), f) is surjective and hence i is a weak homotopy equivalence. Observe
that this is equivalent to every continuous map from X to Gp(Fn) being homotopic
to a stratified-regular one.

Example 1.3. Let X be a compact real algebraic variety. If dimX ⩽ dimR F, then
i∗ : πk(R0(X,Gp(Fn)), f) → πk(C(X,Gp(Fn)), f) is surjective for any p, n. This fol-
lows by combining [9, Corollary 3.6] and [9, Theorem 4.10]. In particular, this is the
case when X is compact of dimension d = 1, 2, 4 and Gp(Fn) a projective line of the
same dimension, that is, one of G1(R2), G1(C2) and G1(H2) equal to, respectively,
S1, S2 and S4. This is different from the case of regular maps as if M is a smooth,
closed, connected orientable surface or a boundary of a connected 5-manifold then
there exists a real algebraic variety X diffeomorphic to M such that all regular maps
from X to, respectively, S2, S4 are null-homotopic [2, Theorems 4, 4.1].

Example 1.4. If X is homotopy equivalent to Sd the map i∗ is surjective for any p, n.
This can be obtained by combining [9, Corollary 4.7] and [9, Theorem 1.3]. Once
again this is not true for regular maps as there are varieties diffeomorphic to the
spheres S4k with some continuous maps to Gp(Fn) not homotopic to regular ones
[9, Example 1.4].

2. Approximation by stratified-regular sections

Throughout the rest of paper by a bundle we will mean an F-vector bundle. We will
denote bundles by the letters of Greek alphabet. We will denote the trivial F-bundle
of dimension n over a space X by εnX(F). Any notion of orthogonality we will use
comes from the standard scalar products ⟨x, y⟩ =

∑n
j=1 xj ȳj , where x̄j = xj if F = R

and is the complex or quaternionic conjugate if F = C,H, respectively.
Recall that a bundle ξ on a real algebraic variety X is called algebraic if it is

an algebraic subbundle of εnX(F) for some n ∈ N (for equivalent formulations see
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[1, Chapter 12]). An important example of such a bundle is the tautological F-bundle
γ on Gp(Fn) with fiber at x ∈ Gp(Fn) equal to the subspace x ⊂ Fn itself. We will
now define stratified-algebraic bundles which have similar relationship with stratified-
regular maps as algebraic bundles with regular maps.

Definition 2.1. Let X be a real algebraic variety and X a stratification of X. An
F-subbundle ξ of εnX(F) will be called X -algebraic if for every stratum S of X the
restriction ξ|S is an algebraic subbundle of εnX(F)|S . A section s of ξ will be called
X -algebraic if s|S is an algebraic section of the bundle ξ|S for every stratum S of X .

An F-bundle η will be called stratified-algebraic if it is X -stratified for some strat-
ification X and a section r of η will be called stratified-algebraic if it is X ′-algebraic
for some stratification X ′ for which η is X ′-algebraic.

If η and ξ are both X -stratified bundles on X then a topological morphism of
vector bundles ϕ : ξ → η will be called X -algebraic if for each stratum S the induced
morphism of algebraic F-bundles ϕ|S : ξ|S → η |S is algebraic.

Recall that a pullback of an algebraic bundle by a regular map is an algebraic
bundle. In fact an F-bundle of rank p is algebraic iff for some n it is a pullback of the
tautological bundle γ on Gp(Fn) by a regular map - for both facts see [1, Chapter 12].
As an immediate consequence, we get that for any X -regular map f : X → Gp(Fn)
the pullback bundle f∗(γ) is X -algebraic.

Our aim in this section is to prove that continuous sections of a stratified-algebraic
vector bundle can be approximated in the compact-open topology by sections that
are stratified algebraic. We will also show that this can be done with a good degree
of control. For the sake of completeness, we include relevant background results. We
first recall a basic approximation lemma for regular functions on a real algebraic
variety. For a continuous function f : X → R and a compact subset K ⊂ X we will
write ∥f∥K = supx∈K |f(x)|.

Lemma 2.2. [3, Lemma 2.1] Let X be a real algebraic variety and Y a Zariski closed
subvariety of X. Let K be a compact subset of X containing Y . If f : K → R is a
continuous function whose restriction f |Y is regular then for any ε > 0 there exists a
regular function F : X → R such that ∥F − f∥K < ε and F |Y = f |Y .

