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MONOIDS AND POINTED S-PROTOMODULAR CATEGORIES

DOMINIQUE BOURN, NELSON MARTINS-FERREIRA,
ANDREA MONTOLI and MANUELA SOBRAL

(communicated by George Janelidze)

Abstract
We investigate the notion of pointed S-protomodular cate-

gory, with respect to a suitable class S of points, and we prove
that these categories satisfy, relatively to the class S, many
partial aspects of the properties of Mal’tsev and protomodu-
lar categories, like the split short five lemma for S-split exact
sequences, or the fact that a reflexive S-relation is transitive.
The main examples of S-protomodular categories are the cate-
gory of monoids and, more generally, any category of monoids
with operations, where the class S is the class of Schreier points.

1. Introduction

The notions of protomodular [2] and semi-abelian [13] category allowed to intrin-
sically describe many classical properties and results in group theory (see, for exam-
ple, [1]), and to point out the similarities with other algebraic structures, like rings,
associative algebras, Lie algebras and many others.

From a categorical point of view, much less is known for other algebraic structures,
like monoids. However, the notion of monoid is fundamental in category theory. Until
now, the most important categorical property of monoids that has been pointed out
is unitality [3]; this property allows to describe the algebraic notion of commutativity
of subobjects and, more generally, of morphisms.

In the recent paper [15], the three last authors introduced the algebraic context of
monoids with operations, inspired by the analogous notion, introduced by Porter [19],
of groups with operations (see also [17], where this kind of structures was first con-
sidered). This new context includes, among other examples, monoids, commutative
monoids, semirings, join-semilattices with a bottom element and distributive lattices
with a bottom element (or a top one). The study of the semidirect products in this set-
ting allowed to identify a class of points, called Schreier points (the name is inspired
by the notion of Schreier internal category introduced by Patchkoria [18] in the cat-
egory of monoids). Schreier points correspond to actions via the semidirect product
construction, as it is proved in [15].
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In the monograph [9], and in the paper [8], the present authors observed moreover
that, in the case of monoids, Schreier points (also called Schreier split epimorphisms)
satisfy some important properties that are classically known to be satisfied by all split
epimorphisms of groups (but not by all split epimorphisms of monoids), like the split
short five lemma. Defining a Schreier reflexive relation as a reflexive relation such that
the point given by the first projection (with section given by the reflexivity morphism)
is a Schreier one, it was proved that any Schreier reflexive relation is transitive.
Moreover, in [9] other interesting properties of Schreier split epimorphisms of monoids
were studied, and they were extended to the case of semirings. In particular, it was
shown that special Schreier extensions with a fixed abelian kernel form an abelian
group, as it happens for all extensions with abelian kernel in the category of groups.
We recall that a special Schreier extension is a surjective homomorphism whose kernel
pair is a Schreier equivalence relation [9, Chapter 7].

All these results gave evidence of the need of a conceptual notion which captures
this algebraic context; it was introduced, in the pointed case, in [9], under the name
of S-protomodularity, where S is a suitable class of points. In the present paper we
investigate the properties of this intrinsic setting and we show that it conceptually
allows to recover many partial aspects of the properties of Mal’tsev [10] and pro-
tomodular categories, in particular with respect to the internal structures and to
centrality for reflexive relations. As mentioned in [9], the main examples of such a
situation are the category Mon of monoids and SRng of semirings with the class S
of Schreier points. Here we enlarge the class of examples, showing that all categories
of monoids with operations are S-protomodular. Note that our approach to relative
non-abelian homological algebra is different from the one initiated by T. Janelidze
in [14] and developed by her in several later papers: in our work, the word “relative”
refers to a chosen class of points, i.e. of split epimorphisms with specified splitting,
while in T. Janelidze’s papers it refers to a chosen class of (not necessarily split)
regular epimorphisms.

A useful notion that we introduce in the present paper is the one of S-special
morphism. We show that it allows to associate with any S-protomodular category
C a protomodular subcategory S�

C, called the protomodular core of C relatively
to S. If C is the category of monoids, equipped with the class of Schreier points, its
protomodular core is the category Gp of groups. This gives then a characterization
of groups among monoids. In the same way, we prove that the protomodular core of
the category of semirings is the category of rings, and we generalize this result to any
category of monoids with operations, with respect to the class of Schreier points. We
also prove that the notion of S-special morphism allows a characterization of reflexive
graphs (relatively to the class S) that are internal groupoids. This characterization
is completely analogous to the one known for Mal’tsev categories (see [11]).

The paper is organized as follows. In Section 2 we recall from [3] the notion of
unital category, and from [9] a generalization of it, namely the notion of C′-unital
category, which will be used later to describe some Mal’tsev-type properties of S-
protomodular categories. In Section 3 we define S-protomodular categories and we
study their first properties. In Section 4 we recall the notion of monoids with oper-
ations and of the class S of Schreier points, and we show that they are examples of
S-protomodular categories. In Section 5 we prove that an S-reflexive graph has at
most one structure of internal category, and that any S-reflexive relation is transitive,
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relating S-protomodular categories to Mal’tsev ones. In Section 6 we define S-special
morphisms and we use them to characterize internal groupoids among internal S-
categories and equivalence relations among S-reflexive relations. Moreover, we define
the protomodular core of an S-protomodular category, and describe it in the exam-
ples of monoids with operations. In Section 7 we describe other Mal’tsev aspects
of S-protomodular categories, mainly related to the centrality of reflexive relations.
Moreover, we show that an S-reflexive graph such that the domain morphism is S-
special is an internal groupoid if and only if the kernel pairs of the domain and the
codomain morphisms centralize each other.

2. Unital and C
′-unital categories

We start by recalling from [3] the following definition.

Definition 2.1. Let C be a pointed category with finite products. Given two objects
A and B in C, consider the following diagram

A
〈1A,0〉

�� A×B
pA�� pB �� B.

