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ERRATUM TO
“LIMIT THEOREMS FOR BETTI NUMBERS OF RANDOM

SIMPLICIAL COMPLEXES”

MATTHEW KAHLE and ELIZABETH MECKES

(communicated by Gunnar Carlsson)

Abstract
We correct the proofs of the main theorems in our earlier

paper “Limit theorems for Betti numbers of random simplicial
complexes.” We are grateful to D. Yogeshwaran for pointing out
the mistakes.

1. The Erdős–Renyi random clique complex

In the paper [2], we claimed a central limit theorem for the Betti number of
an Erdős–Renyi random simplicial complex (Theorem 2.4). The proof given there
contains an error; however, with minor modifications and an additional recent result,
the proof goes through essentially as before. For brevity, we refer to [2] for notation
and descriptions of the models used. Formally, we have the following modification of
Theorem 2.4 of [2].

Theorem 1.1. Consider the Erdős–Renyi clique complex X(n, p); that is, take a ran-
dom 1-skeleton on n vertices, in which edges are present independently and with prob-
ability p, and let X(n, p) be the maximal complex over this 1-skeleton. Suppose that
there is some δ > 0 such that p = ω(n−1/k+δ) and p = o(n−1/(k+1)−δ). Then

βk(X(n, p))− E[βk(X(n, p))]√
Var[βk]

⇒ N(0, 1).

Note that the range of p is slightly restricted relative to what was claimed earlier,
when δ was taken to be 0.

The mistake in the proof given in [2] of this result was the claim that, given the
Morse inequalities

fk − fk+1 − fk−1 � βk � fk

and central limit theorems for the recentered, renormalized upper and lower bounds,
a central limit theorem for βk itself followed; this is not true, however, because the
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difference in means of the upper and lower bounds is too large relative to the normal-
ization to allow such a conclusion. However, the proof of the central limit theorem for
the lower bound is valid, and with minor modifications, one can use the same proof
to obtain a central limit theorem for the quantity

β̃k := fk − fk+1 − fk−1 + fk+2 + fk−2 − fk+3 − fk−3 + · · · .
A consequence of the results in [1] is that for p in the given regime, a.a.s. all the Betti
numbers except for βk are zero. It then follows immediately from the Euler formula
that βk = β̃k a.a.s.

A central limit theorem for βk is then essentially immediate from a central limit
theorem for β̃k:

P

⎡
⎣ βk − Eβ̃k√

Var(β̃k)
� t

⎤
⎦ � P

⎡
⎣ β̃k − Eβ̃k√

Var(β̃k)
� t, βk = β̃k

⎤
⎦+ P[βk �= β̃k]

� P

⎡
⎣ β̃k − Eβ̃k√

Var(β̃k)
� t

⎤
⎦+ P[βk �= β̃k];

the corresponding lower bound follows the same way. Thus∣∣∣∣∣∣P
⎡
⎣ βk − Eβ̃k√

Var(β̃k)
� t

⎤
⎦− Φ(t)

∣∣∣∣∣∣ �
∣∣∣∣∣∣P

⎡
⎣ β̃k − Eβ̃k√

Var(β̃k)
� t

⎤
⎦− Φ(t)

∣∣∣∣∣∣+ P[βk �= β̃k]. (1)

For k fixed, the second quantity tends to zero as n→∞ and if β̃k satisfies a central
limit theorem, then so does the first quantity, and we are done.

To move to the actual statement of Theorem 1.1, one needs a slightly more refined
version of the a.a.s. equality of β and β̃k. In fact, the techniques in [1] give that
for p in the given regime, βk = β̃k with probability 1− o(n−M ) for any constant
M > 0. On the other hand, since a simplicial complex on n vertices has βk � fk �(

n
k+1

)
, in all cases we have that βk − β̃k = O(nk+1). It is shown below that Var(β̃k) ∼

n2kp2(
k+1
2 )−1. These estimates together are enough to obtain Theorem 1.1, as follows.

First note that the above estimates imply that

|Eβk − Eβ̃k|√
Var(β̃k)

= o
(
n1−Mp

1
2−(k+1

2 )
)
;

choosing M � k+3
2 , we have that in the regime of p specified in the theorem,

|Eβk−Eβ̃k|√
Var(β̃k)

→ 0 as n→∞. Now,

Var(βk)

Var(β̃k)
= 1 +

Var(βk − β̃k)

Var(β̃k)
+ 2

Cov(β̃k, βk − β̃k)

Var(β̃k)
.

