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MAPPING SPACES FROM PROJECTIVE SPACES

MITSUNOBU TSUTAYA

(communicated by Donald M. Davis)

Abstract
We denote the n-th projective space of a topological monoid

G by BnG and the classifying space by BG. Let G be a well-
pointed topological monoid having the homotopy type of a CW
complex and G′ a well-pointed grouplike topological monoid.
We prove that there is a natural weak equivalence between
the pointed mapping space Map0(BnG,BG

′) and the space
An(G,G′) of all An-maps from G to G′. Moreover, if we sup-
pose G = G′, then an appropriate union of path-components of
Map0(BnG,BG) is delooped.

This fact has several applications. As the first application,
we show that the evaluation fiber sequence Map0(BnG,BG)→
Map(BnG,BG)→ BG extends to the right. As other appli-
cations, we investigate higher homotopy commutativity, An-
types of gauge groups, T fk -spaces and homotopy pullback of

An-maps. The concepts of T fk -space and Cfk -space were intro-
duced by Iwase–Mimura–Oda–Yoon, which is a generalization
of Tk-spaces by Aguadé. In particular, we show that the T fk -

space and the Cfk -space are exactly the same concept and give

some new examples of T fk -spaces.

1. Introduction

In this paper, we study maps between topological monoids which preserve associa-
tivity up to higher homotopy. In homotopy theory, homomorphisms are sometimes too
restrictive. Sugawara [Sug60] studied the condition for a map f : G→ G′ between
topological monoids to be the loop of a map BG→ BG′ between the classifying
spaces. Roughly, his answer is that f is a loop map if f preserves the multiplications
on G and G′ up to infinitely higher homotopy associativity. In the proof of it, he used
the Dold–Lashof construction [DL59]. After that, Stasheff [Sta63b] introduced An-
maps, which are maps between topological monoids preserving n-th homotopy asso-
ciativity. As a generalization of Sugawara’s result, he gave an equivalent condition for
a map being an An-map using the finite stages of the Dold–Lashof construction. The
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n-th Dold–Lashof construction of a topological monoid G is called the n-th projective
space BnG since those of Z/2Z, S1 and S3 are the classical projective spaces RPn,
CPn and HPn, respectively.

We will refine Stasheff’s result using mapping spaces. More precisely, our main
result Theorem 6.1 is the weak equivalence

An(G,G′) ' Map0(BnG,BG
′),

where An(G,G′) is the space of An-maps with An-forms between G and G′, and
Map0(BnG,BG

′) is the space of pointed maps between BnG and BG′. The corre-
spondence of the path-components was already known by Fuchs [Fuc65] for n =∞.

As an application of this result, we prove that the evaluation fiber sequence extends
as

Map0(BnG,BG)→ Map(BnG,BG)→ BG→ BWAn(G,G; eq),

where the spaces Map0(BnG,BG) and Map(BnG,BG) are unions of appropriate
path-components in Map0(BnG,BG) and Map(BnG,BG), respectively, An(G,G; eq)
denotes the space of self-An-equivalences on G, and the functor W is a kind of “cofi-
brant replacement”. This is a generalization of the well-known extension of the eval-
uation fiber sequence

Map0(X,X)→ Map(X,X)→ X → BWMap0(X,X)→ BWMap(X,X),

where Map0(X,X) ⊂ Map0(X,X) and Map(X,X) ⊂ Map(X,X) are the monoids
consisting of homotopy equivalences. This extension can be found in [Got73, May80].
Moreover, our result gives the maximum extension because the path-component
Map(BnG,BG; ιn) of the inclusion ιn : BnG→ BG cannot be delooped in general.
We will give such an example.

This paper is organized as follows. In Section 2, we collect elementary facts about
mapping spaces. In Section 3, some maps between cubes are defined, which will be
used to describe the topological category An. In Section 4, we define the topological
category An of topological monoids and An-maps. In Section 5, we construct the
continuous bar construction functor. In Section 6, we investigate the mapping spaces
from projective spaces and show the above weak equivalence. The rest is devoted to
applications. In Section 7, we give an extension of the evaluation fiber sequence as
above. In Section 8, the relation with our result and various higher homotopy commu-
tativities such as Ck-spaces by Williams [Wil69], Ck-spaces by Sugawara [Sug60],
Ck(n)-spaces by Hemmi–Kawamoto [HK11] and C(k, `)-spaces by Kishimoto–Kono
[KK10] are studied. In Section 9, equivalent conditions for the adjoint bundle of a

principal bundle being trivial are given. In Section 10, we give some application to T fk -
spaces introduced by Iwase–Mimura–Oda–Yoon [IMOY12]. In particular, we show

that a pointed space is a T fk -space if and only if it is a Cfk -space and, as an example,

study when B SU(2) is a T fk -space for a map f : S4 → B SU(2). In Section 11, we
make some remarks on a relation of our result and homotopy pullbacks of An-maps.
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2. Preliminaries on mapping spaces

We collect elementary facts on mapping spaces. We refer to [Hov99, Sections 2.4,
4.2] about the category of compactly generated spaces. We will work in the categories
CG of compactly generated spaces and CG∗ of pointed ones. In these categories,
a map f : X → Y is said to be a weak equivalence if f induces isomorphisms on
homotopy groups with respect to any basepoints x0 ∈ X and f(x0) ∈ Y .

Definition 2.1. For compactly generated spaces X and Y , we denote the map-
ping space between X and Y by Map(X,Y ) which consists of continuous maps
from X to Y as a set. We write the subspace of basepoint preserving maps by
Map0(X,Y ) for pointed spaces X and Y . For a pointed map φ : X → Y , the path-
component of Map(X,Y ) containing φ is denoted by Map(X,Y ;φ). Similarly, we
denote Map0(X,Y ;φ) := Map(X,Y ;φ) ∩Map0(X,Y ). Do not confuse it with the
path-component of Map0(X,Y ) containing φ. Unless otherwise stated, the basepoints
of Map0(X,Y ) and Map(X,Y ) are the constant map.

The functors Map and Map0 satisfy the following exponential laws:

Map(X,Map(Y,Z)) ∼= Map(X × Y, Z),

Map0(X,Map0(Y,Z)) ∼= Map0(X ∧ Y,Z),

where X ∧ Y := (X × Y )/(X × ∗ ∪ ∗ × Y ) denotes the smash product of X and Y .
From this, the evaluation map

Map(X,Y )×X → Y, (f, x) 7→ f(x)

is continuous since it is the adjoint map of the identity map Map(X,Y )→ Map(X,Y ).
Moreover, the composition

◦ : Map(Y, Z)×Map(X,Y )→ Map(X,Z), (g, f) 7→ g ◦ f

is continuous since it is the adjoint of the continuous map

Map(Y, Z)×Map(X,Y )×X → Z, (g, f, x) 7→ g(f(x)).

Similar properties hold for Map0.

Proposition 2.2. Let X and X ′ be pointed CW complexes and Y and Y ′ pointed
spaces. Then, pointed weak equivalences f : X → Y and f ′ : X ′ → Y ′ induce the fol-
lowing weak equivalences:

f# : Map0(Y,X ′)→ Map0(X,X ′),

f# : Map(Y,X ′)→ Map(X,X ′),

f ′# : Map0(X,X ′)→ Map0(X,Y ′),

f ′# : Map(X,X ′)→ Map(X,Y ′).
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Remark 2.3. This proposition obviously generalizes to the case when X and X ′ are
only assumed to have the pointed homotopy types of CW complexes.

Definition 2.4. A pointed space X is said to be well-pointed if the inclusion of the
basepoint ∗ ⊂ X has the homotopy extension property.

If X is well-pointed and Y is pointed, then the evaluation Map(X,Y )→ Y at
the basepoint has the homotopy lifting property and its fiber at the basepoint is
Map0(X,Y ).

Example 2.5. (i) Every pointed CW complex is well-pointed.

(ii) It is well-known that a pointed space X is well-pointed if and only if the pair
(X, ∗) is an NDR pair, that is, there exist a map u : X → [0, 1] and a homotopy
h : [0, 1]×X → X such that u−1(0) = ∗ and the following equalities hold:

H(0, x) = x for x ∈ X,
H(t, ∗) = ∗ for 0 6 t 6 1,

H(1, x) = ∗ if u(x) < 1.

Suppose that there exist a map u : X → [0, 1] and a homotopy h : [0, 1]×X → X
as above. Let K be a compact pointed space. Define u′ : Map(K,X)→ [0, 1] and
H ′ : [0, 1]×Map(K,X)→ Map(K,X) by

u′(f) = maxu(f(K)),

H ′(t, f)(k) = H(t, f(k)).

Then u′ and H ′ satisfy the above properties for the pairs (Map(K,X), ∗) and
(Map0(K,X), ∗). Therefore, the mapping spaces Map(K,X) and Map0(K,X)
are well-pointed.

For a pointed space X, the space ΩX := Map0(S1, X) is called the based loop space
ofX, which has the pointed homotopy type of a CW complex ifX is pointed homotopy
equivalent to a CW complex. By concatenation of loops, ΩX becomes a homotopy
associative H-space with homotopy unit. To make this operation associative and
unital, we use the Moore path technique. The Moore based path space PMX of X is
defined by

PMX := {(g, `) ∈ Map([0,∞), X)× [0,∞) | g(t) = ∗ for t > `}.