Proof. We treat X as an algebraic subset of Rk for some k ∈ N with Y a zero set of
some polynomial q(x), x = (x1, . . . , xk) ∈ Rk. First we reduce to case where f |Y ≡ 0.
Since f |Y is regular it can be written in the form f |Y (x) = r(x)/s(x) for some poly-
nomials r, s such that s has no zeroes on Y [1, Proposition 3.2.3]. Then the function

f̃(x) =
r(x)s(x)

s(x)2 + q(x)2

is well-defined on the whole of X and regular. Moreover, f̃ |Y = f |Y . Substituting
f − f̃ for f gives us the desired reduction.

Using the biregular embedding X ∋ x 7→ (q(x), x) ∈ Rn+1 allows as to treat X as
an algebraic subset of Rk+1 such that Y = X ∩H, where H is the hyperplane given
by the equation x0 = 0. Note that we can then continuously extend f by 0 to K ∪H.
The Tietze extension theorem yields a continuous extension f̂ : Rk+1 → R of f such
that f̂ |K= f and f̂ |H≡ 0. We may assume that f̂ has compact support.
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Let ĝ : Rk+1 → R be a smooth function with ∥ĝ(x) − f̂(x)∥K < ε
2 . If ϕ : Rk+1 →

[0, 1] is a smooth function with ϕ|H≡ 1 and support in a sufficiently thin neighborhood
of H, then g = (1 − ϕ)ĝ is smooth, satisfies ∥g − f∥K < ε

2 and g|H≡ 0. Putting

α(x) =

∫ 1

0

∂g(tx0, x1, . . . , xk)

∂x0
dt

we can write g(x) = π(x)α(x), where π(x0, . . . , xk) = x0. Since α is smooth, by the
Weierstrass approximation theorem there exists a polynomial p(x) such that ∥α−
p∥K < ε

2M , where M > ∥π∥K . Putting F (x) = π(x)p(x) we see that F is regular,
F |Y ≡ 0 and ∥F − f∥K ⩽ ∥πp− πα∥K + ∥g − f∥K < M · ε

2M + ε
2 = ε.

We would now like to extend Lemma 2.2 to stratified-regular functions. In order
to do that we will need a result from paper [6] which is formulated in the language
of the so-called continuous rational functions. Thus we first need to investigate the
relationship between continuous rational and stratified-regular functions.

Definition 2.3. A map f : X → Y will be called continuous rational if f is contin-
uous and there exists a Zariski open and dense subvariety Z ⊂ X such that f |Z is a
regular map.

A map f : X → Y will be called hereditarily rational if it is continuous and for
every irreducible subvariety S ⊂ X the restriction f |S is continuous rational.

It turns out that the definitions of stratified-regular and hereditarily rational func-
tions are equivalent. This is well known to the experts [4,6,9] but we give a short
proof here for the convenience of the reader.

Proposition 2.4. [6, Definition 10; 9, Proposition 2.2] Let f : X→Y be a map of real
algebraic varieties. Then f is hereditarily rational if and only if f is stratified-regular.

Proof. Suppose f is hereditarily rational. We want to find a stratification X of X so
that f is X -regular. Because f is continuous rational, there exists a Zariski open and
dense subvariety X0 ⊂ X such that f |X0 is regular. Since f is hereditarily rational
we can repeat this reasoning to the Zariski closed subvariety X \X0 and get its
Zariski open and dense subvariety X1, on which f is regular. In this way we get the
desired stratification X = {X0, X1, . . . , Xk} (the process ends since the dimension of
considered varieties decreases at every step of the construction).

Suppose now that f is X -regular for some stratification X of X. If Z ⊂ X is an
irreducible subvariety then the intersection S ∩ Z must be Zariski open and hence
Zariski dense for some stratum S of X .

This allows us to apply the following result from [6] to the problem of approxima-
tion by stratified-regular maps.

Theorem 2.5. [6, Theorem 9, Proposition 10] Let W ⊂ Z be real algebraic varieties
and let g : Z → R be a continuous rational function on Z which is regular on Z \
W . Then g is hereditarily rational if and only if for every real algebraic variety X
which contains Z as a closed subvariety, g extends to a hereditarily rational function
G : X → R. Moreover, G can be assumed to be regular on the set X \W .

Lemma 2.6. [9, Lemma 4.3] Let X be a real algebraic variety. Let B ⊂ A ⊂ X be
Zariski closed subvarieties of X. Assume that A is contained in a compact subset
K ⊂ X. Let f : X → R be a continuous function such that f |A is stratified regular
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and f |A\B is regular. Then for every ε > 0, there exists a stratified regular function
F : X → R such that F |A= f |A, F |X\B is regular and ∥F − f∥K < ε.

