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ON THE RELATION OF SPECIAL LINEAR
ALGEBRAIC COBORDISM TO WITT GROUPS

ALEXEY ANANYEVSKIY

(communicated by Charles A. Weibel)

Abstract
We reconstruct derived Witt groups via special linear alge-

braic cobordism. There is a morphism of ring cohomology theo-
ries that sends the canonical Thom class in special linear cobor-
dism to the Thom class in the derived Witt groups. We show
that for every smooth variety X, this morphism induces an iso-
morphism

MSL[⋆]
η∗(X)⊗

MSL
[2⋆]
0 (pt)

W2⋆(pt)→W⋆(X)[η, η−1],

where η is the stable Hopf map. This result is an analogue of the
result by Panin and Walter reconstructing hermitian K-theory
using symplectic algebraic cobordism.

1. Introduction.

The main result of this paper relates special linear algebraic cobordism to derived
Witt groups. It is a variation of the algebraic version of Conner and Floyd’s theorem
[CF66, Theorem 10.2] that reconstructs real K-theory using symplectic cobordism.
The direct algebraic analogue involving symplectic algebraic cobordism and hermitian
K-theory was obtained by Panin and Walter [PW10d]. It claims that for every
smooth variety X there exists a canonically defined natural isomorphism

MSp[⋆]∗ (X)⊗
MSp

[2⋆]
∗ (pt)

KO
[2⋆]
0 (pt)

≃−→ KO[⋆]
∗ (X).

Here KO[⋆]
∗ (−) are Schlichting’s hermitian K-groups [Sch10a, Sch10b, Sch12] and

MSp[⋆]∗ (−) stands for the symplectic algebraic cobordism that is the ring cohomology
theory represented in the motivic stable homotopy category SH(k) by the spectrum
MSp [PW10c]. We use a non-standard notation for the double grading of repre-
sentable cohomology theories that could be rewritten in a more standard way as

A
[n]
i = A2n−i,n; see Section 2 for the details. Symplectic algebraic cobordism is the

universal symplectically oriented cohomology theory [PW10c, Theorem 13.2], and

the above isomorphism is induced by the homomorphism MSp[⋆]∗ (X) −→ KO[⋆]
∗ (X)

arising from the symplectic orientation of hermitian K-theory.
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In fact, not only is hermitian K-theory symplectically oriented, but it is also SL-
oriented; thus by the universality of special linear algebraic cobordism [PW10c,

Theorem 5.9] there is a natural morphism MSL[⋆]
∗ (X) −→ KO[⋆]

∗ (X) and one may ask
whether we can substitute in the above theorem the special linear cobordism for
the symplectic one. In this paper we show that after inverting a certain element

η ∈ MSL
[−1]
−1 (pt) and the corresponding element in KO

[−1]
−1 (pt) one indeed obtains

an isomorphism. The element η arises in the following way. Recall that there is a
spectrum BO representing hermitian K-theory [PW10b], i.e., for this spectrum one

has natural isomorphisms BO
[n]
i (X/U) ∼= KO

[n]
i (X,U). Every represented cohomol-

ogy theory is a module over stable cohomotopy groups π
[⋆]
∗ (pt) in a natural way. Hence

for every motivic space Y we have a structure of π
[⋆]
∗ (pt)-module on MSL[⋆]

∗ (Y ) and

on BO[⋆]
∗ (Y ) and can localize these modules at the stable Hopf map η ∈ π[−1]

−1 (pt)
corresponding to the Σ∞

T -suspension of H : A2 − {0} → P1, H(x, y) = [x : y]. Theo-
rem 7.9 claims that for every small pointed motivic space Y the universal morphism
MSL[⋆]

∗ (Y ) −→ KO[⋆]
∗ (Y ) induces an isomorphism

MSL[⋆]
η∗(Y )⊗

MSL
[2⋆]
0 (pt)

BO
[2⋆]
η0 (pt)

≃−→ BO[⋆]
η∗(Y ).

See Definition 7.1 for the precise meaning of MSL[⋆]
η∗ and BO[⋆]

η∗.
For every smooth variety X the corresponding pointed motivic space X+ is small,

and the above formula could be rewritten as

MSL[⋆]
η∗(X)⊗

MSL
[2⋆]
0 (pt)

KO
[2⋆]
ηS0(pt)

≃−→ KO[⋆]
ηS∗(X),

where ηS ∈ KO
[−1]
−1 (pt) is the element corresponding to η ∈ BO

[−1]
−1 (pt) via the fore-

mentioned isomorphism BO
[−1]
−1 (pt)

∼= KO
[−1]
−1 (pt). In Theorem 6.5 we construct nat-

ural isomorphisms

BO[⋆]
η∗(X) ∼= KO[⋆]

ηS∗(X) ∼= W⋆(X)[η, η−1]

with an appropriate graded ring structure on the right-hand side. Here W⋆(X) stands
for the derived Witt groups defined by Balmer [Bal99]; one can find a comprehensive
survey including definitions and applications of these groups in [Bal05]. Combining
the above observations in Corollary 7.10 we obtain for a smooth variety X a natural
isomorphism

MSL[⋆]
η∗(X)⊗

MSL
[2⋆]
0 (pt)

W2⋆(pt)
≃−→W⋆(X)[η, η−1].

The paper is organized as follows. In Section 2 we recall the general context of
unstable H•(k) and stable SH(k) motivic homotopy categories introduced by Morel
and Voevodsky [MV99, Voe98]. Then we do some preliminary calculations with

stable cohomotopy groups π
[⋆]
∗ staying mainly in the unstable homotopy category

H•(k). In Section 4 we deal with special linear and symplectic orientations and recall
the universality theorems for the algebraic cobordism MSL and MSp. In the next two
sections we deal with hermitian K-theory and the spectrum BO—in particular, we
show that BO[⋆]

η∗(X) is isomorphic to the Laurent polynomial ring over the derived
Witt groups W⋆(X).

The last section is devoted to the main theorem relating MSL-cobordism to the
derived Witt groups. Using Panin and Walter’s result one can easily show that the
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examined homomorphism is surjective and construct a section. The main issue is
to show that the section maps the Thom classes of special linear bundles to the
corresponding Thom classes. It is an easy observation that the claim holds for the
Thom classes of symplectic bundles and, thanks to the theory of characteristic classes
developed in [An15], the general case follows from this observation. Recall that for
an SL-oriented cohomology theory one has a good theory of characteristic classes
only after inverting the stable Hopf map η, for the details see loc. cit. In this case one
has analogues of the projective bundle theorem and the splitting principle. Roughly
speaking, the splitting principle claims that working with SL-oriented cohomology
theories with inverted stable Hopf map one may think that every special linear bundle
of even rank is a direct sum of special linear bundles of rank two. But a special linear
bundle of rank two is a symplectic bundle in a natural way, thus every special linear
bundle of even rank is, in a certain sense, a symplectic bundle. See [An15, Theorem 7]
for the precise statement.

Acknowledgments

The author wishes to express his sincere gratitude to I. Panin for the numerous
discussions on the subject of this paper and to the anonymous referee, whose thorough
comments greatly improved the presentation.

2. Preliminaries on SH(k) and ring cohomology theories.

Throughout this paper k is a field of characteristic different from 2.

Let Sm/k be the category of smooth varieties over k. A motivic space over k
is a simplicial presheaf on Sm/k. Each variety X ∈ Sm/k defines a motivic space
HomSm/k(−, X) constant in the simplicial direction. We write pt for Spec k regarded
as a motivic space. Inverting the weak motivic equivalences in the category of pointed
motivic spaces gives the pointed motivic unstable homotopy category H•(k). The
smash-products of pointed simplicial presheaves induces a symmetric monoidal struc-
ture on H•(k) with the unit given by pt+.

Let T = A1/(A1 − {0}) be the Morel–Voevodsky object. A T -spectrum M is a
sequence of pointed motivic spaces (M0,M1,M2, . . . ) equipped with maps σn : T ∧
Mn →Mn+1. A map of T -spectra is a sequence of maps of pointed motivic spaces that
is compatible with the structure maps. Inverting the stable motivic weak equivalences
as in [Jar00] gives the motivic stable homotopy category SH(k). See loc. cit. for the
discussion of symmetric monoidal structure on SH(k) based on motivic symmetric
spectra.

A pointed motivic space Y gives rise to a suspension T -spectrum

Σ∞
T Y = (Y, T ∧ Y, T ∧ T ∧ Y, . . .).

Put S = Σ∞
T (pt+) for the spherical spectrum. This spectrum is the unit for the

monoidal structure on SH(k) constructed in [Jar00], and the suspension functor

Σ∞
T : H•(k)→ SH(k)

is a strict symmetric monoidal functor.
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Recall that there are two spheres in H•(k), the simplicial one S1,0 = ∆1/∂(∆1)
and S1,1 = (Gm, 1). For integers p, q ⩾ 0 we write Sp+q,q for (S1,1)∧q ∧ (S1,0)∧p and
Σp+q,q for the suspension functor − ∧ Sp+q,q. This functor becomes invertible in the
stable homotopy category SH(k), so we extend the notation to arbitrary integers p, q
in an obvious way.

