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Abstract
We show that there exists a correspondence between the

equivalence classes of coverings of a polyhedron and the equiv-
alence classes of coverings of its poset of simplices. The same is
true for a poset and its order complex. The coverings of a poset
can be understood in two equivalent ways, as categorical cover-
ings, when the poset is viewed as a category, or as topological
coverings, when it is viewed as an A-space. This implies that
the theory of coverings of polyhedra can be handled completely
in the combinatorial setting.

1. Introduction

An A-space (or Alexandroff space) is a topological space in which arbitrary inter-
sections of open sets are open. There is a one-to-one correspondence between A-spaces
and preorders (sets with a reflexive and transitive relation) which was first studied by
Alexandroff [1]. In the last fifty years, A-spaces have shown to be a useful combina-
torial and topological tool in Homotopy Theory (see [2, 3, 4, 7, 8, 12]). Concretely,
McCord defined in [11] a functor K which associates a polyhedron to each A-space
X and he proved that there is a weak homotopy equivalence μ : K(X) → X. In par-
ticular, both spaces have the same homotopy and homology groups. Conversely, for
each polyhedron K there exists an A-space X (K) and a weak homotopy equivalence
K → X (K). The modest purpose of this note is to show that for every A-space X,
there is a correspondence between the equivalence classes of covering maps of X and
of K(X) and that for every polyhedron K, X establishes a correspondence between
classes of coverings of K and of X (K). Hence, the theory of coverings of polyhedra
can be studied in the setting of A-spaces. We will first show that the topological
notion of covering of an A-space X coincides with the categorical notion of covering
of the preorder associated to X, considered as a category with at most one morphism
between any two objects.
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2. Coverings of A-spaces and posets

We recall very briefly the correspondence between A-spaces and preorders and the
relationship with polyhedra. For more details we refer the reader to [2, 11].

Given an A-space X, for each point x in X let Ux be the intersection of all the
open sets containing x. This is the smallest open set which contains x. The preorder
associated to the A-space X has the same underlying set and the relation is given by
x � y if x ∈ Uy. Conversely, given a preorder� on a setX, the topology corresponding
to this relation is the one generated by the basis given by the sets Ux = {y ∈ X | y �
x}, for every x ∈ X. These assignments establish a correspondence between A-spaces
and preorders. It is easy to prove that a function between A-spaces is continuous if
and only if it is order-preserving. Any A-space is locally contractible since the sets
Ux are contractible (see [11, Lemma 6]). In particular, any A-space has a universal
cover.

If X is an A-space, the closed sets of X form another topology on the underlying
set of X, called the opposite topology. The preorder associated to this topology is
the opposite order of X. This space is denoted by Xop. Note that a map f : X → Y
between A-spaces is continuous if and only if the induced map fop : Xop → Y op, which
coincides with f in the underlying sets, is continuous. If X is an A-space, the closure
of a point x in X is denoted by Fx. Note that FX

x = {y ∈ X, x � y} = (UXop

x )op. The
notations FX

x and UX
x will be used when we need to emphasize the space X where

these subsets are considered.
Recall that a topological space X is said to be T0 if for any two points x, y ∈ X

there is an open set which contains one and only one of them. If an A-space is T1, it
is discrete, so T0 is the unique separation axiom that we will consider. It is easy to
prove an A-space is T0 if and only if the corresponding preorder is a poset, that is,
the relation is also antisymmetric.

Proposition 2.1. Let p : E → B be a (topological) covering map. If B is an A-space,
then so is E.

Proof. Let {Uα} be an arbitrary family of open sets of E. If
⋂
Uα is empty, there is

nothing to prove. Suppose
⋂
Uα is non-empty and let e ∈ ⋂

Uα. Let U be an open
neighborhood of e and V = p(U) an open neighborhood of p(e) such that p|U : U → V
is a homeomorphism. Then p(U ∩ Uα) is an open subset of B for every α, and since
B is an A-space,

⋂
p(U ∩ Uα) = p(U ∩⋂

Uα) is open. Thus, U ∩⋂
Uα is an open

neighborhood of e contained in
⋂
Uα. This shows that

⋂
Uα is open.

With the same proof one can see that the last proposition remains valid when p is
just a local homeomorphism. Moreover if f : X → Y is a surjective local homeomor-
phism and X is an A-space, then so is Y .

