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Abstract
A version of Dwyer-Kan localization in the context of ∞-

categories and simplicial categories is presented. Some results
of the classical papers [DK1, DK2, DK3] are reproven and
generalized. We prove that a Quillen pair of model categories
gives rise to an adjoint pair of their DK localizations (consid-
ered as ∞-categories). We study families of ∞-categories and
present a result on localization of a family of∞-categories. This
is applied to localization of symmetric monoidal ∞-categories
where we were able to get only partial results.

To the memory of Daniel Kan

Introduction

This paper was devised as an appendix to [H.R] intended to describe necessary
prerequisites about localization in (∞, 1)-categories. The task turned out to be more
serious and more interesting than was originally believed. This is why we finally
decided to present it as a separate text.

The paper consists of three sections. In Section 1 we present a version of Dwyer-Kan
localization in the context of ∞-categories1 and simplicial categories. The original
approach of Dwyer and Kan [DK1, DK2, DK3] is replaced, in the context of ∞-
categories, with a description using universal property. We compare the approaches
showing that the homotopy coherent nerve carries hammock localization of fibrant
simplicial categories to a localization of ∞-category in our universal sense.

A very important example of Dwyer-Kan localization is the underlying∞-category
of a model category. We reprove the classical result [DK3, Proposition 5.2], and prove
a generalization of [DK3, 4.8], giving various equivalent descriptions of this localiza-
tion. Our approach is based on Key Lemma 1.3.6 which gives a convenient criterion
for a functor f : C̃ → C between (conventional) categories to be a DK localization.

Applying Key lemma to the case C̃ is a category of resolutions of objects in C, we
are able to easily deduce most of the results about equivalence of different descriptions
of the underlying ∞-category of a model category.

Received July 28, 2014, revised June 11, 2015; published on February 10, 2016.
2010 Mathematics Subject Classification: 55U35, 18D20.
Key words and phrases: DK localization, infinity-category.
Article available at http://dx.doi.org/10.4310/HHA.2016.v18.n1.a3
Copyright c© 2016, Vladimir Hinich. Permission to copy for private use granted.

1in the sense of Lurie [L.T]

http://intlpress.com/HHA/
http://intlpress.com/HHA/v18/
http://intlpress.com/HHA/v18/n1/


28 VLADIMIR HINICH

Another result of Section 1 is Proposition 1.5.1 saying that a Quillen pair of model
categories gives rise to an adjoint pair of their underlying ∞-categories. This was
previously proven for a simplicial Quillen adjunction, see [L.T, 5.2.4].

In Section 2 of the paper we present a way to simultaneously localize a family
of ∞-categories. Under some conditions described in 2.1.1, localization of a fiber of
f : C → D is equivalent to the homotopy fiber of the map of localizations.

This result is applicable when one studies the ∞-category of pairs (A,M) where
A is a DG algebra and M is A-module, as (co)fibered over the ∞-category of DG
algebras. This is how we use it in [H.R].

In the last Section 3 we make an attempt to understand the universal meaning
of SM ∞-category underlying a SM model category. Let C be a symmetric monoidal
model category. The homotopy category Ho(C) has a symmetric monoidal structure
with the tensor product defined as the left derived functor of the tensor product
in C. The canonical localization functor C→ Ho(C) is lax symmetric monoidal. It is
not difficult to produce a SM ∞-category whose homotopy category is equivalent to
Ho(C): one defines it as a DK localization of the full subcategory Cc ⊂ C spanned
by the cofibrant objects of C (see Lurie [L.HA, 4.1.3]). However, it is not clear in
general how to present the passage from C to the DK localization of Cc as a universal
construction.

We suggest to define a right SM localization (of a SM ∞-category C with respect
to a collection W of arrows) as a lax SM functor C → D carrying W to equivalences,
universal with respect to this property, and equivalent to the usual DK localization
once the SM structure is forgotten. In a special case C is the category of complexes
over a commutative ring we are able to prove the existence of right localization,
see 3.3.3. We do not know general conditions which would ensure its existence.
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1. ∞-localization. ∞-category of a model category

In 1.1 we present the notion of ∞-localization in the context of ∞-categories. We
work in the setting of ∞-categories as defined and developed in [L.T] and [L.HA].
Localization of an ∞-category along a collection of arrows is defined by a universal
property; it can be easily expressed in terms of fibrant replacement in the model
category of marked simplicial sets, [L.T, Chapter 3].

A more explicit construction of∞-localization can be given in terms of Dwyer-Kan
localization of simplicial categories. The equivalence of two approaches is “almost
obvious”. This is why we prefer to extend the name “Dwyer-Kan localization” to
include the ∞-localization of ∞-categories.2

2Another reason is the wish to avoid confusion with much more narrow Lurie’s notion of localization,
see [L.T, 5.2.7], which rather deserves the name Bousfield localization.
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We use the notion of ∞-localization to define the underlying ∞-category of an
arbitrary model category. This notion generalizes the notion of an underlying ∞-
category of a simplicial model category as defined in [L.T, A.2].

In Section 1.4 we study weak simplicial model categories. These are model cate-
gories with a structure of a simplicial category which is compatible in a weak sense
with the model structure, see Definition 1.4.2. Such sort of compatibility has, for
instance, the category of complexes, or the category of commutative DG algebras
over a field of characteristic zero.

Our Proposition 1.4.3 extends to weak simplicial model categories Theorem 4.8
from [DK3] saying, in particular, that the underlying ∞-category in this case is
equivalent to the nerve of the simplicial category of fibrant cofibrant objects.

In 1.5.1 we show that a Quillen pair of model categories gives rise to an adjoint pair
of functors between the respective underlying∞-categories. The result was previously
known for a simplicial Quillen adjunction (see [L.T, 5.2.4]) and, in the language of
simplicial categories, for a Quillen equivalence, see [DK2].

1.1. Dwyer-Kan localization in ∞-categories

1.1.1. Total localization

The∞-category of spaces S is the full subcategory of Cat∞ spanned by∞-categories
whose all arrows are equivalences. The tautological embedding

i : S −→ Cat∞

has both left and right adjoints which we will denote L and K respectively.

The existence of adjoints can be shown as follows. We can realize Cat∞ as the ∞-
category underlying the simplicial model category sSet+ of marked simplicial sets,
and S as underlying the category sSet+ endowed with a localized model structure,
see [L.T, 3.1.5.6].

Thus, the fully faithful embedding i : S→ Cat∞ admits a left adjoint L : Cat∞ → S

which defines a localization in the sense of Lurie, [L.T, 5.2.7.2].