〈0,1B〉
��

The category C is said to be unital if, for every pair of objects A,B ∈ C, the mor-
phisms 〈1A, 0〉 and 〈0, 1B〉 are jointly extremally epimorphic.

This means that, if 〈1A, 0〉 and 〈0, 1B〉 factor jointly through a monomorphism
m : M → A×B, then m is an isomorphism. In other terms, the join of the two
subobjects A and B in A×B is A×B itself.

If C is finitely complete, then a pair of morphisms with the same codomain is jointly
extremally epimorphic if and only if it is jointly strongly epimorphic (see, for example,
the Appendix of [1] for more details), hence we will use this second name throughout
the paper. Moreover, every jointly strongly epimorphic pair is jointly epimorphic.
Hence finitely complete unital categories are a setting where it is possible to express
a categorical notion of commutativity.

Definition 2.2 ([12]). Let C be a finitely complete unital category. Two morphisms
with the same codomain f : X → Z and g : Y → Z are said to commute (or to coop-
erate, as in [4]) if there exists a morphism ϕ : X × Y → Z such that both triangles in
the following diagram commute:

X
〈1X ,0〉 ��

f ���
��

��
��

��
X × Y

ϕ

��

Y
〈0,1Y 〉��

g
����
��
��
��
�

Z.

The morphism ϕ is necessarily unique, because 〈1X , 0〉 and 〈0, 1Y 〉 are jointly epi-
morphic, and it is called the cooperator of f and g.

The uniqueness of the cooperator makes commutativity a property and not an
additional structure in the category C.

A generalization of the notion of unital category, that we shall need later on, is
given by the following definition, that we recall from [9].
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Definition 2.3. Let C′ be a full subcategory of a pointed finitely complete category
C. The category C is said to be C′-unital when, for any object A ∈ C

′ and any object
B ∈ C, the morphisms 〈1A, 0〉 and 〈0, 1B〉 in the following diagram are jointly strongly
epimorphic:

A
〈1A,0〉

�� A×B
pA�� pB �� B.

〈0,1B〉
��

In a finitely complete C
′-unital category we can still speak of cooperating pairs

(f, g) of morphisms, provided that the domain X of f belongs to C
′. More generally,

X × Y being isomorphic to Y ×X, we can speak of cooperating pair of morphisms
as soon as the domain of one of the two maps is in C

′.

Proposition 2.4. Suppose that C is C′-unital and that C′ is closed under finite prod-
ucts (in particular, it contains the zero object 0). Then C

′ is unital.

Proof. Straightforward.

3. S-protomodular categories

From now on, we will denote by C a pointed finitely complete category. By a point
in C we mean a pair (f, s) of morphisms in C such that fs = 1; in other terms, f is
a split epimorphism with fixed section s. Let us consider the functor ¶C : PtC → C

which associates with every point (f, s) the codomain of f . This functor is a fibration,
since split epimorphisms are stable under pullbacks.

Let S be a class of points in C which is stable under pullbacks in the following
sense: given a downward pullback

X ′

f ′

��

g′
�� X

f

��
Y ′

s′

��

g
�� Y,

s

��

where the two vertical morphisms are split epimorphisms and the upward square
commutes (or, in other terms, the pair (g, g′) is a morphism of points), if (f, s) belongs
to S, then (f ′, s′) belongs to S too. We will denote by SPtC the full subcategory of
PtC whose objects are those which are in S. Since S is stable under pullbacks, this
class determines a subfibration ¶S

C
of the fibration of points:

SPtC �� j ��

¶S
C ���

��
��

��
� PtC

¶C����
��
��
�

C.

Given a point (f, s) in C, we say that it is a strong point if the pair (k, s), where
k is a kernel of f , is jointly strongly epimorphic. Strong points were introduced
independently in [5], under the name of strongly split epimorphisms, and in [16],
under the name of regular points.
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Definition 3.1 ([9, Definition 8.1.1]). Let C be a pointed finitely complete category,
and S a class of points stable under pullbacks. C is said to be S-protomodular when:

(1) any object in SPtC is a strong point;

(2) SPtC is closed under finite limits in PtC (in particular, it contains the terminal
object 0 � 0 of PtC).

So, S is a class of strong points. Condition (2) implies that any fiber SPtY C is
closed under finite limits in the fiber PtY C and that any change-of-base functor with
respect to ¶S

C
is left exact. The fact that SPtC contains the terminal object implies

that the class S contains the isomorphisms (because S is stable under pullbacks, and
any isomorphism can be seen as a pullback of the terminal object 0 � 0 of PtC).

Hence, any fiber SPtY C is pointed, with zero object given by the point Y
1Y

�� Y.
1Y��

We observe that the name S-protomodular is justified by the fact that a pointed
finitely complete category C is protomodular if and only if every point in C is a
strong point. Hence our notion is a relative version of the one of pointed protomodular
category, with respect to the class S (the general non-pointed case needs further tools
and notions).

Protomodular categories are also characterized by the fact that all change-of-base
functors of the fibration of points ¶C are conservative. The relative version of this
property is considered in the following

Proposition 3.2 ([9, Proposition 8.1.2]). Let C be a pointed finitely complete cate-
gory and S a class of points stable under pullbacks. Then:

(i) when S satisfies Condition (1) of Definition 3.1, any fiber PtY C is SPtY C-
unital;

(ii) when C is S-protomodular, any fiber SPtY C is unital;

(iii) when C is S-protomodular, any change-of-base functor with respect to the fibra-
tion ¶S

C
is conservative.