Any T -spectrum A defines a bigraded cohomology theory on the category of
pointed motivic spaces. Namely, for a pointed motivic space (Y, y) one sets

A
[n]
i (Y, y) = HomSH(k)(Σ

∞
T (Y, y),Σ2n−i,nA)

and A
[⋆]
∗ (Y, y) =

⊕
n,i

A
[n]
i (Y, y). If p− q, q ⩾ 0, one has a canonical suspension iso-

morphism A
[n]
i (Y, y) ∼= A

[n+q]
i−p+2q(Σ

p,q(Y, y)) induced by the permutation isomorphism

S2n−i,n ∧ Sp,q ∼= S2n−i+p,n+q. In the motivic homotopy category there is a canonical
isomorphism T ∼= S2,1, and we put

ΣT : A
[⋆]
∗ (Y, y)

≃−→ A
[⋆+1]
∗ ((Y, y) ∧ T )

for the corresponding suspension isomorphism. See Definition 3.4 for the details.

For a variety X we put A
[n]
i (X) = A

[n]
i (X+,+) for the externally pointed motivic

space (X+,+) associated toX. Groups A
[⋆]
∗ (X) are defined accordingly. Put π

[⋆]
∗ (X) =

S[⋆]∗ (X) to be the stable cohomotopy groups ofX. Given a closed embedding i : Z → X
of varieties, we write Th(i) for X/(X − Z). For a particular case of the zero section
z : X → E of a vector bundle, we put

Th(E) = Th(z) = E/(E −X)

and refer to it as Thom space of E. Recall that for a T -spectrum A a closed embedding
i : Z → X of varieties gives rise to the long exact localization sequence

· · · ∂−→ A
[⋆]
∗ (Th(i))

pA−−→ A
[⋆]
∗ (X)

jA−−→ A
[⋆]
∗ (X − Z)

∂−→ A
[⋆]
∗−1(Th(i)) −→ · · · .

Here j : X − Z → X and p : X → Th(i) are the obvious embedding and projection
morphisms, respectively. The localization sequence is the long exact sequence associ-
ated to the cofibration j : X − Z → X.

A commutative ring T -spectrum is a commutative monoid

(A, mA : A ∧A→ A, eA : S→ A)

in SH(k). The cohomology theory defined by such spectrum is a ring cohomology
theory satisfying a certain bigraded commutativity condition described by Morel (see
below). Recall some facts related to the multiplicative structure which are parallel to
the classical topological ones studied in [Ad74, III.9].

(1) Cross-product: Let Y1 and Y2 be pointed motivic spaces. Then there exists a
functorial bilinear pairing

× : A
[n]
i (Y1)×A[m]

j (Y2)→ A
[n+m]
i+j (Y1 ∧ Y2)



ON THE RELATION OF SPECIAL LINEAR COBORDISM TO WITT GROUPS 209

given by a× b = (mA ∧ σ) ◦ (idA ∧τS2n−i,n,A ∧ idS2m−j,m) ◦ (a ∧ b),

Y1 ∧ Y2
a∧b // A ∧ S2n−i,n ∧A ∧ S2m−j,m

idA ∧τS2n−i,n,A∧idS2m−j,m

ssfffff
fffff

fffff
fffff

ffff

A ∧A ∧ S2n−i,n ∧ S2m−j,m mA∧σ // A ∧ S2(n+m)−(i+j),n+m,

where

τS2n−i,n,A : S2n−i,n ∧A ≃−→ A ∧ S2n−i,n,

σ : S2n−i,n ∧ S2m−j,m ≃−→ S2(n+m)−(i+j),n+m

are canonical permutation isomorphisms.
(2) Cup-product: For a pointed motivic space Y there is a functorial graded ring

structure

∪ : A[⋆]
∗ (Y )×A[⋆]

∗ (Y )→ A
[⋆]
∗ (Y )

given by a ∪ b = ∆A(a× b), where ∆: Y → Y ∧ Y is the diagonal morphism. More-
over, let i1 : Z1 → X and i2 : Z2 → X be closed embeddings of varieties and put
i12 : Z1 ∩ Z2 → X. Then there is a functorial, bilinear and associative cup-product

∪ : A[⋆]
∗ (Th(i1))×A[⋆]

∗ (Th(i2))→ A
[⋆]
∗ (Th(i12))

given by a ∪ b = ∆̃A(a× b), where ∆̃ : Th(i12)→ Th(i1) ∧ Th(i2) is induced by the
diagonal embedding ∆: X → X ×X. In particular, setting Z1 = X, we have Th(i1) =

X+ and therefore obtain an A
[⋆]
∗ (X)-module structure on A

[⋆]
∗ (Th(i2)). We will usually

omit ∪ from the notation.
(3) Module structure over stable cohomotopy groups: The unit morphism eA : S→

A induces a homomorphism of graded rings π
[⋆]
∗ (pt)→ A

[⋆]
∗ (pt). For every pointed

motivic space Y this homomorphism, together with the cross-product, defines a

π
[⋆]
∗ (pt)-bimodule structure on A

[⋆]
∗ (Y ). For a variety X there is a canonical mor-

phism X → pt inducing a homomorphism π
[⋆]
∗ (pt)→ π

[⋆]
∗ (X). We equip A

[⋆]
∗ (X) with

the structure of a graded unital π
[⋆]
∗ (pt)-algebra using the composition π

[⋆]
∗ (pt)→

π
[⋆]
∗ (X)→ A

[⋆]
∗ (X) and cup-product. The unit of A

[⋆]
∗ (X) is usually denoted by 1X =

1AX .

(4) Graded ϵ-commutativity [Mor04, Lemma 6.1.1]: Let ϵ ∈ π[0]
0 (pt) be the element

corresponding under the T -suspension isomorphism to the morphism T → T, x 7→ −x.
Then for every pointed motivic space Y and a ∈ A[n]

i (Y ), b ∈ A[m]
j (Y ), we have

ab = (−1)ijϵnmba.

Recall that ϵ2 = 1pt.

3. Motivic spheres.

In this section we recall certain canonical isomorphisms in the homotopy category
and the definition of the stable Hopf map. Then we carry out a number of computa-
tions in the homotopy category in order to present in a convenient way the connecting
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homomorphism in the localization sequence for the embedding {0} ⊂ A1. The goal
of this section is to show that one can obtain the stable Hopf map applying this
connecting homomorphism to a certain natural element of the cohomotopy groups.
Throughout this section we will write Gm,A1,P1 for the corresponding motivic spaces
pointed by 1, and Gm+,A1

+,P1
+ for the motivic spaces pointed externally.

In order to write down the canonical isomorphisms for the different models of the
motivic spheres, one needs the cone construction.

Definition 3.1. Let i : Y → Y ′ be a morphism of pointed motivic spaces. The space
Cone(i) defined via the cocartesian square

Y
i //

in1

��

Y ′

��
Y ∧∆1 // Cone(i)

is called the cone of the morphism i. Here in1 : Y ∼= Y ∧ pt+ → Y ∧∆1 is induced by
the embedding pt+ = ∂∆1 ⊂ ∆1.

The following isomorphisms are well known; see [MV99, Lemma 2.15, Example
2.20].

Definition 3.2. Set ρ = ρ2 ◦ ρ−1
1 : T

≃−→ Gm ∧ S1
s = S2,1 for the canonical isomor-

phism in the homotopy category defined via

T
ρ1←− Cone(i)

ρ2−→ Gm ∧ S1
s ,

where i stands for the natural embedding Gm → A1 and the isomorphisms ρ1 and ρ2
are induced by the maps ∆1 → pt and A1 → pt, respectively.

Definition 3.3. Put σ = σ−1
2 ◦ σ1 : (A2 − {0}, (1, 1)) ≃−→ Gm ∧ T for the canonical

isomorphism in the homotopy category. It is defined via

(A2 − {0}, (1, 1)) σ1−→ (A2 − {0})/((A1 ×Gm) ∪ ({1} × A1))
σ2←− Gm ∧ T,

where σ1 is induced by the identity map on A2 − {0} and σ2 is induced by the
natural embedding Gm × A1 ⊂ A2 − {0}. Recall that σ1 is an isomorphism since the
space (A1 ×Gm) ∪ ({1} × A1) is A1-contractible, while σ2 is induced by the excision
isomorphism Gm+ ∧ T ∼= (A2 − {0})/(A1 ×Gm), and so is an isomorphism as well.

Definition 3.4. Let A be a T -spectrum, and let Y be a pointed motivic space. Iden-
tifying T ∼= S2,1 via ρ, we denote

ΣT = (idY ∧ρ)A ◦ Σ2,1 : A
[n]
i (Y )

≃−→ A
[n+1]
i (Y ∧ T )

the T -suspension isomorphism.

Definition 3.5. The Hopf map is the morphism of the varieties

H : A2 − {0} → P1

defined via H(x, y) = [x, y]. Pointing A2 − {0} by (1, 1) and P1 by [1 : 1] and taking



ON THE RELATION OF SPECIAL LINEAR COBORDISM TO WITT GROUPS 211

the suspension spectra, we obtain the corresponding morphism

Σ∞
T H ∈ HomSH(k)(Σ

∞
T (A2 − {0}, (1, 1)),Σ∞

T P1).

In order to interpret this morphism as an element of π
[−1]
−1 (pt), we introduce the

following isomorphism. Let ϑ = ρϑ−1
2 ϑ1 ∈ H•(k) be the composition

ϑ : P1 ϑ1−→ P1/A1 ϑ2←− T ρ−→ S2,1.