Remark 2.2. Let p : E → B be a covering of a topological space B. If B is T0, so is
E. It is clear that two points of E in different fibers can be separated since B is T0.
If two points are in the same fiber, they can also be separated since p is a covering.

The following elementary result is well-known.

Remark 2.3. Let p : E → B be a covering and suppose A is a connected and locally
connected subspace of B. If C is a connected component of p−1(A), then p|C : C → A
is a covering.
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Proposition 2.4. Let B be an A-space and let p : E → B be a covering. Then
pop : Eop → Bop is also a covering.

Proof. It follows from the fact that the closure FB
b of every b ∈ B is simply-connected

and the previous remark (see also Theorem 3.2).

All the categories that we work with will be assumed to be small. Note that a
preorder (X,�) can be regarded as a category C whose set of objects Obj(C) is X
and with a unique morphism from an object x to an object y if x � y. Conversely, any
category C which satisfies that for any two objects x, y there is at most one morphism
α ∈ Mor(C) whose source s(α) is x and whose target t(α) is y, arises from a preorder
in this way. A preorder, viewed as a category, is a poset if it has no isomorphisms
other than the identities. Note also that order-preserving maps between two preorders
correspond to functors between the categories.

We investigate now the relationship between topological coverings of A-spaces and
coverings of categories. The definition of coverings for categories that we use extends
the definition of coverings for groupoids [6, 9, 10] and it is analogous to the definition
of coverings for k-categories given in [5].

Given a category C and x ∈ Obj(C), we define the sets Ux = {α ∈ Mor(C) | t(α) =
x} and Fx = {α ∈ Mor(C) | s(α) = x}. Recall that s(α) and t(α) denote, respectively,
the source and the target of α. Note that any functor F : C → D induces (set theoretic)
functions FUx : Ux → UF (x) and FFx : Fx → FF (x).

Definition 2.5. A functor F : C → D is a covering if it is surjective on objects and
FUx and FFx are bijections for each x ∈ Obj(C).
Proposition 2.6. Let D be a category which is a preorder and let F : C → D be a
covering (in the categorical sense). Then C is also a preorder.

Proof. If α and β are morphisms from an object x to an object y in C, then F (α),
F (β) ∈ Mor(F (x), F (y)). Since D is a preorder, F (α) = F (β) and since FFx is a
bijection, α = β.

Example 2.7. The functor F in Figure 1, which maps xi to x, yi to y, αi to α and βi

to β, is a covering from a preorder onto a category which is not a preorder.
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Figure 1: A covering from a poset to a category which is not a preorder.

Lemma 2.8. When C and D are preorders, an order-preserving map f between C
and D is a covering in the categorical sense if and only if it is surjective and for each
x ∈ Obj(C), both f |Ux : Ux → Uf(x) and f |Fx : Fx → Ff(x) are bijections.
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Proof. This follows from the fact that, since C and D are preorders, for each x ∈
Obj(C) the source maps s : Ux → Ux and s: Uf(x) → Uf(x) are bijections, and that
f |Uxs = sfUx . For similar reasons, fFx is a bijection if and only if f |Fx is.

Proposition 2.9. Let f : X → Y be an order-preserving map between preorders.
Then, f is a covering of A-spaces in the topological sense if and only if it is a covering
in the categorical sense.

Proof. Assume it is a topological covering and let x ∈ X. Then Uf(x) is evenly cov-
ered, i.e. f−1(Uf(x)) is a disjoint union

∐
Vi of open subsets of X which are mapped

homeomorphically to Uf(x) by f . Suppose x ∈ Vi. Then Ux ⊆ Vi and, since f(Ux) is
an open set which contains f(x), f(Ux) = Uf(x) and f |Ux : Ux → Uf(x) is a homeo-
morphism. By Proposition 2.4, the same argument shows that f |Fx : Fx → Ff(x) is a
homeomorphism. By Lemma 2.8, f is a covering in the categorical sense.

Conversely, suppose f is a covering in the categorical sense. By Lemma 2.8,
f |Ux

: Ux → Uf(x) and f |Fx
: Fx → Ff(x) are bijections for every x ∈ X. Let y ∈ Y .

We will prove that f−1(Uy) =
∐

x∈f−1(y)

Ux and that the restrictions f |Ux : Ux → Uy are

homeomorphisms for every x ∈ f−1(y). It is clear that
⋃

x∈f−1(y)

Ux ⊆ f−1(Uy) because

f is order-preserving. Let x′ ∈ X be such that f(x′) � y. Since f |Fx′ : Fx′ → Ff(x′)
is surjective, there exists x ∈ Fx′ such that f(x) = y. Therefore, x′ ∈ Ux with x ∈
f−1(y). This proves that f−1(Uy) ⊆

⋃
x∈f−1(y)

Ux. We show that the union is disjoint.