By the Cauchy–Schwarz inequality, |Cov(β̃k,βk−β̃k)|
Var(β̃k)

�
√

Var(βk−β̃k)

Var(β̃k)
, and

Var(βk − β̃k)

Var(β̃k)
� E|βk − β̃k|2

Var(β̃k)
= o

(
n2−Mp1−2(k+1

2 )
)
,
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which tends to zero if M � k + 3. We thus have that Var(βk)

Var(β̃k)
→ 1 as n→∞. Finally,

we get that for any δ, δ′, ε > 0, for n large enough,

P

[
βk − Eβk√
Var(βk)

� t

]
= P

⎡
⎣ βk − Eβ̃k√

Var(β̃k)
� t

√
Var(βk)

Var(β̃k)
+

⎛
⎝Eβk − Eβ̃k√

Var(β̃k)

⎞
⎠
⎤
⎦

� P

⎡
⎣ βk − Eβ̃k√

Var(β̃k)
� t(1 + δ) + δ′

⎤
⎦

� Φ(t(1 + δ) + δ′) + ε.

Letting δ, δ′, ε tend to zero, we have

lim sup
n→∞

P

[
βk − Eβk√
Var(βk)

� t

]
� Φ(t).

The lower bound is proved the same way, and thus it suffices to prove a central limit
theorem for β̃k. To do this, we follow essentially the same proof as the one given in
[2] for fk − fk−1 − fk+1. In particular, the result is an application of the following
result of Barbour, Karoński, and Ruciński.

Theorem 1.2. Let {Xj : j = (j1, . . . , jr) ∈ J} be a dissociated set of random vari-
ables, such that EXj = 0 for all j. Let W :=

∑
j∈J Xj and suppose that the Xj are

normalized such that EW 2 = 1. Then

d1(W,Z) � K
∑
j∈J

∑
k,l∈Lj

[
E|XjXkXl|+ E|XjXk|E|Xl|

]
, (2)

where Z is a standard normal random variable and Lj is the dependency neighborhood
of j.

Write

β̃k =
∑
A⊆V

(−1)|A|+k+1ξA,

where V is the collection of n vertices over which our complex is built and ξA is the
indicator that A spans a complete graph in the random complex X(n, p); that is,

that all
(|A|

2

)
potential edges between vertices in A are present. Let σ2 := Var(β̃k),

and consider the random variable

W :=
β̃k − Eβ̃k√
Var(β̃k)

=
1

σ

∑
A⊆V

(−1)|A|+k+1
(
ξA − EξA

)
;

that is,

XA :=
(−1)|A|+k+1

σ

(
ξA − EξA

)
.

It is not hard to see that for any subsets A,B,C,

E|XAXBXC |+ E|XAXB |E|XC | � 16

σ3
E
[
ξAξBξC

]
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and it thus suffices to estimate

16

σ3

∑
A⊆V

∑
B,C∈LA

E
[
ξAξBξC

]
,

where for A ⊆ V, LA is the collection of subsets of V sharing at least two vertices
with A (so that they have at least one potential edge in common). Decomposing by
the sizes of A,B,C and the sizes of their intersections, we have that

16

σ3

∑
A⊆V

∑
B,C∈LA

E
[
ξAξBξC

]

=
16

σ3

∑
�A,�B ,�C�2

rA,B�2

rA\B,C�0

rA∩B,C�(2−rA\B,C)+

rB\A,C�0

C p(
�A
2 )+(

�B
2 )+(

�C
2 )−(

rA,B
2 )−(rA\B,C+rA∩B,C

2
)−(rB\A,C+rA∩B,C

2
)+(rA∩B,C

2 ),

where the upper limits all depend only on k, and the combinatorial coefficient C is
given by

C =

(
n

�A

)(
n− �A

�B − rA,B

)(
�A
rA,B

)(
�B − rA,B

rB\A,C

)

×
(

rA,B

rA∩B,C

)(
�A − rA,B

rA\B,C

)(
n− �A − �B + rA,B

�C − rA\B,C − rB\A,C − rA∩B,C

)
� ckn

�A+�B+�C−rA,B−rA\B,C−rB\A,C−rA∩B,C ,

for a constant ck depending only on k. If we fix �A, �B , rA,B and ignore for the moment
those factors that depend only on these parameters, we are left with sums over �C ,
etc., of terms of size

1

σ3
n�C−rA\B,C−rB\A,C−rA∩B,Cp(

�C
2 )−(

rA\B,C+rA∩B,C
2

)−(rB\A,C+rA∩B,C
2

)+(rA∩B,C
2 ). (3)

Now, if �C is increased by one and the new element of C is also in, say A \B, then
the power of n in the expression above does not change, but the power of p does; the
ratio of the new term to the old is

p(
�C+1

2 )−(�C2 )−(
rA\B,C+1+rA∩B,C

2
)+(rA\B,C+rA∩B,C

2
) = p�c−rA\B,C−rA∩B,C .