Here ϑ1 is induced by the identity map on P1 and ϑ2 is the excision isomorphism
given by ϑ2(x) = [x : 1]. The stable Hopf map is the unique element

η ∈ π[−1]
−1 (pt)

∼= π
[1]
0 (Gm ∧ T ) ∼= π

[1]
0 (A

2 − {0}, (1, 1)) ∼=
∼= HomSH(k)(Σ

∞
T (A2 − {0}, (1, 1)),Σ∞

T P1)

subject to the relation

σπ(ΣTΣ
1,1η) = Σ∞

T (ϑ ◦H).

In other words, stable Hopf map η is the element of π
[−1]
−1 (pt) corresponding to

Σ∞
T H via the canonical isomorphisms between motivic spheres and suspension iso-

morphisms. For a commutative ring T -spectrum A we denote by the same letter η

the image of the stable Hopf map in A
[−1]
−1 (pt) under the homomorphism π

[−1]
−1 (pt)→

A
[−1]
−1 (pt) induced by the unit morphism S eA−−→ A.

Definition 3.6. LetA ∈ SH(k) be a commutative ringT -spectrum.Consider a variety
X and an invertible function f ∈ k[X]∗ on X. This function defines an automorphism

fT : X+ ∧ T → X+ ∧ T

via fT (x, t) = (x, f(x)t). We call the element

⟨f⟩A = Σ−1
T (fAT (ΣT 1X)) ∈ A[0]

0 (X)

the symbol associated to f in A.

Remark 3.7. By the very definition we have ⟨−1⟩π = ϵ.

Consider the closed embedding {0} → A1 and the localization sequence

A
[0]
0 (A

1
+)→ A

[0]
0 (Gm+)

∂−→ A
[0]
−1(T ).

Our goal is to prove the following theorem.

Theorem 3.8. Let A ∈ SH(k) be a commutative ring T -spectrum, and let

∂ : A
[0]
0 (Gm+)→ A

[0]
−1(T )

be the connecting homomorphism in the long exact localization sequence for the embed-
ding {0} ⊂ A1. Then for the coordinate function t ∈ k[Gm]∗ we have

∂(⟨−t−1⟩A) = ΣT η.

Using the morphism of cohomology theories π
[⋆]
∗ (−)→ A

[⋆]
∗ (−) induced by the unit

morphism eA : S→ A, one easily sees that it is sufficient to treat the case of A = S.
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For the remaining part of the section we assume that A = S and work with the stable

cohomotopy groups π
[⋆]
∗ (−) = S[⋆]∗ (−).

In order to prove the above theorem we need the next lemmas describing ∂ in a
convenient way. Set δ = Σ−1,0(ρπ)−1∂,

π
[n]
i (Gm+)

δ
��

∂ // π[n]
i−1(T )

π
[n]
i (Gm)

Σ1,0

≃
// π[n]
i−1(Gm ∧ S1

s ).

ρπ≃

OO

Lemma 3.9. For the natural map r : Gm+ → Gm we have δrπ = id.

Proof. The statement of the lemma is equivalent to ∂rπ = ρπΣ1,0. Denote i : Gm →
A1 and i+ : Gm+ → A1

+ the natural embeddings, and let j1 : A1
+ → Cone(i+) and

j2 : Cone(i+)→ Cone(j1) be the natural maps for the cone construction.

Consider the following diagram:

Gm ∧ S1
s Cone(i)

ρ1

≃
//ρ2

≃
oo T

Cone(i+)

j2

��

u

xxqqq
qqq

qqq
q

≃
ψ1

;;wwwwwwwwww
v≃

OO

Gm+ ∧ S1
s

r∧id

OO

Cone(j1)
w

≃
oo

Here ψ1 and w are induced by ∆1 → pt, v is induced by {+} → {1}, and u is induced
by A1

+ → pt. One can check that this diagram is commutative in the homotopy cat-
egory. By the very definition we have

∂rπ = (wj2ψ
−1
1 )πΣ1,0rπ = (wj2ψ

−1
1 )π(r ∧ id)πΣ1,0 = ((r ∧ id)wj2ψ

−1
1 )πΣ1,0;

thus it is sufficient to show

(r ∧ id)wj2ψ
−1
1 = ρ2ρ

−1
1 = ρ,

and this follows from the commutativity of the above diagram.

Suspending δ with ΣT and shifting the indices, we obtain a homomorphism δT =
ΣT δΣ

−1
T ,

π
[n]
i (Gm+ ∧ T )

δT // π[n]
i (Gm ∧ T )

π
[n−1]
i (Gm+)

δ //

ΣT ≃

OO

π
[n−1]
i (Gm).

ΣT ≃

OO
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Put Y = (A2 − {0})/((A1 ×Gm) ∪ ({1} × A1)) and consider the diagram

π
[n]
i ((A2 − {0})/(A1 ×Gm))

ϕπ

≃
//

ψπ
1

��

π
[n]
i (Gm+ ∧ T )

δT
��

π
[n]
i (A2 − {0}, (1, 1)) π

[n]
i (Y )

σπ
1

≃
oo

ψπ
2

iiRRRRRRRRRRRRRRR
σπ
2

≃
// π[n]

i (Gm ∧ T )

(r∧id)π

OO

where ψ1 and ψ2 are induced by the identity map on A2 − {0}, ϕπ is the excision
isomorphism induced by the embedding Gm × A1 ⊂ A2 − {0}, and r : Gm+ → Gm is
the obvious map.

Lemma 3.10. In the above diagram we have

δT = σπ2 (σ
π
1 )

−1ψπ1 (ϕ
π)−1.

Proof. Put δ′T = σπ2 (σ
π
1 )

−1ψπ1 (ϕ
π)−1. By Lemma 3.9 we have

δT (r ∧ id)π = ΣT δΣ
−1
T (r ∧ id)π = ΣT δr

πΣ−1
T = id .

On the other hand, commutativity of the diagram

(A2 − {0})/(A1 ×Gm)

ψ2

''OO
OOO

OOO
OOO

OOO
Gm+ ∧ T

ϕ

≃
oo

r∧id

��
(A2 − {0}, (1, 1))

ψ1

OO

σ1

≃
// Y Gm ∧ T

σ2

≃
oo

implies (r ∧ id)ϕ−1ψ1σ
−1
1 σ2 = id and

δ′T (r ∧ id)π = σπ2 (σ
π
1 )

−1ψπ1 (ϕ
π)−1(r ∧ id)π = id .

Finally, set s1 : Gm+ ∧ T → T and s2 : (A2 − {0})/(A1 ×Gm)→ T for the projec-
tions (x, y) 7→ y and note that s2ϕ = s1. Recall that the localization sequence for the
embedding {0} → A1 admits a splitting yielding

ker δT = ΣT ker ∂ = ΣT (Im(π
[n]
i (A1

+)→ π
[n]
i (Gm+))) =

= ΣT (Im(π
[n]
i (pt+)→ π

[n]
i (Gm+))) = sπ1 (π

[n]
i (T )).

We have s2ψ1 = 0 in the homotopy category, so δ′Tϕ
πsπ2 = 0. Thus we obtain

ker δT = sπ1 (π
[n]
i (T )) = ϕπsπ2 (π

[n]
i (T )) ⊂ ker δ′T .

To sum up, there are two homomorphisms δT , δ
′
T with the same splitting and

ker δT ⊂ ker δ′T . Then for every a ∈ π[n]
i (Gm+ ∧ T ) we have

δT (a− (r ∧ id)πδT (a)) = 0 = δ′T (a− (r ∧ id)πδT (a)) = δ′T (a)− δT (a),

yielding δT = δ′T .

Proof of Theorem 3.8. Consider the morphism m : Gm+ ∧ T → Gm+ ∧ T given by
m(t, x) = (t,−x/t). Unraveling the definitions, we need to show

∂Σ−1
T (mπΣT (1)) = ΣTΣ

−1,−1Σ−1
T (σπ)−1(Σ∞

T (ϑ ◦H)).

The element mπΣT 1 ∈ π[1]
0 (Gm+ ∧ T ) could be represented by the Σ∞

T -suspension of
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the composition

Gm+ ∧ T
H̃1−−→ T

ρ−→ S2,1,

with H̃1 given by H̃1(t, x) = −x/t. We can rewrite this composition as ρH̃1 = ρϑ−1
2 H1,

with H1 : Gm+ ∧ T → P1/A1 given by H1(t, x) = [x : −t]. Hence on the left-hand side
we have ∂Σ−1

T (Σ∞
T (ρ ◦ ϑ−1

2 ◦H1)).
Unraveling the definition of δT , by Lemma 3.10 we obtain

ΣTΣ
−1,0(ρπ)−1∂Σ−1

T = (σπ)−1ψπ1 (ϕ
π)−1,

∂Σ−1
T = ρπΣ1,0Σ−1

T (σπ)−1ψπ1 (ϕ
π)−1.

Thus on the left-hand side we have

ρπΣ1,0Σ−1
T (σπ)−1ψπ1 (ϕ

π)−1(Σ∞
T (ρ ◦ ϑ−1

2 ◦H1)).

Consider the following commutative diagram.