Suppose x′ ∈ Ux1 ∩ Ux2 for x1, x2 ∈ f−1(y). Since f |Fx′ is injective, x1 = x2. In order
to show that f |Ux : Ux → Uf(x) is a homeomorphism, it only remains to see that it is

open. This is clear since for any x′ � x, f(UUx

x′ ) = f(UX
x′ ) = UY

f(x′) is open.

Remark 2.10. From the proof of Proposition 2.9 we deduce that if p : E → B is a
covering between A-spaces, then for every b ∈ B, Ub is evenly covered by p−1(Ub) =∐
e∈p−1(b)

Ue. Similarly Fb is evenly covered by p−1(Fb) =
∐

e∈p−1(b)

Fe.

Given an A-spaceX, there is a quotientX0 ofX, which is also a strong deformation
retract ofX, and consists of one representative in each equivalence class of the relation
defined by x ∼ y if x � y and y � x (see [11, Lemma 9]). By definition, X0 is a T0-
space. There is a correspondence between coverings of X and coverings of X0 which
associates to each covering p : Y → X, the covering p|p−1(X0) : p

−1(X0) → X0. To
obtain the covering of X corresponding to a covering p : Y → X0 we only need to
add for every point y in the fiber p−1(x) one point y′ equivalent to y for each point
x′ ∼ x in X. Therefore, in order to investigate coverings of A-spaces it suffices to
study coverings of T0-A-spaces (i.e. posets).

Corollary 2.11. Let f : X → Y be a continuous map between T0-A-spaces. Then f
is a covering if and only if it is surjective and the preimage f−1(c) of every finite
chain c of Y is a disjoint union of chains of X (with the subspace topology) which
are mapped homeomorphically to c by f .

Proof. If f is a covering and c is a chain of Y with maximum y, then f−1(Uy) =∐
x∈f−1(y)

Ux and f−1(c) =
∐

x∈f−1(y)

(f |Ux)
−1(c). Conversely, assume f is surjective and
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that the preimage of any finite chain c is a disjoint union of chains mapped homeomor-
phically to c. In particular, if x ∈ X, for every y ∈ Uf(x) we have that f

−1({y, f(x)})
is a disjoint union of chains, of length 1 if y �= f(x) and of length 0 if y = f(x). Since
x is the maximum of one of these chains, then there is one and only one element of
Ux which is mapped by f to y. Thus, f |Ux : Ux → Uf(x) is a bijection. The same is
true for f |Fx : Fx → Ff(x) and therefore, f is a covering by Proposition 2.9.

3. Relationship with simplicial coverings

The order complex functor K is defined as follows. Given a T0-A-space X, K(X)
is the simplicial complex of non-empty finite chains of X. Given a continuous map
f : X → Y between T0-A-spaces, K(f) : K(X) → K(Y ) is the simplicial map which
maps a vertex x ∈ X to f(x) ∈ Y . In the other direction, if K is a simplicial complex,
its face poset X (K) is the poset of simplices of K ordered by inclusion. If ϕ : K → L
is a simplicial map between simplicial complexes, X (ϕ) : X (K) → X (L) is the contin-
uous map which maps a simplex σ ∈ K to ϕ(σ) ∈ L. Before studying the relationship
between coverings of polyhedra and of A-spaces we recall a characterization of the
first. A simplicial map ϕ : L → K is a covering if and only if the preimage of every
simplex σ ∈ K is a disjoint union of simplices which are mapped isomorphically to
σ. Although this simple fact is known, we could not find a proof in the literature, so
we include one here for the sake of completeness.

Let K be a simplicial complex. Every (topological) covering of K, p : E → K,
is equivalent to a covering ϕ : L → K where L is a simplicial complex and ϕ is a
simplicial map [13, Theorem 3.8.3]. Recall that two coverings p : E → B and p′ : E′ →
B of the same base space B are equivalent if there is a homeomorphism h : E → E′

such that p′h = p.
Given a simplicial map ϕ : L → K, and a simplex σ ∈ K, we denote by ϕ−1(σ)

the subcomplex of L whose simplices are those simplices τ ∈ L such that ϕ(τ) ⊆ σ.
Note that the geometric realization of ϕ−1(σ) is the preimage of the closed simplex
σ under the geometric realization of ϕ.