Similarly, if �C is increased by one and the new element of C is also in A ∩B, then
the ratio of the new term to the old is

p�C−rA\B,C−rB\A,C−rA∩B,C .

Since in both cases the power on p is nonnegative, adding a new vertex to C which
is already in A ∪B can only make the summand smaller. On the other hand, if �C
is increased by 1, and the new vertex is not in A or B, then the ratio of the new
term to the old is np�C . In the regime that we consider, this tends to infinity for (the
old) �C � k and tends to zero for �C � k + 1; that is, the largest possible order for
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the expression in (3) is achieved when �C = k + 1, when rA\B,C + rA∩B,C = 2 and
rB\A,C = 0. Using these values in (3) yields

1

σ3
nk−1p(

k+1
2 )−1. (4)

Now suppose that only �A is fixed, and ignore the part of the summand depending
only on its value. We thus must consider summands of the size

1

σ3
n�B−rA,B+k−1p(

�B
2 )−(

rA,B
2 )+(k+1

2 )−1. (5)

As before, if �B is increased and so is rA,B , then the expression can only get smaller. If
�B is increased by 1 while rA,B stays fixed, then the ratio of the new expression to the
old is np�B , and so we once again see that the largest possible size of the expression
in (5) is achieved when �B = k + 1 and rA,B = 2; the quantity in (5) is thus bounded
above by

1

σ3
n2k−2p2(

k+1
2 )−2. (6)

Finally, considering the full term, we have the upper bound of

1

σ3
n�A+2k−2p(

�A
2 )+2(k+1

2 )−2; (7)

by the same argument one last time, this expression is maximized when �A = k + 1,
yielding

1

σ3
n3k−1p3(

k+1
2 )−2; (8)

that is, Theorem 1.2 implies that

d1(W,Z) � C

σ3
n3k−1p3(

k+1
2 )−2,

where W = β̃k−Eβ̃k√
Var(β̃k)

.

The computation of σ2 from [2] essentially goes through as before. It was shown
there that

Var(fk) ∼ ckn
2kp2(

k+1
2 )−1

(the numbered subclaim and equation (4) of [2] are inconsistent and in fact both
wrong: unfortunate casualties of a change of index in the course of editing). From
this it follows that for any j > 0,

Var(fk±j)

Var(fk)
→ 0;

moreover, one can compute covariances as in [2], yielding for example the formula

Cov(fk+j , fk+�)

=

(
n

k + j + 1

)
p(

k+j+1
2 )+(k+�+1

2 )
k+j+1∑
r=2

(
k + j + 1

r

)(
n− k − j − 1

k + �+ 1− r

)(
p−(

r
2) − 1

)
,

for 0 � j � k (and similarly in other cases). Again one confirms that the order of this
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expression is smaller than the order of the variance of fk, so that we finally have that

σ2 ∼ n2kp2(
k+1
2 )−1.

The sums over indices only contribute constants depending on k, so that we have
that the error in the abstract normal approximation theorem above is bounded above
by

ck
n3k−1p3(

k+1
2 )−2

n3kp3(
k+1
2 )− 3

2

=
ck

n
√
p
,

for a constant ck depending only on k.

2. The Čech complex

In [2] we claimed three different limit theorems for the kth Betti number of a
random Čech complex: depending on the sub-regime of the sparse regime, the kth
Betti number either vanished a.a.s., had an approximate Poisson distribution, or
satisfied a central limit theorem. The approach taken in [2] works in most of the

sparse regime, namely as long as nk+3r
d(k+2)
n → 0, but to deal with the regime in

which rn = o(n−1/d−δ) for some δ > 0, but nk+3r
d(k+2)
n is bounded away from zero, a

slightly different argument is needed, for the same reason as in the previous section.
We begin by noting that one can write βk semi-explicitly as follows. Let Sk denote

the number of empty (k + 1)-dimensional simplex components of the Čech complex
C(X1, . . . , Xn) spanned by X1, . . . , Xn. Note that every such connected component
has exactly k + 2 vertices.

For every pair of integers i > k + 2 and j > 0, let Xi,j denote the number of con-
nected components C of C(X1, . . . , Xn) on i vertices such that βk(C) = j. In other
words Xi,j counts the components on i vertices which contribute exactly j to βk.

Then

βk = Sk +
∑

i>k+2,j>0

jXi,j .