P1 ϑ1

≃
// P1/A1 τ

=
// P1/A1

(A2 − {0}, (1, 1))
ψ1 //

H

OO
H3

55jjjjjjjjjjjjjjjj
(A2 − {0})/(A1 ×Gm)

H2

66llllllllllllll
Gm+ ∧ T

ϕ

≃
oo

H1

OO

HereH1 andH2 are given by (x, y) 7→ [y : −x],H andH3 are given by (x, y) 7→ [x : y],
P1 ∼= P1/A1 is the canonical isomorphism, and τ is given by [x, y] 7→ [y,−x]. Recall
that in the homotopy category τ = id, and thus we have

ψπ1 (ϕ
π)−1(Σ∞

T (ρϑ−1
2 H1)) = Σ∞

T (ρϑ−1
2 H1ϕ

−1ψ1) = Σ∞
T (ρϑ−1

2 ϑ1H) = Σ∞
T (ϑH).

Summing up the above considerations, it is left to show that

ρπΣ1,0Σ−1
T (σπ)−1(Σ∞

T (ϑH)) = ΣTΣ
−1,−1Σ−1

T (σπ)−1(Σ∞
T (ϑH)),

which follows from the definition of ΣT .

4. Special linear and symplectic orientations.

In this section we briefly recall the definitions of different types of orientations.
A detailed exposition can be found in [PW10a, PW10b]. Mostly for the case of
uniformity, only the case of a representable cohomology theory is treated. Fix for this
section a commutative ring T -spectrum A ∈ SH(k) representing a ring cohomology

theory A
[⋆]
∗ (−).

Roughly speaking, an orientation on a cohomology theory is a rule that fixes for
every vector bundle E over every smooth variety X a natural Thom class th(E) ∈
A

[⋆]
∗ (Th(E)) such that

− ∪ th(E) : A
[⋆]
∗ (X)→ A

[⋆+rankE]
∗ (Th(E))

is an isomorphism [PS03]. Particular types of orientation fix such classes only for
vector bundles with additional structure—for example, for symplectic or for special
linear ones. Note that these classes usually do depend on the additional structure, i.e.,
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for the same vector bundle with different symplectic forms one could have different
Thom classes.

Definition 4.1. A special linear bundle over a variety X is a pair (E, λ) with E → X

a vector bundle and λ : detE
≃−→ 1X an isomorphism of line bundles. Here 1X denotes

the trivial line bundle over X.

Definition 4.2. A (normalized) special linear orientation on a ring cohomology the-

ory A
[⋆]
∗ (−) is a rule that assigns to every special linear bundle (E, λ) of rank n over a

smooth variety X a class th(E, λ) ∈ A[n]
0 (Th(E)) satisfying the following conditions

[PW10c, Definition 5.1]:

1. for an isomorphism f : (E, λ)
≃−→ (E′, λ′) (i.e., an isomorphism f : E → E′ sat-

isfying λ = det f ◦ λ′), we have

th(E, λ) = fA th(E′, λ′);

2. for a morphism of smooth varieties r : X ′ → X we have

rA th(E, λ) = th(r∗(E, λ));

3. homomorphisms

− ∪ th(E, λ) : A
[⋆]
∗ (X)→ A

[⋆+n]
∗ (Th(E))

are isomorphisms;

4. we have

th(E1 ⊕ E2, λ1 ⊗ λ2) = qA1 th(E1, λ1) ∪ qA2 th(E2, λ2),

where q1, q2 are projections from E1 ⊕ E2 onto its summands;

5. for the zero bundle 0→ pt over the point we have

th(0) = 1pt ∈ A[0]
0 (pt);

6. for the trivial special linear line bundle 1pt over the point we have

th(1pt, id) = ΣT 1pt ∈ A[1]
0 (T ).

The class th(E, λ) is the Thom class of the special linear bundle. We call a ring coho-
mology theory with a normalized special linear orientation an SL-oriented cohomology
theory.

One can give an analogous definition of the symplectic orientation on a cohomology
theory.

Definition 4.3. A (normalized) symplectic orientation on a ring cohomology theory

A
[⋆]
∗ (−) is a rule that assigns to every symplectic bundle (E, ϕ) of rank n over a

smooth variety X a class th(E, ϕ) ∈ A[n]
0 (Th(E)) satisfying the following conditions

[PW10a, Definition 14.2]:

1. for an isomorphism f : (E, ϕ)
≃−→ (E′, ϕ′) we have

th(E, ϕ) = fA th(E′, ϕ′);
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2. for a morphism of smooth varieties r : X ′ → X we have

rA th(E, ϕ) = th(r∗(E, ϕ));

3. homomorphisms

− ∪ th(E, ϕ) : A
[⋆]
∗ (X)→ A

[⋆+n]
∗ (Th(E))

are isomorphisms;

4. we have
th(E1 ⊕ E2, ϕ1 ⊥ ϕ2) = qA1 th(E1, ϕ1) ∪ qA2 th(E2, ϕ2),

where q1, q2 are projections from E1 ⊕ E2 onto its summands;

5. for the zero bundle 0→ pt over the point we have

th(0) = 1pt ∈ A[0]
0 (pt);

6. for the hyperbolic bundle (H,ϕ) =

(
1pt ⊕ 1pt,

(
0 1
−1 0

))
of rank 2 over the

point, we have

th(H,ϕ) = Σ2
T 1pt ∈ A

[2]
0 (T ∧ T ).

The class th(E, ϕ) is the Thom class of the symplectic bundle.

Lemma 4.4. Let A ∈ SH(k) be a commutative ring T -spectrum representing an SL-
oriented cohomology theory. Let X be a smooth variety, and let f ∈ k[X]∗ be an invert-
ible function. Put fT : 1X → 1X for the isomorphism given by fT (x, t) = (x, f(x)t).
Then

⟨f⟩A ∪ th(1X , id) = th(1X , fT ).

Proof. Functoriality of Thom classes, together with the normalization property, yields
th(1X , id) = ΣT 1X and th(1X , fT ) = fAT (ΣT 1X). Then

⟨f⟩A ∪ th(1X , id) = Σ−1
T (fAT (ΣT 1X)) ∪ ΣT 1X = fAT (ΣT 1X) = th(1X , fT ).

Every symplectic bundle (E, ϕ) has a trivialization of the determinant given by
Pfaffian and can be treated as a special linear bundle (E, λ). More precisely, for
a trivialized symplectic bundle (1⊕2n

X , ϕ), the Pfaffian Pf(ϕ) can be considered as

an isomorphism det1⊕n
X = 1X

≃−→ 1X . Using this isomorphism locally and applying
the well-known property Pf(BTAB) = det(B) Pf(A), which, in particular, yields that
these isomorphisms do not depend on the choice of trivialization, we obtain the desired

isomorphism λ : detE
≃−→ 1X . Thus a special linear orientation on a ring cohomology

theory induces a symplectic one, and a general orientation induces a special linear
one. Hence one has a variety of examples of SL-oriented cohomology theories arising
from the oriented ones. Typical examples of SL-oriented but not oriented cohomol-
ogy theories are hermitian K-theory introduced by Schlichting [Sch10a, Sch12] and
derived Witt groups defined by Balmer [Bal99, Bal05]; we recall the related con-
structions in the next section. Further examples are given by the algebraic cobordism
MSL and MSp [PW10c]. We briefly recall some definitions related to the spectrum
MSL.

Definition 4.5. Let E(n,m) be the tautological vector bundle of rank n over the
Grassmannian Gr(n,m). The special linear Grassmannian is the complement to the
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zero section of detE(n,m),

SGr(n,m) = (detE(n,m))0.

For the canonical projection p : SGr(n,m)→ Gr(n,m) equip

T (n,m) = p∗E(n,m)

with the obvious trivialization λ : det T (n,m)
≃−→ 1SGr(n,m) and refer to it as the tau-

tological special linear bundle of rank n over SGr(n,m). Let Th(n,m) = Th(T (n,m))
be its Thom space. For the tower of the natural monomorphisms

· · · → Th(n,m)→ Th(n,m+ 1)→ Th(n,m+ 2)→ · · ·

denote

MSLn = lim−→
m∈N

Th(n,m).

In order to write down the bonding maps and the monoid structure it is more conve-
nient to work in the category of symmetric T 2-spectra, see [PW10c] for the details.
Sometimes one prefers to work with the spectrum MSLfin with MSLfinn = Th(n, n2).
The natural map MSLfin → MSL becomes an isomorphism in SH(k).

The cobordism cohomology theories are the universal ones in the sense of the
following theorems (see [PW10c, Theorems 12.2, 13.2, 5.9]).

Theorem 4.6. Suppose A is a commutative ring T -spectrum equipped with a normal-

ized symplectic orientation on A
[⋆]
∗ (−) given by Thom classes thA(E, θ). Then there

exists a unique morphism φSp : MSp→ A in SH(k) such that for every symplectic
bundle (E, θ) over every smooth variety X one has

φSp
Th(E)(th

MSp(E, θ)) = thA(E, θ).

Moreover, this morphism is a morphism of commutative ring T -spectra.

Theorem 4.7. Suppose A is a commutative ring T -spectrum equipped with a nor-

malized special linear orientation on A
[⋆]
∗ (−) given by Thom classes thA(E, λ). Then

there exists a morphism φSL : MSL→ A in SH(k) such that

φSL
Th(E)(th

MSL(E, λ)) = thA(E, λ)

for every special linear bundle (E, λ). It satisfies φSL
pt (1

MSL
pt ) = 1Apt.

