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HIGHER EULER CHARACTERISTICS:
VARIATIONS ON A THEME OF EULER

NIRANJAN RAMACHANDRAN

(communicated by Jonathan M. Rosenberg)

Abstract
We provide a natural interpretation of the secondary Euler

characteristic and introduce higher Euler characteristics. For
a compact oriented manifold of odd dimension, the secondary
Euler characteristic recovers the Kervaire semi-characteristic.
We prove basic properties of the higher invariants and illustrate
their use. We also introduce motivic variants.

1. Introduction

“Being trivial is our most dreaded pitfall.
. . .
‘Trivial’ is relative. Anything grasped as long as two minutes ago seems
trivial to a working mathematician.”

—M. Gromov, A few recollections, 2011

The characteristic introduced by L. Euler [8, 9, 10] (first mentioned in a letter to
C. Goldbach dated 14 November 1750) via his celebrated formula

V − E + F = 2

is a basic ubiquitous invariant of topological spaces; two extracts from the letter:

“. . . Folgende Proposition aber kann ich nicht recht rigorose demonstriren

· · ·H + S = A+ 2.

. . . Es nimmt mich Wunder, dass diese allgemeinen proprietates in der
Stereometrie noch von Niemand, so viel mir bekannt, sind angemerkt
worden; doch viel mehr aber, dass die fürnehmsten davon als theor. 6
et theor. 11 so schwer zu beweisen sind, den ich kann dieselben noch nicht
so beweisen, dass ich damit zufrieden bin. . . ”

When the Euler characteristic of a topological space vanishes, then it becomes neces-
sary to introduce other invariants to study the space. For instance, an odd-dimensional
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compact oriented manifold has zero Euler characteristic; an important invariant of
such manifolds is the semi-characteristic of M. Kervaire [17].

In recent years, the “secondary” or “derived” Euler characteristic χ′ has made its
appearance in many disparate fields [2, 11, 15, 5, 6, 19, 3]; in fact, this secondary
invariant dates back to 1848 when it was introduced by A. Cayley (in a paper “A
Theory of elimination”, see [13, Corollary 15 on p. 486 and p. 500, Appendix B]).

In this short paper, we provide a natural interpretation and generalizations of the
“secondary” Euler characteristic. Our initial aim was to understand the appearance
of the “secondary” Euler characteristic in formulas for special values of zeta functions
[19] (see §3). We introduce invariants χj for j � 0 which generalize χ and χ′; one has
χ0 = χ and χ1 = χ′; further, we prove (Corollary 2.7) that χj is the j-th coefficient of
the Taylor expansion of the Poincaré polynomial P (t) at t = −1. This interpretation
seems new in the literature.

As motivation for higher Euler characteristics, consider the following questions:

• Q1 Given a compact manifold M of the form

M = N × S1 × S1 · · ·S1︸ ︷︷ ︸
r factors

, r > 0,

which topological invariant detects the integer r > 0? The Euler characteris-
tic of M is always zero: χ(M) = χ(N).χ(S1)r = 0 independent of r. A related
question: given M , how to compute the Euler characteristic of N?

• Q2 For a commutative ring A, write K0(A) for the Grothendieck group of
the (exact) category ModA of finitely generated projective A-modules. Any
bounded complex C of finitely generated projective A-modules defines a class
[C] ∈ K0(A). As the class [C] of an acyclic complex C is zero, one can ask: Are
there natural non-trivial invariants of acyclic complexes C? Are there enough
to help distinguish an acyclic complex from a tensor product (itself acyclic) of
acyclic complexes?

The higher Euler characteristics answer these questions; these invariants are “special
values” of the Poincaré polynomial; see Remark 2.8. We show (Lemma 2.2) that the
secondary Euler characteristic recovers the semi-characteristic of M. Kervaire [17].
The topological and the K-theoretic versions of the higher Euler characteristics are
in the first and third section. The last section indicates certain generalizations in
the context of motivic measures and raises related questions. The second section is a
gallery of secondary Euler characteristics.

Note the analogy between taking a product with a circle X �→ X × S1 and taking
the cone CN of a self-map N → N (compare part (iii) of Theorems 2.4 and 4.2).
J. Rosenberg alerted us to a definition of “higher Euler characteristics” due to R. Geo-
ghegan and A. Nicas [14]; the relations with this paper will be explored in future
work.