Proof. (i) Consider the following left hand side downward pullback of split epi-
morphisms, where the point (f, s) is in the fiber SPtY C and kf is a kernel
of f :

X ′
g′

��

f ′

��

X
t′��

f

��

Ker(f) �� kf �� X
t′ ��

f

��

X ′

f ′

��
Y ′

g
��

s′

��

Y,
t��

s

��

Y
t

��

s

��

Y ′.

s′

��

The left hand side pullback above represents the product of (f, s) and (g, t) in
PtY C, hence we have to prove that the pair (t

′, s′) is jointly strongly epimorphic.
We have that (f ′, s′) belongs to SPtY ′C, since ¶S

C
is a subfibration of ¶C. So

the point (f ′, s′) is strong. On the other hand, the right hand side square is
still a pullback, so the map t′kf is a kernel of f ′. Accordingly the pair (t′k, s′)
is jointly strongly epimorphic. So this is equally the case for the pair (t′, s′).
Accordingly the fibre PtY C is SPtY C-unital.
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(ii) This comes immediately from (1), because, as we already observed, if C is S-
protomodular, then SPtY C is closed under finite products in PtY C, so that
SPtY C is unital by Proposition 2.4.

(iii) Since any change-of-base functor with respect to ¶S
C
is left exact, it is enough

to prove that, given a morphism y : Y ′ → Y in C, the change-of-base func-
tor y∗ : SPtY C → SPtY ′C is conservative on monomorphisms (see Lemma 3.3
below). Let us consider the following diagram, where all the quadrangles are
pullbacks, all the points are in SPtC, and m is a monomorphism:

Ker(f ′)
		 K(m′)

		��
���

��

kf′
�� X ′




m′



�
��

��

f ′

��

x �� X ��
m

���
��

��

f

��

Ker(f̄ ′)

��		
		
		
		
		
	

kf̄′
�� X̄ ′

f̄ ′














x̄ �� X̄

f̄

����
��
��
��

1
��
Y ′ y

��

s′

��

s̄′

��








Y.

s

��

s̄

����������

Suppose moreover that y∗(m) = m′, and consequently K(m′) (which is the
restriction of m′ to the kernels), are isomorphisms. We need to prove that m
is an isomorphism too. This comes from the facts that K(m) � K(m′) are iso-
morphisms, the pair (kf̄ , s̄) is jointly epimorphic and both morphisms factor
through m, indeed kf̄ = mkfK(m)−1, and s̄ = ms.

Lemma 3.3. Suppose that U : C → D is a left exact functor such that, for any mono-
morphism m in C, if Um is an isomorphism in D then m is an isomorphism. Then
U is conservative.

Proof. Given any morphism f in C, consider the kernel pair of f :

R[f ]
p0 ��

p1

�� Xs0�� f �� Y.

Since U is left exact, we have that UR[f ] is the kernel pair of Uf :

UR[f ] = R[Uf ]
Up0 ��

Up1

�� UXUs0�� Uf �� UY.

Suppose that Uf is an isomorphism. Then Us0 is an isomorphism. Since s0 is a
monomorphism, our hypothesis implies that s0 is an isomorphism. But then f is a
monomorphism, hence an isomorphism by our hypothesis.

The following result is the relative version of another property which is known to
hold in protomodular categories, and more generally in Mal’tsev ones (see [1]).

Proposition 3.4. Let C be a pointed finitely complete category, and S a class of
strong points which is stable under pullbacks. Given any commutative square of split
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epimorphisms

X ′
f ′

��

g′

��

X
s′��

g

��
Y ′

f
��

t′

��

Y,
s��

t

��

where the point (g, t) is in S, the induced factorization to the pullback of (g, t) along
f is an extremal epimorphism.

Proof. Consider the following diagram

X ′
θ


�

���
�

g′

��

f ′
�� X

��
��
��

��

g

��

s′��

X̄

ḡ

����
��
��
�� f̄

�� X

g

��




s̄��

Y ′
f

��

t′

��

t̄

����������
Y,

t

��

t

��s��

where the square fḡ = gf̄ is a pullback. Since S is stable under pullbacks, (ḡ, t̄)
belongs to S. Moreover, since the category PtY C is SPtY C-unital (by Proposi-
tion 3.2) and the pullback considered above is actually the product of the two points

Y ′
f

�� Y
s�� and X

g
�� Y

t�� in the category PtY C, the pair (t̄, s̄) is jointly strongly

epimorphic. Now let θ be the factorization in question. Suppose j : Ū � X̄ is a
monomorphism such that θ factors through it by a map θ′: jθ′ = θ. Then we have
that both t̄ and s̄ factor through j: t̄ = jθ′t′, and s̄ = jθ′s′. Since the pair (t̄, s̄) is
jointly strongly epimorphic, j is an isomorphism.

4. Schreier points in monoids with operations

The aim of this section is to introduce an important class of examples of the sit-
uation described in the previous one. We start by recalling from [15] the following
definition, which was inspired by the analogous one of groups with operations intro-
duced by Porter in [19] (we observe that the axioms defining groups with operations
were first considered in [17], although no name was given there for such structures).

Definition 4.1 ([15, Definition 4.1]). Let Ω be a set of finitary operations such that
the following conditions hold: if Ωi is the set of i-ary operations in Ω, then:

(1) Ω = Ω0 ∪ Ω1 ∪ Ω2;

(2) there is a binary operation + ∈ Ω2 (not necessarily commutative) and a constant
0 ∈ Ω0 satisfying the usual axioms for monoids;

(3) Ω0 = {0};
(4) let Ω′

2 = Ω2\{+}; if ∗ ∈ Ω′
2, then ∗◦ defined by x ∗◦ y = y ∗ x is also in Ω′

2;
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(5) any ∗ ∈ Ω′
2 is left distributive w.r.t. +, i.e.:

a ∗ (b+ c) = a ∗ b+ a ∗ c;
(6) for any ∗ ∈ Ω′

2 we have b ∗ 0 = 0;

(7) any ω ∈ Ω1 satisfies the following conditions:

- ω(x+ y) = ω(x) + ω(y);
- for any ∗ ∈ Ω′

2, ω(a ∗ b) = ω(a) ∗ b.
Let moreover E be a set of axioms including the ones above. We will denote by C the
category of (Ω, E)-algebras. We call the objects of C monoids with operations.