There is a lim1-obstruction for the morphism from Theorem 4.7 to be a morphism
of commutative ring T -spectra. As we will see shortly, this obstruction vanishes for
small pointed motivic spaces.

Definition 4.8. A pointed motivic space Y is called small if HomSH(k)(Σ
∞
T Y,−)

commutes with arbitrary coproducts.

Lemma 4.9. For a morphism φSL from Theorem 4.7, small pointed motivic spaces
Y, Y ′ and arbitrary elements α ∈ MSL[⋆]

∗ (Y ), α′ ∈ MSL[⋆]
∗ (Y

′) one has

φSL
Y ∧Y ′(α× α′) = φSL

Y (α)× φSL
Y ′ (α′).

In particular, φSL
Y is a homomorphism of π

[⋆]
∗ (pt)-algebras.
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Proof. Suspending, one may pass to

Σp,qα ∈ MSL
[n]
0 (Y ∧ Sp,q), Σp

′,q′α′ ∈ MSL
[n′]
0 (Y ′ ∧ Sp

′,q′).

Since MSL ∼= MSLfin in SH(k), we have

MSL
[n]
0 (Y ∧ Sp,q) = HomSH(k)(Σ

∞
T (Y ∧ Sp,q),Σ2n,nMSL) ∼=

∼= HomSH(k)(Σ
∞
T (Y ∧ Sp,q),Σ2n,nMSLfin) ∼=
∼= HomSH(k)(Σ

−2n,−nΣ∞
T (Y ∧ Sp,q),MSLfin).

By [Voe98, Theorem 5.2] there is a canonical isomorphism

HomSH(k)(Σ
−2n,−nΣ∞

T (Y ∧ Sp,q),MSLfin) ∼=
∼= lim−→

l∈N
HomH•(k)(Y ∧ S

p,q ∧ T∧l−n,Th(l, l2)) =

= lim−→
i∈N

HomH•(k)(Y ∧ S
p,q ∧ T∧i,Th(n+ i, (n+ i)2)).

Note that going through the above isomorphisms, we obtain a map

HomH•(k)(Y ∧ S
p,q ∧ T∧i,Th(n+ i, (n+ i)2))→ MSL

[n]
0 (Y ∧ Sp,q)

given by

f 7→ Σ−i
T (thMSL(T (n+ i, (n+ i)2)) ◦ Σ∞

T f),

with the Thom class thMSL(T (n+ i, (n+ i)2)) arising as the tautological morphism
Σ∞
T Th(n+ i, (n+ i)2)→ Σ2(n+i),n+iMSL. Thus there exists some i ∈ N and

f ∈ HomH•(k)(Y ∧ S
p,q ∧ T∧i,Th(n+ i, (n+ i)2))

such that

ΣiTΣ
p,qα = fMSL thMSL(T (n+ i, (n+ i)2)).

By a similar argument we obtain that

Σi
′

TΣ
p′,q′α′ = f ′MSL thMSL(T (n′ + i′, (n′ + i′)2))

for some i′, p′, q′ ∈ N and f ∈ HomH•(k)(Y
′ ∧ Sp′,q′ ∧ T∧i′ ,Th(n′ + i′, (n′ + i′)2)). Set

m = n+ i,m′ = n′ + i′, and consider the following diagram.

Σ−m
T Σ∞

T MSLfinm ∧ Σ−m′

T Σ∞
T MSLfinm′

thA
m ∧ thA

m′ //

µm,m′

��

thMSL
m ∧ thMSL

m′

**UUU
UUUU

UUUU
UUUU

UUU
A ∧A

µA

��

MSL ∧MSL

φSL∧φSL

88qqqqqqqqqqq

µMSL

��

Σ−m−m′

T Σ∞
T MSLfinm+m′

thA
m+m′ //

thMSL
m+m′

**UUU
UUUU

UUUU
UUUU

UUUU
A

MSL

φSL

88rrrrrrrrrrrr
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Here µm,m′ is induced by the canonical embedding

T (m,m2)× T (m′,m′2)→ T (m+m′, (m+m′)2)

and all the maps th are given by the corresponding Thom classe;, for example, thAm
is induced by

thA(T (m,m2)) ∈ A[m]
0 (Th(m,m2)) ∼= HomSH(k)(Σ

−m
T Σ∞

T MSLfinm , A).

The left and the back squares commute by the multiplicativity property of the Thom
classes. The triangles commute by the choice of φSL. Hence

µA(φ
SL ∧ φSL)(thMSL

m ∧ thMSL
m′ )(Σ−m

T (Σ∞
T f) ∧ Σ−m′

T (Σ∞
T f

′)) =

= φSLµMSL(th
MSL
m ∧ thMSL

m′ )(Σ−m
T (Σ∞

T f) ∧ Σ−m′

T (Σ∞
T f

′)),

and, omitting indices at φSL,

φSL(ΣiTΣ
p,qα× Σi

′

TΣ
p′,q′α′) = φSL(ΣiTΣ

p,qα)× φSL(Σi
′

TΣ
p′,q′α′).

The morphisms φSL
Y and φSL

Y ′ respect suspension isomorphisms, so the claim follows
from the above equality.

5. Schlichting’s hermitian K-theory and Witt groups.

In this section we recall the basic definitions related to hermitian K-groups (also
known as higher Grothendieck–Witt groups), introduced by Schlichting [Sch10a,
Sch10b]. In our exposition we mainly follow [Sch12], which employs the setting
of dg-categories—we refer the reader to loc. cit. for the details. Recall that we are
working over a field k of characteristic different from 2, and thus 1

2 ∈ Γ(X,OX) for
every X.

For a smooth variety X consider the category Vect(X) of vector bundles over X,
and let sPerf(X) = Chb(Vect(X)) be the dg-category of bounded chain complexes in
Vect(X). We equip sPerf(X) with weak equivalences given by quasi-isomorphisms
and duality consisting of the functor E 7→ E∨ = Hom•

OX
(E ,OX) and the canonical

double dual identification canXE : E ≃−→ E∨∨.
Let Z ⊂ X be a closed subset of a smooth variety X with an open complement

U = X − Z. We denote by sPerfZ(X) the full dg-subcategory of sPerf(X) consisting
of the complexes supported on Z (acyclic on U). This category inherits the weak
equivalences and duality from sPerf(X).

In [Sch12, Definition 5.4] Schlichting defines the Grothendieck–Witt spectrum of
a dg-category with weak equivalences and duality. For the considered categories of
chain complexes we denote the corresponding spectra

KO(X) = GW(sPerf(X)), KO(X,U) = GW(sPerfZ(X)).

More generally, we write

KO[n](X) = GW[n](sPerf(X)), KO[n](X,U) = GW[n](sPerfZ(X))

for the Grothendieck–Witt spectra for the nth shifted duality and

KO
[n]
i (X) = πi(GW[n](sPerf(X)), KO

[n]
i (X,U) = πi(GW[n](sPerfZ(X))



220 ALEXEY ANANYEVSKIY

for its homotopy groups. The latter groups are referred to as hermitian K-groups.
There is a homotopy fibration sequence [Sch12, Theorem 9.5]

KO[n](X,U)→ KO[n](X)→ KO[n](U),

and therefore long exact sequences

· · · → KO
[n]
i (X,U)→ KO

[n]
i (X)→ KO

[n]
i (U)

∂−→ KO
[n]
i−1(X,U)→ · · · .

Spectra KO[n](X) and KO[n](X,U) are far from being connected. For i < 0 groups

KO
[n]
i (X) and KO

[n]
i (X,U) can be identified with the derived Witt groups of Balmer

[Bal99], which are defined as follows. Let Db(Vect(X)) and DbZ(Vect(X)) be the

derived categories of Chb(Vect(X)) and ChbZ(Vect(X)), respectively. Equip these cat-
egories with the dualities consisting of the functor (−)∨ and the canonical double dual
identification canXE as above. We denote by Db(Vect(X))[n] and DbZ(Vect(X))[n] the
same derived categories but with nth shifted dualities.

A symmetric object for a triangulated category C with a duality is a pair (A,α)
of A ∈ Ob(C) and a morphism α : A→ A∨ agreeing with the duality. A symmetric
space (A,α) is a symmetric object with α being an isomorphism. There are obvi-
ous notions of the isomorphism of symmetric spaces and of the orthogonal sum
(A,α) ⊥ (B, β) of symmetric spaces. For every symmetric object (A,α) there exists
a canonical symmetric space Cone(A,α) for the 1-st shifted duality; in particular, for
every object A ∈ Ob(C) there is a hyperbolic symmetric space H(A) = Cone(A, 0).
The Grothendieck–Witt group GW(C) of a small triangulated category with dual-
ity is the quotient of the free abelian group on the isomorphism classes of symmetric
spaces by the relations [(A,α) ⊥ (B, β)] = [(A,α)] + [(B, β)] and Cone(A,α) = H(A),
where for the second class of relations we regard A as an object of the triangulated
category with (−1)-st shifted duality. The Witt group W(C) is the quotient of the
Grothendieck–Witt group by the subgroup generated by the classes of the hyperbolic
spaces.