There is the evaluation map

e : PMX → X, e(g, `) = g(0),

which is a Hurewicz fibration. The fiber over the basepoint is denoted by ΩMX and
called the Moore based loop space. There is the associative concatenation operation:
for (g, `) ∈ PMX, (g′, `′) ∈ ΩMX, g + g′ : [0,∞)→ X is defined by

(g + g′)(t) =

{
g(t) (t 6 `)
g′(t− `) (t > `)

and (g, `) + (g′, `′) := (g + g′, `+ `′) ∈ PMX. This operation gives continuous maps

+: PMX × ΩMX → PMX,

+: ΩMX × ΩMX → ΩMX
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and makes ΩMX a topological monoid and PMX → X a principal fibration.

For a pointed map f : A→ B and a pointed space X, the cofiber sequence A→
B → Cf induces the homotopy fiber sequence

Map0(ΣA,X)→ Map0(Cf , X)→ Map0(B,X),

where ΣA is the reduced suspension of A and Cf is the reduced mapping cone of f .
The canonical pinch maps

Cf → Cf ∨ ΣA, ΣA→ ΣA ∨ ΣA

give a homotopy associative action of Map0(ΣA,X) on Map0(Cf , X). This also can
be replaced by an associative one as follows. Let us consider the pullback

MapM
0 (Cf , X) //

��

PM Map0(A,X)

e

��
Map0(B,X)

f#

// Map0(A,X).

Then we have a principal fibration

ΩM Map0(A,X)→ MapM
0 (Cf , X)→ Map0(B,X),

which is naturally equivalent to the above homotopy fiber sequence.

3. Certain maps between cubes

Consider the closed interval [0,∞] = [0,∞) ∪ {∞} homeomorphic to the unit inter-
val. Define the following maps:

δtk : [0,∞]×(i−1) → [0,∞]×i,

δtk(t1, . . . , ti−1) = (t1, . . . , tk−1, t, tk, . . . , ti−1),

σk : [0,∞]×(i−1) → [0,∞]×(i−2),

σk(t1, . . . , ti−1) =


(t2, . . . , ti−1) (k = 1)

(t1, . . . , tk−2,max{tk−1, tk}, tk+1, . . . , ti−1) (1 < k < i)

(t1, . . . , ti−2) (k = i)

for 1 6 k 6 i.

We also give a cubical partition of the cube [0,∞]×(i−1). For a multi-index i =
(i1, . . . , ir) consisting of positive integers with i1 + · · ·+ ir = i and ` ∈ [0,∞), define
the map

γ`i : [0,∞]×(r−1) × [0, `]×(i1−1) × · · · × [0, `]×(ir−1) → [0,∞]×(i−1),

γ`i (t; s1, . . . , sr) = (s1, t1 + `, s2, t2 + `, . . . , tr−1 + `, sr)

for t = (t1, . . . , tr−1) ∈ [0,∞]×(r−1) and sk ∈ [0, `]×(ik−1). For example, the images on
[0,∞]×2 is depicted in Figure 1.
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γ`1,1,1

Figure 1: The cubical partition of [0,∞]×2

Lemma 3.1. The following identities hold:

(i) δti1+···+ik−1+m(γ`(i1,...,ir)(t; s1, . . . , sr))

= γ`(i1,...,ik−1,ik+1,ik+1,...,ir)(t; s1, . . . , sk−1, δ
t
m(sk), sk+1, . . . , sr)

for 1 6 m 6 ik and t 6 `,

(ii) δ`+ti1+···+ik−1+m(γ`(i1,...,ir)(t; s1, . . . , sr))

= γ`(i1,...,ik−1,m−1,ik−m,ik+1,...,ir)(δ
t
k(t); s1, . . . , sk−1,

σik−mm (sk), σm−1
1 (sk), sk+1, . . . , sr)

for 1 6 m 6 ik and t > 0,

(iii) σi1+···+ik−1+m(γ`(i1,...,ir)(t; s1, . . . , sr))

= γ`(i1,...,ik−1,ik−1,ik+1,...,ir)(t; s1, . . . , sk−1, σm(sk), sk+1, . . . , sr)

for 1 6 m 6 ik,

(iv) γ`+`
′

(i1,...,ir)(u; γ`(i1,1,...,i1,q1 )(t1; s1,1, . . . , s1,q1), . . . , γ`(ir,1,...,ir,qr )(tr; sr,1, . . . , sr,qr ))

= γ`(i1,1,...,i1,q1 ,...,ir,1,...,ir,qr )(γ
`′

(i1,...,ir)(u; t1, . . . , tr);

s1,1, . . . , s1,q1 , . . . , sr,1, . . . , sr,qr ).

4. The topological category of An-maps between topological
monoids

In this section, we formulate the topological category of topological monoids and
An-maps between them. It is known that there exists a quasicategory of An-spaces and
An-maps between them by [Tsu15], which is justified by the results of Boardman–
Vogt in [BV73]. Hence, using the technique of quasicategories, one can obtain the
topological category of An-spaces from this quasicategory. But our approach is dif-
ferent from this and rather elementary.

As we have seen in Section 2, the source space of a mapping space should be
a CW complex if one wants to consider a well-behaved mapping space. Similarly,
considering maps between topological monoids, we should consider grouplike ones as
target spaces.

Definition 4.1. A topological monoid G is said to be grouplike if the monoid π0(G)
is a group with respect to the multiplication induced from the monoid structure of G.

For example, any Moore based loop space ΩMX is grouplike.
The following lemma is proved by induction on the dimension of the skeletons of A.
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Lemma 4.2. Let G be a grouplike topological monoid and A a pointed space of the
pointed homotopy type of a CW complex. Then, for any pointed map α : A→ G, there
exists a map α′ : A→ G such that the maps

A→ G, a 7→ α(a)α′(a) and a 7→ α′(a)α(a)

are pointed homotopic to the constant map.

This lemma leads the following proposition.

Proposition 4.3. Let i : A→ B be an inclusion having the homotopy extension prop-
erty between spaces of the homotopy types of CW complexes and α : B → G a map to
a grouplike topological monoid. Suppose that Map(A,G) and Map(B,G) are pointed
at the maps α|A and α, respectively. Then the inclusion of the homotopy fiber of
i# : Map(B,G)→ Map(A,G) is equivalent to the map Map0(B/A,G)→ Map(B,G)
given by the multiplication β 7→ αβ. More precisely, the map i# is a principal homo-
topy fibration with fiber Map0(B/A,G).

Proof. If α is the constant map 0, then the proposition is obvious. By Lemma 4.2,
there is a map α′ : B → G such that αα′ and α′α is homotopic to the constant map.
Then there is a commutative diagram

Map(B,G)
i# //

α·
��

Map(A,G)

(α|A)·
��

Map(B,G)
i#
// Map(A,G)

such that the vertical maps are given by multiplying α from the left and are homotopy
equivalences. By these equivalences, the proposition follows from the case when α = 0.

Now, we define An-maps. Our definition is slightly different from Stasheff’s original
one in [Sta63b]. Since we want to make the composition of An-maps associative and
unital, the Moore type definition is adopted.

Definition 4.4. Let G and G′ be topological monoids and f : G→ G′ a pointed map.
A family {fi : [0,∞]×(i−1) ×G×i → G′}ni=1 of maps is said to be an An-form of size
` ∈ [0,∞) if the following conditions hold:

(i) f1 = f ,

(ii) fi(δ
0
k(t); g1, . . . , gi) = fi−1(t; g1, . . . , gkgk+1, . . . , gi),

(iii) fi(δ
t
k(t); g1, . . . , gi) = fk−1(σi−kk (t); g1, . . . , gk)fi−k(σk−1

1 (t); gk+1, . . . , gi)
for t > `,

(iv) fi(t; g1, . . . , gk−1, ∗, gk+1, . . . , gi) = fi−1(σk(t); g1, . . . , gk−1, gk+1, . . . , gi).

The triple f = (f, {fi}ni=1, `) is called an An-map. In particular, if the size ` of the
An-form of f is 0, f is a homomorphism. We denote the space of An-maps between
topological monoids G and G′ by An(G,G′).

We consider that an A1-map is a pair (f, `) consisting of a pointed map f and
a meaningless number `. Unless otherwise stated, we assign a homomorphism the
An-form of size 0.
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Definition 4.5. Let G, G′ and G′′ be topological monoids. For An-maps f =
(f, {fi}ni=1, `) : G→ G′ and f ′ = (f ′, {f ′i}ni=1, `

′) : G′ → G′′, the composition f ′ ◦ f =
(f ′ ◦ f, {Fi}ni=1, `+ `′) is defined as follows. For a multi-index i = (i1, . . . , ir) with
i1 + · · ·+ ir = i, t ∈ [0,∞]×(r−1), sk ∈ [0, `]×(ik−1) and gk ∈ G×ik , define

Fi(γ
`
i (t; s1, . . . , sr); g1, . . . ,gr) = f ′r(t; fi1(s1; g1), . . . , fir (sr; gr)).