The right adjoint functor K assigns to an ∞-category X the maximal Kan sub-
complex K(X).

This formally implies that the composition L = i ◦ L is left adjoint to the com-
position K = i ◦K. The unit of adjunction defines a canonical map X → L(X). The
functors L and L are total ∞-localization functors. If C is an ∞-category, L(C) is
presented by a Kan fibrant replacement of C.

1.1.2. Marked ∞-categories and their ∞-localization

A marked ∞-category is, by definition, a pair (C,W ) with C an ∞-category and
W a collection of arrows in C. A marking W is saturated if there exists a map
C → D of ∞-categories such that W is the preimage of the collection of equivalences
in D. Since equivalences in D are precisely the arrows whose image in the homotopy
category Ho(D) is an isomorphism, a saturated marking of C is always defined by a
subcategory W ⊂ C in the sense of [L.T, 1.2.11]. In what follows all markings will be
assumed saturated. Marked ∞-categories form an ∞-category Cat+∞ which is the full
subcategory of Fun(∆1, Cat∞) spanned by arrows W → C determined by saturated
markings W of C.
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Given a map f : W → C in Cat∞, one defines L(f) or L(C,W ) as the object
(co)representing the ∞-functor

Map(L(f), X) = Map(C,X)×Map(W,X) Map(W,K(X)) (1)

from Cat∞ to S. The definition immediately implies the formula3

L(f) = L(W )

W∐
C.

1.1.3. Description in terms of marked model structure

Let C be an∞-category. We will check that the total localization L(C) is represented
by a fibrant replacement C̃ of the marked simplicial set C♯ = (C,C1). In fact, let X
be an ∞-category. We have a commutative diagram

Map(C̃,K(X))
f

//

g

��

Map(C,K(X))

��
Map(C̃,X) // Map(C,X)

,

where all Map spaces are taken in Cat∞. Note thatK(X) is Kan. Therefore, the source
and the target of f can be calculated in sSet+; therefore, f is a weak equivalence.
On the other hand, C̃ is a fibrant replacement of C♯, so is also Kan. Therefore, g is
a bijection. This proves the assertion.

The same is true for a general localization. Let f : W → C be as above. Choose

fibrant replacements W ♯ → W̃ and W̃ ⊔W
♯

(C,W ) −→ C̃ in the category of marked
simplicial sets. Since the marked model structure is left proper, the composition
(C,W )→ C̃ is a weak equivalence, so that the fibrant replacement C̃ of (C,W )
represents the localization L(C,W ).

Thus, we have

Proposition. For (C,W ) ∈ Cat+∞ the ∞-localization L(C,W ) is represented by a
fibrant replacement of (C,W ) considered as marked simplicial set.

Note that one has a tautological map τ : φ −→ L of functors Cat+∞ −→ Cat∞ where
φ is the functor forgetting the marking of a marked ∞-category.

1.2. Dwyer-Kan localization in simplicial categories

Using the model category structure on simplicial categories (Bergner model struc-
ture), Dwyer-Kan localization can be described as the derived functor of a conven-
tional localization.

Given a map W→ C of simplicial categories, its DK localization can be described
as represented by a conventional localization C̃[W̃−1] where in the diagram

3Recall that the colimit is meant to be in Cat∞, that is, in the “infinity sense”.
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W̃
p

//

ĩ
��

W

i

��
C̃

q
// C

p and q are cofibrant replacements and ĩ is a cofibration.

The above definition was suggested by Dwyer and Kan in [DK1], with an explicit
choice of cofibrant replacements. In the second paper of the series, [DK2], another
important variant of the definition, hammock localization, weakly equivalent to the
above one, was given. It is worth mentioning that the hammock localization LH(C,W)
admits a localization map C→ LH(C,W) (the originally defined localization admit-

ted instead a map from a cofibrant replacement C̃), and that the simplicial sets
MapLH(C,W)(x, y) have an explicit description in terms of diagrams.

Since simplicial categories provide a legitimate model for (∞, 1)-categories, it is
natural to compare two kinds of localizations. Let us show in what sense DK local-
ization and the ∞-localization defined in 1.1 “are actually the same”.

Recall [L.T, 2.2.5.1], that there is a Quillen equivalence

C : sSet −→←− sCat : N (2)

between the category of simplicial sets with Joyal model structure and the category
of simplicial categories with Bergner model structure. The right Quillen functor here
is the homotopy coherent nerve functor which we will simply call the nerve. We will
denote by RN its derived functor which is calculated as the nerve functor applied to
a fibrant replacement.

Let C be a simplicial category. Its total localization is a map C → C̃ such that the
map of their derived nerves RN(C)→ RN(C̃) is a total localization of ∞-categories
in the sense of 1.1.1.

By [DK1, 9.2], the total DK localization C → L(C,C) satisfies the above property.

Dwyer-Kan localization represents the∞-localization also in general. To show this,
let f : W −→ C be a map of ∞-categories defined by a saturated marking on C. Let
L(f) = L(W )

∐W
C be the localization. Applying the functor C to the whole picture,

we get a cocartesian diagram

C(W ) //

��

C(L(W ))

��
C(C) // C(L(f))

where C(W )→ C(C) is a cofibration of cofibrant simplicial categories. We already
know that the map C(W )→ C(L(W )) is a total localization, so C(L(f)) is a Dwyer-
Kan localization of C(C) with respect to C(W ).

The following reformulation of what we have just checked is useful.

1.2.1 Proposition. Let C be a fibrant simplicial category and W a fibrant simplicial
subcategory of C with Ob(W) = Ob(C). The map C→ LH(C,W) induces a map of
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marked simplicial sets

(N(C), N(W))→ RN(LH(C,W))♮

which is a weak equivalence.

1.3. The ∞-category underlying a model category

Dwyer and Kan suggested their localization as a way to retain the important higher
homotopy information in the homotopy category.

Localization of a model category remains the most important application of the
theory.

Recall that if C∗ is a simplicial model category and C
cf
∗ is the full simplicial subcat-

egory consisting of fibrant cofibrant objects, the nerve N(Ccf
∗ ) is, according to Lurie,

the ∞-category underlying the model category C. Since C
cf
∗ represents for simplicial

model categories the DK localization, see [DK3, 4.8], the following definition seems
appropriate.

1.3.1 Definition. Let C be a model category and W the full subcategory of weak
equivalences. The ∞-category N(C) underlying the model category C (or the nerve
of the model category) is defined as RN(LH(C,W)).

Proposition 1.2.1 implies that the nerve of a model category C can be equivalently
defined as a fibrant replacement of the marked simplicial set (C,W).