A central limit theorem for βk is indeed a consequence of a central limit theorem
for Sk as claimed in [2], by a slightly more careful analysis.

Set m = �1 + 1/(δd), and define the truncated sum

β̃k = Sk +
m∑

i=k+3

∑
j>0

jXi,j .

By a modification of the argument in [2], one obtains the following.

Theorem 2.1. With notation as above, for rn = o(n−1/d−δ) and limn→∞nk+2r
d(k+1)
n

→∞,

1√
n(nrdn)

k+1

(
β̃k − E

[
β̃k

] )
=⇒ N

(
0,

μk+2,1

(k + 2)!

)
,

where μk+2,1 is a constant depending only on f and k.

From here, a central limit theorem for βk itself follows:
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Theorem 2.2. With notation as above, for rn = o(n−1/d−δ) and limn→∞nk+2r
d(k+1)
n

→∞,

1√
n(nrdn)

k+1

(
βk − E [βk]

)
=⇒ N

(
0,

μk+2,1

(k + 2)!

)
,

where μk+2,1 is the same constant as in Theorem 2.1.

Compare with Theorem 3.2(iii) of [2]: the range of rn is slightly more restricted
(there, δ was taken to be 0); the theorem here is also stated in terms of a specific
numerical normalization, rather than abstractly in terms of the variance of βk as in
[2].

Proof of Theorem 2.2 from Theorem 2.1. Observe that

P

[
βk − Eβk√
n(nrdn)

k+1
� t

]
� P

[
β̃k − Eβ̃k√
n(nrdn)

k+1
� t+ ε

]
+ P

[∣∣∣∣∣ β̃k − βk − E[β̃k − βk]√
n(nrdn)

k+1

∣∣∣∣∣ > ε

]

� P

[
β̃k − Eβ̃k√
n(nrdn)

k+1
� t+ ε

]
+

2E|βk − β̃k|
ε
√
n(nrdn)

k+1
.

Claim:
E|βk − β̃k|√
n(nrdn)

k+1

n→∞−−−−→ 0.

From the claim it follows that, given ε > 0, there is an n large enough so that

P

[
βk − Eβk√
n(nrdn)

k+1
� t

]
� P

[
β̃k − Eβ̃k√
n(nrdn)

k+1
� t+ ε

]
+ ε.

Using the central limit theorem already established for β̃k and then letting ε→ 0
shows that

lim sup
n→∞

P

[
βk − Eβk√
n(nrdn)

k+1
� t

]
� P

[√
μk+2,1

(k + 2)!
Z � t

]
,

where Z is a standard Gaussian random variable. The corresponding lower bound
follows in the same way, so that given the claim, the proof of Theorem 2.2 is complete.

To prove the claim, observe that

|βk − β̃k| =
S∑

i=m+1

∑
j>0

jXi,j +
n∑

i=S+1

∑
j>0

Xi,j , (9)

where S =
⌈

2
dδ + 1

⌉
.

Since there are ii−2 spanning trees on a set of i vertices, and since a connected
component of order i can contribute at most

(
i

k+1

)
to βk, we have that for fixed

i � m+ 1,

E

⎡
⎣∑
j>0

jXi,j

⎤
⎦ �

(
n

i

)
ii−2

(‖f‖∞rdn
)(i−1)

(
i

k + 1

)
� ni

i!
ii−2

(‖f‖∞rdn
)(i−1)

(
i

k + 1

)
.
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It follows that

2S

S∑
i�m+1

E

⎡
⎣∑
j>0

jXi,j

⎤
⎦ = O

(
nm+1rdmn

)
= O

(
n−dδ

)
,

since rn = o(n−1/d−δ); this takes care of the first sum in (9).

For the second sum, the same estimate on the terms gives that

n∑
i=S+1

E

⎡
⎣∑
j>0

jXi,j

⎤
⎦ = O

(
n2(nrdn)

S
)
= O

(
n2−dδS

)
.

Since S > 2
dδ + 1, we have that E|βk − β̃k| = O(n−δd), which proves the claim.

As in [2], to prove Theorem 2.1, we consider the Poissonized problem first, then
recover the i.i.d. case.

Let Nn be a Poisson random variable with mean n, and let Pn = {X1, . . . , XNn},
where {Xi}∞i=1 is an i.i.d. sequence of random points in R

d with density f . Then Pn is
a Poisson process with intensity nf(·), and one can define SP

k and XP
i,j for the random

points Pn analogously to the earlier definitions. In what follows, assume that k � 2;
that is, the empty k-simplices are at least empty triangles. Empty 1-simplices are
simply pairs of vertices which are not connected, and different arguments are needed
in that case.