We write

GWn(X) = GW(Db(Vect(X))[n]), GWn(X,U) = GW(DbZ(Vect(X))[n]),

Wn(X) = W(Db(Vect(X))[n]), Wn(X,U) = W(DbZ(Vect(X))[n])

for the corresponding Grothendieck–Witt and Witt groups arising from the derived
category of the vector bundles over a smooth variety X. For i < 0 there are natural
identifications [Sch12, Propositions 5.6 and 6.3]

Θ: KO
[n]
0 (X)

≃−→ GWn(X), Θ: KO
[n]
0 (X,U)

≃−→ GWn(X,U),

Θ: KO
[n]
i (X)

≃−→Wn−i(X), Θ: KO
[n]
i (X,U)

≃−→Wn−i(X,U).

For a smooth variety X and an invertible function s ∈ k[X]∗, we write ⟨s⟩ for the
class

⟨s⟩ = [(1X , s)] ∈ GW0(X)

and

⟨s⟩KO = Θ−1(⟨s⟩) ∈ KO
[0]
0 (X)

for the corresponding element in hermitian K-theory. Let X be a smooth variety, and
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let U, V ⊂ X be open subsets. Tensor product of complexes gives rise to a pairing
[Sch12, Section 5]

∪̇ : KO
[n]
i (X,U)×KO

[m]
j (X,V )→ KO

[n+m]
i+j (X,U ∪ V ),

which is graded-commutative in the following sense:

a∪̇b = (−1)ij⟨−1⟩mnKO∪̇b∪̇a

for a ∈ KO
[n]
i (X,U) and b ∈ KO

[m]
j (X,V ). This pairing coincides with the partially

defined one of Panin and Walter [PW10b, 4.6a, 4.6b], which in turn is a slight
generalization of the pairing constructed by Gille and Nenashev [GN03] for the
derived Witt groups. We briefly recall that one can define Gille–Nenashev paring

⊠ : GWn(X,U)×GWm(X,V )→ GWn+m(X,U ∪ V )

via

[(A•, α)]⊠ [(B•, β)] = [(A• ⊗B•, α⊗̃β)] ∈ GWn+m(X,U ∪ V ),

where α⊗̃β equals α⊗ β up to some signs and identification

A∨
• [n]⊗B∨

• [m] = (A• ⊗B•)
∨[n+m].

This pairing respects hyperbolic spaces and induces a pairing

⊠ : Wn(X,U)×Wm(X,V )→Wn+m(X,U ∪ V ).

Recall that for a ∈Wn(X,U), b ∈Wm(X,V ), one has a⊠ b = (−1)nmb⊠ a.

The identification Θ: KO
[n]
i

≃−→Wn−i, i ⩽ 0, respects multiplication only up to a
certain sign specified in the following lemma.

Lemma 5.1. Let X be a smooth variety, and let U, V ⊂ X be open subsets. Then for
n,m ∈ Z, i, j ⩽ 0 the following diagram commutes:

KO
[n]
i (X,U)×KO

[m]
j (X,V )

∪̇ //

Θ×Θ∼=
��

KO
[n+m]
i+j (X,U ∪ V )

(−1)(m−j)iΘ∼=
��

Wn−i(X,U)×Wm−j(X,V )
⊠ // Wn+m−i−j(X,U ∪ V );

i.e., for a ∈ KO
[n]
i (X,U), b ∈ KO

[m]
j (X,V ) one has

Θ(a∪̇b) = (−1)(m−j)iΘ(a)⊠Θ(b).

Proof. The case of i = j = 0 follows from [Sch12, Section 5]. Recall that by [Sch12,
Proposition 6.3], for i = −1 isomorphisms Θ are given by an exact sequence

K0
H−→ KO

[n]
0

∪̇ηS−−→ KO
[n−1]
−1 → 0

combined with the identification Θ: KO
[n]
0

≃−→ GWn. Here H is the hyperbolic map

and ηS is a certain element of KO
[−1]
−1 (pt). For i < −1 one uses the case of i = −1

and isomorphisms ∪̇ηS : KO
[n+1]
i+1

≃−→ KO
[n]
i . Hence there exist ã ∈ KO

[n−i]
0 (X,U) and
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b̃ ∈ KO
[m−j]
0 (X,V ) such that a = ã∪̇η−iS , b = b̃∪̇η−jS . Moreover, we have Θ(a) = Θ(ã)

and Θ(b) = Θ(̃b). Thus

Θ(a∪̇b) = Θ(ã∪̇η−iS ∪̇b̃∪̇η
−j
S ) = Θ(⟨−1⟩(m−j)i

KO ã∪̇b̃∪̇η−i−jS ) =

= Θ(⟨−1⟩(m−j)i
KO ∪̇ã∪̇b̃) = Θ(⟨−1⟩(m−j)i

KO )⊠Θ(ã)⊠Θ(̃b) =

= Θ(⟨−1⟩(m−j)i
KO )⊠Θ(a)⊠Θ(b) = (−1)(m−j)iΘ(a)⊠Θ(b).

The last equality follows from the fact that ⟨−1⟩ = −1 in the Witt group.

For a special linear bundle (E, λ) of rank n over a smooth variety X, one can
construct a Thom class for hermitian K-theory using the method introduced by
Nenashev for Witt groups [Ne07]. Let p : E → X be the structure map. Consider the
pullback p∗E = E ⊕ E → E. There is a canonical diagonal section s : E → E ⊕ E
that defines a map p∗E∨ → 1E via the pairing p∗E ⊗ p∗E∨ → 1E . This map gives
rise to the Koszul complex

K(E) = (0→ Λnp∗E∨ → Λn−1p∗E∨ → · · · → Λ2p∗E∨ → p∗E∨ → 1E → 0),

which is treated as a chain complex located in homological degrees n through 0. It is
well known that this complex is supported on X. The canonical isomorphism

Ξ(E) : K(E)
≃−→ K(E)∨[n]⊗ det p∗E∨

combined with λ induces an isomorphism

Ξ(E, λ) : K(E)
≃−→ K(E)∨[n].

One can show that (K(E),Ξ(E, λ)) is a symmetric space for the the nth shifted
duality. Denote

thGW(E, λ) = [K(E),Ξ(E, λ)] ∈ GWn(E,E −X)

the corresponding element in the Grothendieck–Witt group. The element

thKO(E, λ) = Θ−1(thGW(E, λ)) ∈ KO
[n]
0 (E,E −X)

represents the Thom class of the special linear bundle (E, λ) for the hermitian K-
theory; in particular, the homomorphisms

−∪̇ thKO(E, λ) : KO
[m]
i (X)

≃−→ KO
[m+n]
i (E,E −X).

are isomorphisms [PW10b, Theorem 5.1].

We finish this section with the following straightforward computations.

Lemma 5.2. Let X be a smooth variety, and let f ∈ k[X]∗. Denote fT : 1X → 1X
the isomorphism given by fT (x, t) = (x, f(x)t). Then

⟨f⟩KO∪̇ thKO(1X , id) = thKO(1X , fT ).

Proof. Follows from the construction of the Thom classes, Lemma 5.1, and straight-
forward computation of tensor product.
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Lemma 5.3. Let ∂ : GW0(Gm)→W1(A1,Gm) be the connecting homomorphism in
the localization sequence for the embedding {0} → A1, and let t ∈ k[Gm]∗ be the coor-
dinate function. Then one has

∂(⟨t⟩) = thW(1pt, id),

where thW(1pt, id) is the Thom class thGW(1pt, id) ∈ GW1(A1,Gm) considered as an
element of W1(A1,Gm).

Proof. In order to compute ∂(⟨t⟩) one should write down the cone for the symmetric
space (A•, t), with A• being the complex concentrated in the zeroth degree A0 = 1A1 .
A straightforward computation shows that this cone coincides with the desired Thom

class, [(1A1
t−→ 1A1 ,Ξ(1A1 , id))].

6. T -spectrum BO and the cohomology theory BO[⋆]
∗ .

In [PW10b] Panin and Walter constructed a commutative ring T -spectrum BO
representing hermitian K-theory in the following precise sense (see [PW10b, Theo-
rem 1.3–1.6] and [PW10d, Lemma 4.4]).

Theorem 6.1. For every smooth variety X and open subset U and for every i, n ∈ Z
there exist canonical functorial isomorphisms γ : BO

[n]
i (X/U)

≃−→ KO
[n]
i (X,U).

1. These isomorphisms agree with connecting homomorphisms ∂ in localization
sequences.

2. The ∪-product on BO[⋆]
∗ (−) arising from the monoid structure of BO agrees with

the ∪̇-product on KO[⋆]
∗ (−).

3. BO[⋆]
∗ (−) is equipped with Thom classes thBO(E, λ) defined for special linear

bundles. These classes satisfy γ(thBO(E, λ)) = thKO(E, λ) and thBO(1X , id) =
ΣT 1X .

4. γ(1) = ⟨1⟩KO and γ(ϵ) = ⟨−1⟩KO.

Corollary 6.2. For a smooth variety X and f ∈ k[X]∗ we have

γ(⟨f⟩BO) = ⟨f⟩KO.

Proof. By the above theorem combined with Lemmas 4.4 and 5.2 we have

γ(⟨f⟩BO)∪̇ thKO(1X , id) = γ(⟨f⟩BO ∪ thBO(1X , id)) =

= γ(thBO(1X , fT )) = thKO(1X , fT ) = ⟨f⟩KO∪̇ thKO(1X , id).

Canceling thKO(1X , id), we obtain the claim.