Notations

A nice topological space is, or is homotopy equivalent to, a finite CW complex.
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2. Topological setting

Recall that, for any nice topological space M , its Euler characteristic

χ(M) =
∑
i

(−1)ibi(M)

is the alternating sum of the Betti numbers bi = bi(M) = rankZ Hi(M,Z). The “sec-
ondary” Euler characteristic of M is defined as

χ′(M) =
∑
i

(−1)i−1ibi = b1 − 2b2 + 3b3 − · · · .

The topological invariant χ satisfies (and is characterized by) the following properties:
it is invariant under homotopy, χ(point) = 1, and, for nice spaces U and V ,

χ(U × V ) = χ(U).χ(V ),

χ(U ∪ V ) = χ(U) + χ(V )− χ(U ∩ V ). (1)

Clearly, χ′ cannot satisfy the same properties. One has that

• χ′ is invariant under homotopy,

• χ′(point) = 0,

• but, in general, χ′(U × V ) �= χ′(U).χ′(V ), and

• χ′ satisfies (1) only for disjoint unions.

As χ(M) = 0 (Poincaré duality) for any oriented compact closed manifold M of
odd dimension, χ′(M) is the simplest nontrivial natural topological invariant for such
manifolds.

Lemma 2.1. Let M and N be nice topological spaces.

(i) χ′(M × S1) = χ(M).

(ii) χ′(M ×N) = χ(M)χ′(N) + χ(N).χ′(M).

Proof. (i) This is just direct computation: Let bi be the Betti numbers of M × S1

and ci the Betti numbers of M . By the Künneth theorem, one has bi+1 = ci+1 + ci.
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Therefore,

χ′(M × S1) = 0.b0 + b1 − 2b2 + 3b3 − · · ·
= (c1 + c0)− 2(c2 + c1) + 3(c3 + c2) · · ·
= c0 − c1 + c2 − · · ·
= χ(M).

(ii) Direct computation. For a conceptual proof, see the proof of part (ii) of The-
orem 2.4.

2.1. Kervaire’s semi-characteristic
Let M be a compact oriented manifold of odd dimension 2n+ 1. Since χ(M) = 0,

Kervaire’s [17] semi-characteristic

KM =
i=n∑
i=0

(−1)ibi(M) mod 2

is an important topological invariant of such manifolds. The following observation,
while simple, seems new: the secondary Euler characteristic of M recovers KM .

Lemma 2.2. One has χ′(M) ≡ KM mod 2.

Proof. Clearly χ′(M) =
∑i=n

i=0 b2i+1 mod 2. If n = 2k + 1, then using (bi = b4k+3−i)
we have χ′(M)= b1 + b3 + · · · bn + b2k + b2k−2 + · · · b0 mod 2. So χ′(M)=KM mod 2
in this case. If n = 2k, then using bi = b4k+1−i, we have χ

′(M) = b1 + b3 + · · · b2k−1 +
b2k + b2k−2 + · · · b0 mod 2. So χ′(M) = KM mod 2.

2.2. Basic definitions and main results

Definition 2.3 (Higher Euler characteristics). For any nice topological space M and
for any integer j � 0, we define the j-th Euler characteristic of M as

χj(M) =
∑
i

(−1)i−j

(
i

j

)
bi. (2)

Clearly, χ0(M) = χ(M) and χ1(M) = χ′(M). If M is a manifold of dimension
N , then χj(M) = 0 for j > N . Note that χj(S

1) = 0 for j �= 1 and χ1(S
1) = 1. The

higher Euler characteristics1 share many of the properties of χ and χ′.

Theorem 2.4. (i) χj is invariant under homotopy; for a disjoint union U 	 V , one
has χj(U 	 V ) = χj(U) + χj(V ) and χj(point) = 0 for j > 0.

(ii) If χr(M) and χr(N) vanish for 0 � r < j, then

χk(M ×N) = 0, for 0 � k < 2j,

χ2j(M ×N) = χj(M).χj(N),

χ2j+1(M ×N) = χj(M).χj+1(N) + χj+1(M).χj(N).

(iii) Let M = N × (S1 × · · · × S1

j factors
). Then χj(M) = χ(N) and χk+j(M) = χk(N)

1The “secondary” Euler characteristic is the first higher characteristic.
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for k � 0, and

χ0(M) = 0, . . . , χj−1(M) = 0.

Remark 2.5. There are at least two natural choices for the definition of the higher
Euler characteristics; for χ2(M), one could take either

∑
i(−1)ii2bi or

∑
i(−1)ii(i−

1)bi. More generally, an alternate definition is given by

χj(M) =
∑
i

(−1)i−jijbi(X).

One has χ0(X) = χ(X) and χ1(X) = χ′(X).