As already observed in [15], the definition above does not include the case of
groups, or more generally, the one of groups with operations. Indeed, the unary oper-
ation given by the group inverses, denoted by −, does not satisfy Condition (7). In
order to recover all these structures, it suffices to add another condition (already
considered in Porter’s definition of groups with operations, and, even before, in [17]):
if the base monoid structure (given by the operations + and 0) is a group, then the
operation − should be distinguished from the other unary operations. In other terms,
Condition (7) should be satisfied only by operations in Ω′

1 = Ω1\{−}. Adding this
condition, the definition above includes all groups with operations.

Example 4.2. Apart from the known structures covered by Porter’s definition, such
as groups, rings, associative algebras, Lie algebras and many others, our definition
includes the cases of monoids, commutative monoids, semirings (i.e. rings where the
additive structure is not necessarily a group, but just a commutative monoid), join-
semilattices with a bottom element, distributive lattices with a bottom element (or
a top one).

Let us observe that, if C is a category of monoids with operations, then it is
pointed, complete and unital.

We now introduce the points that will form the desired class S. For the rest of the
section, C will denote a category of monoids with operations.

Definition 4.3 ([15, Definition 2.6]). A point A
f

�� B
s�� in C is said to be a

Schreier point (or a Schreier split epimorphism, as in [9]) when, for any a ∈ A, there
exists a unique α in the kernel Ker(f) of f such that a = α+ sf(a).

As shown in [15], in the category Mon, Schreier points are equivalent to monoid
actions, where an action of a monoid B on a monoid X is a monoid homomorphism
B → End(X), with End(X) denoting the monoid of endomorphisms of X.

Example 4.4. We denote by Z
∗ the monoid of non-zero integers with the usual mul-

tiplication, and by N
∗ its submonoid whose elements are the numbers greater than 0.

Then the point

Z
∗

abs
�� N∗,

i��

where i is the inclusion and abs associates with any integer its absolute value, is a
Schreier point. In fact Ker(abs) = {±1}, and it is immediate to see that any non-zero
integer z can be written in a unique way as z = ±1 · |z|.
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The following result was already proved in [9] for the particular case of monoids
(Proposition 2.1.4 there). We don’t repeat the proof, since it is the same also in this
more general framework.

Proposition 4.5. A point A
f

�� B
s�� is a Schreier point if and only if there exists

a map (which is not a morphism, in general) q : A ��� Ker(f) such that:

q(a) + sf(a) = a,

q(α+ s(b)) = α,

for every a ∈ A, α ∈ Ker(f) and b ∈ B.

We shall call the following diagram

Ker(f) ��
k

�� A
q��

f
�� B��

s��

the canonical Schreier split sequence associated with the Schreier point (f, s) and q the
associated Schreier retraction. The following properties of the retraction q (already
proved in the case of monoids, see Proposition 2.1.5 in [9]) will be useful later. For
the sake of simplicity, we consider k just as an inclusion.

Proposition 4.6. Given a Schreier point A
f

�� B
s�� , we have:

(i) qk = 1Ker(f);

(ii) qs = 0;

(iii) q(0) = 0;

(iv) if b ∈ B and α ∈ Ker(f), then q(s(b) + α) + s(b) = s(b) + α;

(v) for every a, a′ ∈ A, q(a+ a′) = q(a) + q(sf(a) + q(a′)).

In Chapter 2 of [9] it was shown that, in the case of monoids, Schreier points are
strong points, stable under pullbacks and closed under finite limits in the category of
all points. The proofs for any category of monoids with operations are the same, so
we will not repeat them. This means that any category C of monoids with operations
is S-protomodular, when S is the class of Schreier points. We only give in full details
the following result, which is an improvement of Proposition 2.4.5 in [9]:

Proposition 4.7. Schreier points are closed under equalizers, i.e. the equalizer of
two parallel morphisms between Schreier points is a Schreier one.

Proof. Given two parallel morphisms of Schreier points

A
h ��
g

��

f

��

A′

f ′

��
B

s

��

h′
��

g′
�� B′

s′

��
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consider the following diagram

Ker(φ) �� K(j) ��

kφ

��

Ker(f)
K(h) ��
K(g)

��

kf

��

Ker(f ′)
kf′

��
E �� j ��

φ

��

q

��

A

f

��

h ��
g

��

qf

��

A′

f ′

��

qf′

��

E′

σ

��

��
j′

�� B

s

��

h′
��

g′
�� B′,

s′

��

where j is an equalizer of h and g and j′ is an equalizer of h′ and g′ in C. Then the
lower part of the diagram is an equalizer diagram in PtC. Since the kernel functor
preserves equalizers, K(j) is an equalizer of K(h) and K(g) in C, and hence in the
category Set of sets. By Proposition 2.3.1 in [9], the Schreier retractions qf and qf ′

make the upward right hand side square commute; hence we get a factorization q
which satisfies the conditions of a Schreier retraction for the point (φ, σ) and makes
it a Schreier point.

5. S-reflexive relations and S-categories

We recall that a reflexive graph in a category C is a diagram of the form

X1

d1

��

d0 ��
X0s0�� (1)

such that d0s0 = 1X0 = d1s0. A reflexive relation is a reflexive graph such that the
pair (d0, d1) is jointly monomorphic.

Definition 5.1. A reflexive graph (resp. reflexive relation) (1) in an S-protomodular
category C is said to be an S-reflexive graph (resp. S-reflexive relation) if the point
(d0, s0) is in S.

As a consequence of Condition (2) of the definition of an S-protomodular category
C, S-reflexive graphs are closed under finite limits inside the category of reflexive
graphs in C. We are now ready to study the relationship between reflexive graphs
and categories in an S-protomodular category. Let us recall that an internal category
X1 in C is a reflexive graph (1) such that the object X2 of composable pairs of
morphisms, defined by the following pullback of split epimorphisms

X2
d2

��

d0

��

X1

s1��

d0

��
X1

d1

��

s0

��

X0,
s0��

s0

��

(2)

is endowed with a composition map d1 : X2 → X1 satisfying the remaining simplicial
identities:
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(C1) d0d1 = d0d0, d1d1 = d1d2 (incidence axioms);

(C2) d1s0 = 1X1 , d1s1 = 1X1 (composition with identities).