Lemma 6.3. For the stable Hopf map η ∈ BO
[−1]
−1 (pt) we have γ(η) = ηS, where ηS ∈

KO
[−1]
−1 (pt) is the element corresponding to 1 ∈W0(pt) ∼= KO

[−1]
−1 (pt) (see the proof

of Lemma 5.1 and [Sch12, Sections 6 and 7]).
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Proof. Consider the following diagram:

BO
[0]
0 (Gm)

∂ //

γ ≃
��

BO
[0]
−1(T )

γ ≃
��

BO
[−1]
−1 (pt)

ΣToo

γ ≃
��

KO
[0]
0 (Gm)

∂ //

Θ ≃
��

KO
[0]
−1(A1,Gm)

Θ ≃
��

KO
[−1]
−1 (pt)

∪ thKO(1pt,id)oo

−Θ ≃
��

GW0(Gm)
∂ // W1(A1,Gm) W0(pt)

⊠ thGW(1pt,id)oo

Here ∂ denotes the connecting homomorphisms in the localization sequences for the
embedding {0} → A1. The top half commutes by Theorem 6.1, the lower right square
commutes by Lemma 5.1, the lower left square commutes since Θ is induced by a
natural morphism of spectra [Sch12, Section 7]. By Theorem 3.8 we have

(Θγ(η))⊠ thGW(1pt, id) = (ΘγΣ−1
T ∂(⟨−t−1⟩BO))⊠ thGW(1pt, id).

Using the commutativity of the above diagram, we obtain

(ΘγΣ−1
T ∂(⟨−t−1⟩BO))⊠ thGW(1pt, id) = −∂Θγ(⟨−t−1⟩BO).

Lemma 5.3 together with Corollary 6.2 yield

−∂Θγ(⟨−t−1⟩BO) = −∂(⟨−t−1⟩) = −∂(⟨−t⟩) = −⟨−1⟩⊠ ∂(⟨t⟩) = thW(1pt, id).

Combining the above equalities, we obtain

(Θγ(η))⊠ thGW(1pt, id) = thW(1pt, id) = Θ(ηS)⊠ thGW(1pt, id).

The claim follows via cancellation of the Thom classes and Θ.

The main result of this section states that by inverting the stable Hopf map in
BO[⋆]

∗ (X) one obtains the Laurent polynomial ring over W⋆(X) in η with a certain
commutativity condition. The more precise statement follows.

Definition 6.4. For a smooth variety X let W⋆(X)[η, η−1] be a bigraded (−1,−1)-
commutative Laurent polynomial algebra with deg η = (−1,−1) and deg a = (n, 0)
for a ∈Wn(X); i.e., for a ∈Wn(X), b ∈Wm(X) one has

(a · ηi) · (b · ηj) = (−1)(n−i)(m−j)+ij(b · ηj) · (a · ηi).

We use Gille–Nenashev pairing on W⋆(X); i.e., a · b = a⊠ b for a, b as above.

Define ψ : BO[⋆]
∗ (X)→W⋆(X)[η, η−1] in the following way. For a ∈ BO

[n]
i (X) put

ψ(a) =

{
Θγ(a) · η−i, i < 0
Θγ(a ∪ η2i+2) · η−i, i ⩾ 0.

We claim that ψ is a homomorphism of bigraded algebras. One can easily see that ψ
is additive and respects the grading. In order to check the multiplicativity property,

take a ∈ BO
[n]
i (X), b ∈ BO

[m]
j (X). The case of i < 0, j < 0 follows from Lemma 5.1
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and Theorem 6.1:

ψ(a ∪ b) = Θγ(a ∪ b) · η−i−j = ((−1)(m−j)iΘγ(a)⊠Θγ(b)) · η−i−j =
= (−1)(m−j)i(−1)−(m−j)iΘγ(a) · η−i ·Θγ(b) · η−j = ψ(a) · ψ(b).

The remaining cases are quite the same and straightforward, so we leave the detailed
check to the reader.

Theorem 6.5. The morphism ψ induces an isomorphism of bigraded algebras

ψ̃ : BO[⋆]
∗ (X)[η−1]

≃−→W⋆(X)[η, η−1].

Proof. By Lemma 6.3 we know that

ψ(η) = Θγ(η) · η = η;

thus ψ(η) is invertible and ψ induces a homomorphism

ψ̃ : BO[⋆]
∗ (X)[η−1] −→W⋆(X)[η, η−1].

Recall that ψ : BO
[n]
i (X)→ (W⋆(X)[η, η−1])n,i is an isomorphism for i < 0; thus ψ̃ is

an isomorphism as well.

7. A motivic variant of a theorem by Conner and Floyd.

For this section, fix the canonical morphisms

φSp : MSp→ BO, ψSp : MSp→ MSL

given by Theorem 4.6 and a morphism

φSL : MSL→ BO

given by Theorem 4.7.

Definition 7.1. Let A be a commutative ring T -spectrum, and let Y be a pointed
motivic space. Define

A
[⋆]
η∗(Y ) = A

[⋆]
∗ (Y )⊗

A
[⋆]
∗ (pt)

A
[⋆]
∗ (pt)[η

−1],

A
[n]
ηi (Y ) = (A

[⋆]
∗ (Y )⊗

A
[⋆]
∗ (pt)

A
[⋆]
∗ (pt)[η

−1])
[n]
i

to be the ([1], 1)-periodic ring cohomology theory obtained by inverting the stable

Hopf map η ∈ A[−1]
1 (pt). In other words, we consider A

[⋆]
∗ (Y ) as a π

[⋆]
∗ (pt)-bimodule

(see Section 2) and localize at η ∈ π[−1]
−1 (pt).

Lemma 7.2. For a small pointed motivic space Y , morphisms φSp, φSL, ψSp induce
ring homomorphisms fitting in the commutative triangle

MSp[⋆]η∗(Y )
φSp

η,Y //

ψSp
η,Y

��

BO[⋆]
η∗(Y )

MSL[⋆]
η∗(Y )

φSL
η,Y

99rrrrrrrrrr
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Proof. By the uniqueness part of Theorem 4.6 it follows that φSp = φSLψSp, so the
following triangle commutes:

MSp[⋆]∗ (Y )
φSp

Y //

ψSp
Y

��

BO[⋆]
∗ (Y )

MSL[⋆]
∗ (Y )

φSL
Y

88rrrrrrrrrr

The morphisms φSp, ψSp are morphisms of the monoids; thus φSp
Y and ψSp

Y are homo-

morphisms of π
[⋆]
∗ (pt)-algebras. The last morphism φSL

Y is a π
[⋆]
∗ (pt)-algebra homo-

morphism as well by Lemma 4.9, so the claim follows via localization.

Definition 7.3. For A ∈ SH(k) and a motivic space Y , put

A
[2⋆]
0 (Y ) =

⊕
n∈Z

A
[2n]
0 (Y ).

Recall the following theorem reconstructing hermitian K-theory via algebraic sym-
plectic cobordism [PW10d, Theorem 1.1].

Theorem 7.4. For every small pointed motivic space Y morphism φSp induces an
isomorphism of bigraded rings

φSp
Y : MSp[⋆]∗ (Y )⊗

MSp
[2⋆]
0 (pt)

BO
[2⋆]
0 (pt)

≃−→ BO[⋆]
∗ (Y ).

Corollary 7.5. For every smooth variety X, morphism φSp induces an isomorphism

MSp[⋆]η∗(X)⊗
MSp

[2⋆]
0 (pt)

W2⋆(pt)
≃−→W⋆(X)[η, η−1].

Proof. Isomorphism φSp
Y is an isomorphism of π

[⋆]
∗ (pt)-modules with the module

structure on the left arising from the first factor. Inverting the stable Hopf map
and applying Theorem 6.5 we obtain an isomorphism

φSp
X : MSp[⋆]η∗(X)⊗

MSp
[2⋆]
0 (pt)

BO
[2⋆]
0 (pt)

≃−→W⋆(X)[η, η−1].

Consider the following commutative diagram.

MSp[⋆]η∗(X)⊗
MSp

[2⋆]
0 (pt)

BO
[2⋆]
0 (pt)

φSp
X //

π

��

W⋆(X)[η, η−1]

MSp[⋆]η∗(X)⊗
MSp

[2⋆]
0 (pt)

W2⋆(pt)

φ

55jjjjjjjjjjjjjjjjjj

Here φ and π are induced by φSp and the natural surjection

BO
[2⋆]
0 (pt) ∼= GW2⋆(pt)→W2⋆(pt),

respectively. The map φSp
X is an isomorphism and π is surjective, thus φ is an isomor-

phism.
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The goal of this section is to replace symplectic cobordism in the above isomor-
phisms with the special linear one. Shortening the notation, set

MSL
[⋆]

η∗(Y ) = MSL[⋆]
η∗(Y )⊗

MSL
[2⋆]
0 (pt)

BO
[2⋆]
0 (pt).

By Lemma 7.2 for every small pointed motivic space Y , morphism φSL induces a
natural homomorphism

φSL
η,Y : MSL

[⋆]

η∗(Y ) −→ BO[⋆]
η∗(Y ).

Lemma 7.6. For every small pointed motivic space Y there is a natural homomor-

phism of π
[⋆]
∗ (pt)-algebras

tY : BO[⋆]
η∗(Y )→ MSL

[⋆]

η∗(Y )

such that

1. φSL
η,Y ◦ tY = id,

2. tY (a) = 1⊗ a for every a ∈ BO
[2⋆]
η0 (pt), and

3. tTh(E)(th
BO(T )) = thMSL(T )⊗ 1 for every smooth variety X and every special

linear bundle T = (E, λ) such that there exists a symplectic form ϕ on E com-
patible with trivialization λ.