In order to compute expectations for the expressions which arise in the Poissonized
case, the following results are useful.

Theorem 2.3 (See Theorem 1.6 of [3]). Let λ > 0 and let Pλ be a Poisson process
with intensity λf(·). Let j ∈ N, and suppose that h(Y, S) is a bounded measurable
function on pairs (Y, S) with S a finite subset of Rd and Y ⊆ S, such that h(Y, S) = 0
unless |Y| = j. Then

E

⎡
⎣ ∑
Y⊆Pλ

h(Y,Pλ)

⎤
⎦ =

λj

j!
Eh(Xj ,Xj ∪ Pλ),

where Xj is a set of j i.i.d. points in R
d with density f , independent of Pλ.

From this, one can prove the following (see [2] for the proof).

Theorem 2.4. Let λ > 0 and k, j1, . . . , jk ∈ N; define j :=
∑k

i=1 ji. For 1 � i � k,
suppose hi(Y, S) is a bounded measurable function of pairs (Y, S) of finite subsets of
R

d with Y ⊆ S, such that hi(Y, S) = 0 if |Y| �= ji. Then

E

⎡
⎣ ∑
Y1,⊆Pλ

· · ·
∑

Yk⊆Pλ

(
k∏

i=1

hi(Yi)

)
1{

Yi∩Yj=∅
for i 	=j

}
⎤
⎦=E

[
k∏

i=1

(
λji

ji!

)
hi(Xji ,

(∪k
i=1Xji

) ∪ Pn)

]
,

where Xji are ji i.i.d. points in R
d with density f , Pλ is a Poisson process with

intensity λf(·), and {Xji}ki=1 and Pλ are all independent.
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One can apply these results to compute the mean and variance of β̃P
k,A, the con-

tribution to β̃P
k from components whose left-most vertex is in an open set A with

vol(∂A) = 0.
In order to apply the lemmas, the corresponding means in the i.i.d. case are needed.

Lemma 2.5. Let gi,j,A(x1, . . . , xi) be the indicator that C({x1, . . . , xi}) is connected,
has kth Betti number equal to j, and has left-most-point in A. Then for {Xi} i.i.d.
with density f as before, there is a constant μi,j,A depending only on i, j, f, and A
such that

lim
n→∞ r−d(i−1)

n E [gi,j,A(X1, . . . , Xi)] = μi,j,A.

The proof is identical to that of the analogous result in Chapter 3 of Penrose [3].

Lemma 2.6. For μi,j,A as in Lemma 2.5,

(i) lim
n→∞n−(k+2)r−d(k+1)

n E

[
β̃P
k

]
= lim

n→∞n−(k+2)r−d(k+1)
n Var

[
β̃P
k

]
=

μk+2,1,A

(k + 2)!
.

(ii) lim
n→∞n−(k+2)r−d(k+1)

n E
[
SP
k

]
= lim

n→∞n−(k+2)r−d(k+1)
n Var

[
SP
k

]
=

μk+2,1,A

(k + 2)!
.

(iii) lim
n→∞n−(k+3)r−d(k+2)

n E

⎡
⎢⎢⎣ ∑
k+3�i�m

j�0

jXi,j

⎤
⎥⎥⎦

= lim
n→∞n−(k+3)r−d(k+2)

n Var

⎡
⎢⎢⎣ ∑
k+3�i�m

j�0

jXi,j

⎤
⎥⎥⎦ =

1

(k + 3)!

(k+3
k+1)∑
j=1

jμk+3,j,A.

Proof. For i � k + 2 and j � 1, let hi,j,A({x0, . . . , xk},X) be the indicator that

{x0, . . . , xi−1} ⊆ X form a connected component of C(X) with β̃k(C(x0, . . . , xi−1))= j,
whose left-most point is in A. Then with β̃P

k,A denoting the sub-sum of β̃k coming
from those components with left-most point in A,

E[β̃P
k,A] = E

⎡
⎢⎢⎣ ∑
k+2�i�m

j�1

∑
Y⊆Pλ

jhi,j,A(Y,Pn)

⎤
⎥⎥⎦ =

∑
k+2�i�m

j�1

ni

i!
E [jhi,j,A(Xi,Xi ∪ Pn)] .