Our proof of Theorem 2.4 is based on a natural interpretation of χj ’s provided
by Lemma 2.6 and Corollary 2.7. It is unclear if there is a simple natural proof of
Theorem 2.4 which completely avoids this new interpretation of χj .

Lemma 2.6. For any polynomial P (t) =
∑

i bit
i ∈ Z[t], consider the expansion of

P (t) about t = −1, namely, define Q(u) =
∑

i aiu
i ∈ Z[u] by

PM (t) = QM (1 + t),

P (t) = b0 + b1t+ b2t
2 + · · · = a0 + a1(1 + t) + a2(1 + t)2 + · · · . (3)

For any j � 0, one has

aj =
∑
i

(−1)i−j

(
i

j

)
bi.

Proof. Evaluating both sides of (3) at t = −1 gives

a0 = b0 − b1 + · · · =
∑
i

(−1)ibi = P (−1).

Taking the formal derivative of (3) with respect to t gives

b1 + 2b2t+ 3b3t
2 + · · · = a1 + 2a2(1 + t) + 3a3(1 + t)2 + · · · . (4)

Evaluating at t = −1 gives

a1 = b1 − 2b2 + 3b3 − · · · =
∑
i

(−1)i−1ibi.

Applying d
dt to (4) gives

2b2 + · · ·+ n(n− 1)bnt
n−2 + · · · = 2a2 + · · · + n(n− 1)an(1 + t)n−2 + · · · . (5)

Plugging in t = −1 gives

2a2 = 2b2 − 6b3 + 12b4 + · · ·+ n(n− 1)bn(−1)n−2 + · · ·
and so

a2 =
∑
i

(−1)i−2

(
i

2

)
bi.

Iterating these steps (apply d
dt and evaluate at t = −1) provides the required relation

for any aj .
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Corollary 2.7. For any nice topological space M , write the Poincaré polynomial
PM (t) =

∑
i bi(M)ti as a function of u = 1 + t, i.e., define QM (u) ∈ Z[u] by PM (t) =

QM (1 + t). Then,

QM (u) =
∑
j

χj(M) uj .

This shows that the higher Euler characteristics form a natural generalization of
the Euler characteristic: χM = PM (−1) and χ1(M), χ2(M), . . . are the coefficients of
the Taylor expansion of PM (t) at t = −1.
Proof of Theorem 2.4. (i) the first statement is clear as the Betti numbers are homo-
topy invariant. For the second, use PU�V (t) = PU (t) + PV (t).

(ii) Since PM×N (t) = PM (t).PN (t) (Künneth), so QM×N (u) = QM (u).QN (u).
Now apply Lemma 2.6. We are given that QM (u) and QN (u) are both divisible
by uj . So QM×N (u) is divisible by u2j . As QM (u) = uj(χj(M) + χj+1(M)u+ · · · )
and QN (u) = uj(χj(N) + χj+1(N)u+ · · · ), we have

QM×N (u) = u2j(χj(M).χj(N) + (χj(M).χj+1(N) + χj+1(M).χj(N))u+ · · · ).
Now apply Lemma 2.6.

(iii) By Künneth, one has PM (t) = PN (t)(1 + t)j and so QM (u) = QN (u)uj . Now
apply Lemma 2.6.

Remark 2.8. The higher Euler characteristics are special values of the Poincaré poly-
nomial, in the following sense.

(a) For any scheme X of finite type over Spec Z, one introduces the analytic
function ζX(s) (the zeta function of X). Conjecturally, there is arithmetic information
in the special values of ζX(s) at s = n ∈ Z; if ζX(n) = 0, then one looks at the leading
term in the Taylor expansion of ζX(s) about s = n. This leading term is called a
“special value” of ζX(s) at s = n. In our context, Lemma 2.6 tells us that the Euler
characteristic is the value of the Poincaré polynomial P (t) at t = −1 and the “special
values” of P (t) at t = −1 are the higher Euler characteristics.