Proposition 3.1. Let ϕ : L → K be a simplicial map. Then ϕ is a covering if and
only if it is surjective on vertices and for every simplex σ of K, ϕ−1(σ) is a disjoint
union of simplices of L, each of which is mapped isomorphically to σ by ϕ.

Proof. If ϕ : L → K is a covering and σ ∈ K, then by Remark 2.3 ϕ−1(σ) is a subcom-
plex of L which is a disjoint union of subcomplexes τi mapped homeomorphically to
σ by ϕ. Then they are mapped isomorphically, and the subcomplexes τi are simplices.

Conversely, assume that ϕ is surjective on vertices and that for each simplex σ ∈ K,
ϕ−1(σ) =

∐
τi and ϕ|τi : τi → σ are isomorphisms. Clearly ϕ is surjective. We will

show that there is an open cover of K by sets which are evenly covered. Concretely,
we will see that for each v ∈ K, the preimage of the open star of a vertex v ∈ K is

ϕ−1(
◦
st(v)) =

∐

ϕ(w)=v

◦
st(w) (1)

and that the restrictions
◦
st(w) → ◦

st(v) of ϕ are homeomorphisms. Recall that the
open star of the vertex v is the union of the open simplices containing v. If w,w′ are
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in the fiber of v and their open stars intersect, then {w,w′} is a simplex of ϕ−1(v).
Since this is by assumption a union of 0-simplices, w = w′. Therefore the union is dis-
joint. The fact that the equality in (1) holds is a general fact for any simplicial map.

Let w ∈ ϕ−1(v). In order to show that
◦
st(w) → ◦

st(v) is a homeomorphism, we will
prove that the restriction of ϕ to the closed stars st(w) → st(v) is an isomorphism. Let
v′ be a vertex in st(v), that is to say {v, v′} is a simplex of K. If v �= v′, ϕ−1({v, v′})
is a disjoint union of 1-simplices. Therefore, there exists a unique vertex w′ ∈ st(w)
such that ϕ(w′) = v′. Define ψ : st(v) → st(w) by ψ(v′) = w′ and ψ(v) = w. This map
is simplicial since for a k-dimensional simplex σ = {v0, v1, . . . , vk} ∈ st(v) containing
v, ϕ−1(σ) is a disjoint union of k-simplices and then there exists a unique k-simplex
τ ∈ L containing w and which is mapped isomorphically to σ by ϕ. Thus, ψ(σ) = τ .
Clearly ψ is the inverse of ϕ, so ϕ|st(w) : st(w) → st(v) is an isomorphism. This home-

omorphism restricts to a homeomorphism
◦
st(w) → ϕ(

◦
st(w)) =

◦
st(v).

Theorem 3.2. Let B be a T0-A-space. If p : E → B is a covering, then K(p) : K(E) →
K(B) is a covering. Moreover, the functor K establishes a one-to-one correspondence
between equivalence classes of coverings of B and equivalence classes of coverings of
K(B).

Proof. Let p : E → B be a covering. The map K(p) is surjective on vertices. Moreover,
by Corollary 2.11 the preimage of every simplex σ ∈ K(B) is a disjoint union of
simplices mapped isomorphically to σ. Therefore K(p) is a covering.

Equivalent coverings of B are mapped to equivalent coverings of K(B). Suppose
now that p1 : E1 → B and p2 : E2 → B are coverings of B such that there is a home-
omorphism h : K(E1) → K(E2) with K(p2)h = K(p1). It is easy to see that h is a
simplicial map, so it induces a function f : E1 → E2. We prove that f is continuous.
If e < e′ in E1, {e, e′} is a simplex of K(E1) and h({e, e′}) = {f(e), f(e′)} is then a
simplex of K(E2). If f(e) � f(e′), then p1(e) = p2f(e) � p2f(e

′) = p1(e
′) which is a

contradiction since p1 is a covering. Thus, f(e) � f(e′). Symmetrically, the inverse
of h induces an order-preserving map g : E2 → E1 and this is the inverse of f . This
shows that the mapping from classes of coverings of B to classes of coverings of K(B)
is injective. To check surjectivity, consider a covering of K(B). It is equivalent to
a simplicial covering ϕ : K → K(B). Define an order in the vertex set E of K by
v � v′ if {v, v′} is a simplex of K and ϕ(v) � ϕ(v′). This relation in transitive since
if v � v′ � v′′, then v, v′ and v′′ lie in one simplex of ϕ−1({ϕ(v), ϕ(v′), ϕ(v′′)}). It is
not hard to see that K(E) = K. Moreover the map p : E → B induced by the map ϕ
in the vertices, is a covering by Corollary 2.11 and Proposition 3.1.