(10)

Now, E [hi,j,A(Xi,Xi ∪ Pn)] � E [gi,j,A(Xi)], where gi,j,A(Xi) is the indicator that the i
i.i.d. points Xi are connected (with respect to cut-off radius rn) with kth Betti number
of the complex they span equal to j (ignoring any issues of connectedness to anything

else). By Lemma 2.5 E [gi,j,A(Xi)] � r
d(i−1)
n μi,j,A. Note moreover that the conditional

probability that Xi is isolated from Pn given that Xi is connected and has left-most
vertex in A is bounded below by the probability that there are no points of Pn in the
ball of radius 2(�i,j + 1)rn about X1, where �i,j is the largest number of edges that
may be needed to move from one vertex to another in a simplicial complex on i vertices
with kth Betti number equal to j. Since Pn is a Poisson process with intensity nf(·),
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this probability is given exactly by e−n volf (B2(�i,j+1)rn (X1)) � e−n‖f‖∞θd(2(�i,j+1)rn)
d

.
It thus follows that

E [gi,j,A(Xi,Xi ∪ Pn)] � e−n‖f‖∞θd(2(�i,j+1)rn)
d

E[gi,j,A(Xi)]

� e−n‖f‖∞θd(2(�i,j+1)rn)
d

rd(i−1)
n μi,j,A.

Recall that for i � k + 2 fixed, j �
(

i
k+1

)
. It thus follows that since nrdn → 0,

E

⎡
⎣∑
j>0

jXP
i,j,A

⎤
⎦ � nir

d(i−1)
n

i!

( i
k+1)∑
j=1

jμi,j,A,

and that in particular,

Eβ̃P
k,A �

nk+2r
d(k+1)
n

(k + 2)!
μk+2,1,A.

A similar approach is taken to compute the variance:

E

[
(β̃P

k,A)
2
]
= E

⎡
⎣ ∑
Y⊆Pn

m∑
i,i′=k+2

∑
j,j′>0

jj′hi,j,A(Y,Pn)hi′,j′,A(Y,Pn)

⎤
⎦

+ E

⎡
⎢⎢⎣

m∑
�=0

∑
Y,Y′⊆Pn

Y 	=Y′

m∑
i,i′=k+2

∑
j,j′>0

jj′hi,j,A(Y,Pn)hi′,j′,A(Y
′,Pn)1{|Y∩Y′|=�}

⎤
⎥⎥⎦.

For the first term, note that hi,j,A(Y,Pn)hi′,j′,A(Y,Pn) = 0 unless i = i′ and j = j′,
because i is the number of vertices of Y and j is the kth Betti number of the complex
it spans. This means the first term has in fact already been analyzed:

E

⎡
⎣ ∑
Y⊆Pn

m∑
i,i′=k+2

∑
j,j′>0

jjhi,j,A(Y,Pn)hi′,j′,A(Y,Pn)

⎤
⎦

= E

⎡
⎣ ∑
Y⊆Pn

m∑
i=k+2

∑
j>0

j2hi,j,A(Y,Pn)

⎤
⎦ � nk+2r

d(k+1)
n

(k + 2)!
μk+2,1,A.

For the second term, observe first that the terms corresponding to � �= 0 vanish,
i.e., hi,j,A(Y,Pn)hi′,j′,A(Y

′,Pn) ≡ 0 if |Y ∩ Y′| = � > 0, because in that case neither Y
nor Y′ is a whole component. When � = 0, applying Theorem 2.4 yields

E

⎡
⎣ ∑
Y,Y′⊆Pn

hi,j,A(Y,Pn)hi′,j′,A(Y
′,Pn)1{Y∩Y′=∅}

⎤
⎦

=
ni+i′

i!i′!
E

[
jj′hi,j,A(Xi,Xi ∪ Xi′ ∪ Pn)hi′,j′,A(Xi′ ,Xi ∪ Xi′ ∪ Pn)

]
,

where again Xi and Xi′ are independent collections of i and i′ i.i.d. points distributed
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according to f , respectively. Making use of (10) thus yields

Var
[
β̃P
k,A

]
= E

[
β̃P
k,A

]

+
m∑

i,i′=k+2

∑
j,j′�1

ni+i′jj′

i!i′!
{
E [hi,j,A(Xi,Xi ∪ Xi′ ∪ Pn)hi′,j′,A(Xi′ ,Xi ∪ Xi′ ∪ Pn)]

− E [hi,j,A(Xi,Xi ∪ Pn)]E [hi′,j′,A(Xi′ ,Xi′ ∪ Pn)]
}
.