1.3.2. Properties of a nerve

First of all, note that the map spaces MapLH(C,W)(x, y) (and, therefore, the map
spaces of the nerve) have “the correct homotopy type” as claims the following theo-
rem.

1.3.3 Theorem. ([DK3, 4.4]) For any cosimplicial resolution x• of x and simpli-
cial resolution y• of y the diagonal of the bisimplicial set HomC(x

•, y•) is homotopy
equivalent to MapLH(C,W)(x, y). Moreover, if x is cofibrant, the same homotopy type
has the simplicial set HomC(x, y•). Similarly, if y is fibrant, the same homotopy type
has HomC(x

•, y).

A very important property of the homotopy category Ho(C) of a model category
C says that it can be described in different ways: as the localization of C with respect
to weak equivalences in C; as the localization of the full subcategory Cc (resp., Cf

or Ccf ) spanned by cofibrant (resp., fibrant or fibrant cofibrant) objects of C, with
respect to weak equivalences in this subcategory.

Equally important is the existence of different presentations of the ∞-category
underlying a model category. In this paper existence of different presentations of
the underlying ∞-category is indispensable in proving Proposition 1.5.1 below which
asserts that a Quillen pair of model categories gives rise to an adjoint pair of the
respective underlined categories.

Some of such presentations are given in [DK3, 5.2 and 4.8]. Here they are.

1.3.4 Proposition. ([DK3, 5.2]) Let C be a model category, Cc (resp., Cf or Ccf ) the
full subcategory spanned by the cofibrant (resp., fibrant or fibrant cofibrant) objects.
Then the following canonical morphisms of hammock localizations (with respect to
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weak equivalences) are equivalences of simplicial categories.

LH(Cf ) −→ LH(C)←− LH(Cc). (3)

1.3.5 Proposition. ([DK3, 4.8]) Let C∗ be a simplicial model category. Then the
canonical morphisms of the following simplicial categories are equivalences.

C
cf
∗ −→ LH(Ccf

∗ ) −→ LH(C∗)←− LH(C) (4)

We would like to have an analog of Proposition 1.3.5 for model categories with
simplicial structure, more general that simplicial model categories.

We think we have found an easy way of proving all equivalences of this sort. It is
based on Key lemma presented below.

The lemma is formulated in the language of ∞-localization as presented in 1.1.
The proof uses presentation of (∞, 1)-categories with complete Segal spaces.4

1.3.6. Key lemma
Let C,D be categories, f : C −→ D be a functor. For x ∈ D we denote as Cx the fiber
{(c, θ)|c ∈ C, θ : f(c)

∼
→ x}.

More generally, for n-simplex σ ∈ Nn(D) we denote as Cσ the fiber of the functor
f [n] : C[n] −→ D[n] at σ.

Here and below we denote C[n] the category of functors [n]→ C where [n] is the
category consisting of n consecutive arrows.

Lemma. Let f : C→ D be a functor. Assume that for any σ ∈ N(D) the fiber Cσ

has a weakly contractible nerve. Then the functor f presents D as an ∞-localization
of C with respect to W = {a|f(a) is an isomorphism}.

Proof. We start with a simple observation. Let C and D be categories. Assume that a
functor f : C −→ D has fibers Cd, d ∈ D, whose nerves N(Cd) are weakly contractible.

Put W = {α ∈ Mor(C)|f(α) is invertible}. This is a subcategory of C. We claim
that the induced map of the nerves

N(W ) −→ N(K(D)),

where, as usual, K(D) is the maximal subgroupoid of D, is a weak equivalence. In
fact, we can replace D with K(D) and C with the respective preimage W since this
does not alter the fibers. In this way the claim can be immediately reduced to the case
D = BG, the groupoid with one object and automorphism group G. The contractible
fiber of this map is, by definition, the base change of C→ BG with respect to the
universal covering EG→ BG. Thus, N(C) has a contractible Galois covering with
group G, so the map N(C)→ N(BG) is a weak equivalence.

Going back to our lemma, we apply the above observation to the functors
f [n] : C[n] → D[n]. They have weakly contractible fibers, so for each n one has a weak
equivalence

N(C,W )n → N(K(D[n])) (5)

from the n-th space of the classification diagram N(C,W ) defined as in [R, 3.3], to
the nerve of the maximal subgroupoid of D[n].

4We are grateful to the referee who found an error in the original proof, and suggested an idea of
the present proof.
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These equivalences define a Reedy equivalence N(C,W )→ N(D,K(D)), the latter
being the classifying diagram of D in the language of [R, 3.5]. The following argument
due to C. Schommer-Pries is borrowed from Mathoverflow discussion [SP].

Look at the diagram comparing three models for ∞-categories, that of relative
categories (Barwick-Kan, [BK1, BK2]), simplicial categories with the Bergner model
structure, and simplicial spaces with complete Segal space structure.

RelCat //

LH
%%❏

❏❏
❏❏

❏❏
❏❏

ssSet

sCat
NCSS

::✉✉✉✉✉✉✉✉✉

Here the horizontal arrow is the classification diagram functor (C,W ) 7→ N(C,W ),
LH is the hammock localization and NCSS is the composition of homotopy coherent
nerve functor sCat→ sSet and the functor i! : sSet→ ssSet defined as in Joyal-
Tierney [JT]. Barwick and Kan prove that the hammock localization LH : RelCat→
sCat and the Rezk classification diagram functor (C,W ) 7→ N(C,W ) induce an equiv-
alence between the respective ∞-categories.

We have to verify the functor NCSS ◦ LH induces a functor isomorphic to Rezk’s
classification diagram on the ∞-categorical level. Since all the functors involved are
equivalences, this follows from the uniqueness result of Toen [T]: the only nontrivial
automorphism of Cat∞ is the passage to the opposite. So, to prove that our two
functors are isomorphic, it is enough to verify that they both preserve the initial
vertex of the category [1].

1.3.7. Proof of 1.3.4

Here is the proof of 1.3.4 based on the Key lemma.

Denote C̃ the category whose objects are X̃ −→p X where X̃ is cofibrant and p is a
weak equivalence. The functor f : C̃ −→ C carries p : X̃ → X to X. We will check that
the requirements of the Key lemma are met, so the functor f is an∞-localization. This
immediately implies that f induces an equivalence of DK localizations LH(C̃, W̃) −→
LH(C,W).

On the other hand, the functor g : C̃ −→ Cc carrying X̃ → X to X̃, has a left
adjoint, so that the unit and the counit are in W. Thus, this functor induces an
equivalence of the hammock localizations. Finally, there is a morphism of functors i ◦
g −→ f , where i : Cc → C, which belongs to W, so i should also induce an equivalence
of the hammock localizations.