Proof. By Proposition 2.4 f |A is hereditarily rational. Therefore, we can apply The-
orem 2.5 to g = f |A with Z = A and W = B. Then we get an extension f̃ : X → R
which is regular in restriction to X \B and stratified regular. The function f − f̃ is
continuous and zero on A. By Lemma 2.2 there exists a regular function ψ : X → R
such that ψ|A≡ 0 and ∥f − f̃ − ψ∥K < ε. We can then put F = f̃ + ψ.

The final lemma of this section is an application of Lemma 2.6 to the approximation
of continuous sections of stratified-algebraic bundles. If X is a stratification of a variety
X, we will, for a Zariski closed subvariety Y ⊂ X, denote by X ∩ Y the induced
stratification {S ∩ Y | S ∈ X}.

Lemma 2.7. Let X be a real algebraic variety and Y a Zariski closed subvariety con-
tained in a compact subset K ⊂ X. Let X be a stratification of X and let ξ be an
X -algebraic F-bundle of constant dimension on X. Suppose that σ : K → ξ is a con-
tinuous section of ξ whose restriction σ|Y is X ∩ Y -algebraic. Let U be a neighborhood
of σ in the space of all continuous sections of ξ equipped with the compact-open topol-
ogy. Then there exists an X -algebraic section s of ξ such that s|Y = σ|Y and s|K∈ U .

Proof. Since ξ is a subbundle of some trivial bundle ε = εnX(F), there exists a comple-
mentary orthogonal bundle ξ⊥ such that ξ ⊕ ξ⊥ = εnY (F). Then the isomorphism of
restrictions ξ|S ⊕ ξ⊥|S = ε|S is algebraic for any stratum S ∈ X (see the characteri-
zation of complementary algebraic bundles in [1, Theorem 12.1.7]) and the projection
P : ε|S → ξ|S is a morphism of algebraic bundles.

We can now reduce the problem to ξ = ε, for if s̃ is an X -algebraic section of ε
approximating σ, then P ◦ s̃ is an X -algebraic section of ξ also approximating σ.
Regarding σ as a map into Fn we can approximate its component functions using
Lemma 2.6. It suffices now to observe that, since they are regular on a complement of
a subset of Y , the approximating functions can be indeed regarded as X -algebraic.

3. Proof of the main theorem

We will now give two preparatory lemmas which apply the general results of the
previous section to the particular situation of Theorem 1.2. Since that will involve
a lot of work with maps defined on products of spaces, we will introduce a notation
which shortens the statements and proofs. From now on for a map f : X × Y → Z
and a subset A ⊂ Y we will denote by fA the restriction f |X×A. If A = {y} we will
omit the brackets and write fy. For a stratification X of a variety X and a variety Y
we will denote by X × Y the stratification {S × Y | S ∈ X} of X × Y .

Lemma 3.1. Let X and Y be real algebraic varieties and let X be a stratification of
X. Let Y0, Y1 ⊂ Y be Zariski closed algebraic subvarieties with Y0 nonempty. Assume
that X is compact and that there exists a compact, contractible subset K of Y such that
Y0 ∪ Y1 ⊂ K. Let F : X ×K → Gp(Fn) be a continuous map whose restriction FY0 =
F |X×Y0 is X × Y0-regular. Then for any neighborhood U of F in C(X ×K,Gp(Fn))
there exists a map G ∈ U such that GY0 = FY0 , GY1 is X × Y1-regular and Gy is
X × {y}-regular for all y ∈ K.
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Proof. The idea is to use the connection between maps into Grassmannians and bun-
dles. We will “change” the map F into a pullback bundle and then use the approx-
imation Lemma 2.7 to get a stratified-algebraic bundle which is “close” and can be
used to obtain the approximating map.

Let γ be the tautological F-bundle on Gp(Fn). Pick a point y0 ∈ Y0 and let f : X ×
Y → Gp(Fn) be the map given by f(x, y) = F (x, y0). Consider the pullback F-bundles
ξ = f∗(γ) on X × Y and η = F ∗

K(γ) on X ×K. Since f is clearly X × Y -regular, the
bundle ξ is X × Y -algebraic as a pullback of an algebraic bundle by an X × Y -regular
map. For the same reason the bundle η|X×Y0 is X × Y0-algebraic.