This composition must satisfy the associativity axiom. For that, consider the following
pullback of split epimorphisms (where X3 is the object of composable triples):

X3
d3

��

d0

��

X2

s2��

d0

��
X2

d2

��

s0

��

X1.
s1��

s0

��

(3)

The composition map d1 induces a couple of maps (d1, d2) : X3 ⇒ X2 such that
d0d1 = d0d0, d2d1 = d1d3 and d0d2 = d1d0, d2d2 = d2d3. The associativity is given
by the remaining simplicial axiom:

(C3) d1d1 = d1d2.

It is well known that on a reflexive graph in a Mal’tsev category there is at most
one structure of internal category (see Theorem 2.2 in [11]). A similar result holds
for S-protomodular categories:

Proposition 5.2. Let C be an S-protomodular category. On an S-reflexive graph
there is at most one structure of internal category. It is sufficient to have the com-
position map d1 : X2 → X1 satisfying Axiom (C2); Axioms (C1) and (C3) come for
free.

Proof. Give an S-reflexive graph (1), consider diagram (2). Since the rightward hor-
izontal square is a pullback, and the right hand side point is in S, the left hand
side one is in S, too. Moreover, since the category PtX0C is SPtX0C-unital (by
Proposition 3.2) and the pullback above is actually the product of the two points

X1
d0

�� X0

s0�� and X1
d1

�� X0

s0�� in the category PtX0C, the pair (s0, s1) is jointly

(strongly) epimorphic. Hence there is at most one map d1 satisfying Axiom (C2).
Axiom (C1) can be also verified by composition with the pair (s0, s1). Axiom (C3)
comes by composition with the pair (s0, s2) of diagram (3), which is jointly (strongly)
epimorphic as well.

If an S-reflexive graph is endowed with a structure of internal category, then it
will be called an S-category.

Let a reflexive graph (1) be given. Let us recall that its simplicial kernel is the uni-
versal 2-simplicial object associated with it, namely the universal solution relatively
to the incidence (C1) and associative (C3) axioms:

K(d0, d1)

p0

��
p1

��

p2

��X1

d0 ��

d1

��
s1
��

s0��
X0.

s0��

In a finitely complete category C, it is obtained by the following pullback of reflexive
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graphs

K(d0, d1)
(p0,p1)

�����
���

��

p0

��

p1

��

p2 �� X1
(d0,d1)

����
���

���

d0

��

d1

��

R[d0]

d0

�����
���

���
���

d1

�����
���

���
���

(d1d0,d1d1) �� X0 ×X0

p0

����
��
��
��
��
�

p1

����
��
��
��
��
�

X1
d1

��

��

��������������
X0,

��

�������������

where p0, p1 : X0 ×X0 → X0 are the product projections, and R[d0] denotes the ker-
nel equivalence relation of d0. In set-theoretical terms, K(d0, d1) is the set of triples
(x0, x1, x2) of elements of X1 whose incidence conditions are given by the following
drawing:

• x2 �� •
•. x1

�����x0

�����

Proposition 5.3. Let C be an S-protomodular category. Any S-reflexive relation is
transitive.

Proof. Let us consider an S-reflexive relation (1). The square d1p0 = d0p2 in the
diagram above determines a factorization (p0, p2) : K(d0, d1) → X2 to the pullback of
split epimorphisms (2):

K(d0, d1)
p2

�����
����

����
����

�

p0

���
��

��
��

��
��

��
��

� ��

���
��

��
��

��

X2
d2

��

d0

��

X1

s1��

d0

��

s1��

X1
d1

��

s0

��s0

��

X0.
s0��

s0

��

Since (d0, d1) : X1 � X0 ×X0 is a relation, and hence d0 and d1 are jointly monomor-
phic, the factorization (p0, p2) is a monomorphism. In order to prove this fact, it
suffices to observe that it is true in set-theoretical terms, and that it is invariant
under the Yoneda embedding. The right hand side point (d0, s0) is in S, because

X1

d1

��

d0 ��
X0s0�� is an S-reflexive relation, and according to Proposition 3.4, the factor-

ization (p0, p2) : K(d0, d1) � X2 is an extremal epimorphism, and hence an isomor-

phism; accordingly the morphism X2

(p0,p2)
−1

�� K(d0, d1)
p1 �� X1 produces the desired

transitivity map.

In any Mal’tsev category, and in particular in any protomodular category, reflexive
relations are always equivalence relations. In an S-protomodular category this is false,
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even for S-reflexive relations: an S-reflexive relation doesn’t need to be an equivalence
relation, because symmetry can fail. The following is a concrete counterexample in
the category Mon, equipped with the class of Schreier points described in Section 4.

Example 5.4 ([8, Example 5.3]). The order relation in Mon given by the usual order
between natural numbers:

ON

d1

��

d0 ��
N,s0��

where

ON = {(x, y) ∈ N× N | x � y}
is a Schreier order relation, hence it is reflexive and transitive, but not symmetric.

6. S-special morphisms and internal S-groupoids

It is well known that every internal category in a Mal’tsev category is a groupoid.
This is not true in S-protomodular categories. The aim of this section is to describe
what are the additional conditions for an S-category to be a groupoid. For that we
need the following notion.

Definition 6.1. Let C be an S-protomodular category. A morphism f : X → Y in C

will be called S-special when the kernel equivalence relation R[f ] is an S-equivalence
relation (which means that its underlying reflexive graph is an S-reflexive graph).
An object X will be called S-special when the terminal morphism τX : X → 1 is
S-special.