In order to check the requirements of the Key lemma, we will use the recipe pre-
sented in [H.DSA, A.3]. First of all, we check that the categories in question have
a simply connected nerve; then, using Proposition A.3.3 of [H.DSA], prove that the
reduced homology of their nerves vanish.

Let σ = (X0 → · · · → Xn).

N(C̃σ) is connected. It is convenient to use the model structure on C[n] with
componentwise weak equivalences and cofibrations, and with the fibrations defined
by the right lifting property with respect to trivial cofibrations.
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An object

P0
//

p0

��

· · · // Pn

pn

��
X0

// · · · // Xn

of C̃σ is called special if the map p : P → X is a trivial fibration in the model category
structure on C[n] described above.

In more detail, this means that pn is trivial fibration and the commutative squares

Pi−1
//

pi−1

��

Pi

pi

��
Xi−1

// Xi

induce a fibration Pi−1 −→ Xi−1 ×Xi
Pi.

Now for any pair P,Q ∈ C̃σ with Q special the set Hom
C̃σ

(P,Q) is nonempty. This

proves connectedness of the nerve of C̃σ.

N(C̃σ) is simply-connected. The Poincaré groupoid of N(C̃σ) is the nerve of the

full localization of C̃σ (here we mean the “conventional” localization in Cat).

For any p : P → X in C̃σ we construct a cylinder object

P ⊔ P −→i0⊔i1 P̃ −→q P (6)

so that i0 ⊔ i1 is a cofibration and q is a trivial fibration in C[n].
Now any pair of arrows a0, a1 : P −→ Q with special Q can be extended to a map

a : P̃ −→ Q so that aj = a ◦ ij . Finally, given a closed path

P 0 → P 1 ← · · ·Pn ← P 0 (7)

in C̃σ, choose a special Q and an arrow P k → Q for each k. Since all triangles with
vertices P k, P k+1 and Q become commutative in the localization, the image of the
path (7) in the localization is trivial. This proves simply-connectedness of N(C̃σ).

N(C̃σ) has vanishing reduced homology. Choose a special q : Q→ X in C̃σ.
The functor Q : [n]→ Cc gives rise to a simplex in C which we denote τ .

C̃τ −→ C̃σ (8)

defined by the composition with q. The first category has a final object, so its nerve
is contractible. The fiber of (8) at P → X is of form C̃σ′ with the simplex σ′ defined
by the componentwise fiber product Q×X P . Lemma A.3.3 of [H.DSA] claims in

this case (by induction) that the reduced homology of N(C̃σ) vanishes.
Proposition 1.3.4 is proven.
The following result (proven in [DK2] for model categories with functorial decom-

position) is deduced by precisely the same reasoning.

1.3.8 Proposition. Let C be a model category. Then the embedding Ccf → Cf in-
duces an equivalence of hammock localizations.
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1.4. Model categories with a simplicial structure

We will generalize Proposition 1.3.5 to model categories having a simplicial struc-
ture satisfying some (but not all) properties of a simplicial model category.

A typical example of such simplicial structure on a model category is the one on the
category of complexes C(k) or the one on a category of DG algebras (over any operad)
in case the ground ring k contains the rational numbers. The structure presented
below is not self-dual. So, formally speaking, there is a dual notion (existence of weak
cylinders instead of weak paths). However, we do not know any meaningful example
of such structure, so we will not mention it in the sequel.

1.4.1. Weak path functors

Let C be a simplicial category.

We will assume that for any simplicial set K the functor

Y 7→ Hom(K,MapC(Y,X)) (9)

is representable. The representing object will be denoted XK . Note that the standard
requirement of existence of simplicial path functors is stronger than what we require:
we do not require representability of the functor

Y 7→ Map(K,MapC(Y,X)).

We will call our requirement the existence of weak path functors.

It is enough to require representability of the functors (9) for K = ∆n. Then one
will automatically have XK = limX∆ where X∆ is the functor from the category of
simplices in K to C carrying ∆n → K to X∆n

.

The functors ΛK : X 7→ XK for a fixed K have automatically a structure of monad
coming from the composition law in C. In fact, the composition map

MapC(Y,X)×MapC(Z, Y ) −→ MapC(Z,X) (10)

yields a collection of maps

HomC(Y,X
K)×HomC(Z, Y

K) −→ MapC(Z,X
K) (11)

which, applied to Y = XK , yields, in particular, a canonical map

HomC(Z, (X
K)K) −→ MapC(Z,X

K), (12)

that is, a canonical map ΛK ◦ ΛK → ΛK . The unit of the monad is defined by the
canonical map X → XK .

Furthermore, the maps ΛK → ΛK×L and ΛL → ΛK×L yield

ΛK ◦ ΛL −→ ΛK×L ◦ ΛK×L −→ ΛK×L. (13)

The following lemma is obvious.

Lemma. A simplicial category with weak path functors admits simplicial path func-
tors (in the sense of Quillen) iff the maps (13) are isomorphisms.

1.4.2 Definition. Let C be a model category having a simplicial structure. We call
it a weak simplicial model category if it admits weak path functors and satisfies the
standard (M7) condition of [Hir, 9.1.6]:
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If i : A→ B is a cofibration in C and p : X → Y is a fibration in C, then the
map of simplicial sets

Map(B,X) −→ Map(A,X)×Map(A,Y ) Map(B, Y )

is a fibration which is a trivial fibration if either i or p is a weak equivalence.

Example. The category of complexes C(A) over an associative ring A has a pro-
jective model structure (quasiisomorphisms as weak equivalences, componentwise
surjective maps as fibrations). It has also a simplicial category structure so that
weak path functors exist: the functor Y 7→ Map(Y,X)n is presented by the complex
C∗(∆n,Z)⊗Z X, where C∗(∆n,Z) is the complex of normalized integral cochains on
∆n. This is a weak simplicial model category.

Example. (See, for instance, [H.H, Sec. 4]) Let now k ⊃ Q be a commutative ring
and let O be an operad in C(k). The category Alg

O
(C(k)) of O-algebras with values

in C(k) has a simplicial structure with weak path functors given by the formula

A∆n

= Ωn ⊗A, (14)

where Ω• is the simplicial algebra of polynomial differential forms

n 7→ Ωn = k[x0, . . . , xn, dx0, . . . , dxn]/(
∑

xi − 1,
∑

dxi).

This is also a weak simplicial model category.

1.4.3.

In what follows we denote by C∗ = {Cn} and C
cf
∗ the model category C considered as a

simplicial category and its full simplicial subcategory spanned by the fibrant-cofibrant
objects.