(b) Part (iii) of Theorem 2.4 provides a partial answer to Q1 posed above. Namely,
each factor of S1 in M causes the vanishing of a higher Euler characteristic of M .
Thus, the number of factors r of S1 in M satisfies the inequality

r � ord t=−1 PM (t) = ordu=0 QM (u),

with equality if and only if χ(N) �= 0. So χ0(M) = 0, . . . , χr−1(M) = 0.
(c) The higher Euler characteristics do not satisfy (1) in general; this follows from

the fact that, in general, PU∪V �= PU (t) + PV (t)− PU∩V (t).
(d) There is a straightforward generalization of higher Euler characteristics of local

systems (or sheaves) on nice topological spaces (or algebraic varieties). Namely, given
a local system A of say Q-vector spaces on a nice space X, the cohomolology groups
Hi(X,A) are finite dimensional Q-vector spaces. The higher Euler characteristics
χj(X,A) are the coefficients of the Taylor expansion about t = −1 of the Poincaré
polynomial PX(A, t) =

∑
i dimQ Hi(X,A) ti. When A = Q is the trivial local system,

one recovers the usual higher Euler characteristics: χj(X,A) = χj(X). Similarly, if
F is a coherent sheaf on a proper variety X over a field K, then the cohomology
groups Hi(X,F) are finite dimensional K-vector spaces. The associated Poincaré
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polynomial leads to the higher Euler characteristics of F . In the same vein, given a Q�-
constructible sheaf F on any varietyX over a fieldK of characteristic different from �,
the cohomology groups (with compact support) Hi

c(X,F) are finite dimensional Q�-
vector spaces; the coefficients of the Taylor expansion about t = −1 of the Poincaré
polynomial

∑
i dimQ�

Hi
c(X,F)ti are the higher Euler characteristics of the sheaf F

over X.

Remark 2.9. Let X → B be a fibration with fiber F . Then the well known identity
χ(X) = χ(F )χ(B) does not generalize to higher Euler characteristics. Lemma 2.1
does not generalize (from products) to fibrations. For instance, consider the Hopf
fibration S3 → S2 with fibers S1. Lemma 2.1 (part (ii)) fails in this case:

χ′(S3) = 3 �= 2× 1 + (−2)× 0 = χ(S2)χ′(S1) + χ′(S2)χ(S1).

Proposition 2.10. Let M be a compact oriented manifold of dimension N . For any
integer r � 1, write Symr(M) for the r-th symmetric product of M . The higher
Euler characteristics χj(Sym

r(M)) of Symr(M) are determined by the Betti numbers
bi(M) of M .

Proof. For any nice space X, write P (X) =
∑

i(−)ibi(X)zi ∈ Z[z] for the (graded)
Poincaré polynomial of X. Recall the classical formula of I. G. Macdonald’s [20, 21]
which show that P (Symn(M)) is determined by that of P (M):

∞∑
r=0

P (Symr(M))tr =
(1− zt)b1(M)(1− z3t)b3(M) · · ·
(1− t)b0(M)(1− z2t)b2(M) · · ·

=

j=N∏
j=1

(1− zjt)(−1)j+1bj(M).

Since P (M) determines P (Symr(M)) which in turn determines χj(Sym
r(M)), the

Betti numbers of M determine the integers χj(Sym
r(M)) for all r, j � 0.

Remark 2.11. Macdonald [20, 21] also proved that χ(M) determines χ(Symr(M))
for all r � 0:

∞∑
r=0

χ(Symr(M))tr =
1

(1− t)χ(M)
.

It is unclear if this generalizes to χj for j > 0:
Does the integer χj(M) determine all the integers χj(Sym

r(M)) (r � 1)?

3. Examples of secondary Euler characteristics

For any bounded complex C• of finitely generated abelian groups

· · · → 0→ C0
d−→ C1

d−→ · · ·Cn → 0→ · · · ,
one defines χ(C•) =

∑i=n
i=0 (−1)irank Ci; it is elementary that

χ(C•) =
i=n∑
i=0

(−1)irank Hi(C
•).

We write χ′(C•) =
∑i=n

i=0 (−1)i−1i(rank Ci); this is of interest when χ(C•) = 0.
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Similarly, given any abelian category A and any bounded complex C• of objects
in A, one defines

χ(C•) =
∑
i

(−1)i [Ci] and χ′(C•) =
∑
i

(−1)i−1i [Ci],

which are elements of K0(A). Here [X] denotes the class in K0(A) for any object X
of A.

Some of the well known occurrences of secondary Euler characteristics include

• (Ray–Singer) [23] Let M be a compact oriented manifold without boundary
of dimension N . The Franz–Reidemeister–Milnor torsion (or simply R-torsion)
τ(M,ρ) ∈ R is defined for any acyclic orthogonal representation ρ of the fun-
damental group π1(M), Let K be a smooth triangulation of M and Δj be the
combinatorial Laplacians associated with K and ρ. Then [23, Proposition 1.7]

log τ(M,ρ) =
1

2

i=N∑
i=0

(−1)i+1i log det (−Δi).