Note that, the fact that K preserves coverings is a particular case of a more general
result. It is not hard to see that the nerve functor from the category of small categories
to the category of simplicial sets and the geometric realization functor from simplicial
sets to spaces preserve coverings (see [9] for more details on the geometric realization
functor and coverings of simplicial sets).

Theorem 3.3. Let K be a simplicial complex. If ϕ : L → K is a simplicial covering,
then X (ϕ) : X (L) → X (K) is a covering. Moreover, the functor X establishes a one-
to-one correspondence between equivalence classes of coverings of K and equivalence
classes of coverings of X (K).
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Proof. Suppose ϕ : L → K is a covering. Clearly X (ϕ) is surjective. If σ is a simplex
of K, ϕ−1(σ) =

∐
τi and ϕ|τi : τi → σ is an isomorphism. Then X (ϕ)−1(Uσ) =

∐
Uτi ,

and X (ϕ)|Uτi
: Uτi → Uσ is a homeomorphism for every i. Thus X (ϕ) is a covering.

Equivalent coverings of K are mapped to equivalent coverings of X (K). If
h : X (L1) → X (L2) is a homeomorphism such that X (ϕ2)h = X (ϕ1) for some cov-
erings ϕ1 and ϕ2 of K, we show that the latter two are equivalent. Since X (ϕ2)h =
X (ϕ1) where X (ϕ1) and X (ϕ2) are coverings, h maps minimal elements of X (L1) to
minimal elements of X (L2). Thus, it induces a vertex map ψ : L1 → L2. Moreover,
since h is order-preserving, bounded sets of minimal elements are mapped to bounded
sets. Therefore, ψ is simplicial. The inverse of h induces a simplicial map L2 → L1

which is the inverse of ψ, so ϕ1 and ϕ2 are equivalent.
Suppose now that p : X → X (K) is a covering. Define the complex L whose vertices

are the minimal elements of X and whose simplices are the bounded sets of minimal
elements (cf. [2, Section 9.2]). Since p is a covering, it maps minimal elements to
minimal elements, so it determines a vertex map ϕ : L → K, which is clearly simpli-
cial since an upper bound of {x0, x1, . . . , xk} is mapped by p to an upper bound of
{p(x0), p(x1), . . . , p(xk)}. We will prove that ϕ is a covering and that X (ϕ) is equiv-
alent to p. Define a map f : X → X (L) which maps an element x ∈ X to the set of
minimal elements of X smaller than x. This is an order-preserving map. Moreover,
X (ϕ)f = p. If x ∈ X, and {x0, x1, . . . , xk} is the set of minimal elements below x, then
X (ϕ)f(x) = {p(x0), p(x1), . . . , p(xk)}. On the other hand, since p|Ux : Ux → Up(x) is
a homeomorphism, {p(x0), p(x1), . . . , p(xk)} is exactly the set of minimal elements
of X (K) smaller that p(x), so p(x) is the simplex {p(x0), p(x1), . . . , p(xk)}. Define
now g : X (L) → X as follows. Let σ = {x0, x1, . . . , xk} be a simplex of L. Since σ
has an upper bound x in X, τ = {p(x0), p(x1), . . . , p(xk)} is a simplex of K. There
exists a unique upper bound x′ of {x0, x1, . . . , xk} in X such that p(x′) = τ . In fact,
the preimage of τ through p|Ux : Ux → Up(x) satisfies that property, and there is at
most one since the minimal open sets Ux′ and Ux′′ of elements in the same fiber
must be disjoint. Define g({x0, x1, . . . , xk}) = x′. It is easy to see that g is contin-
uous. Furthermore, g is the inverse of f . This shows that X (ϕ) is equivalent to p.
Finally, since X (ϕ) is a covering, by Theorem 3.2 ϕ′ = K(X (ϕ)) is a covering. The
maps ϕ,ϕ′ : L = L′ → K = K ′ differ only in a homeomorphism. Then ϕ is also a
covering.
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