Proposition. Let C∗ be a weak simplicial model category. The following maps are
weak equivalences of simplicial categories.

0. The localization map C
cf
∗ −→ LH(Ccf

∗ ).

1. The maps LH(C0) −→ LH(Ck) induced by the degeneracy C0 → Ck.

2. The maps LH(Cf
0 ) −→ LH(Cf

k).

3. The maps LH(Ccf
k ) −→ LH(Cf

k).

The proof will be given in 1.4.4.

Corollary. Let C∗ be a weak simplicial model category. Then the maps of simplicial
categories

C
cf
∗ −→ LH(Ccf

∗ ) −→ LH(Cf
∗) −→ LH(C∗)←− LH(C) (15)

are equivalences.

1.4.4. Proof of Proposition 1.4.3

0. This follows from the description of localization via the universal property. Since
W cf
∗ is a simplicial groupoid, the map W cf

∗ −→ LH(W cf
∗ ) is a weak equivalence, and

this implies the claim.
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1. Define a functor Λk : Ck −→ C as follows. For X ∈ Ck let Λk(X) be X∆k

. A map

f : X → Y in Ck is given by a map φ : X → Y ∆k

. It yields a composition

X∆k

−→φ∆k

(Y ∆k

)∆
k

−→ Y ∆k

which will be Λk(f). The functor Λk so defined is right adjoint to the unit functor

U : C0 → Ck carrying X to X and f : X → Y to X −→f Y −→ Y ∆k

. The unit and
the counit of the adjunction being in W , the adjunction induces an equivalence of
DK localizations.

2. The pair (U,Λk) defines also an adjunction of Cf and C
f
k .

3. The proof uses the Key lemma very similarly to the proof of 1.3.4.

The category C̃ consists of the weak equivalences P → X∆k

where X is fibrant

and P is fibrant cofibrant. Morphisms from P → X∆k

to Q→ X∆k

are given by
commutative triangles in Ck.

Let now σ = (X0 → · · · → Xn). We have to prove that the nerve N(C̃σ) is weakly
contractible. We denote by X be object of C[n] corresponding to σ. A special object

in C̃σ is just a trivial fibration q : Q→ X∆k

in C[n] with cofibrant Q. If p : P → X∆k

is any object in C̃σ, and q : Q→ X∆k

a special object, there exists a map P → Q in
C (and so in Ck) making the diagram commutative. This proves the nerve of C̃σ is
connected. We will now verify that any pair of maps to a special object has the same

image in the total localization. Once more, given P → X∆k

in C̃σ, we construct a

cylinder object (6). Now, given two map a0, a1 : P −→ Q∆k

in C̃σ with special Q, we

can extend it to a map a : P̃ → Q∆k

. This proves any two arrows to a special object
in C̃σ have the same image in the localization. This implies that the nerve of C̃σ is
simply connected. Vanishing of the reduced homology of C̃σ is proven in the same
way as in 1.3.4.

Proposition is proven.

1.5. Quillen pair

Let F : C −→←− D : G be a Quillen pair. In case of simplicial model categories and
simplicial adjunction, this induces a pair of adjoint functor between the underlying
∞-categories, see [L.T, Proposition 5.2.4.6]. Proposition 1.5.1 below asserts that one
does not really need the simplicial structure here.

The functor F preserves weak equivalences between cofibrant objects, and G pre-
serves weak equivalences between fibrant objects. This defines by universality a pair
of functors which we denote for obvious reasons as the derived functors,

LF : N(C) −→←− N(D) : RG. (16)

1.5.1 Proposition. The functors LF and RG form an adjoint pair of functors
between ∞-categories.

Proof. According to [L.T, 5.2.2], a pair of adjoint functors is defined by an ∞-
category which is both cartesian and cocartesian fibration over ∆1.

Define a simplicial category M over ∆1 as follows. The objects of M over 0 are the
cofibrant objects of C, and the objects over 1 are the fibrant objects of D. We denote
as c, c′, . . . the objects over 0 and as d, d′, . . . the objects over 1.
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In what follows we use the following notation. Let C be a simplicial category.
Applying to all simplicial Hom-sets the functor

X 7→ Sing |X|,

we get a functorial fibrant replacement Cφ of C.

We define MapM(c, c′) as MapLH(Cc)φ(c, c
′) and MapM(d, d′) as MapLH(Df )φ(d, d

′).
Furthermore, we put MapM(d, c) = ∅ and MapM(c, d) = MapLH(D)φ(F (c), d).

The composition is defined by the simplicial functors

LH(Df )φ −→ LH(D)φ and LH(Cc)φ −→ LH(D)φ,

the first one being an equivalence and second one being induced by F . The simplicial
category M defined above is obviously fibrant.

The fiber of M at 0 is LH(Cc)φ whereas the fiber at 1 is LH(Df )φ.

It remains to check that the functor M→ ∆1 is a cartesian and a cocartesian
fibration.

According to [L.T, 5.2.4.4], we have to find for each object c over 0 an arrow
α : c→ d and for each d over 1 an arrow β : c→ d, so that

• For any c′ over 0 the map MapM(c′, c)→ MapM(c′, d), induced by β, is an
equivalence.

• For any d′ over 1 the map MapM(d, d′)→ MapM(c, d′), induced by α, is an
equivalence.

The arrow α : c→ d is defined by a fibrant replacement F (c)→ d whereas the arrow
β : c→ d is defined by a cofibrant replacement c −→ G(d) which is chosen to be a
trivial fibration (so that c is in particular fibrant).

Let us check the requirements. The universality of α is immediate as a weak equiv-
alence F (c)→ d gives rise to an equivalence of the map spaces in L(D)φ.

Universality of β is slightly less obvious. We have to deduce that the canonical
map

MapM(c′, c) −→ Map(F (c′), F (c)) −→ Map(F (c′), d) = Map(c′, d) (17)

is an equivalence. This is proven as follows. Choose a cosimplicial resolution P • → c′;
We decompose the map F (c) −→ d adjoint to the cofibrant replacement c→ G(d),
into a trivial cofibration followed by a fibration as shown below.

F (c) −→ d′ −→ d. (18)

We have a commutative diagram of simplicial sets

HomC(P
•, c) //

��

HomD(F (P •), F (c)) // HomD(F (P •), d′)

��
HomC(P

•, G(d)) HomD(F (P •), d)

(19)
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which represents a commutative diagram

MapLH(Cc)φ(c
′, c) //

��

MapLH(D)φ(F (c′), F (c))

��
MapLH(C)φ(c

′, G(d)) MapLH(D)φ(F (c′), d)

. (20)

Since the left vertical map is obviously an equivalence, the composition (17) is also
an equivalence as required.