In an S-protomodular category, the S-special morphisms are stable under pull-
backs (because the class S is stable under pullbacks). Moreover, the full subcategory
S�

C ⊆ C of S-special objects is closed under finite limits in C (this comes from Con-
dition (2) of Definition 3.1).

Proposition 6.2. Let C be an S-protomodular category. Any split epimorphism bet-
ween S-special objects is in S and, consequently, is an S-special morphism. The sub-
category S�

C of S-special objects is protomodular.

Proof. Let us observe that any point (f, s) produces a kernel diagram in the fibre
PtY C:

X �� (f,1) ��

f

���
��

��
��

��
��

�
Y ×X

pY

��

1×f�� ��
Y × Y��

1×s
��

p0

����
��
��
��
��
��
�

Y.

(1,s)

��

s

  ������������
s0

!!�������������
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When Y is in S�
C, the right hand side point is in S. The following pullback

Y ×X
s×1 ��

pY

��

X ×X

p0

��
Y

s
��

(1,s)

��

X

s0

��

shows that, when X is in S�
C, the middle point is in S. Since the fibre SPtY C is

closed under finite limits, the kernel (f, s) is in S. Hence, in the subcategory S�
C the

subfibration ¶S
S�C

coincides with the fibration ¶S�C of all points. According to Propo-
sition 3.2, the change-of-base functor with respect to the fibration of all points in S�

C

is conservative, and consequently S�
C is protomodular. Furthermore, since PtS�

C is
closed under finite limits, the kernel equivalence relation of f lies in PtS�

C, and the
point (p0, s0) : R[f ] � X is in S. Accordingly R[f ] is an S-equivalence relation, and
f is an S-special morphism.

Definition 6.3. Given an S-protomodular category C, we will call the subcategory
S�

C the protomodular core of C relatively to S.

We are now going to describe the protomodular core when C is a category of
monoids with operations and S is the class of Schreier points.

Proposition 6.4. Let C be a category of monoids with operations and S the class
of Schreier points. Given an object X ∈ C, it is S-special if and only if (X,+) is a
group.

Proof. Suppose that X is S-special. Consider the following diagram

X
〈0,1〉

�� X ×X
q��

p0 ��

p1

�� X,s0��

where q is the Schreier retraction associated with the Schreier point (p0, s0). Let
x ∈ X. According to the Schreier condition (as in Proposition 4.5), the pair (x, 0) ∈
X ×X can be written as

(x, 0) = q(x, 0) + s0p0(x, 0) = q(x, 0) + (x, x).

Since q(x, 0) is an element of the kernel of p0, it is an element of the form (0, y), for
some y ∈ X. Hence we have

(x, 0) = (0, y) + (x, x) = (x, y + x),

and from this equality we get y + x = 0. So y is a left inverse for x. Doing the same
thing for all x ∈ X we prove that (X,+) is a group.

Conversely, suppose that (X,+) is a group. The needed Schreier retraction is sim-
ply given by

q(x1, x2) = (0, x2 − x1).

As a consequence, we have the following:

Corollary 6.5. If C is the category Mon of monoids and S is the class of Schreier
points, the protomodular core of C is the category Gp of groups. If C is the category
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SRng of semirings, the protomodular core is the category Rng of (not necessarily
unitary) rings. More generally, given any category C of monoids with operations, the
protomodular core with respect to the class S of Schreier points is the corresponding
category of groups with operations, obtained from C by adding the condition that +
is a group operation.

Proposition 6.6. Let C be an S-protomodular category. Any point (f, s) such that
f is an S-special morphism belongs to S, and the kernel of f is an S-special object.

Proof. Consider the following diagram

Ker(f)

��

kf �� X

f

��

s1 �� R[f ]

p0

��
1

αY

�� Y
s

��

s

��

X,

s0

��

where s1 is the morphism (sf, 1) : X → R[f ]. The right hand side square is a pullback.
If the morphism f is S-special then, by definition, the point (p0, s0) is in S. By stability
under pullbacks, the point (f, s) is in S, too. The left hand side square is a pullback
as well, so the terminal morphism Ker(f) → 1 is S-special as so is f , and then Ker(f)
is an S-special object.

An internal category X1 as in (1) in a finitely complete category C is a groupoid
when the following square determined by the composition map d1 is a pullback:

X2
d1 ��

d0

��

X1

d0

��
X1

d0

�� X0,

or, in other words, when the following vertical comparison morphism j is an isomor-
phism:

X2

j
��

d0

		��
���

���
���

�

d1

		��
���

���
���

�

R[d0]
d0 ��

d1

�� X1
d0 ��s0��

s0�����

""�����

X0.

(4)

We recall that this condition can be equivalently formulated by saying that X2 is
isomorphic to the kernel pair of d1 : X1 → X0. In this case we have a discrete fibration
between groupoids:

R[d0]

d0

��
d1

��

d2 �� X1

d0

��
d1

��
X1

d1

��

��

X0.

��

(5)

Proposition 6.7. Let C be an S-protomodular category. An S-category X1 is a
groupoid if and only if the morphism d0 : X1 → X0 is S-special.
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Proof. Suppose that the S-category X1 is a groupoid. The point (d0, s0) : X1 � X0 is
in S. By the pullbacks of the discrete fibration (5), the point (d0, s0) : R[d0] � X1 is in
S and consequently the morphism d0 : X1 → X0 is S-special. Conversely, suppose that
the map d0 : X1 → X0 of the S-category X1 is S-special. In the following diagram,
consider the comparison morphism j as in (4):

X1

��
��
��

��

d0

��

s1 �� X2
j

����
���

d0

��

X1

d0














s1 �� R[d0]

d0

##��
��
��
��

X0 s0
��

s0

��

s0

��








X1.

s0

��

s0

$$��������

The two right hand side points are in S, because X1 is an S-category and the mor-
phism d0 : X1 → X0 is S-special. All quadrangles are pullbacks. Hence we have that
the image of the map j by the change-of-base functor along s0 is the isomorphism 1X1 .
According to Proposition 3.2, the map j is an isomorphism, and X1 is a groupoid.