Using the identities (i), (ii) and (iii) in Lemma 3.1, it is verified that {Fi} is an
An-form on f ′ ◦ f of size `+ `′.

This composition defines a continuous map

◦ : An(G′, G′′)×An(G,G′)→ An(G,G′′).

By the identity (iv) in Lemma 3.1, it is an associative and unital operation, where the
identity in An(G,G) is given by the identity map idG. Thus we obtain a topological
category as follows.

Definition 4.6. The topological category An consists of topological monoids as ob-
jects and An(G,G′) as a morphism space between each pair G and G′, where the
composition is given as Definition 4.5.

If the underlying map f1 of f ∈ An(G,G′) is a weak equivalence, f is said to be
a weak An-equivalence. The homotopy category π0An of An is the category whose
objects are the same as An and the morphism set between G and G′ is defined by
(π0An)(G,G′) = π0(An(G,G′)).

Definition 4.7. Let G and G′ be topological monoids and f = (f, {fi}ni=1, `) : G→
G′ an An-map. For a left G-space X, a left G′-space X ′ and a map φ : X → X ′, a
family {φi : [0,∞]i ×Gi → G′}ni=0 of maps is said to be an An-form if the following
conditions hold:

(i) φ0 = φ,

(ii) φi(δ
0
k(t); g1, . . . , gi, x) =

{
φi−1(t; g1, . . . , gkgk+1, . . . , gi, x) (k < i)
φi−1(t; g1, . . . , gi−1, gix) (k = i),

(iii) φi(δ
t
k(t); g1, . . . , gi, x) = fk(σi−k+1

k (t); g1, . . . , gk)φi−k(σk−1
1 (t); gk+1, . . . , gi, x)

for t > `,

(iv) fi(t; g1, . . . , gk−1, ∗, gk+1, . . . , gi, x) = fi−1(σk(t); g1, . . . , gk−1, gk+1, . . . , gi, x).

The quintuple φ = (f, {fi}ni=1, `, φ, {φi}ni=1) is called an An-equivariant map through
the An-map f = (f, {fi}ni=1, `). In particular, if the size ` of the An-form of f is 0, φ
is an ordinary equivariant map. We denote the space of An-equivariant maps between
a left G-space X and a left G′-space X ′ by AL

n((G,X), (G′, X ′)). Similarly, we define
An-equivariant maps between a right G-space X and a right G′-space X ′, and the
corresponding mapping space is denoted by AR

n ((X,G), (X ′, G′)).

Definition 4.8. The topological categories AL
n and AR

n are defined as well as An
in Definition 4.6. We define the projection functors AL

n → An and AR
n → An by

(G,X) 7→ G and (X,G) 7→ G, respectively.
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In the following, we will prove various properties about the mapping spaces of An.
It will be convenient to consider the deformation retract

A1
n(G,G′) ⊂ An(G,G′)

consisting of An-forms of size > 1. Assume that G is well-pointed and of the homotopy
type of a CW complex, and that G′ is grouplike. Note that there is a homotopy
pullback diagram

A1
n(G,G′) //

��

Map([0, 1]×(n−1) ×G×n, G′)

��
A1
n−1(G,G′) // Map(∂[0, 1]×(n−1) ×G×n ∪ [0, 1]×(n−1) × TnG,G′),

where the left vertical map is the forgetful map and TnG ⊂ G×n denotes the fat wedge
of G

TnG := {(g1, . . . , gn) ∈ G×n | gk = ∗ for some k}.

Here, the homotopy fiber is determined as Map0(Σn−1G∧n, G′) by using Proposi-
tion 4.3 and does not depend on the choice of the basepoint of A1

n(G,G′). Moreover,
the homotopy fiber has an action

A1
n(G,G′)×Map0(Σn−1G∧n, G′)→ A1

n(G,G′)

defined as follows, which gives the structure of a principal fibration. For α ∈
Map0(Σn−1G∧n, G′) and f = (f, {fi}i, `) ∈ A1

n(G,G′), the action is defined by
f · α := (f, {fi · α}i, `) such that

(fi ·α)(t1, . . . , ti−1; g)=

{
fi(t1, . . . , ti−1; g) (i<n)
fn(t1, . . . , tn−1; g)α(min{t1,1}, . . . ,min{tn−1,1}; g) (i=n),

where α is considered as the map [0, 1]×(n−1) ×G×n → G.

Proposition 4.9. Let G,G′, H,H ′ be topological monoids. Suppose that G and H
are well-pointed and homotopy equivalent to CW complexes. Then the compositions of
weak An-equivalences f = (f, {fi}, `) : G→ H and f ′ = (f ′, {f ′i}, `′) : G′ → H ′ induce
the following weak equivalences:

f# : An(H,G′)
'−→ An(G,G′),

f ′# : An(H,G′)
'−→ An(H,H ′).

Proof. It is sufficient to prove that the maps

f# : A1
n(H,G′)

'−→ A1
n(G,G′),

f ′# : A1
n(H,G′)

'−→ A1
n(H,H ′)

are weak equivalences. For n = 1, it follows from Proposition 2.2. Suppose that the
claim is true for n− 1. The map f# : A1

n(H,G′)→ A1
n(G,G′) is recognized as the

map obtained by taking the homotopy pullback along the horizontal direction of the
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homotopy commutative diagram

A1
n−1(H,G′) //

f#

��

Map(∂[0, 1]×(n−1) ×H×n ∪ [0, 1]×(n−1) × TnH,G′)

f#
1

��

Map([0, 1]×(n−1) ×H×n, G′)oo

f#
1

��
A1
n−1(G,G′) // Map(∂[0, 1]×(n−1) ×G×n ∪ [0, 1]×(n−1) × TnG,G′) Map([0, 1]×(n−1) ×G×n, G′)oo

such that the left square commutes only up to the homotopy defined by {fi}. Since the
vertical maps are weak equivalences, the resulting map f# : A1

n(H,G′)→ A1
n(G,G′)

is a weak equivalence as well.
For f ′#, the claim similarly follows from the diagram

A1
n−1(H,G′) //

f ′#

��

Map(∂[0, 1]×(n−1) ×H×n ∪ [0, 1]×(n−1) × TnH,G′)

f ′1#

��

Map([0, 1]×(n−1) ×H×n, G′)oo

f ′1#

��
A1
n−1(H,H ′) // Map(∂[0, 1]×(n−1) ×H×n ∪ [0, 1]×(n−1) × TnH,H ′) Map([0, 1]×(n−1) ×H×n, H ′).oo

Corollary 4.10. If G and G′ are well-pointed topological monoids of the homotopy
types of CW complexes, then every weak An-equivalence G→ G′ has an inverse in
the homotopy category π0An.

5. Subdivided bar construction functor

Denote the i-dimensional simplex by ∆i. Let X be a right G-space and Y be a left
G-space for a topological monoid G. Then, the n-th bar construction Bn(X,G, Y ) is
defined as

Bn(X,G, Y ) =

 ∐
06i6n

∆i ×X ×G×i × Y

/∼,
for an appropriate simplicial relation ∼.

For our use, it is convenient to replace ∆i by the cubical subdivision Qi such that

Qi = {(t0, . . . , ti) ∈ [0,∞]×(i+1) | tk =∞ for some k}.

The maps δ0
k, σk and γ`i induce the following maps:

δ0
k : Qi → Qi−1 for k = 0, . . . , i,

σk : Qi−1 → Qi for k = 0, . . . , i,

γ`i : Qr−1 × [0, `]×(i0−1) × · · · × [0, `]×(ir−1) → Qi0+···+ir−1 for i = (i0, . . . , ir).

Here, we shift the parametrization to (t0, . . . , ti). For example,

δ0
k(t0, . . . , ti) = (t0, . . . , tk−1, 0, tk, . . . , ti).

Through a homeomorphism [0,∞] ∼= [0, 1], a natural homeomorphism Qi → ∆i for
each i is given by

(t0, . . . , ti)(∈ [0, 1]×(i+1)) 7→ (t0/T, . . . , ti/T )

such that T = t0 + · · ·+ ti, which commutes with the boundary and degeneracy oper-
ators. For i = 2, see Figure 2.
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Figure 2: The cubical subdivision Q2

Consider the topological category AR
n ×An

AL
n defined by the fiber product.

Definition 5.1. Let (X,G, Y ) ∈ AR
n ×An

AL
n. Then the n-th bar construction Bn(X,

G, Y ) is defined by

Bn(X,G, Y ) =

 ∐
06i6n

Qi ×X ×G×i × Y

/∼,
with the following identifications:

(i) (δ0
k(t);x, g1, . . . , gi, y) ∼

 (t;xg1, g2, . . . , gi, y) (k = 0)
(t;x, g1, . . . , gk−1gk, . . . , gi, y) (0 < k < i)
(t;x, g1, . . . , gi−1, giy) (k = i),

(ii) (t;x, g1, . . . , gk−1, ∗, gk+1, . . . , gi, y) ∼ (σk(t);x, g1, . . . , gk−1, gk+1, . . . , gi, y).

The maps ιn2
n1

: Bn1
(X,G, Y )→ Bn2

(X,G, Y ) for n1 6 n2 and ιn : Bn(X,G, Y )→
B(X,G, Y ) := B∞(X,G, Y ) denote the inclusions.