Ray–Singer conjectured (and Cheeger–Müller proved) that this is equal to ana-
lytic torsion (which they defined in terms of a Riemannian structure on M).
(It is reasonable to introduce “the torsion Poincaré polynomial”

R(M,ρ)(t) =
∑
i

log det (−Δi)t
i ∈ R[t]; (6)

as its Taylor expansion

R(M,ρ) =
∑
j

cj(M,ρ)(t− 1)j

at t = −1 contains log τ(M,ρ) as c1(M,ρ), the other coefficients cj can be
considered as (logarithms of) higher analytic torsion [6] of M and ρ.)

• (Lichtenbaum) [19] For any smooth projective variety X over a finite field Fq,
the Weil-étale cohomology groups Hi

W (X,Z) give a bounded complex C• (of
finitely generated abelian groups)

C• : · · ·Hi
W (X,Z)

∪θ−−→ Hi+1
W (X,Z) · · · ;

one has χ(C•) = 0 and χ′(C•) is the order of vanishing of the zeta function
Z(X, t) at t = 1.

• (Grayson) [15, §3, p. 103] Let R be a commutative ring and N a finitely gen-
erated projective R-module. If SkCN is the k-th symmetric product of the
mapping cone CN of the identity map on N, then Grayson’s formula for the
k-th Adams operation ψk reads

ψk[N ] = χ′(SkCN).

(This raises the question: Is there a natural interpretation of χj(S
kCN) for

j > 1? )

• (Fried) [12, Theorem 3] Let X be a closed oriented hyperbolic manifold of
dimension 2n+ 1 > 2 and let ρ be an orthogonal representation of π1(X). Write
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Vρ for the corresponding local system on X. The order of vanishing of the Ruelle
zeta function Rρ(s) at s = 0 is given by

2
i=n∑
i=0

(−1)i (n+ 1− i) dim Hi(X,Vρ).

• (Bunke–Olbrich) [5] Given a locally symmetric space of rank one Y = Γ\G/K
and a homogeneous vector bundle V (this depends on a pair σ, λ) and the
associated distribution globalization V−∞ (a complex representation of Γ), the
order of vanishing of the Selberg zeta function ZS(s, σ) at s = λ is given by
χ′(Γ, V∞) (Patterson’s conjecture)∑

i

(−1)i+1i dim Hi(Γ, V∞).

4. K-theoretic variants

K-theory provides another general context to develop higher Euler characteristics.
As in [15], let P be an exact category with a suitable notion of tensor product (bi-

exact), symmetric power and exterior power. Examples include the category P(X) of
vector bundles over a scheme X, the category P(R) of finitely generated projective
modules over a commutative ring R and for a fixed group Γ, the category P(Γ, R)
of representations of Γ on finitely generated projective R-modules. For any object N
in P, let us write [N ] for the class of N in the Grothendieck ring K0(P). For any
bounded complex M over P, we write χ(M) =

∑
i(−1)i[Mi] ∈ K0(P).

Definition 4.1. (i) The higher Euler classes χj(M) of M are defined by

χj(M) =
∑
i

(−1)i−j

(
i

j

)
[Mi] ∈ K0(P), j � 0.

(ii) The Poincaré function PM (t) is defined as

PM (t) =
∑
i

[Mi]t
i ∈ K0(P)[t, t−1].

Clearly, χ0(M) = χ(M) and χ1(M) = χ′(M). If M is concentrated in non-negative
degrees, then PM (t) is the Poincaré polynomial of M . If M [n] is the shifted complex
(so that M [n]i = Mi+n), then tnPM [n](t) = PM (t). Defining QM (u) ∈ K0(P)[u, u−1]
by QM (1 + t) = PM (t), we have (u− 1)nQM [n](u) = QM (u).

Theorem 4.2. Let M and N be bounded complexes in P concentrated in non-negative
degrees.

(i) If χr(M) and χr(N) vanish for 0 � r < j, then

χk(M ⊗N) = 0, for 0 � k < 2j,

χ2j(M ⊗N) = χj(M).χj(N),

χ2j+1(M ⊗N) = χj(M).χj+1(N) + χj+1(M).χj(N).

(ii) If M = CN is the cone of a self-map N → N , then χj+1(M) = χj(N).
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(iii) Let M = Cj(N) = C(· · ·C(N) · · · ) be an j-fold iterated cone on N . Then
χj(M) = χ(N) and χk+j(M) = χk(N) for k � 0,

χ0(M) = 0, . . . , χj−1(M) = 0.