An S-category which is a groupoid will be called an S-groupoid. The previous
proposition, together with Proposition 5.3, gives the following:

Corollary 6.8. Let C be an S-protomodular category. An S-reflexive relation (1) is
an S-equivalence relation if and only if the morphism d0 : X1 → X0 is S-special.

When C is a category of monoids with operations, and S is the class of Schreier
points, the converse of Proposition 6.6 also holds:

Proposition 6.9. Let C be a category of monoids with operations, and let S be the
class of Schreier points. Given a Schreier point

Ker(f)
kf

�� X
qf��

f
�� Y,

s��

f is an S-special morphism if and only if Ker(f) is an S-special object (or, in other
terms, if (Ker(f),+) is a group).

Proof. Thanks to Proposition 6.6, we only have to show that the point R[f ]
p0

�� X
s0��

is a Schreier point. Let us define qp0(x, x
′) = (0, qf (x

′)− qf (x)). We can check that

qp0(x, x
′) + s0p0(x, x

′) = (0, qf (x
′)− qf (x)) + (x, x) = (x, qf (x

′)− qf (x) + x)

= (x, qf (x
′) + sf(x)) = (x, qf (x

′) + sf(x′)) = (x, x′),

and, thanks to Proposition 4.6,

qp0((0, k) + s0(x)) = qp0((0, k) + (x, x)) = qp0(x, k + x) = (0, qf (k + x)− qf (x))

= (0, qf (k) + qf (sf(k) + qf (x))− qf (x)) = (0, qf (k) + qf (x)− qf (x)) = (0, k).

The thesis follows then from Proposition 4.5.
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Example 6.10. The previous proposition implies that the morphism abs : Z∗ → N
∗ of

Example 4.4 is an S-special morphism.

Corollary 6.11. Let C be a category of monoids with operations, and let S be the
class of Schreier points. An S-category (resp. S-reflexive relation) (1) is an S-groupoid
(resp. S-equivalence relation) if and only if Ker(d0) is an S-special object, which is
equivalent to say that (Ker(d0),+) is a group.

Proof. Thanks to the previous proposition, this is an immediate consequence of
Proposition 6.7 and Corollary 6.8.

7. Other Mal’tsev aspects of S-protomodular categories

7.1. Mal’tsev categories

We recall that a category C is a Mal’tsev category [10, 11] when any internal
reflexive relation is an equivalence relation; this is equivalent to the property that
any fiber PtY C of the fibration ¶C is unital (see [3]). The category Gp of groups is
a Mal’tsev one. The natural order ON of natural numbers (Example 5.4) shows that
the category Mon of monoids is not a Mal’tsev one.

On the other hand, in the context of S-protomodular categories, any fiber PtY C
is SPtY C-unital and, consequently, any fiber SPtY C is unital (Proposition 3.2). In
this section, we shall be interested in exploring some properties of Mal’tsev categories
that are partially valid in this new structural context.

7.2. Elementary observations

We already observed that, in an S-protomodular category, any S-reflexive relation
(1) is only necessarily transitive (Proposition 5.3). The natural order on N gives
an example of an S-reflexive relation (in the category of monoids) which is not an
equivalence relation. An S-reflexive relation (1) is an equivalence relation if and only
if d0 is S-special (Corollary 6.8 above).

In a Mal’tsev category, on a reflexive graph (1) there is at most one structure
of internal category, which is necessarily an internal groupoid [11]. In Section 5 we
showed that, on an S-reflexive graph, there is again at most one structure of internal
category, but there are S-categories which are not groupoids. An internal S-category
is a groupoid if and only if, again, d0 is S-special (Proposition 6.7).

In a Mal’tsev category we have also the following useful result (see [3]): given any
split epimorphism of reflexive graphs

X1

g1

��

d0 ��

d1

�� X0

g0

��

s0��

X ′
1

d′
0 ��

d′
1

��

t1

��

X ′
0s′0��

t0

��

the commutative square g0d1 = d′1g1 is a pullback if and only if so is the square
g0d0 = d′0g1. Here we have:
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Proposition 7.1. Let C be an S-protomodular category. Given a split epimorphism
of reflexive graphs in C as in the diagram above, where the point (g0, t0) is in S, the
commutative square g0d1 = d′1g1 is a pullback if and only if so is the square g0d0 =
d′0g1.

Proof. If the square g0d0 = d′0g1 is a pullback and the point (g0, t0) is in S, so are the
point (g1, t1) and the pullback (ḡ1, t̄1) of (g0, t0) along d′1 in the following diagram:

X1
θ
%%�

��
�

g1

��

d1

�� X0

��
��
��

��

g0

��

s0��

X̄1

ḡ1

��
��
��
�� d̄1

�� X0

g0














s̄0��

X ′
1

d′
1

��

t1

��

t̄1

����������
X ′

0.

t0

��

t0

��







s′0��

Let θ be the induced factorization. All leftward quadrangles are pullbacks. This means
that the image of θ by the change-of-base functor along s′0 is the isomorphism 1X0 .
According to Proposition 3.2, the map θ is itself an isomorphism. The other implica-
tion can be proved similarly.

7.3. Centrality with respect to S-reflexive relations
The context of Mal’tsev categories proved to be suitable for the study of centrality

between equivalence relations (see [6] and [7]), thanks to the fact that a finitely
complete category C is a Mal’tsev one if and only if all fibers PtXC of the fibration
of points are unital [3]. It is well known that, in the category Gp, two equivalence
relations R and W on a group G centralize each other if and only if the normal
subgroups 1R and 1W given by the equivalence classes of the unit element commute
inside the group G.