1.5.2 Corollary. Let C be a combinatorial model category. Then the underlying ∞-
category NC is presentable. The limits and colimits in NC can be calculated as derived
limits and colimits in C.5

Proof. According to Dugger’s theorem [Dug, Corollary 1.2], any combinatorial model
category is Quillen equivalent to a simplicial combinatorial model category whose
underlying ∞-category is known to be presentable. Since Quillen equivalent model
categories have equivalent underlying ∞-categories, this proves presentability of NC

in general.
Let now I be a category. The category of functors CI has injective and projective

model structures. One has two Quillen pairs,

colim: CI −→
←− C : c (21)

and

c : C −→←− C
I : lim, (22)

where the functor c assigns to x ∈ C the constant diagram with value x. In the first
Quillen pair CI is endowed with the injective model structure, and in the second one
with the projective model structure.

It remains to show that the ∞-category underlying CI (in either model structure)
is equivalent to Fun(N(I), N(C)). Here once more we use Dugger’s result. Any Quillen
equivalence C

−→
←− D of combinatorial model categories gives rise to a Quillen equiv-

alence CI −→
←− DI . Thus, having in mind Dugger’s theorem, Corollary 1.2, one can

assume that C is a combinatorial simplicial model category. In this case the claim is
a special case of [L.T, Proposition 4.2.4.4].

2. Localization in families

Since ∞-localization is functorial, it is reasonable to expect its nice behavior in
families. In this section we assert that for a nice family of marked ∞-categories,
localization of the fibers is equivalent to fibers of the map of the localization.6

The following definition describes a notion of a (marked) family of marked infinity
categories.

5Presentability of NC is proven in [L.HA, 1.3.4.22]. Lurie defines NC as the localization of Cc

which is of course equivalent to our definition.
6A similar result for conventional categories was independently obtained by Haugseng [Hau].
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2.1.
Recall that Cat+∞ is the∞-category of marked∞-categories (markings are assumed

to be saturated).

2.1.1 Definition. An arrow f : (C, V ) −→ (D,W ) in sSet+ is calledmarked cocarte-
sian fibration7 if the following properties are fulfilled.

1. f : C → D is a cocartesian fibration of ∞-categories.

2. A cocartesian lifting of a marked arrow in D is marked in C.

3. For any arrow α : d→ d′ in D the functor α! : Cd → Cd′ preserves marked
arrows.

4. If α : d→ d′ is marked then α! induces an equivalence of the localizations
L(Cd, V ∩ Cd) −→ L(Cd′ , V ∩ Cd′).

2.1.2 Remark. The markings V ⊂ C are uniquely defined by their intersection with
f−1(K(D)) as any marked arrow in C decomposes into a a cocartesian lifting of its
image in D and a marked arrows whose image in D is equivalence.

Our main result Proposition 2.1.4 below describes a family of localizations of the
fibers (Cd, Cd ∩ V ). In order to formulate it, we need a more “homotopy invariant”
version of the notion of cocartesian fibration. This is what Lurie [L.G] calls “essen-
tially a cocartesian fibration”, and we prefer to call just a cocartesian fibrations in
Cat∞. Here it is.

2.1.3 Definition. A map f : C → D in Cat∞ is called a cocartesian fibration if it is
equivalent to a map represented by a cocartesian fibration f ′ : C ′ −→ D′ in sSet.

A morphism f : C −→ D of∞-categories in sSet represents a cocartesian fibration
in Cat∞ if and only if it can be embedded into a homotopy commutative diagram

C
i //

f
��❅

❅❅
❅❅

❅❅
❅ C ′

g
~~⑥⑥
⑥⑥
⑥⑥
⑥⑥

D

,

where g is a cocartesian fibration and i is a categorical equivalence. Moreover, if
f : C → D is a categorical fibration presenting a cocartesian fibration in Cat∞, it is
a cocartesian fibration in sSet, see [L.G, 1.4.5].

Let f : C −→ D be a cocartesian fibration inCat∞. An arrow α : ∆1 → C is f -
cocartesian if its composition with i : C → C ′ as in the above diagram, is g-cocarte-
sian. This notion is independent of presentation and f -cocartesian arrows in C form
a subcategory.

We are now able to formulate the main result of this section. This result is used
in [H.R, Section 4].

2.1.4 Proposition. Let f : (C, V )→ (D,W ) be a marked cocartesian fibration. Then
the localization

L(f) : L(C, V ) −→ L(D,W )

is a cocartesian fibration in Cat∞. Moreover, for any d ∈ D the induced map from
(Cd, V ∩ Cd) to the homotopy fiber of L(f) at d, is an ∞-localization.

7Caution: our definition differs from [L.G, 1.4.9].
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The proof is given in 2.1.5–2.2.6 below.

2.1.5.
For an ∞-category D we define Coc(D) as the subcategory of (Cat∞)/D spanned by
the cocartesian fibrations C → D, with the maps preserving cocartesian arrows.

Otherwise, Coc(D) can be described as the ∞-category underlying the category
sSet+/D endowed with the cocartesian model structure, see [L.T, Chapter 3].

Similarly, for (D,W ) ∈ Cat+∞, the infinity category Coc+(D,W ) can be defined
as the subcategory of (Cat+∞)/(D,W ) spanned by the marked cocartesian fibrations,
with the maps preserving cocartesian arrows. It will be convenient, however, to iden-
tify Coc+(D,W ) with another subcategory of (Cat+∞)/(D,W ), taking into account
Remark 2.1.2, via the functor

r : Coc+(D,W ) −→ (Cat+∞)/(D,W ) (23)

carrying f : (C, V )→ (D,W ) to r(f) : (C, V ×D K(D))→ (D,W ).
We will use a weak form of straightening/unstraightening equivalence described in

[L.T, Chapter 3]. It provides for an ∞-category D an equivalence of ∞-categories

Coc(D) ≃ Fun(D, Cat∞). (24)

The marked version of the above equivalence is described as follows. First of all,
for (C, V ), (D,W ) ∈ Cat+∞ we denote Fun((C, V ), (D,W )) as the full subcategory of
Fun(C,D) spanned by the functors carrying V to W .

Let Λ be the collection of arrows in Cat+∞ carried by L : Cat+∞ −→ Cat∞ to equiv-
alence.