In fact, this construction induces a continuous functor

Bn : AR
n ×An

AL
n → CG

as follows. Let (φ, f, ψ) : (X,G, Y )→ (X ′, G′, Y ′) be a map of size ` ∈ [0,∞) in
AR
n ×An

AL
n. Define a map Bn(φ, f, ψ) : Bn(X,G, Y )→ Bn(X ′, G′, Y ′) by

Bn(φ, f, ψ)(γ`i (t; s0, . . . , sr);x,g0, . . . ,gr, y)
= [t;ψi0(s0;x,g0), fi1(s1; g1), . . . , fir−1(sr−1; gr−1), ψir (sr; gr, y)],

for a multi-index i = (i0 + 1, i1, . . . , ir−1, ir + 1) with i0 + · · ·+ ir = i, t ∈ Qr−1, s0 ∈
[0, `]×i0 , sr ∈ [0, `]×ir , sk ∈ [0, `]×(ik−1) for 0 < k < r, x ∈ X, gk ∈ G×ik and y ∈ Y .
Comparing with the definition of compositions of maps in AR

n ×An AL
n, it is straight-

forward to see that this construction gives a continuous functor Bn : AR
n ×An

AL
n →

CG.
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Definition 5.2. For a topological monoid G, the spaces BnG := Bn(∗, G, ∗) and
BG := B∞G = B(∗, G, ∗) are called the n-th projective space and the classifying space
of G, respectively. We denote EnG := Bn(∗, G,G) and EG := B(∗, G,G) and often
consider the canonical projection EnG→ BnG.

Remark 5.3. Projective spaces and classifying spaces are always path-connected.

Now we collect several technical lemmas. Though most of them are well-known,
we give a proof using the cubical subdivision Qi for consistency.

Lemma 5.4. Let G be a topological monoid, X a right G-space, and Y a left G-
space. Then the following maps are deformation retractions of the canonical inclusions
X ⊂ B(X,G,G) and Y ⊂ B(G,G, Y ), respectively:

B(X,G,G)→ X, [t;x, g1, . . . , gi] 7→ xg1 · · · gi,
B(G,G, Y )→ Y, [t; g1, . . . , gi, y] 7→ g1 · · · giy.

Proof. Define a homotopy κi : Q1 ×Qi → Qi+1 of Qi+1 for each i by

κi(s0, s1; t0, . . . , ti) =

(
s0t0

1 + s0 + t0
, . . . ,

s0ti
1 + s0 + ti

, s1

)
,

which satisfies the following conditions:

κi(δ
0
1 ; t) = δ0

i+1(t),

κi(δ
0
0 ; t) = (0, . . . , 0,∞),

κi(s; δ0
k(t)) = δ0

k(κi−1(s; t)) for 0 6 k 6 i,

κi(s;σk(t)) = σk(κi+1(s; t)) for 0 6 k 6 i.

Note that, for any [t;x,g] ∈ B(X,G,G), we have an equality

[t;x,g] = [δ0
i (t);x,g, ∗].

Then the homotopy H : Q1 ×B(X,G, Y )→ B(X,G, Y ) defined by

H(s, [t;x,g]) = [κi(s, t);x,g, ∗]
is a deformation of B(X,G, Y ) to X. One can prove similarly for Y ⊂ B(G,G, Y ).

Lemma 5.5. Let G and G′ be well-pointed topological monoids, X and X ′ right G-
spaces, and Y and Y ′ left G-spaces. Then the following hold:

(i) The inclusion Bn−1(X,G, Y ) ⊂ Bn(X,G, Y ) has the homotopy extension prop-
erty.

(ii) A map (φ, f, ψ) : (X,G, Y )→ (X ′, G′, Y ′) in AR
n ×An

AL
n induces a weak equiv-

alence Bn(X,G, Y )→ Bn(X ′, G′, Y ′) if the underlying maps of φ, f and ψ are
weak equivalences.

Proof. There is a pushout diagram

∂Qn ×X ×G×n × Y ∪Qn ×X × TnG× Y //

��

Bn−1(X,G, Y )

ιnn−1

��
Qn ×X ×G×n × Y // Bn(X,G, Y ).

Then the left vertical arrow has the homotopy extension property since so do the
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inclusions ∂Qn ⊂ Qn and ∗ ⊂ G. This implies the assertion (i). For the assertion (ii),
the induced map Bn(X,G, Y )→ Bn(X ′, G′, Y ′) is a homotopy pushout along the
horizontal direction of the diagram

Bn−1(X,G, Y )

Bn−1(φ,f,ψ)

��

∂Qn ×X ×G×n × Yoo //

id×φ0×f×n
1 ×ψ0

��

Qn ×X ×G×n × Y

id×φ0×f×n
1 ×ψ0

��
Bn−1(X ′, G′, Y ′) ∂Qn ×X ′ ×G′×n × Y ′oo // Qn ×X ′ ×G′×n × Y ′

such that the left square is given the appropriate homotopy and the right square
strictly commutes. Then the assertion follows by induction on n.

Lemma 5.6. Let G be a well-pointed topological monoid, X a right G-space, and Y
a left G-space. If the action g : Y → Y is a weak equivalence for any g ∈ G, then
the projection Bn(X,G, Y )→ Bn(X,G, ∗) is a quasifibration. Moreover, if G is a
topological group, then the projection Bn(X,G, Y )→ Bn(X,G, ∗) is a fiber bundle.

Proof. The first half follows from applying the well-known criterion [May90, Theo-
rem 2.7]. For the proof of the latter half, see [May75, Theorem 8.2].

Proposition 5.7. Let f : G→ H be a homomorphism between well-pointed grouplike
topological monoids. Then the following sequence of maps is a homotopy fiber sequence

G
f−→ H → B(∗, G,H)→ BG

Bf−−→ BH.

Proof. The sequence of the left three terms is equivalent to the sequence

G→ B(G,G,H)→ B(∗, G,H),

which is a homotopy fiber sequence by Lemma 5.6. Again by Lemma 5.6, the sequence
of the middle three terms is also a homotopy fiber sequence. For the right middle
terms, they also constitute a homotopy fiber sequence since the topological pullback
square

B(∗, G,H)
B(∗,f,idH) //

��

B(∗, H,H)

��
B(∗, G, ∗)

B(∗,f,∗) // B(∗, H, ∗)

is a homotopy pullback as well by Lemma 5.6.

We note that there is a natural homeomorphism B1G ∼= ΣG. By the exponential
law

Map0(ΣG,ΣG) ∼= Map0(G,ΩΣG),

we have a natural map E : G→ ΩΣG.

Lemma 5.8. For a grouplike topological monoid G, the composite

G
E−→ ΩΣG ∼= ΩB1G

Ωι1−−→ ΩBG

is a weak equivalence.
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Proof. Using the contracting homotopy of B(∗, G,G) in the proof of Lemma 5.4, we
obtain the following commutative diagram:

G //

��

EG //

��

BG

ΩBG // PBG // BG.

By Lemma 5.6, the horizontal lines are homotopy fiber sequences. Then, by the
definition of the homotopy κ0, the map G→ ΩBG in this diagram is equal to the
above composite and hence is a weak equivalence.

For n <∞, we define a functor Dn : AR
n → CG by

Dn(X,G) = (Bn(X,G,G) ∪ (Qn+1 ×X ×G×(n+1)))/∼,

with the following identifications:

(i) (δ0
k(t);x, g1, . . . , gn+1)

∼

 [t;xg1, g2, . . . , gn+1, ∗] ∈ Bn(X,G,G) for k = 0
[t;x, g1, . . . , gkgk+1, . . . , gn+1, ∗] ∈ Bn(X,G,G) for 0 < k < n
[t;x, g1, . . . , gn+1] ∈ Bn(X,G,G) for k = n,

(ii) (t;x, g1, . . . , gk−1, ∗, gk+1, . . . , gn+1)
∼ [σk(t);x, g1, . . . , gk−1, gk+1, . . . , gn+1] ∈ Bn(X,G,G).

The induced maps are defined in the similar manner to Bn. Then there are natural
maps

Dn−1(X,G) ⊂ Bn(X,G,G) ⊂ Dn(X,G),

Dn(X,G)→ Bn+1(X,G, ∗), [t;x, g1, . . . , gn+1] 7→ [t;x, g1, . . . , gn+1, ∗],
Dn(X,G)→ X, [t;x, g1, . . . , gn+1] 7→ xg1 · · · gn+1,

for (t;x, g1, . . . , gn+1) ∈ Qn+1 ×X ×G×(n+1). Like the proof of Lemma 5.4, one can
see that the last map is a deformation retraction of the inclusion X ⊂ Dn(X,G). We
denote DnG := Dn(∗, G). The well-known homotopy equivalence EnG ' ΣnG∧(n+1)

comes from the homeomorphism EnG/Dn−1G ∼= ΣnG∧(n+1). We also have a home-
omorphism DnG/EnG ∼= Σn+1G∧(n+1). Then we obtain the well-known homotopy
cofiber sequence

ΣnG∧(n+1) → BnG
ιn+1
n−−−→ Bn+1G→ Σn+1G∧(n+1).