A contraction of a contractible set K to the point y0 induces a homotopy between
the maps FK and fK . Hence the bundles ξ|X×K and η are topologically isomorphic.
Let ϕ : ξ|X×K→ η be a topological F-bundle isomorphism. Let α be the continuous
section of the bundle Hom(ξ|X×K, η) induced by ϕ, that is, α(x, y)(v) = ϕ(v) for any v
in the fiber ξ(x,y) of ξ at the point (x, y). Since the bundles ξ|X×Y0 and η|X×Y0 are X ×
Y0-algebraic, so is the bundle Hom(ξ|X×Y0 , η|X×Y0) = Hom(ξ, η)|X×Y0 . Therefore, by
Lemma 2.7 there exists an X × Y0-algebraic section α0 : X × Y0 → Hom(ξ, η)|X×Y0

arbitrarily close to α|X×Y0 .
The continuous section α0 is defined on a closed subset of X ×K and can, there-

fore, be extended to a continuous section β0 on X ×K. Then if τ : X ×K → [0, 1] is
a continuous function which is 1 on X × Y0 and has support in a sufficiently small
neighborhood of X × Y0, the section β = τβ0 + (1 − τ)α is a continuous extension of
α0 arbitrarily close to α. Since the set of fiberwise linear isomorphisms is open, we
can assume that β is an isomorphism on fibers.

Recall that there is an algebraic splitting εnGp(Fn)(F) = γ ⊕ γ⊥ (see [1, Proposi-

tion 12.1.8]). Hence η = F ∗
K(γ) can be regarded as a subbundle of ε|X×K , where ε

is the trivial bundle εnX×Y (F). This allows us to treat β as a section of Hom(ξ, ε)
defined on X ×K. Since the bundle Hom(ξ, ε) is clearly X × Y -algebraic, Lemma 2.7
yields an X × Y -algebraic section s : X × Y → Hom(ξ, ε) such that s|X×K is arbi-
trarily close to β and s agrees with β on X × Y0.

By treating η as a subbundle of ε we can identify its fibers with subspaces of Fn,
that is, the points of Gp(Fn). Then we have β(x, y)(ξ(x,y)) = η(x,y) = γF (x,y) = F (x, y)
for any (x, y) in X ×K. We can make s|X×K a fiberwise linear monomorphism by
choosing it close enough to β. Then the map G : X ×K → Gp(Fn) given by G(x, y) =
s(x, y)(ξ(x,y)) is well-defined. We see that G(x, y) is then close to η(x,y) = F (x, y) and
because s agrees with β on X × Y0 we have an equality there. Moreover, s was X × Y -
algebraic, so clearly Gy is also X × {y}-algebraic for any y in K.

Lemma 3.2. Let X be a compact real algebraic variety, and F : X × Sk → Gp(Fn)
a continuous map. Suppose there exists a point y0 ∈ Sk and a stratification X of X
such that the map Fy0 is X × {y0}-regular. Let U be a neighborhood of F in C(X ×
Sk,Gp(Fn)). Then there exists a map G ∈ U such that Gy0 = Fy0 and Gy is X × {y}-
regular for all y in Sk.

Proof. Let H1 and H2 be the closed hemispheres in Sk intersecting in the equator
(k − 1)-sphere E. Without loss of generality assume y0 ∈ E. Applying Lemma 3.1
to Y = Sk, K = H1, Y0 = {y0} and Y1 = E yields a continuous map G0 : X ×H1 →
Gp(Fn), which is arbitrarily close to FH1 , such that G0

y0
= Fy0 and G0

y is X × {y}-
regular for all y in H1.
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Now, we can construct a continuous extension G1 of G0 to the whole of X × Sk
which is close to F . This can be done using a tubular neighborhood of an embedded
Grassmannian and an argument similar as in the proof of the Whitney Approximation
Theorem [10, Theorem 10.16]. We then apply Lemma 3.1 once more, this time to
F = G1

H2
with K = H2, Y0 = E and Y1 = ∅. This gives us a continuous map G2 : X ×

H2 → Gp(Fn) such that G2
E = G1

E and Gy is X × {y}-regular for all y in H2. Since
G1 and G2 agree on E they can be glued together to a continuous map G defined on
X × Sk. It is clear that, since Gi can be chosen arbitrarily close to F |Hi , G can be
chosen in such a way that it belongs to U and has all the required properties.

We are now ready to prove the main theorem. It is worth observing that the
main result of [3] implies the surjectivity of the map i∗ for k > 0 as it shows that
i∗ ◦ j∗ is surjective, where j∗ : πk(R(X,Gp(Fn)), f) → πk(R0(X,Gp(Fn)), f) is the
map induced by the embedding. Nevertheless, we will also prove the surjectivity as
the argument is basically the same as in [3].