It is unclear if there is a direct proof of the above theorem which does not use
the interpretation of χj(M) as the coefficients of the Taylor expansion of PM (t) at
t = −1.
Proof. The arguments are the same as in Theorem 2.4. Defining QM (u), QN (u) ∈
K0(P)[u] by QM (1 + t) = PM (t) and QN (1 + t) = PN (t), it follows that QM (u) =∑

j χj(M)uj . Now argue as in the proof of Theorem 2.4. This proves (i).
(ii) AsM is the total complex associated with CN , we haveM0 = N0 and, for i > 0,

that Mi = Ni ⊕Ni−1. Thus PM (t) = PN (t)(1 + t) which gives QM (u) = uQN (u).
This proves (ii). Part (iii) follows from (ii) by induction or one can observe that
QM (u) = ujQN (u).

The following corollary is implicit in [15].

Corollary 4.3. Let M be a complex of P concentrated in non-negative degrees. If
χ0(M) �= 0, then M �= CN . If χ1(M) �= 0, then M is not the tensor product of two
acyclic complexes.

Remark 4.4. Theorem 4.2 is compatible with the intuition expressed in [15, p. 104]:

“. . . we regard acyclic complexes as being infinitesimal in size when com-
pared to arbitrary complexes. . . . that we regard doubly acyclic complexes
as being doubly infinitesimal in size when compared to arbitrary com-
plexes. It also suggests that we regard the Adams operation ψk as being
the differential of the functor N �→ SkN from the category of finitely gen-
erated projective modules to itself; . . . ”

Namely, for an acyclic complex C, one has χ0(C) = 0 but not always χ1(C) = 0; for
the tensor product C ×D of acyclic complexes, one has χ0(C ⊗D) = 0 = χ1(C ⊗D)
but not always χ2(C ⊗D) = 0. So an acyclic complex C is like an infinitesimal ε
and the tensor product C ⊗D of acyclic complexes is like ε2, an infinitesimal of
second order. The above text also suggests that for any functor F : P → P, we regard
χ1(F (CN)) as the differential of F and that χj(F (−)) as a higher differential of F
(when evaluated on acyclic complexes or their tensor products). Thus, the vanishing
of χ0(M), χ1(M), . . . , χn(M) means M is like an infinitesimal εn of order n.

One possible answer to Q2 is as follows: the higher Euler characteristics χj provide
non-trivial invariants of acyclic complexes. One has a non-trivial filtration τ• on
the acyclic complexes in P defined for n � 0 by τn = the set of complexes M with
χ0(M) = 0, χ1(M) = 0, . . . , χn(M) = 0 (order of εn or smaller).

4.1. Homological Poincaré polynomials
Let D = Db(P) be the bounded derived category of P (now assumed to be abelian).

The definition of higher Euler characteristics for P does not extend directly to the
category D; though Poincaré polynomials respect short exact sequence of complexes,
they do not respect quasi-isomorphisms:
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• For any short exact sequence of complexes

0→ A→ B → C → 0

in P, one has PB(t) = PA(t) + PC(t) and so

χj(B) = χj(A) + χj(C).

• Suppose that the complexes A and B are quasi-isomorphic. One cannot con-

clude that PA(t) = PB(t). For instance, the complex A = N
idN−−→ N is quasi-

isomorphic to the trivial complex B; then PA(t) = [N ] + [N ]t could be non-zero
whereas PB(t) is always zero.

One may instead consider the homological Poincaré function of a bounded complex
M defined by

Ph
M (t) =

∑
i

[Hi(M)]ti ∈ K0(P)[t, t−1].

This respects quasi-isomorphisms but not short exact sequences:

• If A and B are quasi-isomorphic, then Ph
A(t) = Ph

B(t).

• If 0→ A→ B → C → 0 is a short exact sequence of complexes, then the identity
Ph
B(t) = Ph

A(t) + Ph
C(t) may fail to hold in general.

One can define the homological higher Euler characteristics χh
j (M) of M as the coef-

ficients of the Taylor expansion of Ph
M (t) about t = −1. If the homology h•(M) of M

is concentrated in non-negative degrees, one has

χh
j (M) =

∑
i

(−1)i−j

(
i

j

)
[hi(M)] ∈ K0(P), j � 0.

Theorems 2.4 and 4.2 remain valid with χj replaced with χh
j .

If 0→ A→ B → C → 0 is a short exact sequence of acyclic complexes, one has

χh
1 (B) = χh

1 (A) + χh
1 (C).

(This identity may not hold, if the acyclicity assumption is dropped.)
While χ0(M) = χh

0 (M) (Euler’s identity), the identity χj(M) = χh
j (M) for j > 1

does not hold in general. This is because PM (t) �= Ph
M (t) in general; for instance, if

A = N
idN−−→ N , then Ph

A(t) = 0 but PA(t) could be non-zero.
So it is unclear if there is a good definition of higher Euler characteristics on D.