2.1.6 Lemma. The equivalence (24) induces an equivalence

Coc+(D,W ) ≃ Fun((D,W ), (Cat+∞,Λ)). (25)

Proof. The right-hand side of (25) is a full subcategory of Fun(D, Cat+∞) which is a
full subcategory of Fun(∆1,Fun(D, Cat∞)) = Fun(∆1, Coc(D)). The latter is a sub-
category of Fun(∆1, (Cat∞)/D).

We identify Coc+(D,W ) with a subcategory of (Cat+∞)/(D,W ) using the functor r
described in (23). The latter is a subcategory of Fun(∆1, (Cat∞)/D).

It remains to note that two sides of the formula (25) determine the same subcate-
gory of Fun(∆1, (Cat∞)/D).

2.2. Proof of 2.1.4
We will use the following simple lemma.

2.2.1 Lemma. Let f : X → S be a cocartesian fibration in Cat∞, α : I⊲ → (Cat∞)/S
be a colimit diagram, and let β : I⊲ → (Cat∞)/X be obtained from α by a base change
along f . Then β is also a colimit diagram.

Proof. We can represent f with a cocartesian fibration of ∞-categories and α with
a cofibrant representative in the projective model structure on Fun(I, sSet), where
sSet is endowed with the Joyal model structure. Then the naive colimit in sSet of
α followed by a fibrant replacement, represents the colimit of α in (Cat∞)/S . The
base change of a cofibrant object is cofibrant, it commutes with naive colimits, and
preserves weak equivalences, see [L.T, 3.3.1.3]. This implies the claim.
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2.2.2.

The marked cocartesian fibration f : (C, V )→ (D,W ) is classified by a functor
F+ : D → Cat+∞ carrying W to Λ. The composition F = φ ◦ F+ : D −→ Cat∞ of F+

with the forgetful functor classifies the cocartesian fibration C over D.

The composition L ◦ F+ : D −→ Cat∞ carries W ⊂ D to equivalences, so it ex-
tends to a functor

F : L(D,W ) −→ Cat∞, (26)

which can be converted back to a cocartesian fibration f̂ : X −→ L(D,W ).

The canonical map of functors F −→ F|D induced by the∞-localization leads to a
map C → X over D → L(D,W ) carrying V to equivalences. This yields a canonical
map

θ : L(C, V ) −→ X (27)

over L(D,W ). Our aim is to verify θ is an equivalence. In other words, we have to
verify that for any Y ∈ Cat∞ the map θ defines an equivalence

Map(X,Y ) −→ Map♯((C,W ), Y ♮).

Denote XD = D ×L(D,W ) X. The map XD −→ D is a cocartesian fibration classi-
fied by the functor L ◦ F+ : D −→ Cat∞.

An arrow α ∈ V will be called vertical if f(α) is identity. It is called horizontal
if it is a cocartesian lifting of an arrow in W ⊂ D. We denote V hor and V ver the
collection of horizontal, resp., of vertical marked arrows. By definition, the set V ⊂
C, in a marked cocartesian fibration, is generated by V hor ∪ V ver. One has natural
maps L(C, V ver) −→ XD and L(XD, V hor) −→ X. We will prove that both are weak
equivalences.

2.2.3. The map L(XD, V hor)→ X.

First of all, let us verify the claim in the special case W = D1, that is, (D,W ) = D♯.
The localization L(XD, V hor) can be interpreted in this case as the colimit of the
functor L ◦ F+ : D → Cat∞ classifying the cocartesian fibration XD → D.

Similarly, X can be interpreted as the colimit of the functor F : L(D,D1)→ Cat∞.
The map D −→ L(D,D1) is cofinal [L.T, 4.1.1.1], so the natural map of colimits is
an equivalence.

The case of general marking W ⊂ D1 can now be easily deduced. Denote W the
subcategory ofD consisting of the simplices whose all edges are inW . The localization
L(D,W ) is a pushout of the diagram L(W)←−W −→ D. According to Lemma 2.2.1,
the ∞-categories

XW
//

��

XL(W)

��
XD

// X

defined as pullbacks ofW,L(W) and D, also form a pushout diagram with X. Accord-
ing to the special case verified above, XL(W) is a localization of XW with respect to

V hor. This also implies that X is a localization of XD with respect to V hor.
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2.2.4. The map L(C, V ver)→ XD.

We will verify the claim for D = ∆n. This will imply by Lemma 2.2.1 the claim for a
general D as both L(C, V ver) and XD are presented as colimits of their base changes
with respect to ∆n → D,

L(C, V ver) = colim∆n→D L(C ×D ∆n, V ver), (28)

XD = colim∆n→D XD ×D ∆n. (29)

The cocartesian fibration C → D classified by a functor ∆n −→ Cat∞, given by a
sequence C : C0 −→ · · · −→ Cn of ∞-categories, is equivalent to its mapping simplex
M(C) whose k-simplices over α : ∆k → ∆n are just the k-simplices of Cα(0), see [L.T,
3.2.2.7].

Denote V i = V ver ∩ Ci. We will mark an edge in M(C) over an edge i→ j of ∆n

if it comes from a marked edge in Ci. The corresponding marked simplicial set will
be denoted M(C)♮. The cocartesian fibration XD → D is equivalent to the mapping
simplex M(L(C)) where

L(C) : L(C0, V 0) −→ · · · −→ L(Cn, V n).

We want to verify that the map M(C)→M(L(C)) induces, for each ∞-category Y ,

a homotopy equivalence between Map(M(L(C)), Y ) and Map♯
sSet+

(M(C)♮, Y ♮).

This results from the following presentation of the mapping simplex as colimit.

2.2.5 Lemma. Let C : C0 −→ · · · −→ Cn be a sequence of ∞-categories. Then the
mapping simplex M(C) can be presented as the colimit of the diagram

C0 ×∆n ←− C0 ×∆n−1 −→ C1 ×∆n−1 ←− C1 ×∆n−2 −→ · · · −→ Cn, (30)

where the forward arrows are defined by the maps Ci → Ci+1 and the backward arrows
are defined by the 0-th face maps ∆i → ∆i+1.

Proof. Induction in n.

2.2.6.

Thus, the map θ defined in (27) is an equivalence of ∞-categories. Therefore, it
induces an equivalence of homotopy fibers over any d ∈ D. Thus, homotopy fiber of
L(f) at d is equivalent to Xd = F(d) = L(Cd, V ∩ Cd).

Proposition 2.1.4 is proven.

3. Localization of SM ∞-categories

3.1. Adjoint functors

Let C⊗,D⊗ be SM ∞-categories and let F : C⊗ → D⊗ be a symmetric monoidal
functor. Recall that this means, in particular, that p : C⊗ → NFin∗ and q : D⊗ →
NFin∗ are cocartesian fibrations and that the functor F preserves cocartesian edges.