Remark 5.9. The author could not find in the literature that the homotopy equiv-
alence EnG ' ΣnG∧(n+1) can be obtained as above. For example, Stasheff proved
this homotopy equivalence by induction on n and some homology Mayer–Vietoris
sequence in [Sta63a].

Let us consider a map (Dn−1G,En−1G)→ (Dn−1G ∨ ΣnG∧n, En−1G) defined as
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follows: for an element [γ1
i (t; s1, . . . , sr); ∗, g1, . . . , gi] ∈ En−1G,

[γ1
i (t; s1, . . . , sr);∗, g1, . . . , gi] 7→[t;∗, gi1+1 · · · gi1+i2 , . . . , gi1+···+ir−1+1 · · · gi]∈En−1G,

and for an element (δ
tn+1

n+1 (γ1
i (t; s1, . . . , sr)); ∗, g1, . . . , gn) ∈ Qn × ∗ ×G×n,

[δ
tn+1

n+1 (γ1
i (t; s1, . . . , sr)); ∗, g1, . . . , gn] 7→

[s1; g1, . . . , gn]∈ΣnG∧n (r=1)

[δ
tn+1

n+1 (t); ∗, gi1+1 · · · gi1+i2 , . . . , gi1+···+ir−2+1 · · · gi1+···+ir−1
, ∗]∈En−1G (1<r<n)

[δ
tn+1

n+1 (t); ∗, g1, . . . , gn]∈Dn−1G (r=n),

where ΣnG∧n is considered as ΣnG∧n = [0, 1]×n ×G×n/(∂[0, 1]×n ×G×n ∪ [0, 1]×n ×
TnG). This map is depicted in Figure 3. We call this map the pinch map. The pinch
map restricted to En−1G is naturally homotopic to the identity. In the following
lemma, we denote the reduced cone of a pointed space X by CX.

En-1G
Dn-1G

ΣnG^n

Figure 3: The pinch map

Lemma 5.10. Let G be a well-pointed topological monoid and X a right G-space.

(i) Then the pushout of the diagram

Dn−1(X,G)← Bn−1(X,G,G)→ Bn−1(X,G, ∗)

is naturally homeomorphic to Bn(X,G, ∗) by the map induced from the map
Dn−1(X,G)→ Bn(X,G, ∗) as above and the inclusion ιnn−1 : Bn−1(X,G, ∗)→
Bn(X,G, ∗).

(ii) There exists a natural map (CEn−1G,En−1G)→ (Dn−1G,En−1G) that
restricts to the identity on En−1G. This map induces a diagram

CEn−1G //

��

CEn−1G ∨ ΣnG∧n

��
Dn−1G // Dn−1G ∨ ΣnG∧n

commutative up to homotopy that restricts to the natural homotopy on En−1G,
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where the horizontal arrows represent the pinch maps and the right vertical map
is the identity on ΣnG∧n.

Proof. It is not difficult to observe that the naturally induced map from the pushout
in (i) to Bn(X,G, ∗) is a homeomorphism. The inverse map is given by the pushout
square as in the proof of Lemma 5.5. Then the assertion (i) follows.

We regard the reduced cone CEn−1G as

CEn−1G = Q1 × En−1G/(Q1 × ∗ ∪ δ0
1 × En−1G).

Then the map κn−1 in the proof of Lemma 5.4 induces a natural map

(CEn−1G,En−1G)→ (Dn−1G,En−1G).

For this map, it is straightforward to see the desired homotopy commutativity of the
diagram in (ii).

For a space X, the space WX := |Sing(X)| defined to be the realization of the
simplicial complex of singular simplices of X is naturally a CW complex. There is
a natural weak equivalence WX → X. In particular, if G is a topological monoid or
group, thenWG is a CW complex equipped with the natural structure of a topological
monoid or group, respectively, which is given by a cellular map WG×WG→WG.
Moreover, the natural weak equivalence WG→ G is a homomorphism. If G is a
topological group, so is WG. If X is a right G-space, then WX is a right WG-space
with the cellular action WX ×WG→WX and the natural maps WX → X and
WG→ G preserve the action.

Lemma 5.11. Let G be a well-pointed topological monoid, X a right G-space, and
Y a left G-space, all of which have the homotopy types of CW complexes. Then
Bn(X,G, Y ) has the homotopy type of a CW complex. In particular, the natural map
Bn(WX,WG,WY )→ Bn(X,G, Y ) is a homotopy equivalence.

Proof. Using the homotopy invariance of homotopy pushout, this lemma is similarly
proved as in Lemma 5.5.

6. Mapping spaces from projective spaces

Now, let us prove our main theorem.

Theorem 6.1. Let G be a well-pointed topological monoid having the homotopy type
of a CW complex and G′ a well-pointed grouplike topological monoid. Then the fol-
lowing composite is a weak equivalence:

An(G,G′)
Bn−−→ Map0(BnG,BnG

′)
(ιn)#−−−→ Map0(BnG,BG

′).

Proof. We prove this theorem by induction. For n = 1, the composite

Map0(G,G′)
Σ−→ Map0(ΣG,ΣG′)

(ι1)#−−−→ Map0(ΣG,BG′) ∼= Map0(G,ΩBG′)

is equal to ζ#, where ζ : G′ → ΩBG′ is as in Lemma 5.8. Then, the composite (ι1)# ◦
B1 is a weak equivalence.
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Suppose that the composite (ιn−1)# ◦Bn−1 is a weak equivalence. Consider the
following homotopy commutative diagram of homotopy fiber sequences (see Section 4
for the definition of A1

n):

Map0(Σn−1G∧n, G′) //

(ι1)#◦Σ
��

A1
n(G,G′) //

��

A1
n−1(G,G′)

'
��

Map0(ΣnG∧n, BG′) // Map0(BnG,BG
′)

(ιnn−1)#

// Map0(Bn−1G,BG
′),

where the homotopy fibers and maps between them are determined by the obser-
vation in Section 4 and Lemma 5.10. Moreover, one can see that the vertical maps
preserve principal actions up to homotopy. Since the central vertical arrow induces
an surjection on π0 by Proposition 6.3, which will be proved later, then it is a weak
equivalence.

For n =∞, the result follows since the projections A1
n(G,G′)→ A1

n−1(G,G′) and
Map0(BnG,BnG

′)→ Map0(BnG,BG
′) have the homotopy lifting property, and

A1
∞(G,G′) and Map0(BG,BG′) are the limits along the sequences of these projec-

tions, respectively.

To complete the proof, all we have to show is that the composite (ιn)# ◦Bn induces
the surjection on π0 for n <∞. First, we consider the case when G′ is a topological
group.

Lemma 6.2. Under the setting in Theorem 6.1, suppose that G′ is a topological group
and n <∞. Then the composite (ιn)# ◦Bn induces the surjection on π0.

Proof. We show this by induction on n. Let F : BnG→ BG′ be a pointed map.
Suppose that there exists an An−1-map f = (f, {fi}n−1

i=1 , `) such that F restricts to
ιn−1 ◦Bn−1f on Bn−1G. Since EG′ → BG′ is a fiber bundle by Lemma 5.6, there
exists a dotted arrow h in the diagram

Dn−2G
Dn−2f //

��

EG′

��
Dn−1G //

h

;;

BG′

such that this diagram commutes, where the arrow Dn−1G→ BG′ is the composite

Dn−1G→ BnG
F−→ BG′. Then one can extend the An−1-form of f to the An-form

{fi}ni=1 uniquely such that the restriction of h to En−1G→ En−1G
′ coincides with

En−1f . Note that h : Dn−1G→ EG′ is homotopic to the composite Dn−1G
Dn−1f−−−−→

Dn−1G
′ → EG′ rel En−1G. Therefore, by (i) of Lemma 5.10, F is homotopic to

Bnf .

Proposition 6.3. Under the setting in Theorem 6.1, the composite (ιn)# ◦Bn in-
duces the surjection on π0 for general G′ and n <∞.

Proof. Considering the weak equivalences WG′ → G′ and BWG′ → BG′, we may
assume that G′ has the homotopy type of a CW complex by Proposition 4.9. By
the results on simplicial homotopy theory (for example, see [May67]), we can find
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a topological group G̃ which is a CW complex such that the classifying space BG̃
is homotopy equivalent to BG′, where we use the fact that BG′ has the homotopy
type of a CW complex by Lemma 5.11. Then, by Theorem 6.1 for G′ and G̃ and
Corollary 4.10, there exists an A∞-equivalence G′ → G̃. Combining Proposition 4.9
and Lemma 5.5 and 6.2, we obtain the desired surjectivity.

This completes the proof of Theorem 6.1.

Let X be a path-connected well-pointed space of the homotopy type of a CW
complex. Then one can show that the Moore based loop space ΩMX is a well-pointed
grouplike topological monoid having the homotopy type of a CW complex.

Remark 6.4. Let X be a well-pointed space of the homotopy type of a CW complex.
Then there is a natural homotopy equivalence into the path-component containing
the basepoint

BΩMX = B(∗,ΩMX, ∗) '←− B(PMX,ΩMX, ∗)→ X,

where the left arrow is induced by the map PMX → ∗ and the right arrow is induced
by the evaluation e : PMX → X. This homotopy equivalence is checked by the similar
argument to the proof of the following corollary.