Remark 4.5. Suppose that the category P has a Z-grading; an important example is
the conjectural category of motives over a given field (the theory of weights give the
Z-grading).

For any object M =
⊕

i Mi, we write Mi for its component of weight i ∈ Z. The
Poincaré function PM (t) ∈ K0P[t, t−1] of M is defined as PM (t) =

∑
i[Mi]t

i. We can
define the higher Euler characteristics χj(M) as the coefficients of the Taylor expan-
sion of PM (t) about t = −1, i.e., they are defined by the identity

PM (t) =
∑
j

χj(M)(1 + t)j .
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5. Final remarks

5.1. Motivic variants

Higher Euler characteristics can be defined in a motivic context.

(i)2 For any subfield k ↪→ C, one has the categoryMAH
k of absolute Hodge motives

[7, p. 5] which has a natural Z-grading coming from weights. Any smooth proper vari-
etyX over k defines an object h(X) ofMAH

k ; using the weight decomposition of h(X),
one gets, as in Remark 4.5, invariants Ph(X)(t) and χj(h(X)); these are the motivic
Poincaré polynomial of X and the motivic higher Euler characteristics χmot

j (X) ∈
K0MAH

k of X. The Betti realization gives a homomorphism r : K0MAH
k [t, t−1]→

Z[t, t−1] of graded rings; the element r(h(X)) is the usual Poincaré polynomial of
the topological space X(C). Thus the motivic higher Euler characteristics of X refine
those of the topological space X(C).

(ii) Motivic measures [22, 21]: Consider the category VarF of varieties (integral
separated schemes of finite type) over a field F . The Grothendieck ring K0VarF of
varieties over F is defined as the quotient of the free abelian group on the set of
isomorphism classes [X] of varieties by the relations [X] = [Y ] + [X\Y ] where Y is
a closed subvariety of X. The multiplication is induced by the product of varieties.
When F is of positive characteristic, one needs also to impose the relation [X] =
[Y ] for every surjective radicial morphism X → Y . A motivic measure μ is a ring
homomorphism

μ : K0VarF → R

to a ring R. The Euler characteristic χc with compact support is the prototypical
motivic measure: χc : K0VarC → Z is a ring homomorphism. Another motivic mea-
sure is the Poincaré characteristic μP : K0VarC → Z[t], determined by the following
property: for any smooth proper variety X, one has μP (X) ∈ Z[t] is the Poincaré
polynomial of the topological space X(C).

As motivic measures are refined Euler characteristics, it is natural that certain
motivic measures lead to refined higher Euler characteristics.

The usual higher Euler characteristics arise as the coefficients of the Taylor expan-
sion about t = −1 of the Poincaré characteristic μP : K0VarC → Z[t]. This can be
generalized as follows. Given a motivic measure μ : K0VarF → A[t] with values in the
polynomial ring over a ring A, we can define the higher motivic measures μj(X) as
the coefficient of tj in the element μ(X) ∈ A[t]. Namely, the following identity holds
in A[t]:

μ(X) =
∑
j

μj(X)tj .

While X �→ μ0(X) gives the motivic measure

K0VarF
μ−→ A[t] →

t �→0
A,

the higher motivic measures X �→ μj(X) are just additive maps μj : K0VarF → A.

2Motivic conjectures predict analogous results over arbitrary fields.
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More generally, one can look at the coefficients χj(X) of the expansion of μ(X) at
t = a for any element a of A, i.e.,

μ(X) =
∑
j

χj(X)(t− a)j ∈ A[t].

The constant term χ0 would be a motivic measure whereas the other coefficients
(higher motivic characteristics) would give additive maps χj : K0VarF → A. Then μ
and χ0 generalize the Poincaré characteristic μP and the Euler characteristic (with
compact support) χc (obtained with t = −1).

Let us indicate another important example. The assignment

X �→ HX(u, v) :=
∑
p,q�0

hp,q(X)upvq,

for smooth projective X gives rise to the Hodge characteristic measure

μH : K0VarC → Z[u, v].

As Z[u, v] = Z[u][v], we take A = Z[u] and t = v. Let a = u. The higher motivic mea-
sures χH

j (X) ∈ A defined by the identity

μH(X) =
∑
j

χH
j (X)(v − u)j

seem to be new in the literature. The motivic measure χH
0 is the Poincaré character-

istic: for any smooth proper variety X, one has χH
0 (X) = μP (X). This follows from

the observation that HX(u, u) = μP (X) (consequence of Hodge theory).