To make the proof clearer we will identify any map g : Sk → R0(X,Gp(Fn)) and the
induced map g̃ : X × Sk → Gp(Fn) given by X × Sk ∋ (x, y) 7→ g(y)(x). Conversely,
if X is a stratification of X and the restriction hy of a continuous map h : X × Sk →
Gp(Fn) is X -regular for every y ∈ Sk, we will identify h with the corresponding map
Sk → R0(X,Gp(Fn)). We will do the same for maps from Sk into C(X,Gp(Fn)).

Proof of Theorem 1.2. We will first show the injectivity of i∗ for all k ⩾ 0. Let x0 ∈ Sk
and f ∈ R0(X,Gp(Fn)) be the basepoints with f X -regular for some stratification X
of X. Suppose that i∗([ϕ]) = 0 for some class [ϕ] ∈ πk(R0(X,Gp(Fn)), f). This means
that the map ϕ : X × Sk → Gp(Fn) can be extended to a continuous map Φ: X ×
Dk+1 → Gp(Fn) such that ΦSk = ϕ, where Dk+1 is the (k + 1)-disk bounded by Sk.
Since Φy0 = f is X × {y0}-regular, we can apply Lemma 3.1 to Φ with Y = Rk+1,K =

Dk+1, Y0 = {y0} and Y1 = ∅ and thus get a continuous map Φ̃: X ×Dk+1 → Gp(Fn),

which is arbitrarily close to Φ, such that Φ̃y0 = Φy0 and Φ̃y is X × {y}-regular for all

y in Dk+1. Since ϕ̃ = Φ̃Sk is null-homotopic as a map ϕ̃ : Sk → R0(X,Gp(Fn)), the
proof will be over if we show that there is a homotopyH : Sk × [0, 1] → R0(X,Gp(Fn))

between the maps ϕ and ϕ̃, as it will mean that [ϕ] = [ϕ̃] in πk(R0(X,Gp(Fn)), f).
We now construct the homotopy. Recall that Gp(Fn) with its structure of a real

algebraic variety can be identified with a subset of the space of n by n matrices with
entries in F. Fixing a scalar (hermitian if F = C,H) product and an orthonormal basis,
we identify a subspace V ⊂ Fn with the matrix AV of the orthogonal projection onto
V (for details see [1, Theorem 3.4.4]). Consider the Zariski open subset U = {(V, V ′) ∈
Gp(Fn) ×Gp(Fn)|V ′ ∩ V ⊥ = {0}}, where V ⊥ is the orthogonal complement and the
map P : U × [0, 1] → Gp(Fn) given by

P (V, V ′, t) = {x+ ty|x ∈ V, y ∈ V ⊥, x+ y ∈ V ′}.
Observe that, using the identification discussed above, Pt(V, V

⊥) is the matrix of the
projection onto the column space of the matrix:

M = (AV + tAV ⊥)AV ′ = (AV + t(In −AV ))AV ′ = tAV ′ + (1 − t)AVAV ′ .

By the known formula from linear algebra if B is the matrix consisting of p linearly
independent columns of M , then P (V, V ′, t) = B(B∗B)−1B∗. Since the set where
given p columns of M are linearly independent is Zariski open, we see that Pt is
regular as it can be locally expressed using regular functions. Choosing ϕ̃ close enough
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to ϕ we can assume that (ϕ(x, y), ϕ̃(x, y)) ∈ U for all (x, y) ∈ X × Sk. Then the map
H(x, y, t) = P (ϕ(x, y), ϕ̃(x, y), t)is a homotopy between ϕ and ϕ̃ and, because for fixed
y and t the map X ∋ x 7→ H(x, y, t) is X -regular as a composition of a regular map
with an X -regular map, it takes values in R0(X,Gp(Fn)). This ends the proof of
injectivity.

Now we prove that the map i∗ is surjective. Let ϕ : Sk → C(X,Gp(Fn)) be a con-
tinuous map with ϕ(y0) = f . We need to construct a basepoint-preserving homotopy
between ϕ and some map ϕ̃ : Sk → R0(X,Gp(Fn)) which also maps y0 to f . Consider
a tubular neighborhood U of Gp(Fn) in some RN and a retraction r : U → G. If we

assume that tϕ+ (1 − t)ϕ̃ maps X × Sk to U , which will happen if ϕ̃ is close enough
to ϕ, then H(x, y, t) = r(tϕ(x, y) + (1 − t)ϕ̃(x, y)) will be the desired homotopy. It is
now enough to observe that by Lemma 3.2 ϕ̃ satisfying the necessary conditions can
be found arbitrarily close to ϕ.
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