Through this homotopy equivalence, Theorem 6.1 is recognized as the adjunction

An(G,ΩMX) ' Map0(BnG,X)

in certain sense. We will call the correspondence of the homotopy classes through
this weak equivalence or that of Theorem 6.1 as the adjoint. With respect to this
adjunction, we consider the unit map as in the next corollary.

Remark 6.5. Let G be a well-pointed topological monoid and X a pointed space.
Norio Iwase pointed out to the author that the weak equivalence

An(G,ΩMX) ' Map0(BnG,X)

stated above is in fact a homotopy equivalence. The inverse map of this equivalence
is given as in Stasheff’s lifting-extension argument in the proof of [Sta63b, Theo-
rem 4.5], which can be done continuously.

Remark 6.6. As in [Sta63a] and [IM89], projective spaces and An-maps are defined
for An-spaces as well. Then it is natural to ask whether Theorem 6.1 can be gener-
alized for an An-space G and an A∞-space G′ or not. This might be carried out but
needs many preparations about An-spaces. This problem will be postponed for now.

Corollary 6.7. Let G be a well-pointed topological monoid having the homotopy type
of a CW complex. Then there exists an An-map η : G→ ΩMBnG such that the adjoint
ιn ◦Bnη : BnG→ BΩMBnG is a homotopy equivalence and there is a homotopy com-
mutative diagram
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BnG
ιn◦Bnη // BΩMBnG

BnG B(PMBnG,Ω
MBnG, ∗)

e∗oo q // BΩMBnG,

where the map e∗ is induced from the evaluation e : PMBnG→ BnG and q from the
map PMBnG→ ∗. Moreover, the composite

A∞(ΩMBnG,G
′)→ An(ΩMBnG,G

′)
η#−−→ An(G,G′)

is a weak equivalence for any grouplike topological monoid G′.

Proof. The first half follows from the following commutative diagram and Theo-
rem 6.1:

ΩMBnG

��

ΩMBnG

��

ΩMBnG

��
PMBnG

��

B(PMBnG,Ω
MBnG,Ω

MBnG)

��

oo // B(∗,ΩMBnG,Ω
MBnG)

��
BnG B(PMBnG,Ω

MBnG, ∗)oo // B(∗,ΩMBnG, ∗).

The latter half can be checked by the following commutative diagram:

A∞(ΩMBnG,G
′) // An(ΩMBnG,G

′)
η# // An(G,G′)

A∞(ΩMBnG,WG′) //

'

OO

'
��

An(ΩMBnG,WG′)
η# //

'

OO

'
��

An(G,WG′)

'

OO

'
��

Map0(BΩMBnG,BWG′)
(ιn)# // Map0(BnΩMBnG,BWG′)

(Bnη)#// Map0(BnG,BWG′),

where the composite of the arrows in the bottom row is a weak equivalence.

Remark 6.8. The An-map η : G→ ΩMBnG has been studied by Stasheff in [Sta70].
Later, McGibbon [McG82] proved that η is never an An+1-map for any connected
non-contractible CW complex G.

7. Application: evaluation fiber sequences

For simplicity, we discuss only about topological groups rather than general topo-
logical monoids. But, using the technique of simplicial homotopy theory as in the
proof of Proposition 6.3, our result may admit some generalization.

For the fundamental facts on the space of bundle maps, see Gottlieb’s paper
[Got72]. Let G be a well-pointed topological group, B a well-pointed space of the
homotopy type of a CW complex and P a principal G-bundle over B classified by
ε : B → BG. The gauge group G(P ) of P is the topological group consisting of the
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G-equivariant self maps on P that induces the identity on the quotient P/G ∼= B.
Denote the space of G-equivariant maps P → EG by E(P,EG). The gauge group
G(P ) acts on E(P,EG) from the right by composition. Then there is a Serre fibra-
tion β : E(P,EG)→ Map(B,BG; ε) which assigns the induced map on the quotient
P/G = B → EG/G = BG. Moreover, it is known that β is a principal G(P )-fibration
and πi(E(P,EG)) = 0 for all i > 0. Let ρ : E(P,EG)→ EG be the evaluation at the
basepoint. This map is equivariant through the homomorphism ρ : G(P )→ G(G) ∼=
G defined by the evaluation at the basepoint. Define the subspace E0(P,EG) :=
ρ−1(∗) ⊂ E(P,EG) and the closed subgroup G0(P ) := ρ−1(∗) ⊂ G(P ). One can check
that β : E0(P,EG)→ Map0(B,BG; ε) is a Serre fibration with a principal action by
G0(P ) and πi(E0(P,EG)) = 0 for all i > 0.

For g ∈ G, the conjugation and the left translation

αg : G→ G, αg(x) = gxg−1,

Lg : G→ G, Lg(x) = gx

induce a G-equivariant map Eαg := B(∗, αg, Lg) : EG→ EG and a map Bαg : BG→
BG. These maps satisfy Eαgg′ = Eαg ◦ Eαg′ and Bαgg′ = Bαg ◦Bαg′ , and the fol-
lowing diagram commutes:

EG
Eαg //

��

EG

��
BG

Bαg // BG.

From now on, we use the notation E := E(P,EG), E0 := E0(P,EG), G := G(P ),
G0 := G0(P ), M := Map(B,BG; ε) and M0 := Map0(B,BG; ε) for simplicity of dia-
grams. Following [KK10, Section 6], consider free actions

G × (EG× E0)→ EG× E0, (ϕ, (u, f)) 7→ (uρ(ϕ)−1, Eαρ(ϕ) ◦ f ◦ ϕ−1),

G× (EG×M0)→ EG×M0, (g, (F, u)) 7→ (ug−1, Bαg ◦ F ).

Here, the induced map from G into each fiber of the Serre fibration E0 × EG→
M0 ×G EG is a homeomorphism.

Let us consider the commutative diagram

G // EG× E0 // EG×GM0

WG

OO

// B(WEG×WE0,WG,WG)

OO

��

// B(WEG×WE0,WG, ∗)

OO

��
WG // B(∗,WG,WG) // B(∗,WG, ∗)

WG

��

// B(WE ,WG,WG)

��

OO

// B(WE ,WG, ∗)

��

OO

G // E // M.
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Then each row is a Serre fibration and each vertical arrow is a weak equivalence. By
the similar argument, we obtain the following commutative diagram:

EG×M0
//

//

EG×GM0
// BG

B(WEG×WE0,WG0, ∗)

OO

��

//

//

B(WEG×WE0,WG, ∗)

OO

��

// B(WEG,WG, ∗)

OO

��
B(∗,WG0, ∗) // B(∗,WG, ∗) // B(∗,WG, ∗)

B(WE0,WG0, ∗)

OO

��

// B(WE ,WG, ∗)

OO

��

// B(WEG,WG, ∗)

OO

��
M0

// M // BG,

where all the vertical arrows are weak equivalences. From this diagram, we obtain
the following.

Lemma 7.1. Let G be a well-pointed topological group, B a well-pointed space of the
homotopy type of a CW complex, and P a principal G-bundle over B. Then there
exist CW complexes X and X ′ and the following homotopy commutative diagram:

Map0(B,BG; ε) //

id

//

EG×G Map0(B,BG; ε) // BG

X

'

OO

'
��

// X ′

'

OO

'
��

// BG

Map0(B,BG; ε) // Map(B,BG; ε) // BG,

where the vertical arrows are weak equivalences.

Remark 7.2. Intuitively, this result states that the top and bottom rows are equivalent
as a fiber sequence. But we cannot expect the existence of a direct weak equivalence
between EG×G Map0(B,BG; ε) and Map(B,BG; ε) in general.

The conjugation defines a homomorphism

G→ An(G,G), g 7→ αg

and a left G-action

G×An(G,G)→ An(G,G), (g, f) 7→ αg ◦ f.

On the other hand, we have a homomorphism

G→ Map0(BG,BG), g 7→ Bαg

and a left G-action

G×Map0(BnG,BG)→ Map0(BnG,BG), (g, F ) 7→ Bαg ◦ F.
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Lemma 7.3. For a well-pointed topological group G of the homotopy type of a CW
complex, the map

(ιn)# ◦Bn : An(G,G)→ Map0(BnG,BG),

is a G-equivariant weak equivalence with respect to the above left G-action.

Proof. This immediately follows from Theorem 6.1.

Let us denote the subspace of weak An-equivalences by An(G,G; eq) ⊂ An(G,G),
whose basepoint is the identity idG ∈ An. A subspace

Map0(BnG,BG) ⊂ Map0(BnG,BG)

is defined as follows: for a map F ∈ Map0(BnG,BG), F is contained in Map0(BnG,
BG) if and only if the adjoint An-map G→ G is a weak An-equivalence. We also
denote the union of path-components in Map(BnG,BG) that intersect nontrivially
with Map0(BnG,BG) by Map(BnG,BG). The basepoint of Map0(BnG,BG) and
Map(BnG,BG) is the inclusion ιn : BnG→ BG.