Now, let P′n be an independent copy of Pn. Then

E [hi,j,A(Xi,Xi ∪ Xi′ ∪ Pn)hi′,j′,A(Xi′ ,Xi ∪ Xi′ ∪ Pn)]

− E [hi,j,A(Xi,Xi ∪ Pn)]E [hi′,j′,A(Xi′ ,Xi′ ∪ Pn)]

= E
[
hi,j,A(Xi,Xi ∪ Xi′ ∪ Pn)hi′,j′,A(Xi′ ,Xi ∪ Xi′ ∪ Pn)

− hi,j,A(Xi,Xi ∪ Pn)hi′,j′,A(Xi′ ,Xi′ ∪ P′n)
]

= E [(hi,j,A(Xi,Xi ∪ Xi′ ∪ Pn)− hi,j,A(Xi,Xi ∪ Pn))hi′,j′,A(Xi′ ,Xi ∪ Xi′ ∪ Pn)]

+ E [hi,j,A(Xi,Xi ∪ Pn) (hi′,j′,A(Xi′ ,Xi ∪ Xi′ ∪ Pn)− hi′,j′,A(Xi′ ,Xi′ ∪ Pn))]

+ E [hi,j,A(Xi,Xi ∪ Pn) (hi′,j′,A(Xi′ ,Xi′ ∪ Pn)− hi′,j′,A(Xi′ ,Xi′ ∪ P′n))]
=: E1 + E2 + E3.

Now, observe that in fact E1 = 0: the difference is non-zero if and only if Xi and Xi′

are connected by an edge, in which case the second factor is zero.

Observe that the difference in E2 is either 0 or −1. Furthermore, it is non-zero if
and only if Xi and Xi′ are connected by an edge, and both Xi and Xi′ are connected.
This probability is bounded above by

‖f‖i+i′−1
∞ θi+i′−1

d (2�i,jrn)
d(i−1)(2�i′,j′rn)

d(i′−1)(2(�i,j + �i′+j′ + 1)rn)
d.

Finally, conditional on the event [∪x∈XiB2�i,jrn(x)] ∩ [∪x∈Xi′B2�i′,j′rn(x)] = ∅, the
two terms of E3 have the same distribution by the spacial independence property of
the Poisson process. A contribution from E3 therefore only arises if in particular Xi

and Xi′ are both connected and the intersection above is non-empty. The probability
of this event is bounded above by

‖f‖i+i′−1
∞ θi+i′−1

d (2�i,jrn)
d(i−1)(2�i′,j′rn)

d(i′−1)(4(�i,j + �i′,j′)rn)
d.

It follows that

Var
[
β̃P
k,A

]
= E

[
β̃P
k,A

]
+ E,

and

|E| �
m∑

i,i′=k+2

∑
j,j′�1

ni+i′jj′(Ci,jrn)
d(i+i′−1)

i!i′!
2‖f‖i+i′−1

∞ θi+i′−1
d

� C(f, d, k)(nrdn)
k+2(nk+2rd(k+1)

n ),

where C(f, k, d) is a constant depending on f , d, and k. This completes the proof
of the first statement of the lemma. The proof of the second statement is the same,



140 MATTHEW KAHLE and ELIZABETH MECKES

just removing the terms of the sum indexed by i > k + 2, and the third statement is
gotten by removing the terms indexed by i = k + 2.

The following was proved via Stein’s method in [2].

Theorem 2.7. With notation as above, and for nk+2r
d(k+1)
n →∞ and nrdn → 0,

SP
k − E

[
SP
k

]
√
nk+2r

d(k+1)
n

=⇒ N

(
0,

μk+2,1

(k + 2)!

)
.

This gives a central limit theorem for β̃P
k as follows. Write

β̃P
k = SP

k +RP
k , RP

k :=
∑

i�k+3
j�1

jXi,j .

Fix t ∈ R and ε > 0. By Lemma 2.6, for n large enough,
Var(RP

k )

nk+2r
d(k+1)
n

� ε3, so that for

n large enough,

P

⎡
⎣ β̃P

k − Eβ̃P
k√

nk+2r
d(k+1)
n

� t

⎤
⎦ � P

⎡
⎣ SP

k − ESP
k√

nk+2r
d(k+1)
n

� t+ ε

⎤
⎦+ P

⎡
⎣
∣∣∣∣∣∣

RP
k − ERP

k√
nk+2r

d(k+1)
n

∣∣∣∣∣∣ > ε

⎤
⎦

� P

⎡
⎣ SP

k − ESP
k√

nk+2r
d(k+1)
n

� t+ ε

⎤
⎦+ ε.

By applying the central limit theorem already proved for SP
k and then letting ε→ 0,

it follows that

lim sup
n→∞

P

⎡
⎣ β̃P

k − Eβ̃P
k√

nk+2r
d(k+1)
n

� t

⎤
⎦ � P

[√
μk+2,1

(k + 2)!
Z � t

]
.