Denote, as usual, C = C
⊗
〈1〉 and similarly for D.

The following lemma is a special case of [L.HA, 7.3.2.7].
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3.1.1 Lemma. The functor F admits a right adjoint if and only if its restriction F |C
admits a right adjoint. In this case the right adjoint functor to F is automatically a
morphism of ∞-operads.

Proof. The functor F admits a right adjoint iff for any d ∈ D⊗ the presheaf on C⊗

defined as c 7→ Map(F (c), d) ∈ S, is representable.
Assume first that d ∈ D. In this case the above functor is represented by G(d),

where G is adjoint to F |D.
In fact, for c =

⊕
i∈I ci in the standard notation, with ci ∈ C, for any α : I∗ → 〈1〉

in Fin∗ one has

Mapα
C⊗(c,G(d)) ≃ MapC(α!(c), G(d)) ≃ MapC(α!(F (c)), d) ≃ Mapα

D⊗(F (c), d).

For a general d =
⊕

i∈I di the functor c 7→ Map(F (c), d) is represented by⊕
i∈I G(di).
If α : d→ d′ is an inert edge in D⊗, the formula above for G implies that G(α) is

as well inert. This means that G is automatically a map of ∞-operads.

3.2. Strict SM localization
Let p : C⊗ −→ NFin∗ be a symmetric monoidal ∞-category [L.HA] with under-

lying category C and let W be a collection of arrows in C.

3.2.1 Definition. A (strict) SM localization of the pair (C⊗,W ) is a SM categoryD⊗

together with a SM functor f : C⊗ −→ D⊗ carrying all arrows from W to equivalences
and satisfying the following properties.

• Universality: for any SM ∞-category E the map

FunSM(D,E) −→ FunSMW (C,E)

from the space of SM functors D→ E to the space of SM functors C→ E car-
rying W to equivalences, is an equivalence.

• The map (C,W ) −→ D is a Dwyer-Kan localization.

The marking W of C = C
⊗
〈1〉 defines a marking of each fiber C⊗〈n〉 so that the maps

C
⊗
〈n〉 −→ C

n

are equivalences of marked ∞-categories. The subcategory spanned by all marked
arrows will be denoted W⊗. The following result is a direct consequence of 2.1.4.

3.2.2 Proposition. Let C⊗ be a SM ∞-category, W be a marking in C, and W⊗ its
extension as described above. Assume that for any active arrow α in Fin∗ the functor
α! preserves markings. Then SM localization of C⊗ exists and is equivalent to the
canonical map L(C⊗,W⊗) −→ NFin∗.

3.3. Right SM localization
The strict SM localization as defined above seldom exists, as the collection of

arrows W is seldom closed under tensor product. This is why we present below a
more practical notion.

3.3.1 Definition. Right SM localization of the pair (C⊗,W ) is a SM category D⊗

together with a lax SM functor f : C⊗ −→ D⊗ carrying all arrows from W to equiv-
alences and satisfying the following properties.
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• Universality: for any SM ∞-category E the map

Funlax(D,E) −→ FunlaxW (C,E)

from the space of lax SM functors D→ E to the space of lax SM functors C→ E

carrying W to equivalences, is an equivalence.

• The map (C,W ) −→ D is a Dwyer-Kan localization.

Note that under the assumptions of Proposition 3.2.2 the SM localization
L(C⊗,W⊗) satisfies as well the universality with respect to lax SM functors, that
is it is also a right SM localization.

The following proposition describes another context where right SM localization
exists.

3.3.2 Proposition. Let C⊗ be a SM ∞-category, W be a marking in C, and W⊗ its
extension as described above. Assume that there exists a full SM subcategory C

⊗
0 of

C⊗ satisfying the following properties.

• The embedding ι : C0 → C admits right adjoint ρ : C→ C0 (that is, C0 is a right
(Bousfield) localization in terms of Lurie, see [L.T, 5.2.7.2]).

• For any active arrow α in Fin∗ the restriction of the functor α! to C
⊗
0 preserves

markings.

• Any arrow φ in C such that ρ(φ) is an equivalence, is in W .

Then right SM localization of C⊗ with respect to W exists and is equivalent to the
canonical map L(C⊗0 ,W

⊗ ∩ C
⊗
0 ) −→ NFin∗.

Proof. Since the left adjoint functor ι : C0 −→ C is a restriction of a SM functor, its
right adjoint ρ extends canonically to a lax SM functor ρ : C⊗ −→ C

⊗
0 .

According to 3.2.2, L(C⊗0 ,W
⊗ ∩ C

⊗
0 ) is a SM localization of C

⊗
0 , so one has an

equivalence

Funlax(L(C⊗0 ,W
⊗ ∩ C

⊗
0 ),D) −→ FunlaxW∩C0

(C0,D). (31)

It remains therefore to check that the lax SM functor ρ induces an equivalence

FunlaxW∩C0
(C0,D) −→ FunlaxW (C,D). (32)

The embedding ι : C0 → C yields a map in the opposite direction. Since the unit and
the counit of the adjunction ι : C0

−→
←− C : ρ belong to W , they prove the constructed

maps are homotopy inverse to each other.

Let C be a symmetric monoidal category endowed with a structure of model cate-
gory. In case the left derived tensor product defines a symmetric monoidal structure
on Ho(C), one has a lax SM functor Q : C −→ Ho(C), so we would like to expect that
the underlying ∞-category N(C) is a right SM localization of C. We present below
the only case we were able to prove.

3.3.3 Example. The category of complexes C(k) over a commutative ring k is sym-
metric monoidal. Let us show that there exists a right SM localization of C(k) with
respect to quasiisomorphisms. Denote C∗(k) the simplicial category of complexes of
k-modules, with the simplicial map space Map(X,Y ) defined as in 1.4.2.
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The category C∗(k) is a fibrant simplicial SM category and the embedding yields
a SM functor ι : C(k) −→ C∗(k). We will denote by the same letter the SM functor
between the corresponding SM ∞-categories.

The full subcategory Cc
∗(k) of C∗(k) spanned by the cofibrant complexes is a SM

∞-category and the embedding admits right adjoint. This easily follows from the fact
that for a cofibrant replacement X̃ −→ X of a complex X and any cofibrant complex
Y the natural map induced by the composition

Map(Y, X̃) −→ Map(Y,X), (33)

is an equivalence. This yields the lax SM functor C(k) −→ L(Cc
∗(k)). It is universal

by the same reasoning we used in the proof of Proposition 3.3.2.
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