Theorem 7.4. Let G be a well-pointed topological group having the homotopy type
of a CW complex. Then there is a homotopy fiber sequence

Map0(BnG,BG)→ Map(BnG,BG)→ BG→ BWAn(G,G; eq)

such that the map BG→ BWAn(G,G; eq) is induced from the homomorphism G→
An(G,G; eq) giving the conjugation.

Proof. By Proposition 5.7, the sequence

An(G,G; eq)→ B(∗, G,An(G,G; eq))→ BG→ BWAn(G,G; eq),

with respect to the conjugation action of G on An(G,G; eq) is a homotopy fiber
sequence. Then, combining Lemma 7.1 and 7.3, we obtain the desired homotopy fiber
sequence.

Remark 7.5. As remarked in Section 1, if n =∞, the extension in Theorem 7.4 coin-
cides with the well-known fiber sequence

G→ Map0(BG,BG)→ Map(BG,BG)→ BG

→ BWMap0(BG,BG)→ BWMap(BG,BG),

where the monoid structures on Map0(BG,BG) and Map(BG,BG) are given by
compositions.

The next example shows that the extension in Theorem 7.4 is the maximum.

Example 7.6. Kishimoto–Kono–Theriault [KKT13, Theorem 1.3] showed that the
loop space Ω Map(S4, B SU(2)(5); ι1) is not homotopy commutative. This implies that
Map(S4, B SU(2); ι1) is never delooped.

But this is not always the case.
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Example 7.7. Let T be the m-dimensional compact torus. Then the maps

Map0(BT,BT )→ Map0(BnT,BT )

Map(BT,BT )→ Map(BnT,BT )

are weak equivalences for n > 1. Moreover, the evaluation fiber sequence

Map0(BT,BT )→Map(BT,BT )→ BT → BWMap0(BT,BT )→ BWMap(BT,BT )

is equivalent to the sequence

GL(m,Z)→ BT o GL(m,Z)→ BT → BGL(m,Z)→ B(BT o GL(m,Z)).

This no longer extends. This can be seen by observing the action of π1(B(BT o
GL(m,Z))) on π3(B(BT o GL(m,Z))).

As a step to observe the non-extendability, we conjecture as follows.

Conjecture 7.8. For a non-commutative compact connected Lie group G, the space
Map(BnG,BG; ιn) is never delooped for 1 6 n <∞.

Remark 7.9. Related to this conjecture, an upper bound of the homotopy nilpotency
of G(EnG) ' Ω Map(BnG,BG; ιn) was given by Crabb–Sutherland–Zhang [CSZ99]
for general Lie groups G. But the author does not know any result implying the
homotopy non-commutativity of G(EnG).

8. Application: higher homotopy commutativity

There are several notions of higher homotopy commutativity. Sugawara introduced
the strong homotopy commutativity in [Sug60], which is naturally generalized to
Sugawara Cn-spaces [McG89]. Williams introduced another higher homotopy com-
mutativity called Williams Cn-spaces in [Wil69]. Hemmi and Kawamoto defined
Ck(n)-spaces in [HK11]. Kishimoto and Kono also considered certain higher com-
mutativity called C(k, `)-spaces in [KK10]. First we compare these commutativities.
Recall that they are described by using projective spaces as follows.

Proposition 8.1. Let G be a well-pointed grouplike topological monoid having the
homotopy type of a CW complex. Then the following statements hold:

(i) G is a Williams Cn-space if and only if the map (ι1, . . . , ι1) : (ΣG)∨n → BG
extends over the product (ΣG)×n,

(ii) G is a C(k, `)-space if and only if the map (ιk, ι`) : BkG ∨B`G→ BG extends
over the product BkG×B`G,

(iii) G is a Ck(n)-space if and only if the map (ιk, ιn) : BkG ∨BnG→ BG extends
over the union

⋃
i+j=n,i6k BiG×BjG,

(iv) G is a Sugawara Cn-space if and only if G is a Cn(n)-space.

See [Saü95] for the proof of (i), [KK10] for (ii), and [HK11] for (iii) and (iv).
Obviously, any Sugawara Cn-space is a Ck(n)-space for k 6 n, and any Ck(n)-space
is a C(k, n− k)-space. The Williams Cn-space is related with other homotopy com-
mutativities as the following lemma.
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Lemma 8.2. Let G be a well-pointed grouplike topological monoid having the homo-
topy type of a CW complex. If G is a C(k, `)-space, then G is a Ck+`-space.

Proof. It is sufficient to prove that the map j : (ι1, . . . , ι1) : (ΣG)∨(k+`) → BG can be
extended over the product (ΣG)×(k+`) by Proposition 8.1 (i). Since G is a C(k, `)-
space, for connected CW complexes A and B such that catA 6 k and catB 6 `, any
map A ∨B → BG extends over the product A×B. Then the map j can be extended
since the n-fold product of the suspension spaces have the L–S category less than or
equal to n.

Now we let G be a well-pointed topological group having the homotopy type of a
CW complex. In Section 7, we saw that the connecting map δ : G→ Map0(BnG,BG)
in the evaluation fiber sequence

G
δ−→ Map0(BnG,BG)→ Map(BnG,BG; ιn)→ BG

is δ(g) = Bαg ◦ ιn and is identified with the homomorphism G→ An(G,G) induced
by the conjugation.

Theorem 8.3. Let G be a well-pointed topological group having the pointed homotopy
type of a CW complex. Then G is a C(k, `)-space if and only if the homomorphism
G→ A`(G,G) giving the conjugation is homotopic to the trivial map as an Ak-map.

Proof. By Theorem 6.1, the homomorphism G→ A`(G,G) is homotopic to the trivial
map as Ak-map if and only if the composite

BkG
ιk−→ BG→ BWAn(G,G; eq)

is null-homotopic. By the evaluation fiber sequence in Theorem 7.4, this condition
is equivalent to the existence of the wedge sum (ιk, ι`) : BkG ∨B`G→ BG over the
product BkG×B`G. By Proposition 8.1, it is equivalent to G being a C(k, `)-space.

Corollary 8.4. Let G be a well-pointed topological group having the pointed homotopy
type of a CW complex. Then the following conditions are equivalent:

(i) the classifying space BG is an H-space,

(ii) G is a Sugawara C∞-space,

(iii) the map G→ An(G,G) induced by the conjugation is homotopic as an A∞-map
to the constant map to the identity.

For a pointed spaces X and Y , we denote the half-smash product by

X n Y := X × Y/X × ∗.
Corollary 8.5. Let G be a well-pointed topological group having the homotopy type
of a CW complex. Then G is a C(1, `)-space if and only if the map

GnB`G→ BG, (g, x) 7→ Bαg(ι`(x))

is homotopic rel B`G to the composite of the projection GnB`G→ B`G and the
inclusion ι` : B`G→ BG.

Remark 8.6. When ` = 1, Gn ΣG is naturally homotopy equivalent to Σ(G ∧G) ∨
ΣG. Then it is easy to check that the composite Σ(G ∧G)→ Gn ΣG→ BG is homo-
topic to the Whitehead product [ι1, ι1]. This has been known by Lang [Lan73].
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9. Application: An-types of gauge groups

The classification of An-types (n > 2) of gauge groups is first considered by Crabb
and Sutherland for n = 2 in [CS00] after several works on the homotopy types begun
with Kono’s work [Kon91]. The author studied the An-types of the gauge groups
of principal SU(2)-bundles over S4 for general n in [Tsu12] and [Tsu15]. In this
section, we apply our result to the triviality of adjoint bundles. It is an important
problem in the classification of An-types of gauge groups. The triviality we consider
is defined as follows.

We refer to Section 7 for basic notions on gauge groups. Let G be a topological
group and P be a principal G-bundle over a space B. The adjoint bundle adP is the
associated bundle of P induced by the conjugation on G itself. The adjoint bundle
is naturally a fiberwise topological group, that is, there is a fiberwise multiplication
adP ×B adP → adP which makes the each fiber a topological group with continuous
fiberwise inversion adP → adP . The space of sections Γ(adP ) of adP is naturally
isomorphic to the gauge group G(P ). Moreover, considering the obvious fiberwise
version of An-map, each fiberwise An-map adP → adP induces an An-map G(P )→
G(P ′). If the underlying map of the fiberwise An-map is a homotopy equivalence,
then the induced map on the gauge groups is also a homotopy equivalence.

Definition 9.1. A fiberwise topological monoid E → B is said to be An-trivial if
there exist a topological monoidG and a fiberwiseAn-mapB ×G→ E which restricts
to a homotopy equivalence on each fiber.

Though the following proposition is partially proved in [KK10], we give another
proof.

Proposition 9.2. Let G be a well-pointed topological group and B be a pointed space,
both of which have the pointed homotopy type of CW complexes. For a principal G-
bundle P over B classified by ε : B → BG, the following conditions are equivalent:

(i) adP is An-trivial,

(ii) the composite B
ε−→ BG→ BWAn(G,G; eq) is null-homotopic,

(iii) the map (ε, ιn) : B ∨BnG→ BG extends over the product B ×BnG.