In an S-protomodular category C, since any fiber PtY C is SPtY C-unital, we can
keep the same definition of reflexive relations centralizing each other as in [6] and [7],
provided that one of the relations is an S-reflexive relation:

Definition 7.2. Given a reflexive relation R and an S-reflexive relation W on the
same object X in an S-protomodular category C, we say that R and W centralize
each other when there is a (necessarily unique) connector p : R×X W → X, where
R×X W is defined by the following pullback

R×X W

pW
0

��

pR
1

�� W

dW
0

��

σR
0��

R
dR
1

��

σW
0

��

X

sW0

��

sR0��

such that pσR
0 = dW1 and pσW

0 = dR0 . In set-theoretical terms, this means that we
have both p(xRxWy) = y and p(xRyWy) = x. The morphisms σR

0 and σW
0 , defined
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by the universal property of the pullback, are explicitly given by σR
0 (yWz) = yRyWz

and σW
0 (xRy) = xRyWy. We denote this situation by [R,W ] = 0.

Since W is an S-reflexive relation, the point (dW0 , sW0 ) is in S, and consequently
the pair (σR

0 , σ
W
0 ) is jointly strongly epimorphic. This implies that the connector p is

unique.

Example 7.3. Given the order ON on N in Mon, with the class S of Schreier points,
we have that [ON,ON] = 0; in this case, the connector is the morphism p defined by
p(x � y � z) = z − y + x.

When we have [R,W ] = 0, we recover a well-known result in Mal’tsev categories
[6, 7]:

Proposition 7.4. Let C be an S-protomodular category. Suppose the reflexive rela-
tion R and the S-reflexive relation W on X centralize each other in C. We have
necessarily xWp(xRyWz) and p(xRyWz)Rz.

Proof. Let us consider the following pullback:

U �� j ��

��

R×X W
(dR

0 pW
0 , p)��

W ��
(dW

0 , dW
1 )

�� X ×X.

In set-theoretical terms, it defines U as the subobject of those xRyWz ∈ R×X W
such that we have xWp(xRyWz). For any yWz, the element yRyWz ∈ R×X W
belongs to U , since we have y = p(yRyWz) (as we observed in Definition 7.2). This
means that σR

0 factors through j. In the same way, for any xRy, the element xRyWy ∈
R×X W belongs to U , since we have x = p(xRyWy). This means that σW

0 factors
through j. Since the pair (σR

0 , σ
W
0 ) is jointly strongly epimorphic, the morphism j is

an isomorphism, and for every xRyWz ∈ R×X W we have xWp(xRyWz).
We have a similar result concerning the subobject V � R×X W defined by the

following pullback:

V �� j ��

��

R×X W
(p, dW

1 pR
1 )��

R ��
(dR

0 , dR
1 )

�� X ×X.

This give us p(xRyWz)Rz for any xRyWz ∈ R×X W .

In set-theoretical terms, the previous proposition says that, with any triple xRyWz,
we can associate a square of related elements:

x
W ��

R ��

p(x, y, z)

R��
y

W
�� z.

This says that any connected pair of reflexive relations (R,W ) on the object X,
where W is an S-reflexive relation, produces the following diagram of double reflexive
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relations on R and W :

R×X W

pR
0

��

(p,dW
1 pW

1 )

��

(dR
0 pR

0 ,p)

��

pW
1 ��

W

dW
0

��

dW
1

��

��

R
dR
0

��

dR
1 ��

��

X.

��

��

It is called the centralizing double relation associated with the connector p [11]. When
R and W are equivalence relations, all the reflexive relations in this diagram are
equivalence relations, and, moreover, any commutative square is a pullback (thanks
to Proposition 7.1).

As in the case of Mal’tsev categories (see Lemma 2.1 in [7]), in the context of
S-protomodular categories the existence of a double centralizing relation between a
reflexive relation R and an S-reflexive relation W characterizes the fact that
[R,W ] = 0. Indeed, given a double centralizing relation

C

pR
0

��

pR
1

��

pW
0

��

pW
1 ��

W

dW
0

��

dW
1

��

��

R
dR
0

��

dR
1 ��

��

X,

��

��

i.e., a reflexive relation C both on R and W such that the square dR1 p
R
0 = dW0 pW1 is

a pullback, the morphism dR1 p
R
0 : C → X is the (necessarily unique) connector.

We can now prove the following result, which is the relative version of the charac-
terization of internal groupoids in Mal’tsev categories (see [11]):

Proposition 7.5. Let C be an S-protomodular category. Consider a reflexive graph
(1) in C such that d0 is S-special. The following conditions are equivalent:

(i) the graph is underlying an S-category;

(ii) the graph is underlying an S-groupoid;

(iii) the kernel equivalence relations R[d0] and R[d1] centralize each other.

Proof. Since d0 is S-special, the graph is an S-reflexive graph (thanks to Proposi-
tion 6.6). Moreover R[d0] is an S-equivalence relation, and we can talk about central-
ization of it with any reflexive relation on X1.

The equivalence between conditions (i) and (ii) was already proved (see Proposi-
tion 6.7).

To prove that (ii) implies (iii), consider the following diagram:

R[d2]

R(d0)

��
R(d1)

��

p0

��
p1 ��

R[d0]

d0

��

d1

��

�� d2 �� X1

d0

��

d1

��
R[d1]

p0

��
p1 ��

��

X1

��

��
d1

�� X0.

s0

��
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As we observed in Section 6, diagram (5), the right hand side square is a pullback,
and hence the left hand side part of the diagram gives a double centralizing relation,
which says that [R[d0], R[d1]] = 0.

To prove that (iii) implies (i), suppose that we have [R[d0], R[d1]] = 0 and p is
the associated connector. By Proposition 5.2, in order to equip our S-reflexive graph
with a structure of internal category, we only need to give the composition map
d1 : X2 → X1 satisfying the equalities d1s0 = d1s1 = 1X1 . The map d1 can be defined
as in the case of Mal’tsev categories (Theorem 3.6 in [11]). In set-theoretical terms,
d1 is given by

d1(α, β) = p(βR[d0]1d1(α)R[d1]α).

It is easy to verify that it satisfies the desired equalities.
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