(iii) For any variety X over F , its class [X] in K0VarF is the universal Euler
characteristic (with compact support) of X. This motivic measure corresponds to the
identity map on K0VarF . Since the ring K0VarF has neither a natural grading nor a
natural isomorphism with a polynomial ring, the above discussion does not provide a
definition of the universal Poincaré polynomial or the related universal higher Euler
characteristics (as elements of K0VarF ).

The most natural candidate for a “universal” higher Euler characteristic with com-
pact support is provided by the theory of Chow motives [22], as follows: Consider the
Grothendieck ring K0(Chow(F )) of the rigid symmetric monoidal category Chow(F )
of Chow motives over F (with Q-coefficients). Any smooth proper variety X over F
defines an object h(X) ∈ Chow(F ). The existence of a Chow–Künneth decomposition

h(X) = ⊕ih
i(X) ∈ Chow(F )

permits the definition of the motivic Chow–Poincaré polynomial P(X):

P(X) =
∑
i

[hi(X)]ti ∈ K0(Chow(F )).

The higher Chow–Euler characteristics of X are the coefficients

χChow
j (X) =

∑
i

(−)i−j

(
i

j

)
[hi(X)] ∈ K0(Chow(F ))
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of the expansion

P(X) =
∑
j

χChow
j (X)(t+ 1)j

of P(X) about t = −1. When F is a subfield of C, these refine the invariants defined
above via absolute Hodge motives.

Remark 5.1. Suppose P is a Z-graded neutral Q-linear Tannakian category. For any
object M of P, the higher Euler characteristics χj(Sym

nM) ∈ K0P are determined
by the Poincaré polynomial PM (t): this follows from the motivic Macdonald formula
proved by S. del Baño Rollin [7], [4, §2.6]. From this motivic Macdonald formula, one
deduces a motivic generalization of Proposition 2.10.

5.2. Finite categories
C. Berger and T. Leinster [1, 18] have provided and studied various definitions of

the Euler characteristic of a finite category C. The series Euler characteristic [1, 2.3]
χ(C) is defined to be value at t = −1 of a formal power series fC(t) ∈ Q(t). Define
g(u) ∈ Q(u) by gC(t+ 1) = fC(t); so g(0) = χ(C). Then the higher Euler character-
istics χj(C) of C are the coefficients of the Taylor expansion of g(u) about u = 0
(corresponding to fC(t) about t = −1):

g(u) =
∑
j

χj(C)uj .

Since g could have a pole at u = 0, this even gives a definition of lower Euler charac-
teristics!

We end this paper with the following questions:

1. Given a ring homomorphism f : A→ B between two commutative rings, con-
sider the ideal J of K0(A) defined as

J = Ker(f∗ : K0(A)→ K0(B)).

Given a bounded complex X of finitely generated projective A-modules whose
class lies in J , how to determine the integer r such that the class of X is in
Jr − Jr+1?

2. Is there an analogue of Theorem 2.4 for higher analytic torsion [6]? Is the
analytic Poincare polynomial (6) of a product M ×N determined by that of M
and N?

3. Is there an analogue of our results in the context of Kapranov’s N -complexes
[16]?

Island where all becomes clear.
Solid ground beneath your feet.

The only roads are those that offer access.
Bushes bend beneath the weight of proofs.
The Tree of Valid Supposition grows here

with branches disentangled since time immemorial.
The Tree of Understanding, dazzlingly straight and simple,

sprouts by the spring called Now I Get It.
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The thicker the woods, the vaster the vista:

the Valley of Obviously.

If any doubts arise, the wind dispels them instantly.

Echoes stir unsummoned

and eagerly explain all the secrets of the worlds.

On the right a cave where Meaning lies.

On the left the Lake of Deep Conviction.

Truth breaks from the bottom and bobs to the surface.

Unshakable Confidence towers over the valley.

Its peak offers an excellent view of the Essence of Things.

For all its charms, the island is uninhabited,

and the faint footprints scattered on its beaches

turn without exception to the sea.

As if all you can do here is leave

and plunge, never to return, into the depths.

Into unfathomable life.

—W. Szymborska, Utopia, A large number, 1976

References

[1] C. Berger and T. Leinster. The Euler characteristic of a category as the sum
of a divergent series. Homol. Homotopy Appl., 10(1): 41–51, 2008.

[2] Jean-Michel Bismut and Weiping Zhang. An extension of a theorem by Cheeger
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