Proof. By the evaluation fiber sequence in Theorem 7.4

Map(BnG,BG)→ BG→ BWAn(G,G; eq),

the conditions (ii) and (iii) are equivalent. Now we check the equivalence between (i)
and (ii). Consider the associated bundle E = P ×G An(G,G; eq) induced from the
homomorphism G→ An(G,G; eq) giving the conjugation. By construction, the exis-
tence of a section of E and that of a fiberwise An-map B ×G→ adP which restricts
to a homotopy equivalence on each fiber are equivalent. The former is equivalent to
the condition (ii). The latter is equivalent to the condition (i). This completes the
proof.

Remark 9.3. By an obstruction argument, this proposition extends to the classifica-
tion theorem of fiberwise An-equivalence class. For details, see [Tsu12] and [Tsu15].
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Proposition 9.4. Let G be a well-pointed topological group and B be a pointed space,
both of which have the pointed homotopy types of CW complexes. For a principal G-
bundle P over the suspension ΣB classified by ε : ΣB → BG, the adjoint bundle adP
is trivial as a fiberwise An-space if and only if the map

B nBnG→ BG, (b, x) 7→ Bαε′(b)(ιn(x))

is homotopic rel BnG to the composite of the projection B nBnG→ BnG and the
map ιn : BnG→ BG, where ε′ : B → G is the adjoint of ε.

Proof. This immediately follows from the evaluation fiber sequence

G→ Map0(BnG,BG)→ Map(BnG,BG)→ BG→ BWAn(G,G; eq)

and Proposition 9.2.

10. Application: T f
k -spaces

Iwase–Mimura–Oda–Yoon defined Cfk -spaces and T fk -spaces in [IMOY12]. Since

the terminology “Ck” is now confusing, we consider T fk -spaces.

Definition 10.1. For a pointed map f : A→ X between the well-pointed spaces of
the homotopy types of CW complexes, X is said to be a T fk -space if there exists a map
fk : A×BkΩMX → X such that the following diagram commutes up to homotopy:

A ∨B1ΩMX

(f,ι1)

%%��
A×BkΩMX

fk

// X.

In particular, a T idX

k -space is what Aguadé [Agu87] defined as a Tk-space.

Proposition 10.2. Let A and X be well-pointed spaces, which have the pointed homo-
topy types of CW complexes. For a pointed map f : A→ X, X is a T fk -space if and
only if there exists a map fk : A×BkΩMX → X such that the following diagram
commutes up to homotopy:

A ∨BkΩMX

(f,ιk)

%%��
A×BkΩMX

fk

// X.

Remark 10.3. Iwase–Mimura–Oda–Yoon defined Cfk -spaces by the condition in this

proposition. Therefore, it states that the Cfk -space and the T fk -space are exactly the
same concept.

The if part of Proposition 10.2 is trivial. The only if part immediately follows from
the next lemma.
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Lemma 10.4. Let G be a well-pointed grouplike topological monoid having the homo-
topy type of a CW complex. For a pointed map F : BnG→ BG, if the adjoint G→ G
of the composite F ◦ ιn1 : B1G→ BG is a homotopy equivalence, then there exists a
homotopy equivalence F ′ : BnG→ BnG such that the composite F ◦ F ′ : BnG→ BG
is pointed homotopic to ιn.

Proof. By Theorem 6.1, there exists an An-map f ∈ An(G,G) such that ιn ◦Bnf
is homotopic to F and the underlying map of f is a homotopy equivalence. Then
by Corollary 4.10, there exists an An-map f ′ ∈ An(G,G) which gives the inverse of
f in the homotopy category π0An. Thus, for F ′ := Bnf

′, we obtain that F ◦ F ′ is
homotopic to ιn.

There are certain relations between T fk -space and the objects in the preceding two
sections as follows. One can prove them by straightforward argument.

Proposition 10.5 (Cf. [HK11]). For a well-pointed space X of the homotopy type
of a CW complex, X is a Tk-space if and only if ΩMX is a C(∞, k)-space.

Proposition 10.6. Let G be a well-pointed topological group and B be a well-pointed
space, both of which have the homotopy types of CW complexes. Then, for a principal
G-bundle P over B classified by ε : B → BG, the adjoint bundle adP is An-trivial if
and only if BG is a T εn-space.

Let us denote the Moore free loop space of X by LMX. The next proposition is a
generalization of Aguadé’s definition of T -space in [Agu87].

Proposition 10.7. Let A and X be well-pointed spaces of the homotopy types of
CW complexes and f : A→ X a pointed map. Then the following two conditions are
equivalent:

(i) X is a T fk -space,

(ii) the pullback f∗LMX is Ak-trivial.

Proof. Take a group model GX
'−→ ΩMX which is an A∞-equivalence such that GX

is a CW complex. Then, by the following Lemma 10.8, f∗LMX is Ak-trivial if and
only if f∗ adEGX is Ak-trivial. Combining this with Proposition 9.2, we obtain the
desired result.

Lemma 10.8. Let G be a well-pointed topological group having the homotopy type
of CW complex. Then, the adjoint bundle adEG and the free loop space LMBG are
fiberwise A∞-equivalent as fiberwise topological monoids over BG.

Proof. We just outline the proof. As in [Tsu12, Lemma 7.1], one can show that adEG
is fiberwise A∞-equivalent to EG×G ΩMBG. Using the map EG→ PBG ⊂ PMBG
in the proof of Lemma 5.8, one can construct a fiberwise A∞-equivalence

EG×G ΩMBG→ LMBG.

Composing these equivalences, we have the fiberwise A∞-equivalence adEG→
LMBG.

We consider a natural family of subgroups of homotopy groups.



200 MITSUNOBU TSUTAYA

Definition 10.9. For a well-pointed space X of the homotopy type of a connected
CW complex, define

Gn,k(X) := {f ∈ πn(X) | X is a T fk -space}.

Equivalently, Gn,k(X) is the image of the induced map of the evaluation map

πn(Map0(BkΩMX,X; ιk))→ πn(X).

For k =∞, Gn(X) := Gn,∞(X) is the n-th Gottlieb group introduced by Gottlieb
[Got69]. If k1 > k2, there is the inclusion Gn,k1(X) ⊂ Gn,k2(X). The space X is said
to be the Gottlieb space if Gn,∞(X) = πn(X) for any n.

Gottlieb [Got69] also introduced the subgroup called the n-th Whitehead center

Pn(X) := {f ∈ πn(X) | [f, g] = 0 for any g ∈ π∗(X)},

where [f, g] denotes the Whitehead product of f and g. By Remark 8.6, Pn(X) ⊃
Gn,1(X). Then we have the sequence of inclusions

Gn(X) = Gn,∞(X) ⊂ · · · ⊂ Gn,k(X) ⊂ Gn,k−1(X) ⊂ · · · ⊂ Gn,1(X)

⊂ Pn(X) ⊂ πn(X).

Now we interpret the result obtained by the author in [Tsu15] in the language of

T fk -spaces.

Example 10.10. Let p be an odd prime. Denote the map S4 ∼= B1 SU(2)
ι1−→ B SU(2)

and their localizations by ε. The author proved in [Tsu15] that B SU(2)(p) is a

T p
rε

(r+1)(p−1)
2 −1

-space but not a T p
rε

(r+1)(p−1)
2

-space. Then

G4,k(B SU(2)(p)) ⊂ π4(B SU(2)(p)) ∼= Z(p)

is the subgroup of index pr if r(p−1)
2 6 k < (r+1)(p−1)

2 and G4,∞(B SU(2)(p)) = 0.

Each element α ∈ G
4,
r(p−1)

2

(B SU(2)(p))−G
4,
r(p−1)

2 −1
(B SU(2)(p)) has a non-tri-

vial image in

π3(Map0(B r(p−1)
2

SU(2)(p), B SU(2)(p); ι r(p−1)
2

)),

but trivial in

π3(Map0(B r(p−1)
2 −1

SU(2)(p), B SU(2)(p); ι r(p−1)
2 −1

)).

Thus, considering the fiber sequence

Map0(ΣkG∧k, BG; ιk)→ Map0(BkG,BG; ιk)→ Map0(BkG,BG; ιk−1),

it lifts to a non-trivial element in

π3(Map0(Σ
r(p−1)

2 SU(2)
∧
r(p−1)

2
(p) , B SU(2)(p); ι r(p−1)

2

)) ∼= π2r(p−1)+2(S3
(p)).



MAPPING SPACES FROM PROJECTIVE SPACES 201

11. Application: some remarks on homotopy pullback of
An-maps

Let G1, G2, G3, G be well-pointed grouplike topological monoids of the homotopy
types of CW complexes. Consider the following homotopy commutative diagram
in A∞:

G //

��

G1

��
G2

// G3.

Take another well-pointed topological monoid H of the homotopy types of CW com-
plex. Then, for the induced two homotopy commutative diagrams:

An(H,G) //

��

An(H,G1)

��
An(H,G2) // An(H,G3),

Map0(BnH,BG) //

��

Map0(BnH,BG1)

��
Map0(BnH,BG2) // Map0(BnH,BG3),

the left square is a homotopy pullback if and only if so is the right by Theorem 6.1.
In particular, considering the homotopy pullback of An-maps H → Gi for i = 1, 2, 3
is equivalent to that of the induced maps BnH → BGi for i = 1, 2, 3. Moreover, if
n =∞ and the left square is pullback for any H, then BG is the homotopy pullback
of the diagram

BG1 → BG3 ← BG2.
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