The other inequality is proved in the same way, giving the following central limit
theorem for β̃P

k .

Theorem 2.8. For notation as above,

1√
nk+2r

d(k+1)
n

(
β̃P
k − Eβ̃P

k

)
=⇒ N

(
0,

μk+2,1

(k + 2)!

)
.

The remaining work is to use this result to obtain the same result for β̃k itself. To
do so, the following “de-Poissonization result” is used.

Theorem 2.9 (Theorem 2.12 of [3]). Suppose that for each n ∈ N, Hn(X) is a real-
valued functional on finite sets X ⊆ R

d. Suppose that for some σ2 � 0,

(i)
1

n
Var(Hn(Pn)) −→ σ2, and

(ii)
1√
n

[
Hn(Pn)− EHn(Pn)

]
=⇒ σ2Z, for Z a standard normal random variable.
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Suppose that there are constants α ∈ R and γ > 1
2 such that the increments Rq,n =

Hn(Xq+1)−Hn(Xq) satisfy

lim
n→∞

(
sup

n−nγ�q�n+nγ

|E[Rq,n]− α|
)

= 0, (11)

lim
n→∞

(
sup

n−nγ�q<q′�n+nγ

|E[Rq,nRq′,n]− α2|
)

= 0, (12)

and

lim
n→∞

(
1√
n

sup
n−nγ�q�n+nγ

E[R2
q,n]

)
= 0. (13)

Finally, assume that there is a constant β̃ > 0 such that, with probability one,

|Hn(Xq)| � β̃(n+ q)β .

Then α2 � σ2 and as n→∞, 1
nVar(Hn(Xn))→ σ2 − α2 and

1√
n

[
Hn(Xn)− EHn(Xn)

]
=⇒

√
σ2 − α2Z.

In conjunction with Theorem 2.7, this yields Theorem 2.1, as follows.

Proof of Theorem 2.1. Theorem 2.9 is applied to the functional

Hn(X) :=
1√

(nrdn)
k+1

∑
Y⊆X

⎛
⎝ m∑

i=k+2

∑
j�1

jhi,j(Y,X)

⎞
⎠ ;

σ2 =
μk+2,1

(k+2)! and the central limit theorem holds for Hn(Pn) by Theorem 2.8.

Let

Dq,n :=
∑

Y⊆Xq+1

⎛
⎝ m∑

i=k+2

∑
j�1

jhi,j(Y,Xq+1)

⎞
⎠−

∑
Y⊆Xq

⎛
⎝ m∑

i=k+2

∑
j�1

jhi,j(Y,Xq)

⎞
⎠

(the dependence on n is only through the threshold radius rn), and observe that Dq,n

is the kth Betti number of the component of Xq+1 in Xq+1, minus the kth Betti
number of the complex that results by taking the component of Xq+1 and removing
Xq+1 from it, assuming these components are on m or fewer vertices. It follows that
the difference is bounded by

(
m

k+1

)
, and is only non-zero if Xq+1 is connected to at

least k + 1 other vertices, so that

|E[Dq,n]| �
(

m

k + 1

)(
n+ nγ

k + 1

)(‖f‖∞rdn
)(k+1) �

(
m

k + 1

)(
(n+ nγ)‖f‖∞rdn

)(k+1)
.

The first condition of the theorem is then satisfied with α = 0, for any γ ∈ (
1
2 , 1

]
.

Next, consider the quantity E[Dq,nDq′,n] for q < q′. By the observation above,

Dq,nDq′,n is uniformly bounded by
(

m
k+1

)2
. The probability that Dq,n �= 0 is bounded

above by c[n+ nγ ]k+1r
d(k+1)
n as before. Given that the difference is non-zero, the

largest probability event that causes Dq′,n to be non-zero is that Xq′+1 is connected
to the component of Xq+1, and that its removal changes the Betti number of that
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component. The probability thatXq′+1 is in the component of Xq+1 is bounded above
crdn, so that

|E[Rq,nRq′,n]| = 1

(nrdn)
k+1

|E[Dq,nDq′,n]| � 1

(nrdn)
k+1

(
c[n+ nγ ]k+1rd(k+2)

n

)
� crdn,

so that the second condition of the theorem is also satisfied.
If q = q′, then we have as above

E[D2
q,n] � c[n+ nγ ]k+1rd(k+1)

n ,

so that
1√
n
E[R2

q,n] �
2k+1c√

n
,

and so the third condition is satisfied as well.
Finally, the polynomial boundedness condition of Theorem 2.9 is satisfied trivially,

and the proof is complete.
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