Proof. The following diagram commutes:

MSp[⋆]η∗(Y )⊗
MSp

[2⋆]
0 (pt)

BO
[2⋆]
0 (pt)

φSp
η,Y //

θY

��

BO[⋆]
η∗(Y )

MSL[⋆]
η∗(Y )⊗

MSL
[2⋆]
0 (pt)

BO
[2⋆]
η0 (pt)

= // MSL
[⋆]

η∗(Y )

φSL
η,Y

OO

Here θY is induced by ψSp
Y . Theorem 7.4 provides that φSp

η,Y is an isomorphism, and

thus we can take tY = θY ◦ (φSp
η,Y )

−1. The first property is clear. The second property
follows from the surjectivity of the natural map

BO
[2⋆]
0 (pt) ∼= GW2⋆(pt)→W2⋆(pt) ∼= BO

[2⋆]
η0 (pt).

For the third property recall that θY and φSp
Y map Thom classes of symplectic

bundles to the corresponding Thom classes, so

tTh(E)(th
BO(T )) = tTh(E)(th

BO(E, ϕ)) = θY (th
MSp(E, ϕ)⊗ 1) =

= thMSL(E, ϕ)⊗ 1 = thMSL(T )⊗ 1.

Now we restrict our attention to the indices ([2⋆], 0), special linear Grassmannians
SGr, and corresponding Thom spaces. Recall the following “symplectic principle” for
the special linear bundles (see [An15, Theorem 7]).

Theorem 7.7. Let T = (E, λ) be a special linear bundle of even rank over a smooth
variety X. Then there exists a morphism of smooth varieties p : Y → X such that
MSL[⋆]

η∗(Y ) is a free MSL[⋆]
η∗(X)-module (via pMSLη) and p∗E has a canonical sym-

plectic form ϕ compatible with the trivialization p∗λ.
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Lemma 7.8. For the homomorphism

tTh(2n,m) : BO
[2⋆]
η0 (Th(2n,m))→ MSL

[2⋆]

η0 (Th(2n,m)),

we have

tTh(2n,m)(th
BO(T (2n,m))) = thMSL(T (2n,m))⊗ 1.

Proof. Put T (2n,m) = (E, λ). Theorem 7.7 provides a morphism of smooth varieties
p : Y → SGr(2n,m) such that pMSLη remains injective after every extension of scalars
since the corresponding module stays free. Moreover, there exists a symplectic form
ϕ on p∗E agreeing with p∗λ.

Consider the following diagram:

MSL
[2⋆]

η0 (Th(p∗E)) BO
[2⋆]
η0 (Th(p∗(E)))

tTh(p∗(E))oo

MSL
[2⋆]

η0 (Th(E))

p̃MSLη

OO

BO
[2⋆]
η0 (Th(E))

p̃BOη

OO

tTh(E)oo

Here p̃ : Th(p∗E)→ Th(E) is induced by the morphism p. Naturality of t yields that
the diagram is commutative. Hence, by functoriality of Thom classes and Lemma 7.6,
we obtain

p̃MSLη tTh(E)(th
BO(T (2n,m))) = tTh(p∗E)p̃

BOη (thBO(T (2n,m))) =

= tTh(p∗E)(th
BO(p∗E, p∗λ)) = tTh(p∗E)(th

BO(p∗E, ϕ)) =

= thMSLη (p∗E, ϕ)⊗ 1 = thMSLη (p∗T (2n,m)⊗ 1) =

= p̃MSLη (thMSL(T (2n,m))⊗ 1).

The claim follows since p̃MSLη is injective.

Theorem 7.9. For every small pointed motivic space Y morphism φSL induces an
isomorphism of bigraded rings

φSL
η,Y : MSL[⋆]

η∗(Y )⊗
MSL

[2⋆]
0 (pt)

BO
[2⋆]
η0 (pt)

≃−→ BO[⋆]
η∗(Y ).

Proof. First we focus on the indices ([2⋆], 0). By Lemma 7.6 it follows that the homo-
morphism

φSL
η,Y : MSL

[2⋆]

η0 (Y ) −→ BO
[2⋆]
η0 (Y )

is surjective. In order to check that its section tY is surjective as well, take an arbitrary

element α⊗ b ∈ MSL
[2⋆]

η0 (Y ). One may assume that α = β ∪ η−n for some n ∈ N and

β ∈ MSL
[2m−n]
−n (Y ) ∼= MSL4m,2m(Σn,nY ). By a similar argument as in Lemma 4.9 we

may assume that

Σ2i
T Σ

n,nβ = gMSL thMSL(T (2m+ 2i, (2m+ 2i)2))

for some i, j ∈ N and g ∈ HomH•(k)((Σ
n,nY ) ∧ T∧2i,Th(2m+ 2i, (2m+ 2i)2)). Set



ON THE RELATION OF SPECIAL LINEAR COBORDISM TO WITT GROUPS 229

r = 2m+ 2i, and consider the following commutative diagram:

MSL
[2⋆+2i+n]

ηn

gMSLη⊗id
��

BO[2⋆+2i+n]
ηn (Th(r, r2))

tThoo

gBOη

��
MSL

[2⋆+2i+n]

ηn (Σ2i
T Σ

n,nY ) BO[2⋆+2i+n]
ηn (Σ2i

T Σ
n,nY )

t
Σ2i
T

Σn,nY
oo

MSL
[2⋆]

η0 (Y )

Σ2i
T Σn,n⊗id ≃

OO

BO
[2⋆]
η0 (Y ).

tYoo

Σ2i
T Σn,n ≃

OO

By Lemma 7.8 and the above considerations we have

tY ((Σ
2i
T Σ

n,n ⊗ id)−1gBOη (thBO(T (r, r2)) ∪ η−n ∪ b)) =
= (Σ2i

T Σ
n,n ⊗ id)−1(gMSLη ⊗ 1)tTh(th

BO(T (r, r2)) ∪ η−n ∪ b) =
= (Σ2i

T Σ
n,n ⊗ id)−1(gMSLη ⊗ 1)(thMSL(T (r, r2)) ∪ η−n ⊗ b) =

= β ∪ η−n ⊗ b = α ∪ b.

Thus the section

tY : BO
[2⋆]
η0 (Y ) −→ MSL

[2⋆]

η0 (Y )

is surjective and φSL
η,Y is an isomorphism for the indices ([2⋆], 0).

In order to obtain the claim for arbitrary indices ([n], i) one should first use the
suspension isomorphisms

MSL
[n]

ηi (Y ) ∼= MSL
[n]

η0 (Y ∧ Si,0), BO
[n]
ηi (Y ) ∼= BO

[n]
η0 (Y ∧ Si,0)

in the case of i > 0 and the analogous ones with ∧Si,0 replaced by ∧Si,i in the case
of i < 0, and then

MSL
[m]

η0 (Y ) ∼= MSL
[2m]

η0 (Y ∧ S2m,m), BO
[m]
η0 (Y ) ∼= BO

[2m]
η0 (Y ∧ S2m,m)

for m > 0 and the similar ones with S2m,m replaced by S−2m,−m for m < 0.

Corollary 7.10. For every smooth variety X, morphism φSL induces an isomor-
phism of bigraded rings

MSL[⋆]
η∗(X)⊗

MSL
[2⋆]
0 (pt)

W2⋆(pt)
≃−→W⋆(X)[η, η−1].

Proof. The proof is similar to that of Corollary 7.5 with MSL replacing MSp.
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Mathématiques de l’IHÉS 90 (1999), 45–143.

[Ne07] A. Nenashev, Gysin maps in Balmer-Witt theory, J. Pure Appl. Algebra
211 (2007), 203–221.

[PS03] I. Panin (after I. Panin and A. Smirnov), Oriented cohomology theories
of algebraic varieties, K-Theory 30 (2003), 265–314.

[PW10a] I. Panin and C. Walter, Quaternionic Grassmannians and Pontryagin
classes in algebraic geometry, arXiv:1011.0649 (2010).

[PW10b] I. Panin and C. Walter, On the motivic commutative spectrum BO,
arXiv:1011.0650 (2010).

[PW10c] I. Panin and C. Walter, On the algebraic cobordism spectra MSL and
MSp, arXiv:1011.0651 (2010).

[PW10d] I. Panin and C. Walter, On the relation of the symplectic algebraic cobor-
dism to hermitian K-theory, arXiv:1011.0652 (2010).

[Sch10a] M. Schlichting, Hermitian K-theory of exact categories, J. K-theory 5
(2010), no. 1, 105–165.

[Sch10b] M. Schlichting, The Mayer-Vietoris principle for Grothendieck-Witt
groups of schemes, Invent. Math., 179 (2010), 349–433.

[Sch12] M. Schlichting, Hermitian K-theory, derived equivalences and Karoubi’s
Fundamental Theorem, arXiv:1209.0848 (2012).

[Voe98] V. Voevodsky, A1-homotopy theory, Doc. Math., Extra Vol. I (1998),
579–604.

Alexey Ananyevskiy alseang@gmail.com

Chebyshev Laboratory, St. Petersburg State University, 14th Line, 29b, Saint Peters-
burg, 199178, Russia


